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Abstract: The deaf community faces communication barriers that hinder their interaction with 11 
the hearing world. This work aims to bridge the gap by enabling accurate recognition of Arabic 12 
sign language gestures. The proposed Convolutional Neural Networks (CNNs) architecture is 13 
designed to effectively capture the spatial features inherent in sign language gestures, thereby 14 
enhancing recognition accuracy. A distinctive aspect of our work involves the integration of a 15 
CNN architecture with a residual design, which effectively captures intricate spatial features in- 16 
herent in sign language gestures, thereby enhancing recognition precision. The study leverages 17 
the ArSL2018 dataset, a comprehensive collection of grayscale sign language images with diverse 18 
lighting conditions and backgrounds. Our custom-built CNN model is trained on this dataset, 19 
utilizing a specialized learning rate scheduler for improved convergence. The experimental re- 20 
sults showcase promising performance, demonstrating the potential of CNNs in sign language 21 
recognition. Furthermore, we present visualizations of the model's predictions using t-SNE, re- 22 
vealing the clustering patterns of different sign language gestures. 23 

Keywords: Sign language recognition, Convolutional Neural Networks (CNNs), residual design, 24 
assistive technology, inclusive communication, deep learning, ArSL2018 dataset. 25 

1. Introduction 26 

In a world where communication is paramount, the deaf community often faces unique 27 

challenges due to the auditory nature of traditional communication systems. For centuries, sign 28 

language has served as a rich and expressive medium of communication for individuals who 29 

are deaf or hard of hearing. However, the recognition and understanding of sign language by 30 

the broader society and technological systems have not always kept pace with the needs of the 31 

deaf community [1]. The advent of artificial intelligence (AI), particularly Convolutional Neural 32 

Networks (CNNs), has brought forth a promising avenue for breaking down these barriers. This 33 

paper delves into the transformative potential of Convolutional Neural Networks in recognizing 34 

and interpreting sign language, aiming to empower the deaf community with inclusive 35 

communication tools [2]. 36 
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Sign language is more than just a collection of hand movements; it's a sophisticated and 1 

intricate system of communication that incorporates gestures, facial expressions, and body 2 

language. Just as spoken language conveys cultural nuances and emotions, sign language carries 3 

its own richness and subtleties. The significance of sign language extends beyond individual 4 

expression; it plays a pivotal role in fostering community bonds, preserving cultural heritage, 5 

and ensuring equal participation in various aspects of life. Despite its importance, the absence 6 

of efficient tools for automatic sign language recognition has posed challenges in facilitating 7 

seamless interactions between the deaf and the hearing world [3-5]. 8 

 9 

Historically, bridging the communication gap between the deaf and the hearing has relied 10 

heavily on human interpreters and manual transcription efforts. While these methods have been 11 

valuable, they are not without limitations. The scarcity of skilled interpreters, coupled with the 12 

intricacies of sign language dialects and regional variations, has often resulted in communication 13 

inefficiencies [6]. Moreover, transcription processes can be time-consuming, impeding real-time 14 

conversations and interactions. This has spurred the quest for innovative technological solutions 15 

that can not only recognize signs accurately but also adapt to the diverse linguistic landscape of 16 

sign language [7]. 17 

Convolutional Neural Networks (CNNs), a class of deep learning algorithms, have shown 18 

remarkable prowess in image and pattern recognition tasks. Leveraging their hierarchical 19 

architecture and feature extraction capabilities, CNNs have the potential to revolutionize sign 20 

language recognition. By analyzing visual cues from sign gestures and their temporal dynamics, 21 

CNNs offer a promising avenue for accurate and real-time interpretation of sign language [8]. 22 

Moreover, these networks can be trained to accommodate the linguistic variations inherent in 23 

sign language, thereby catering to the diverse needs of the deaf community. This paper embarks 24 

on a journey to explore the integration of Convolutional Neural Networks into the realm of sign 25 

language recognition, underscoring their capacity to amplify the voices of the deaf and promote 26 

inclusivity in communication [10]. 27 

This paper is structured as follows. Section 2 offers a contextual overview of existing 28 

research and developments in the field of sign language recognition and AI. In Section 3, a 29 

detailed explanation of the adopted CNN-based approach is presented. Moving forward, Section 30 

