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Abstract: Securing Internet of Things (IoT) infrastructures against ever-evolving cyber threats 8 
remains a critical challenge in the era of interconnected devices. In this paper, we present a novel 9 
machine learning solution for enhancing IoT security through the detection and classification of 10 
diverse attacks. Leveraging the NSL-KDD dataset, we applied rigorous data preprocessing pro- 11 
cedures, including feature engineering based on the chi-squared test, to select the most informa- 12 
tive attributes. Our solution utilizes stacked Long Short-Term Memory (LSTM) networks, capa- 13 
ble of capturing temporal dependencies and complex patterns within selected features. By ex- 14 
ploiting LSTM's sequential learning and hierarchical representations, our approach effectively 15 
classifies attacks, ensuring the integrity and resilience of IoT networks. Comprehensive experi- 16 
ments showcase the superiority of our solution compared to various baseline methods, highlight- 17 
ing its accuracy, precision, recall, and F1-score. The proposed machine learning solution demon- 18 
strates remarkable effectiveness in securing IoT infrastructures, paving the way for a safer and 19 
more interconnected future. 20 

Keywords: Internet of Things (IoT), machine learning, security, chi-squared test, stacked LSTM 21 
networks, attack classification, anomaly detection. 22 

1. Introduction 23 

The Internet of Things (IoT) has emerged as a transformative paradigm, revolutionizing 24 
industries and enriching lives through its interconnected network of smart devices and sensors. 25 
From smart homes and cities to industrial automation and healthcare, IoT has proven to be a 26 
catalyst for innovation, offering unprecedented levels of convenience, efficiency, and data- 27 
driven insights. However, the rapid proliferation of IoT infrastructures has also brought forth a 28 
new set of challenges, prominently centered around security and privacy [1].  As our world 29 
becomes increasingly interconnected, safeguarding the integrity and resilience of IoT systems 30 
has become paramount. The vulnerability of IoT devices to cyber threats, unauthorized access, 31 
and data breaches poses significant risks to individuals, organizations, and the entire global 32 
community. Addressing these security challenges requires innovative and adaptive solutions 33 
that can keep pace with the evolving threat landscape [2]. 34 

In this context, machine learning has emerged as a compelling approach to enhance the 35 
security posture of IoT infrastructures. Leveraging the power of artificial intelligence, machine 36 
learning algorithms have the capability to detect anomalies, identify patterns, and predict 37 
potential cyberattacks in real-time. This paper aims to present a cutting-edge machine learning 38 
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solution tailored to secure IoT environments effectively [3]. This work presents a machine 1 
learning solution that is not just an endeavor to bolster the cybersecurity of IoT; it is also an 2 
embodiment of inclusivity and accessibility. As we design and develop solutions for the future, 3 
it is imperative to ensure that they are accessible to all individuals, regardless of their abilities 4 
and backgrounds [4]. Inclusivity in technology transcends mere compliance; it is a philosophy 5 
that empowers all users to participate in and benefit from the digital revolution. 6 

In the pursuit of securing IoT infrastructures, we place great emphasis on addressing 7 
accessibility challenges that might hinder the adoption of security measures. Our approach aims 8 
to be user-friendly, accommodating diverse user interfaces, assistive technologies, and 9 
localization requirements to create an inclusive environment for all stakeholders. Furthermore, 10 
we aim to acknowledge the importance of diversity and representation in the development of 11 
machine learning models. We strive to build a solution that accounts for the diverse contexts and 12 
user scenarios that IoT applications encompass. By considering a broad spectrum of data and 13 
perspectives during the model's training phase, we aspire to mitigate bias and ensure equitable 14 
outcomes for all users. 15 

The remainder of this article is organized into sections. Section 1 delves into the literature 16 
IoT security. Section 2 argues the design and implementation of our novel machine learning 17 
solution. Our experiments and results discussed in section 4.  Section 5 present the 18 
experimental setup. The results are discussed in section 6. The conclusion of our work is drawn 19 
in section 7. 20 

