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 Abstract: With the widespread adoption of Internet of Things (IoT) technologies across various 9

domains, including smart agriculture, urban environments, and homes, the threat of zero-day 10

attacks has surged. This research delves into the application of deep learning techniques to detect 11

anomalies in smart agricultural systems at the network edge, with a specific focus on safeguard- 12

ing them against Distributed Denial of Service (DDoS) attacks. In this study, we propose an 13

anomaly detection model based on CNN-LSTM to analyze sensor data collected from IoT de- 14

vices. We rigorously train and test our model using two distinct datasets of sensor readings, sim- 15

ulating potential DDoS attack scenarios. The model's performance is assessed using key metrics 16

such as detection accuracy, recall, and F1-score. Our results demonstrate the effectiveness of our 17

approach, achieving an impressive anomaly detection accuracy of 99.7%. This research contrib- 18

utes significantly to the development of robust and efficient attack and anomaly detection tech- 19

niques for smart agriculture systems at the network edge, ultimately enhancing the reliability 20

and sustainability of agricultural practices. 21

Keywords: Anomaly detection, Smart agriculture, Network edge, Deep learning, Internet of 22

Things (IoT), Zero-day attacks, Distributed Denial of Service (DDoS), Sensor data analysis, 23

CNN-LSTM. 24

Introduction 25

Agriculture is one of the most important elements of life, as it is one of the main 26

sources through which a person obtains the nutrients that he feeds on, and it also has an 27

impact on the economy in some countries that seek to provide the necessary food and 28

achieve self-sufficiency in crops. The traditional farming system suffers from many factors. 29

The most important of which is climate change, which greatly affects agriculture, such as 30

high or low temperature and humidity levels, determining the proportions of fertilizers, 31

pesticides, and other influence [1]. This led to the need to convert traditional farms into 32

smart farms, supported by the Internet of Things (IoT) that helps farmers overcome the 33

obstacles of climate change and wasting water and improve the quality of crops through 34

sensors that measure the temperature and soil in the fields in smart irrigation systems [2]. 35

IoT plays an important role in crop quality through environmental monitoring and data 36

analysis Since smart agriculture integrates elements from the traditional Internet, IoT 37

devices, cellular networks, and wireless networks, it may all incorporate security issues 38
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present in these technologies [3]. However, IoT devices are the most vulnerable to 1

cyberattacks because they are generally exposed to the Internet, and this can expose them 2

to attacks that may lead to data manipulation, violation of their privacy, and prevention 3

of their availability [4]. Cybercriminals can exploit vulnerabilities to expose one or more 4

parts of agriculture to danger, such as damaging crops by increasing or decreasing the 5

amounts of water or increasing the proportions of pesticides or fertilizers, and they can 6

also violate privacy by leaking data during communication or access to the system [5]. 7

8

Threats to smart farms can be mitigated by using Deep learning algorithms to detect 9

anomalies in data traffic in IoT devices and to identify abnormal or different events or 10

observations in data traffic than normal system behavior [6,4], the use of Deep learning 11

algorithms To detect anomalies in cloud computing is not sufficient due to the gap 12

between IoT devices and the cloud, studies have shown that using it at the edge of the 13

network is more efficient in solving local problems and provides less response time 14

compared to cloud computing due to its proximity to the data source and peripheral 15

devices, which increases its effectiveness In the speed of detection of threats and attacks 16

on smart farms [7]. 17

1.1. Significant of Research 18

This project focuses on the most critical smart agriculture systems (See Figure 1), 19

which play a crucial role in achieving these goals by providing farmers with real-time data 20

about crop health, soil quality, and weather patterns. For instance, the vast amounts of 21

data generated by IoT devices and sensors require efficient analysis to identify potential 22

problems and anomalies. The proposed research on anomaly detection in smart 23

agriculture systems using deep learning techniques aims to address this challenge. By 24