4, delves into the specific configurations and parameters used to fine-tune the CNN model for 31 

optimal performance. Section 5, unveils the empirical outcomes of the experiments, engaging in 32 

a critical analysis of the obtained results, and their significance. Lastly, Section 6 encapsulates 33 

the key findings of the study. 34 

2. Related Works 35 
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Several studies have contributed to the advancement of sign language recognition, partic- 1 
ularly through the application of CNNs and deep learning techniques. Shahriar et al. [5] pre- 2 
sented a real-time American Sign Language (ASL) recognition system that employed skin seg- 3 
mentation and image category classification with CNNs. Their approach demonstrated the effi- 4 
cacy of CNNs in capturing intricate hand gestures for ASL interpretation. Similarly, Kang et al. 5 
[6] explored real-time fingerspelling recognition in sign language using CNNs applied to depth 6 
maps. This research emphasized the potential of CNNs in capturing the spatial nuances of sign 7 
gestures. 8 

The use of CNNs in diverse sign languages is also notable. Yasir et al. [8] focused on Bangla 9 
Sign Language recognition using CNNs, highlighting the adaptability of CNNs to different lin- 10 
guistic contexts. Similarly, Islalm et al. [9] investigated Bangla Sign Language recognition, show- 11 
casing the versatility of CNNs in addressing the intricacies of distinct sign languages. Addition- 12 
ally, Huang et al. [10] extended the application of CNNs to 3D sign language recognition, em- 13 
phasizing the capability of CNNs to handle temporal information inherent in sign language ges- 14 
tures. Efforts have been directed towards specific sign languages as well. Hore et al. [11] focused 15 
on Indian Sign Language recognition using optimized neural networks, contributing to the tai- 16 
lored recognition of gestures in a specific cultural and linguistic context. Xiao et al. [12] tackled 17 
Chinese Sign Language recognition, leveraging skeleton-based representations and highlighting 18 
the importance of capturing body dynamics for accurate interpretation. 19 

 20 
Innovative approaches have emerged that utilize unconventional data sources. Lee and Gao 21 

[13] explored the fusion of Wi-Fi signals with CNNs for sign language recognition, showcasing 22 
the potential of alternative data modalities for inclusive communication tools. Additionally, Ha- 23 
san et al. [14] investigated the application of deep CNNs for classifying sign language characters, 24 
further demonstrating the adaptability of CNNs to different recognition tasks. Lastly, studies 25 
have explored technologies beyond traditional cameras. Naglot and Kulkarni [15] delved into 26 
real-time sign language recognition using the Leap Motion controller, showcasing the potential 27 
of depth-sensing devices in capturing hand movements accurately. These diverse studies collec- 28 
tively underscore the promising role of CNNs in sign language recognition across various lin- 29 
guistic, cultural, and technological contexts. In this paper, we build upon these insights to con- 30 
tribute to the advancement of sign language recognition within the deaf community, focusing 31 
on the unique needs and challenges they face. 32 

3. Methodology 33 

 34 
Within our methodology, our bespoke CNN model is intricately fashioned upon the pro- 35 

found principles of residual representational learning. This approach capitalizes on the capacity 36 
of residual blocks to not only capture fine-grained spatial features but also expedite convergence, 37 
ensuring enhanced recognition accuracy. The foundation of this technique lies in the residual 38 
connections that facilitate the learning of residual representations. Mathematically, this is for- 39 
mulated as: 40 

𝐹𝐹(𝑥𝑥) = 𝐻𝐻(𝑥𝑥) + 𝑥𝑥 (1) 

where x represents the input to a residual block, 𝐻𝐻(𝑥𝑥) signifies the transformation induced 41 
by the convolutional layers, and 𝐹𝐹(𝑥𝑥) denotes the final output. This formulation effectively mod- 42 
els the difference between the desired mapping and the identity mapping, enabling the network 43 
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to learn the residual information. The underpinning of our custom CNN model is the incorpo- 1 
ration of convolutional layers to effectuate the transformative function 𝐻𝐻(𝑥𝑥) within the residual 2 
blocks. Convolutional layers, designed to capture spatial hierarchies in data, play a pivotal role 3 
in feature extraction and spatial pattern recognition. The essence of convolutional operations is 4 
rooted in their ability to convolve a filter or kernel over input data, systematically capturing local 5 
patterns and hierarchies across different receptive fields. The mathematical representation of the 6 
convolution operation can be expressed as: 7 

𝑆𝑆(𝑖𝑖, 𝑗𝑗) = (𝐾𝐾 ∗ 𝐼𝐼)(𝑖𝑖, 𝑗𝑗) = ∑𝑚𝑚∑𝑛𝑛𝐾𝐾(𝑚𝑚,𝑛𝑛) ⋅ 𝐼𝐼(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛) (2) 

where 𝑆𝑆(𝑖𝑖, 𝑗𝑗) is the output value at position (𝑖𝑖, 𝑗𝑗) in the resulting feature map. 𝐾𝐾(𝑚𝑚,𝑛𝑛) rep- 8 
resents the values of the convolutional kernel at position (𝑚𝑚,𝑛𝑛). 𝐼𝐼(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛) denotes the input 9 
data values corresponding to the position offset by (𝑚𝑚,𝑛𝑛). 10 