2. Related Works 21 
In this section, we present an overview of the existing body of research and developments 22 

pertaining to the key themes explored in our paper. The examination of related work is crucial 23 
for understanding the current state-of-the-art in the field and identifying the gaps our proposed 24 
machine learning solution aims to address.  Abdel-Basset et al. [3] proposed Deep-IFS, an intru- 25 
sion detection approach specifically designed for industrial IoT traffic in fog environments. Their 26 
work focuses on enhancing the security of IoT systems through the application of deep learning 27 
techniques. The paper highlights the importance of addressing the unique challenges posed by 28 
industrial IoT environments, such as latency and resource constraints. Li et al. [4] explored the 29 
application of deep learning techniques for enhancing the security of IoT systems. Their study 30 
provides insights into the potential of deep learning models in addressing various security as- 31 
pects, including intrusion detection, authentication, and anomaly detection. The authors discuss 32 
the benefits and challenges of using deep learning in IoT security and provide recommendations 33 
for future research directions. Tahsien et al. [5] presented a comprehensive survey of machine 34 
learning-based solutions for IoT security. The paper provides an overview of different machine 35 
learning techniques and their applications in addressing IoT security challenges. They debated 36 
the importance of machine learning in improving the detection and prevention of attacks in IoT 37 
environments. Sadique et al. [6] discussed applications and challenges in technology towards 38 
security on the IoT. The paper highlighted the need for improved security measures in IoT and 39 
discusses technological advancements to address the evolving threats. Parra et al. [7] proposed 40 
a distributed deep learning approach for detecting IoT attacks. Their work focused on enhancing 41 
the efficiency and accuracy of IoT intrusion detection using distributed computing techniques. 42 
Stergiou et al. [8] presented a secure machine learning scenario from big data in cloud computing 43 
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via the IoT network. The paper explored the integration of big data, cloud computing, and IoT 1 
for enhancing security in large-scale IoT infrastructures. Wu et al. [9] discussed the convergence 2 
of blockchain and edge computing for secure and scalable IoT critical infrastructures in Industry 3 
4.0. The paper explored how blockchain and edge computing can be combined to enhance the 4 
security and scalability of IoT applications in industrial settings. 5 

3. Methodology 6 

In this section, we present a detailed description of the methodology employed in our 7 
research for developing an effective machine learning solution to secure IoT infrastructures. The 8 
methodology encompasses a step-by-step approach, outlining the data preprocessing 9 
procedures, feature engineering, model building and training. 10 

11 
In our approach, we describe the data preprocessing procedures applied to prepare 12 

security data for training and evaluating our machine learning solution. First, we inspect the 13 
dataset to identify and handle any missing or incomplete values. If there are any instances with 14 
missing attributes, we employ appropriate techniques, such as imputation or removal, to ensure 15 
the dataset's integrity. Moreover, the dataset contains categorical attributes, such as protocol 16 
type and service [9]. To facilitate model training, we encode these categorical variables into 17 
numerical representations using techniques like one-hot encoding or label encoding. Since 18 
different features may have varying scales, we apply Min-Max scaling to bring all features 19 
within a similar numerical range, preventing any feature from dominating the learning process. 20 

𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀−𝑀𝑀𝑀𝑀𝑀𝑀 ′ =
𝐶𝐶𝑀𝑀 − 𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶)

𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶) −𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶)
 (1) 

Further, the NSL-KDD dataset may suffer from class imbalance, with the "Attack" class instances 21 
being significantly fewer than the "Normal" class instances. To address this issue, we use attack 22 
grouping mechanism to balance the class distribution and prevent bias during model training. 23 

24 
In our solution, we employed the chi-squared (χ²) test to further enhance the quality of our 25 
feature selection for the training data. The chi-squared test is a statistical method used to 26 
determine the independence between two categorical variables, making it particularly suitable 27 
for assessing the relationship between the features and the target variable. 28 