Figure 1. Smart Agriculture Overview.
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developing a system that can operate on the network edge, where data is collected, the 1

proposed research can reduce latency and improve performance.  2

This system can automatically detect anomalies in agriculture systems with high 3

accuracy and speed, enabling farmers to take timely action to prevent or minimize crop 4

damage. Furthermore, the research can contribute to the development of sustainable 5

agriculture practices by improving the efficiency of resource usage and reducing 6

environmental impact. By providing farmers with real-time data about crop health and 7

soil quality, smart agriculture systems can help optimize the use of resources, such as 8

water and fertilizers, and reduce waste. This can lead to significant cost savings for 9

farmers while also reducing the environmental impact of farming. 10

The use of deep learning techniques, such as CNN and LSTM, can greatly improve 11

the accuracy and speed of the proposed system. By mitigating the risks faced by smart 12

agriculture such as DDoS attacks and others, the proposed research could have broader 13

implications beyond the agricultural sector. IoT devices and sensor networks for data 14

collection and analysis are becoming increasingly prevalent in other industries, such as 15

manufacturing and healthcare. The results of this research can be applied to these 16

industries to improve resource use efficiency, reduce waste, and improve performance. 17

1.2.  Problem statement 18

Smart agriculture systems rely on the acquisition and analysis of data from IoT 19

devices and sensors to optimize crop yields, reduce waste, and improve overall efficiency. 20

However, if a DDoS attack is successful, it can crash the system and render it inoperable 21

for an extended period. This can result in significant financial losses for farmers, as crop 22

yields may be reduced, and valuable data may be lost as shown in Figure 2. Additionally, 23

Figure 2. Smart Agriculture and DDoS attacks
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DDoS attacks can compromise the integrity of data collected by smart agriculture systems, 1 

leading to inaccurate data analysis and decision-making. Traditional security measures, 2 

such as firewalls and intrusion detection systems, are not always successful in preventing 3 

these attacks. Moreover, we think that cloud-based anomaly detection systems are not 4 

well suited to smart farming systems, as they require high bandwidth and can lead to high 5 

latency compared to edge-based systems. 6 

Therefore, there is a pressing need to develop an efficient and effective approach to 7 

detecting and mitigating DDoS attacks on smart agriculture systems by detecting 8 

anomalies at the network edge. Although deep learning techniques have shown 9 

promising results for anomaly detection, it is unclear whether they can be effectively 10 

employed at the network edge. This research aims to assess the feasibility of using deep 11 

learning techniques to detect anomalies in smart agriculture systems at the network edge 12 

to mitigate DDoS attacks. Additionally, the study will investigate the potential advantages 13 

of detecting anomalies at the network edge, such as reducing network latency and 14 

enhancing system performance. The proposed research will contribute to the 15 

advancement of knowledge in the field of smart agriculture systems security. 16 

Furthermore, this study's findings will provide valuable insight into the feasibility of 17 

employing deep learning techniques for anomaly detection at the network edge. 18 

Ultimately, this research will facilitate the development of effective approaches to 19 

securing smart agriculture systems against DDoS attacks, which are critical for ensuring 20 

the sustainable and efficient operation of these systems.  21 

1.3. Research Goals and Objectives 22 

The main goal of this research is to detect DDoS attacks at the edge network for IoT- 23 

based smart agriculture. The objectives of this research project are as follows:  24 

• Investigate the feasibility of using deep learning techniques for detecting anomalies in 25 

smart agriculture systems at the network edge to mitigate DDoS attacks. 26 

• Evaluate the effectiveness of various deep learning models for anomaly detection in 27 

smart agriculture systems at the network edge. 28 

• Develop a practical solution for detecting anomalies in smart agriculture systems at 29 

the network edge to mitigate DDoS attacks. 30 

• Study the proposed solution through experimentation and evaluation using data sets 31 

collected from IoT devices that simulate DDoS attacks. 32 

• Contribute to the advancement of knowledge in the field of smart agriculture systems 33 