This formulation effectively computes the element-wise multiplication between the con- 11 
volutional kernel and the overlapping region of the input data, producing the output value at 12 
each spatial position. By applying such convolutional transformations within the residual 13 
blocks, our model effectively captures intricate spatial patterns and progressively learns mean- 14 
ingful representations, contributing to its exceptional ability to discern and interpret sign lan- 15 
guage gestures for improved recognition accuracy. 16 

after the application of convolutional layers to implement the transformative function 17 
H(x)H(x) within the residual blocks, we incorporate Rectified Linear Unit (ReLU) activation to 18 
introduce non-linearity and enhance the network's ability to capture complex features and pat- 19 
terns. ReLU is a widely adopted activation function that replaces all negative values with zero 20 
while leaving positive values unchanged, effectively introducing non-linearity without intro- 21 
ducing vanishing gradients that can impede training. Mathematically, the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 activation can 22 
be expressed as: 23 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥) (3) 

Where 𝑥𝑥 represents the input value to the activation function, and the output is the maxi- 24 
mum of 𝑥𝑥 and zero. This simple yet effective activation function promotes sparsity and acceler- 25 
ates learning by allowing gradients to propagate more effectively through the network. By in- 26 
corporating these residual connections, our model not only learns the essential features of the 27 
input but also gains the capacity to adaptively fine-tune the learned features. This residual rep- 28 
resentational learning strategy empowers our CNN model to grasp intricate nuances within sign 29 
language gestures, elevating its recognition prowess and laying the foundation for improved 30 
accuracy in our endeavor to enhance communication for the deaf community. 31 

 32 
Moreover, the construction of our custom-built CNN model for Arabic sign language 33 

recognition is underpinned by innovative design choices that enhance both learning efficiency 34 
and convergence. A pivotal feature of our model involves the incorporation of Batch Normali- 35 
zation layers within the Residual Blocks. This strategic integration serves to counter the chal- 36 
lenges of internal covariate shifts during training, fostering stable and accelerated convergence. 37 
By normalizing the intermediate activations within each Residual Block, Batch Normalization 38 
mitigates the issue of vanishing gradients and enhances the overall training process. More pre- 39 
cisely, we require our features to conform to a Gaussian distribution characterized by a mean of 40 
zero and a variance of one. This requirement can be formulated mathematically as follows: 41 



SMIJ 2022, V1. 5 of 9 
 

 

𝐵𝐵𝐵𝐵(𝑥𝑥) = 𝛾𝛾 �
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 2 

𝜎𝜎𝑐𝑐(𝑥𝑥) = � 1
𝐵𝐵𝐻𝐻𝑁𝑁∑𝑛𝑛=1𝑁𝑁  ∑ℎ=1𝐻𝐻  ∑𝑤𝑤=1𝑊𝑊  �𝑥𝑥𝑛𝑛𝑐𝑐ℎ𝑤𝑤 − 𝜇𝜇𝑐𝑐(𝑥𝑥)� 2 (6) 

This integration encapsulates our commitment to not only harnessing cutting-edge techniques 3 
for gesture recognition but also adapting them to ensure robust performance in the context of 4 
sign language recognition. 5 

Our model's architecture within the methodology commences with a foundational convo- 6 
lutional layer, employing a kernel size of 7. This initial convolution serves as a feature extractor, 7 
capturing fundamental spatial patterns and hierarchies from the input data. Subsequently, we 8 
construct a sequence of four residual blocks, each designed to progressively refine and enhance 9 
the extracted features. These residual blocks are instrumental in accommodating residual repre- 10 
sentational learning, which aids in more efficient convergence and heightened recognition accu- 11 
racy. Following the stack of residual blocks, the model employs Global Average Pooling to con- 12 
dense the spatial information into a more compact representation. Global Average Pooling av- 13 
erages the values of each feature map, effectively reducing the spatial dimensions while retain- 14 
ing essential features. This pooled representation is then forwarded to a dense layer, which acts 15 
as a classifier, followed by a SoftMax activation layer for multiclass classification. The SoftMax 16 
activation produces normalized probabilities for each class, enabling the model to make accurate 17 
predictions regarding the input's sign language gesture. 18 