𝜒𝜒² =  𝛴𝛴 �
(𝑂𝑂 −  𝐸𝐸)2

𝐸𝐸
�, (2) 

𝑑𝑑𝑑𝑑 =  (𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −  1)  ∗  (𝑚𝑚𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀𝑟𝑟 −  1), (3) 
𝑝𝑝 − 𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  1 −  𝐶𝐶𝐶𝐶𝐶𝐶(𝜒𝜒²,𝑑𝑑𝑑𝑑), (4) 

29 
Using the chi-squared test, we calculated the chi-squared statistic for each feature with respect 30 
to the target variable and calculated the corresponding p-value. The chi-squared statistic 31 
measures the extent of association between the feature and the target, while the p-value indicates 32 
the significance of that association [10]. 33 

34 
Our proposed machine learning solution employs stacked Long Short-Term Memory (LSTM) 35 
networks to effectively classify attacks based on the selected features from the IoT traffic data. 36 
By stacking multiple LSTM layers, we allow the model to learn hierarchical representations of 37 
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the data, enabling it to comprehend increasingly complex patterns in the feature sequences [11]. 1 
To begin the process, the selected features are fed into the input layer of the stacked LSTM model. 2 
The LSTM layers process the input data sequentially, remembering past information through 3 
hidden states and making predictions based on current and past inputs. As the LSTM layers 4 
process the feature sequences, they learn to capture long-term dependencies, which is crucial for 5 
detecting sophisticated attacks that may unfold over multiple data points. Furthermore, the 6 
stacking of multiple LSTM layers enhances the model's capacity to learn intricate representations 7 
of the data, potentially leading to better generalization and improved classification accuracy. 8 
The hierarchical nature of the stacked LSTM architecture allows it to grasp both high-level and 9 
low-level patterns in the selected features, which aids in capturing the complex and diverse na- 10 
ture of IoT attacks. 11 
 12 
The following code snip show the implementation of the deep learning classifier in our proposed 13 

framework: 14 
import tensorflow as tf 15 
from tensorflow.keras.models import Sequential 16 
from tensorflow.keras.layers import LSTM,Dropout, Flatten, Dense 17 
 18 
class ProposedModel(tf.keras.Model): 19 
    def __init__(self): 20 
        super(ProposedModel, self).__init__() 21 
 22 
        self.lstm1 = LSTM(64, return_sequences=True, input_shape=(1, 41)) 23 
        self.dropout1 = Dropout(0.1) 24 
 25 
        self.lstm2 = LSTM(64, return_sequences=True) 26 
        self.dropout2 = Dropout(0.1) 27 
 28 
        self.lstm3 = LSTM(64, return_sequences=True) 29 
        self.dropout3 = Dropout(0.1) 30 
 31 
        self.lstm4 = LSTM(64, return_sequences=False) 32 
        self.dropout4 = Dropout(0.1) 33 
 34 
        self.flatten = Flatten() 35 
        self.dense = Dense(5, activation='softmax') 36 
 37 
    def call(self, inputs): 38 
        x = self.lstm1(inputs) 39 
        x = self.dropout1(x) 40 
 41 
        x = self.lstm2(x) 42 
        x = self.dropout2(x) 43 
 44 
        x = self.lstm3(x) 45 
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        x = self.dropout3(x) 1 
 2 
        x = self.lstm4(x) 3 
        x = self.dropout4(x) 4 
 5 
        x = self.flatten(x) 6 
        output = self.dense(x) 7 
 8 
        return output 9 
 10 
# Create an instance of the custom model 11 
model = ProposedModel() 12 
model.build(input_shape=(1,1,41)) 13 
model.summary()  14 
 15 