security and anomaly detection at the network edge. 34 

1.4. Research contribution 35 

The major of this research are summarized as follows: 36 

• Explore the challenges and threats in smart farms and use Deep learning techniques 37 

to detect anomaly network traffic from cyberattacks on the network edge instead of 38 

central cloud computing. 39 

•  Propose a deep learning-based approach for detecting anomalies in smart agriculture 40 

systems on the network edge.  41 
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• Utilizes convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) 1 

algorithms to classify sensor data collected from IoT devices into normal or anomalous 2 

classes. 3 

1.5. Research Organization 4 

The remainder of this research project is structured as follows. Section 2 presents the 5 

background of smart agriculture, providing an in-depth overview of various aspects related 6 

to this field. It encompasses the Smart agriculture architecture, DDoS attacks in smart 7 

agriculture, machine learning at the network edge, and deep learning at the network edge 8 

for smart agriculture. Section 3 focuses on related work. It delves into the latest studies 9 

conducted on the detection of distributed DDoS attacks in smart agriculture. Section 4 10 

introduces the methodology of our work, while Section 5 presents the results and related 11 

discussions. Finally, section 6 encapsulate the conclusion and future work of this study.  12 

 13 

2. Background 14 

This section introduces the background of smart agriculture and provides an overview of 15 

various aspects related to it. It includes the Smart Agriculture Architecture, DDoS attacks 16 

in smart agriculture, machine learning in the network edge, and deep learning in the 17 

network edge for smart agriculture. 18 

 19 

Figure 3. Smart Agriculture Architecture layers [1] 
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2.1. Smart Agriculture Architecture 1 

Smart agriculture has emerged as a major player in modern farming practices. It takes 2 

advantage of advanced technologies such as the IoT, cloud computing, and machine 3 

learning to improve crop production, improve resource management, and reduce 4 

environmental impact. However, the increasing reliance on digital technologies exposes 5 

smart agriculture systems to various cybersecurity threats [1,5]. In the Smart agriculture 6 

architecture, the layers typically include sensor devices, connectivity, data processing and 7 

analytics, and application layers. Sensor devices collect data on various parameters such 8 

as soil moisture, temperature, and crop health. The connectivity layer enables 9 

communication between the sensors and the data processing and analytics layer, which 10 

involves cloud-based or edge-based systems for data storage, analysis, and decision- 11 

making. The application layer encompasses the user interfaces and applications that 12 

provide farmers with insights, recommendations, and control over the agricultural 13 

processes [1,2, 17]. Figure 3 shows the layers of Smart agriculture architecture. 14 

▪ The Sensor Layer: This layer is the foundation of the smart farming architecture, 15 

consisting of various sensors deployed throughout the farm. These sensors monitor 16 

and collect data on environmental conditions, soil moisture levels, temperature, 17 

humidity, and other relevant parameters. They provide real-time information to the 18 

higher layers of the architecture for analysis and decision-making. 19 

▪ The Edge Layer: This layer acts as a vital intermediary between the Sensor Layer and 20 

the Cloud Layer, performing data processing and analysis locally. Securing this layer 21 

is essential for data protection, system performance, and defense against 22 

cyberattacks. It ensures data integrity, and real-time threat detection, and follows a 23 

layered security approach. This investment safeguards sensitive data, optimizes 24 

operations, and ensures the long-term success of smart farming. 25 

▪ The Cloud Layer: This layer represents the centralized computing infrastructure 26 

where data from the sensors is stored, processed, and analyzed. It typically involves 27 

cloud-based platforms and services that provide advanced analytics, machine 28 

learning algorithms, and data storage capabilities. The Cloud Layer enables farmers 29 

to gain insights, make informed decisions, and optimize farming operations based 30 

on the collected data. 31 

2.2. Importance of Edge Networks Security 32 

Cloud computing in Smart agriculture refers to the utilization of remote servers and 33 

data centers for storing and processing agricultural data. It offers vast storage capacity and 34 