To effectively optimize the network's parameters and enhance its recognition accuracy, we 19 
employ the categorical cross-entropy loss function. This loss function is particularly well-suited 20 
for multiclass classification tasks, such as sign language recognition, where each input belongs 21 
to one out of multiple possible classes. The mathematical representation of the categorical cross- 22 
entropy loss can be defined as: 23 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐸𝐸𝑛𝑛𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶 = −�𝐸𝐸𝑖𝑖 ⋅ 𝑙𝑙𝐶𝐶𝑙𝑙(𝐸𝐸𝑖𝑖)
𝑖𝑖

 (7) 

where 𝐸𝐸𝑖𝑖  represents the true label (ground truth) for class 𝑖𝑖, with a value of 1 if the class is correct 24 
and 0 otherwise. 𝑃𝑃𝑖𝑖  represents the predicted probability assigned by the model to class ii. 25 

4. Experimental Setups 26 

This section presents a detailed account of the experimental setup, encompassing the se- 27 
lection of datasets, preprocessing methodologies, architectural configurations of the CNN 28 
model, training parameters, and evaluation metrics. By delving into the intricacies of our exper- 29 
imental framework, we aim to provide readers with a clear understanding of the methodologies 30 
employed to assess the CNN model's performance in recognizing sign language gestures. 31 
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 1 
In our experimental investigations, the ArSL2018 dataset [16] was chosen as a representa- 2 

tive case study to thoroughly assess the capabilities of our model for sign language recognition. 3 
The ArSL2018 dataset was in the Khobar Area, Kingdom of Saudi Arabia from volunteers of 4 
various age groups, including a total of 54,049 grayscale images with dimensions of 64 × 64 pix- 5 
els, served as a comprehensive repository for our study. This dataset was thoughtfully curated 6 
to incorporate variations introduced by diverse lighting conditions and varying backgrounds, 7 
ensuring a robust evaluation of the CNN model's adaptability to real-world scenarios. Figure. 1 8 
provides a visual insight into a selection of images showcasing Arabic language signs and al- 9 
phabets included within the dataset. Table 1 displays the categorization of Arabic Alphabet 10 
signs, presenting labels alongside corresponding image counts. 11 

 12 
Table 1. number of samples per alphabet. 13 

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Letter ط ض ص ش س ز ر ذ د خ ح ج ث  ت  ب  أ 

No. 
sam-
ples  

1672 1791 1838 1766 1552 1526 1607 1634 1582 1659 1374 1638 1507 1895 1670 1816 

# 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
Letter ي لا ال  ة ي و ه ن  م ل  ك  ق  ف غ ع ظ 

#No. 
sam-
ples 

1723 2114 1977 1955 1705 1774 1832 1765 1819 1592 1371 1722 1791 1343 1746 1293 

 14 

Our implementation was facilitated by leveraging the computational power of HP laptop with 15 

Intel Core i7 processors and NVIDIA GeForce 2080 graphics cards, and 32 GB RAM. This choice aimed 16 

to ensure that researchers and practitioners, regardless of their preferred hardware, could seamlessly 17 

engage with and contribute to the research. Our experiments were conducted using TensorFlow 2.5 18 

framework, which cater to distinct preferences in the AI community. The model was designed, 19 

implemented, and fine-tuned on both Windows 10 operating systems. Moreover, the experimental 20 

evaluation is performed using the metrics calculated as follows: 21 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑚𝑚𝐴𝐴𝐸𝐸 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐵𝐵

TP + TN + FP + FN
 (8) 

𝑃𝑃𝐶𝐶𝑅𝑅𝐴𝐴𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝑛𝑛 =
𝑇𝑇𝑃𝑃

TP + FP
  (9) 

Figure 1. Visualization of samples of images for some alphabets in ArSL2018 dataset [16]. 
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𝑅𝑅𝑅𝑅𝐴𝐴𝑚𝑚𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑃𝑃

TP + FN
   (10) 

𝐹𝐹1 −𝑚𝑚𝑅𝑅𝑚𝑚𝐶𝐶𝐴𝐴𝐶𝐶𝑅𝑅 = 2 ∗
𝑅𝑅𝑅𝑅𝐴𝐴𝑚𝑚𝑙𝑙𝑙𝑙 × 𝑃𝑃𝐶𝐶𝑅𝑅𝐴𝐴𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝑛𝑛
𝑅𝑅𝑅𝑅𝐴𝐴𝑚𝑚𝑙𝑙𝑙𝑙 + 𝑃𝑃𝐶𝐶𝑅𝑅𝐴𝐴𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝑛𝑛

  (11) 