 16 

4. Experimental Setups 17 

In this section, we detail the implementation and configuration of our proposed 18 
machine learning solution for securing IoT with the main aim to provide a clear and 19 
replicable account of how the experiments were conducted. We conducted experiments on 20 
a high-performance computing cluster equipped with RTX 2080 GPUs, ensuring 21 
computational efficiency for training deep learning models. The cluster comprised several 22 
nodes with 8G RAM and processing power to handle the large-scale datasets and complex 23 
model architectures. The machine learning solution was implemented using Python 24 
programming language and TensorFlow. We utilized scikit-learn for traditional machine 25 
learning algorithms. The chosen libraries allowed us to leverage pre-trained models and 26 
customize network architectures to suit the needs of IoT security tasks. 27 

 28 
To evaluate the effectiveness of our proposed solution, we selected the NSL-KDD 29 

dataset [12] as one of the primary datasets for evaluating the performance of our proposed 30 
machine learning solution for securing IoT infrastructures. The NSL-KDD dataset is 31 
widely used in the field of network intrusion detection due to its realistic and diverse 32 
traffic scenarios, making it suitable for assessing the effectiveness of our solution in 33 
detecting anomalous activities and potential security threats in IoT environments. The 34 
NSL-KDD dataset is an extension and improvement of the widely used KDD Cup 1999 35 
dataset, which was created for the DARPA Intrusion Detection Evaluation Program 36 
(IDEA). The primary goal of the NSL-KDD dataset is to address the limitations of the 37 
original KDD Cup 1999 dataset and provide a more challenging and realistic environment 38 
for evaluating intrusion detection systems. The dataset comprises network traffic data 39 
collected from a simulated environment that replicates typical IoT network scenarios. It 40 
includes both normal and anomalous traffic instances, simulating various attacks and 41 



SMIJ 2022, V1 6 of 11 
 

 

normal IoT communication patterns. The dataset is labeled, with each instance labeled as 1 
either "normal" or belonging to a specific type of attack, as shown in Table 1. 2 

Table 1. class distribution for NSL-KDD data 3 
Attack Type Number of Samples 

Normal 67343 

Neptune 41214 

Satan 3633 

Ipsweep 3599 

Portsweep 2931 

Smurf 2646 

Nmap 1493 

Back 956 

Teardrop 892 

Warezclient 890 

Pod 201 

Guess_passwd 53 

Buffer_overflow 30 

Warezmaster 20 

Land 18 

Imap 11 

Rootkit 10 

Loadmodule 9 

Ftp_write 8 

Multihop 7 

Phf 4 

Perl 3 

Spy 2 

 4 

A) class  B) protocol 

Figure 1, Exploratory data analysis for categorical variables NSL-KDD 
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From Table 1, we can observe high class imbalance, hence, we propose to group the 1 
attacks belonging to same family into one single class. This leads to five distinct classes as 2 
shown in Figure 1. 3 

In our experiments, we divided the dataset into training, validation, and test sets. 4 
We employed 5-fold cross-validation to assess model performance more robustly. During 5 
training, we employed early stopping to prevent overfitting, and hyperparameter tuning 6 
to optimize model performance. Model evaluation metrics, such as accuracy, precision, 7 
recall, F1-score, and ROC-AUC, were used to measure the effectiveness of the machine 8 
learning solution. 9 

𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝐴𝐴𝑚𝑚𝐴𝐴𝐴𝐴 (𝐴𝐴) =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐶𝐶𝑇𝑇 + 𝐶𝐶𝑇𝑇
× 100 (5) 

𝐶𝐶1 − 𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑣𝑣 (𝐶𝐶1) =
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐶𝐶𝑇𝑇 + 𝐶𝐶𝑇𝑇
× 100, (6) 

 10 
To establish the superiority of our proposed solution, we compared its performance 11 

with traditional baseline methods commonly used in IoT security. The baselines included 12 
Logistic Regression (LR), Support Vector Machines (SVM), Decision Trees (DT), Random 13 
Forest (RF), Naive Bayes (NB), K-Nearest Neighbor KNN). The comparison aimed to 14 
demonstrate the superiority of our machine learning approach in detecting and mitigating 15 
security threats. All experiments were conducted in a controlled environment, ensuring 16 
consistent results across multiple runs. The entire setup was securely isolated from 17 
external networks to prevent any potential interference or security breaches. 18 