computational power, enabling complex data analysis and resource-intensive 35 

applications[3,14]. However, relying solely on the cloud for all computational tasks may 36 

introduce potential risks, including the potential for Distributed Denial of Service (DDoS) 37 

attacks that can disrupt cloud services. On the other hand, edge networks in Smart 38 

agriculture involve deploying computational resources closer to the data source, such as 39 

on farm gateways or edge devices. Edge computing brings processing capabilities closer 40 

to the agricultural field, reducing latency and dependence on remote cloud servers. It 41 

enables real-time data analysis, decision-making, and immediate responses to changing 42 
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conditions. By utilizing edge networks, Smart agriculture systems can benefit from faster 1 

response times, reduced reliance on cloud connectivity, and improved overall system 2 

resilience against DDoS attacks [7].  3 

2.3. DDoS attack in Smart Agriculture 4 

DDoS attacks can affect smart agriculture systems by overloading their network resources, 5 

making systems inaccessible and causing significant disruptions to farming operations, as 6 

shown in Figure 4. To protect these systems, it is necessary to develop robust and effective 7 

solutions that can detect and mitigate DDoS attacks [2,3]. Traditionally, smart agriculture 8 

systems rely on cloud computing to store, process, and analyze the huge amount of data 9 

collected from IoT devices. However, this centralization of data processing can lead to 10 

latency, and increased network congestion [3]. 11 

 12 

 13 

Table 1 highlights the various forms of DDoS attacks and their impacts on smart 14 

agriculture. 15 

Table 1 Summary of Prominent Types of DDoS Attacks and Their Impact on Smart 16 

Agriculture 17 

Attack Type Description Impact on Smart Agriculture 

UDP Flood Overwhelming a target with a large vol-

ume of UDP packets 

Disrupts communication between smart 

agricultural devices 

TCP SYN 

Flood 

Exhausting server resources by sending a 

flood of SYN requests 

Causes service unavailability and disrupts 

data collection 

Figure 4. The impact of DDoS attacks on smart agriculture 
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ICMP Flood Flooding a target with ICMP Echo Request 

(ping) packets 

Overloads network devices and hampers 

remote monitoring 

HTTP Flood Overloading a web server with a massive 

amount of HTTP requests 

Disrupts access to smart agriculture plat-

forms and services 

DNS Ampli-

fication 

Exploiting misconfigured DNS servers to 

amplify attack traffic 

Overwhelms network infrastructure and 

disrupts DNS resolution 

NTP Ampli-

fication 

Abusing Network Time Protocol servers 

for amplified attacks 

Consumes bandwidth and disrupts time 

synchronization 

IoT Botnets Compromising IoT devices to form a botnet 

for DDoS attacks 

Disrupts connectivity of IoT-based agricul-

tural systems 

 1 

These attacks have significant implications for smart agriculture. They can disrupt 2 

communication and data transfer between smart devices, leading to service unavailability 3 

and hampering remote monitoring capabilities. The overload on network devices can 4 

hinder real-time data collection and analysis [26]. Additionally, attacks targeting web 5 

servers or platforms can disrupt access to crucial agricultural services, affecting farm 6 

management and decision-making processes [30]. Network Edge offers a promising 7 

alternative by shifting data processing and analytics to devices closer to IoT devices, at 8 

the network edge. This decentralized approach reduces latency, conserves bandwidth, 9 

and enables real-time decision-making. Moreover, by processing data locally, edge 10 

computing can enhance the security and resilience of smart agriculture systems against 11 

DDoS attacks [7]. 12 

 13 

2.3. Machine Learning in Network Edge  14 

Machine Learning (ML) has various applications, including detecting DDoS attacks on 15 

networks. ML can be used to analyze traffic and communication data to identify unusual 16 

patterns indicative of DDoS attacks. Models are trained on datasets containing normal 17 

traffic behavior and attack patterns and then used to identify and classify attacks [28]. 18 

Deep Learning (DL) is a subfield of ML that relies on deep artificial neural networks. 19 