  1 

5.  Results Discussion 2 

In this section, we delve into the heart of our research findings through outlining the im- 3 
plementation setup that underpins our empirical investigations. In Figure 2, we present the con- 4 
fusion matrix obtained from the evaluation of our proposed model, which provides valuable 5 
insights into the performance of the model across different classes. Each row in the matrix cor- 6 
responds to the true class labels, while each column represents the predicted class labels.  As 7 
shown, it is evident that our model demonstrates a robust ability to differentiate and classify 8 
sign language gestures accurately. The higher values along the diagonal reflect the model's suc- 9 
cess in correctly identifying various sign language signs and alphabets. However, we also ob- 10 
serve some instances of misclassifications, as indicated by off-diagonal values. These misclassi- 11 
fications might be attributed to certain signs sharing visual similarities or variations in lighting 12 
and hand orientations.  13 

The ROC (Receiver Operating Characteristic) curve presented in Figure 3 offers a compre- 14 
hensive evaluation of the performance of our model across multiple classes, which visually por- 15 
trays the trade-off between the true positive rate (sensitivity) and the false positive rate as the 16 
discrimination threshold is varied. Each point on the curve represents a specific threshold set- 17 
ting, showcasing how the model's sensitivity and specificity change accordingly. The ROC 18 
curve's smooth and upward-sloping nature indicates our model's ability to effectively discrimi- 19 
nate between different sign language signs and alphabets. The curve consistently stays above 20 
the diagonal reference line, implying that the model's performance consistently outperforms 21 
random chance. Furthermore, the area under the ROC curve (AUC) is a quantitative measure of 22 
the model's overall discriminative ability. A higher AUC value signifies better classification per- 23 
formance across diverse classes. 24 

The learning curves depicted in Figure 4 provide valuable insights into the training and 25 
validation performance of our sign language recognition model throughout the training process. 26 
These curves illustrate how the model's accuracy and loss evolved over successive epochs, shed- 27 
ding light on its ability to generalize and adapt to the training data. Upon initial inspection, it is 28 
evident that both the training and validation accuracy curves display an upward trend as the 29 
number of training epochs increases. This trend highlights the model's capacity to learn and 30 
capture underlying patterns within the training data, resulting in improved accuracy. However, 31 
a slight divergence between the two curves becomes noticeable after a certain point. This diver- 32 
gence suggests a potential risk of overfitting, where the model starts to memorize noise in the 33 
training data instead of generalizing well to unseen examples. The training and validation loss 34 
curves, on the other hand, exhibit a downward trajectory throughout the training process. This 35 
decline in loss indicates that the model is effectively minimizing its errors and optimizing its 36 
internal representations to align with the true labels. The convergence of these curves signifies 37 
that the model is learning steadily and approaching an optimal solution. 38 

 39 
The T-SNE plot presented in Figure 5 offers a visually compelling representation of the 40 

embeddings learned by our sign language recognition model. This dimensionality reduction 41 
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technique maps the high-dimensional feature space into a two-dimensional space, effectively 1 
capturing the relationships and patterns between different sign language gestures. Upon exam- 2 
ining the T-SNE plot, we can observe clusters of data points that correspond to similar sign lan- 3 
guage signs and alphabets. This clustering phenomenon reflects the model's ability to capture 4 
and distinguish inherent similarities between gestures of the same class. Additionally, the sepa- 5 
ration between these clusters underscores the model's capacity to differentiate between different 6 
sign language signs. However, it's important to note that the T-SNE plot provides an abstract 7 
visualization that doesn't necessarily represent linear separability. Some degree of overlap be- 8 
tween clusters can be expected due to inherent visual variations and similarities in certain signs. 9 

6. Conclusions 10 

This study has unveiled the remarkable potential of CNNs as a transformative force in sign 11 

language recognition within the deaf community. Through an exploration on realistic dataset, 12 

as well as strategic design of CNN architectures, our experiments have showcased the 13 

remarkable accuracy and adaptability of residually connected CNN in deciphering the 14 

intricacies of sign language gestures. The empirical results not only underscore the 15 

advancements made in bridging communication gaps but also highlight the profound impact of 16 

inclusive AI-driven technologies on fostering meaningful interactions among diverse linguistic 17 

and cultural groups. As we stand on the threshold of a more inclusive future, where technology 18 

has the power to amplify voices and dissolve barriers, the findings of this study illuminate a 19 

promising path forward. By embracing the integration of CNNs and deep learning in sign 20 

language recognition, we advocate for a more accessible world, where communication is not 21 

bound by auditory limitations. This paper contributes to the ongoing discourse on AI's 22 

transformative role in the lives of the deaf community, emphasizing the potential to empower, 23 

enrich, and enable a more inclusive and connected society. 24 
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