5.  Results Discussion 19 
In this section, we present the results and engage in a comprehensive discussion of 20 

our proposed machine learning solution's performance in securing IoT infrastructures. 21 
Through rigorous experimentation and evaluation, we highlight the effectiveness and ro- 22 
bustness of our approach in detecting various security threats, addressing class imbal- 23 
ances, and ensuring the integrity of IoT networks. Table 2 presents the descriptive statistics 24 
of the NSL-KDD dataset [12], which encompasses essential information regarding the class 25 
distribution and sample sizes for each attack type. The table showcases the number of sam- 26 
ples belonging to the "Normal" category as well as various attack types, including Nep- 27 
tune, Satan, Ipsweep, Portsweep, Smurf, Nmap, Back, Teardrop, Warezclient, Pod, 28 
Guess_passwd, Buffer_overflow, Warezmaster, Land, Imap, Rootkit, Loadmodule, 29 
Ftp_write, Multihop, Phf, Perl, and Spy. By tabulating these descriptive statistics, we gain 30 
valuable insights into the distribution of attacks within the dataset, facilitating a compre- 31 
hensive understanding of the security landscape in IoT environments. These statistics play 32 
a crucial role in shaping our machine learning solution, as they enable us to design robust 33 
models capable of effectively identifying and mitigating a wide array of security threats 34 
encountered in real-world IoT infrastructures. 35 
 36 

Table 2. Descriptive statistical analysis of the NSL-KDD dataset 37  
count mean std min 25% 50% 75% max 

duration 125973 287.1447 2.60E+03 0 0 0 0 4.29E+04 

src_bytes 125973 45566.74 5.87E+06 0 0 44 276 1.38E+09 

dst_bytes 125973 19779.11 4.02E+06 0 0 0 516 1.31E+09 
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land 125973 0.000198 1.41E-02 0 0 0 0 1.00E+00 