These networks are trained to analyze data using complex methods to detect patterns and 20 

make classifications. Deep learning excels at extracting intricate information and 21 

achieving high accuracy in detection [23]. Deep learning is superior to traditional machine 22 

learning in several aspects when it comes to detecting DDoS attacks: 23 

• Deep representation of data: Deep learning utilizes deep neural networks that 24 

represent data in a profound manner, enabling the analysis of multiple features and 25 

complex intricacies in monitored data. 26 

• Representation learning capabilities: Deep neural networks can learn the most useful 27 

and meaningful representations for detecting DDoS attacks. They can uncover subtle 28 

and intricate patterns that are challenging to detect using traditional machine-learning 29 

approaches. 30 
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• Self-learning ability: Deep learning has the capacity for self-learning from data, 1 

allowing it to discover new patterns and information without the need for continuous 2 

training or supervision. 3 

2.4. Deep Learning in Network Edge for Smart Agriculture  4 

Deep learning, a subfield of machine learning, has shown remarkable success in 5 

various areas, including computer vision, natural language processing, and anomaly 6 

detection. Deep learning techniques, however, can automatically learn and extract 7 

complex patterns from input data, which makes them well-suited for detecting anomalies 8 

in network traffic [4,6]. In the context of DDoS attack mitigation, deep learning models 9 

can be trained to identify normal and malicious network traffic patterns. When deployed 10 

at the network edge, these models can provide real-time anomaly detection, allowing for 11 

rapid response and mitigation of DDoS attacks in smart agriculture systems[2,10]. 12 

 13 

2.4.1. Convolutional Neural Network (CNN)  14 

The CNN algorithm is a deep learning model specifically designed for processing 15 

and analyzing high-dimensional data, such as images and videos. CNNs have proven to 16 

be highly effective in extracting spatial features from data and performing complex 17 

pattern recognition tasks [31]. In the context of detecting DDoS attacks, CNNs can be 18 

utilized to analyze network traffic data and identify anomalous patterns associated with 19 

such attacks. By training the CNN on a dataset that includes both normal and attack traffic, 20 

the algorithm can learn to recognize specific patterns and behaviors that are indicative of 21 

DDoS attacks. The benefit of using CNNs for DDoS attack detection lies in their ability to 22 

automatically extract relevant features from the network traffic data. The convolutional 23 

layers of the CNN perform localized operations on the data, capturing spatial 24 

dependencies and detecting patterns at different levels of abstraction [11]. This allows the 25 

model to identify subtle variations and anomalies in the traffic flow that may indicate the 26 

presence of a DDoS attack. Additionally, the pooling layers of CNNs help in reducing the 27 

dimensionality of the data, making it more manageable for subsequent analysis. The fully 28 

Figure 5. CNN architecture [31] 
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connected layers at the end of the CNN are responsible for making the final predictions 1 

based on the extracted features (See Figure 5). By leveraging the power of CNNs in 2 

detecting and analyzing patterns in network traffic data, organizations can enhance their 3 

ability to identify and mitigate DDoS attacks in a timely manner. This can help in 4 

safeguarding the availability and reliability of network services, ensuring uninterrupted 5 

operations, and protecting against potential financial and reputational damages 6 

associated with DDoS attacks . 7 

2.4.2. Long Short-Term Memory (LSTM) 8 

The LSTM algorithm is a type of recurrent neural network (RNN) widely used for 9 

analyzing time series data and prediction tasks. It is effective in capturing long-term 10 

dependencies and contextual information in sequential data [10]. The LSTM algorithm 11 

consists of LSTM units, which are memory cells capable of storing and accessing 12 

information over extended time periods. These cells allow important information from 13 

previous parts of the sequence to be preserved and used for making predictions in 14 

subsequent time steps [4]. LSTM units have three main components: the input gate, the 15 

forget gate, and the output gate. These gates control the flow of information into, out of, 16 

and within the memory cells. The input gate determines which parts of the input are 17 

important for memory, the forget gate decides which information should be discarded 18 

from the memory cells, and the output gate regulates the flow of information from the 19 

memory cells to the LSTM unit's output [23]. During training, the LSTM algorithm learns 20 

to adjust the weights and biases of its gates and memory cells to minimize the difference 21 

between the expected output and the actual output. This is done through a process called 22 

backpropagation, where the error is propagated backward through time, and gradients 23 

are used to update the parameters of the LSTM units (See Figure 6).  24 

When combining LSTM with the CNN algorithm, the system's performance can be 25 

improved by leveraging the CNN's ability to extract spatial features from input data. The 26 

Figure 6. LSTM architecture [23] 
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CNN is typically used as a preprocessing step to extract relevant features from the data, 1 

and then the LSTM is used to analyze the temporal dependencies and make predictions 2 

based on the extracted features. By combining the strengths of CNN and LSTM, the 3 

algorithm can capture both spatial and temporal patterns in the data, leading to improved 4 

performance in tasks such as anomaly detection and reducing the impact of DDoS attacks. 5 

The integration of CNN and LSTM algorithms in a CNN-LSTM model has been 6 

implemented, resulting in superior performance in detecting anomalies and DDoS attacks. 7 

By combining their strengths, the model captures spatial and temporal patterns 8 

simultaneously, leading to more accurate detection compared to using the algorithms 9 

separately. The CNN component extracts spatial features, while the LSTM component 10 

analyzes temporal patterns. This integrated approach enhances the model's ability to 11 

identify complex patterns, making it an effective tool for network security [23]. 12 

 13 

One reason for the decrease in detection rates when using the algorithms separately is the 14 

limited scope of each algorithm. The CNN algorithm primarily focuses on spatial features, 15 

while the LSTM algorithm primarily deals with temporal patterns. When applied 16 

individually, each algorithm may overlook important information from the other domain. 17 

By solely using the CNN algorithm, for example, the model may struggle to capture long- 18 

term temporal patterns that are crucial for detecting certain types of attacks or anomalies. 19 

Similarly, relying solely on the LSTM algorithm may result in overlooking spatial features 20 

and patterns that are indicative of attacks or anomalies. Therefore, when using the 21 

algorithms separately, the model lacks a comprehensive analysis of both spatial and 22 

temporal dimensions, leading to a lower detection rate. The integrated CNN-LSTM model 23 

addresses this limitation by leveraging the complementary strengths of both algorithms, 24 

resulting in improved performance in detecting anomalies and DDoS attacks. 25 

3. Related work 26 

This section explores the latest studies about the research being conducted on the 27 

detection of distributed DDoS attacks in smart agriculture. It will cover the available 28 

research regarding this issue.  Abbas Yazdinejad et al., [1] discussed the importance of 29 

smart farms in enhancing global food security and the environment, and provided a 30 

classification of attacks based on their targeted components of smart agriculture such as 31 

Attacks on Hardware, Attacks on the Network and Related Equipment, Attacks on Data, 32 

Attacks on Code (applications), Attacks on Support Chain, Misuse Attacks, as well as a 33 

Cyber-Kill Chain based systematic classification of these threats. They also discussed the 34 

anatomical and behavioral characteristics of APTs and provided a survey on risk 35 

mitigation strategies and countermeasures on various layers to reduce attacks on smart 36 

agriculture.  Bam Bahadur Sinha et al., [2] presented a survey on the recent advancements 37 

and challenges of IoT in smart agriculture. They also discussed the various advantages and 38 

limitations of the technology and its use in the production of smart agricultural services. 39 

They mentioned that the increasing number of IoT-linked devices and sensors in the 40 

agricultural sector is expected to have a significant impact on the environment. The 41 

authors also discuss various security concerns and attacks that threaten smart agriculture 42 
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such as DoS/DDoS, MiTM, Autonomous System Hijacking, Malware injection, Phishing, 1 

and others, They see cloud repositories as vulnerable to data manipulation and 2 

unauthorized access to resources that could disrupt the smart farming process.  3 