wrong_fragment 125973 0.022687 2.54E-01 0 0 0 0 3.00E+00 

urgent 125973 0.000111 1.44E-02 0 0 0 0 3.00E+00 

hot 125973 0.204409 2.15E+00 0 0 0 0 7.70E+01 

num_failed_logins 125973 0.001222 4.52E-02 0 0 0 0 5.00E+00 

logged_in 125973 0.395736 4.89E-01 0 0 0 1 1.00E+00 

num_compromised 125973 0.27925 2.39E+01 0 0 0 0 7.48E+03 

root_shell 125973 0.001342 3.66E-02 0 0 0 0 1.00E+00 

su_attempted 125973 0.001103 4.52E-02 0 0 0 0 2.00E+00 

num_root 125973 0.302192 2.44E+01 0 0 0 0 7.47E+03 

num_file_creations 125973 0.012669 4.84E-01 0 0 0 0 4.30E+01 

num_shells 125973 0.000413 2.22E-02 0 0 0 0 2.00E+00 

num_access_files 125973 0.004096 9.94E-02 0 0 0 0 9.00E+00 

num_outbound_cmds 125973 0 0.00E+00 0 0 0 0 0.00E+00 

is_host_login 125973 0.000008 2.82E-03 0 0 0 0 1.00E+00 

is_guest_login 125973 0.009423 9.66E-02 0 0 0 0 1.00E+00 

count 125973 84.10756 1.15E+02 0 2 14 143 5.11E+02 

srv_count 125973 27.73789 7.26E+01 0 2 8 18 5.11E+02 

serror_rate 125973 0.284485 4.46E-01 0 0 0 1 1.00E+00 

srv_serror_rate 125973 0.282485 4.47E-01 0 0 0 1 1.00E+00 

rerror_rate 125973 0.119958 3.20E-01 0 0 0 0 1.00E+00 

srv_rerror_rate 125973 0.121183 3.24E-01 0 0 0 0 1.00E+00 

same_srv_rate 125973 0.660928 4.40E-01 0 0.09 1 1 1.00E+00 

diff_srv_rate 125973 0.063053 1.80E-01 0 0 0 0.06 1.00E+00 

srv_diff_host_rate 125973 0.097322 2.60E-01 0 0 0 0 1.00E+00 

dst_host_count 125973 182.1489 9.92E+01 0 82 255 255 2.55E+02 

dst_host_srv_count 125973 115.653 1.11E+02 0 10 63 255 2.55E+02 

dst_host_same_srv_rate 125973 0.521242 4.49E-01 0 0.05 0.51 1 1.00E+00 

dst_host_diff_srv_rate 125973 0.082951 1.89E-01 0 0 0.02 0.07 1.00E+00 

dst_host_same_src_port_rate 125973 0.148379 3.09E-01 0 0 0 0.06 1.00E+00 

dst_host_srv_diff_host_rate 125973 0.032542 1.13E-01 0 0 0 0.02 1.00E+00 

dst_host_serror_rate 125973 0.284452 4.45E-01 0 0 0 1 1.00E+00 

dst_host_srv_serror_rate 125973 0.278485 4.46E-01 0 0 0 1 1.00E+00 

dst_host_rerror_rate 125973 0.118832 3.07E-01 0 0 0 0 1.00E+00 

dst_host_srv_rerror_rate 125973 0.12024 3.19E-01 0 0 0 0 1.00E+00 

 1 
The results of feature selection, as visualized in Figure 2, demonstrate the effectiveness of 2 

our approach in identifying the most informative features in NSL-KDD data. The visualization 3 
in Figure 2 showcases the importance scores assigned to each feature, reflecting their contribu- 4 
tion to the overall performance of the machine learning models. The results validate the signifi- 5 
cance of feature selection in optimizing our solution, ultimately leading to more accurate and 6 
effective intrusion detection, ensuring the security and reliability of IoT networks. The results of 7 



SMIJ 2022, V1 9 of 11 
 

 

feature correlations, as visualized in Figure 3, shed light on the interrelationships between dif- 1 
ferent attributes NSL-KDD traffic data. Through thorough examination and visualization, we 2 
explored the pairwise correlations among the selected features, identifying patterns of 3 

Figure 2 visualization of feature importance in NSL-KDD data. 

Figure 3. visualization of features correlations in nsl-kdd data 
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dependency or association that may impact the model's performance. Moreover, we conduct 1 
comparisons against different baselines on the NSL-KDD dataset, as visualized in Figure 4, 2 
which underscores the superiority of our proposed solution. By benchmarking our solution 3 
against a range of traditional baseline methods commonly used in IoT security, we demonstrate 4 
its remarkable performance in effectively detecting and mitigating various security threats. The 5 
visualization in Figure 4 presents a comprehensive comparison of key performance metrics, such 6 
as accuracy, precision, and recall, for each baseline method and our solution. Moreover, the im- 7 
pressive accuracy demonstrates the solution's ability to achieve excellent discrimination between 8 
normal and attack instances. The results firmly establish the efficacy of our machine learning 9 
solution, paving the way for a more secure and resilient IoT environment. 10 

6. Conclusions 11 
This work presents a comprehensive and effective machine learning solution for se- 12 

curing IoT infrastructures through stacking Long Short-Term Memory (LSTM) networks 13 
to capture of temporal dependencies and complex patterns within the selected features, 14 
leading to accurate and reliable attack classification. By leveraging the NSL-KDD dataset 15 
and employing meticulous data preprocessing, including feature engineering based on the 16 
chi-squared test, we have ensured the selection of the most relevant attributes for building 17 
robust models. The results obtained from our solution not only showcase its high accuracy, 18 
precision, and recall but also highlight its potential to significantly enhance IoT security 19 
measures. 20 
 21 
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