Rettore de Araujo Zanella et al. [3] studied smart agriculture, Architecture, and Key 4 

Security Threats. They also believe that moving part of the security systems to the edge 5 

could lead to a reduction in the financial costs of smart agriculture. Data consumed or pre- 6 

processed at the network edge saves bandwidth and can reduce computing resources 7 

required from the cloud and protect privacy. Thus, the cloud can store and process data, 8 

make decisions, and interact with consumers. Mostafa Abdullah et al., [4] discuss the study 9 

of defect detection and failure classification of a maintenance problem in digital agriculture 10 

based on IoT and smart manufacturing. They analyzed data from sensors spread across a 11 

farm with data from seven different types of sensors and evaluated and compared the 12 

performance of semi-supervised ARIMA and LSTM models for anomaly detection. Their 13 

findings indicate that LSTM leads to a better prediction of anomaly detection than ARIMA 14 

but requires a longer training time.  15 

The paper of Konstantinos Demestichas et al., [5] presents an overview of the 16 

evolution of ICT solutions and how they can be used and their impact on the agricultural 17 

sector, as well as a comprehensive literature review on the use of ICTs in agriculture, as 18 

well as emerging threats and associated vulnerabilities. The authors also highlight key 19 

innovations, technologies, benefits, threats, and mitigation measures of ICTs in Smart 20 

Farming. Weijun Cheng et al., [6] proposed an anomaly detection model using GAN and 21 

LMST that can process multidimensional time-series data generated by intelligent 22 

agricultural IoT. They concluded that joint training of the encoder and decoder reduced 23 

the time for anomaly detection by improving the anomaly detection performance through 24 

the use of decoder architecture. They concluded that the proposed model can detect 25 

anomalies in smart farms. Thong Voand et al., [7] studied the role of edge and fog 26 

computing in providing more efficiency than cloud computing because it provides less 27 

latency compared to its cloud computing theory. After all, the operations take place near 28 

the source of the data from which they are generated, thus providing faster data transfer 29 

speed and much less delay compared to cloud computing, which is relatively far away. 30 

about the IoT devices. This process also reduces existing issues with storage and low 31 

system throughput.  C. Catalano et al., [8] proposed an approach to detect anomalies in 32 

smart farming systems that, through the use of multiple sensor systems and decision 33 

support systems, can collect, analyze, and process huge amounts of data about farming. 34 

The proposed approach is based on two algorithms multivariate linear regression (MLR) 35 

and a long-term memory (LSTM) neural network algorithm, in which they applied an 36 

anomaly detection system on a real dataset from a smart agricultural system in Italy. They 37 

concluded that the proposed approach is capable of detecting anomalies. Juliet Chebet 38 

Moso et al., [9] propose an adaptation of an abnormality detector group called ELSCP. An 39 

unsupervised methodology based on the temporal data of smart agriculture, which is 40 

applied to harvest data, crop condition (damaged or undamaged), and anomaly detection. 41 

They found that 30% of the anomalies detected were related to crop damage. Therefore, 42 
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they consider the incorporation of anomaly detection into the decision-making process of 1 

farm operators necessary to improve harvesting efficiency. Yizhen Jia et al.[10] proposed 2 

an edge-centric IoT defense scheme called FlowGuard to detect, identify, classify, and 3 

mitigate IoT DDoS attacks. They also introduced a new algorithm for detecting DDoS 4 

attacks based on traffic differences to identify and classify DDoS. By generating a large 5 

dataset with the DDoS BoNeSi and SlowHTTPTest simulators, and combining it with the 6 

CICDDoS2019 dataset, to test the accuracy of identification and classification as well as the 7 

efficiency of the model. Their results indicate that the proposed LSTM can detect attacks 8 

with high accuracy.  9 

Marcos V. O. de Assis et al.[11] proposed a security system for SDN that uses CNNs 10 

to prevent DDoS attacks. They tested the system using SDN simulation data and the 11 

CiCDDoS 2019 dataset. The results indicated that the system is promising in defending 12 

against next-generation DDoS attacks, According to their results the CNN-based approach 13 

effectively detected and mitigated these attacks in both simulated and real-world scenarios. 14 

de Araujo Zanella et al [14] discussed the challenges to food production due to climate 15 

change, water crisis, and population growth and proposed the use of a low-cost hybrid 16 

anomaly detector called CEIFA to improve reliability and safety, which can identify 17 

failures, malfunctions, errors, and attacks that may affect these systems by filtering the 18 

data sent by the agricultural system's sensors and operating On resource-limited hardware, 19 

to save computing costs. Their results show an efficiency in detecting defects. R. Chaganti, 20 

et al.[15] discuss the impact of the IoT on the smart agriculture industry and its 21 

improvement. However, they believe that the implementation of new technologies such as 22 

the IoT can also bring security risks. Therefore, they proposed a cloud-enabled smart farm 23 

security monitoring framework that can effectively monitor device state and sense 24 

anomalies while mitigating security attacks using behavioral patterns. The framework 25 

includes a blockchain-based smart contract implementation. They concluded that the 26 

framework can detect security anomalies in real-time and update other farm nodes. 27 

 28 

Kumar, P. et al.[16] discuss the technologies used in smart agriculture, in addition to 29 

the challenges that these devices may face from data misuse and other risks to the privacy 30 

of this data. They also propose a deep learning (FL) framework based on privacy coding, 31 

called PEFL, which adopts Perturbation-based encryption and long-term memory 32 

automatic encryption technology to achieve privacy. A recurrent module neural network 33 

algorithm based on FL gates was designed using encoded data for intrusion detection, and 34 

the experimental results show that it can efficiently identify normal patterns and attack 35 

patterns.  Chen, S. et al.[17] proposed an intelligent agricultural monitoring system based 36 

on an IoT cloud platform. The system includes sensors to collect data on environmental 37 

factors such as temperature, humidity, and soil moisture. The data is then transferred to a 38 

cloud platform for storage and analysis. The system also includes a decision-making 39 

module that uses data analytics to provide farmers with real-time feedback on crop growth 40 

and environmental conditions. The proposed system aims to improve crop yields, reduce 41 

resource use, and reduce the impact of environmental factors on crop growth. The study 42 
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concluded that the proposed system provides an effective solution to modernize 1 

agriculture and meet the challenges of food production in the face of climate change, water 2 

scarcity, and population growth. Adkisson, M et al. [18] proposed an autoencoder-based 3 

anomaly detection system for smart farming ecosystems. The system uses unsupervised 4 

learning to detect anomalies in the data collected by sensors in the farming ecosystem. The 5 

proposed system is implemented using an autoencoder neural network model, which 6 

learns the normal patterns of the data and can detect any anomalies that deviate from these 7 

patterns. The system is evaluated using data collected from a real-world smart farming 8 

system, and the results show that the proposed system can effectively detect anomalies in 9 

the data. The study concludes that the proposed system provides an effective solution for 10 

improving the reliability and safety of smart farming systems, and can help farmers 11 

identify potential issues in their ecosystems and take timely action to prevent crop loss and 12 

other negative impacts. 13 

Rodríguez, J et al. [19] proposed a smart farming system called IoT-Agro for 14 

Colombian coffee farms. The proposed system aims to improve crop yields, reduce 15 

resource use, and minimize the impact of environmental factors on crop growth. The study 16 

evaluates the proposed system using data collected from a real-world coffee farm in 17 

Colombia, and the results show that the system can effectively collect and analyze data, 18 

and provide farmers with useful insights for improving coffee production. The study 19 

concludes that the proposed IoT-Agro system provides an effective and efficient way to 20 

modernize agriculture and meet the challenges of food production in the coffee industry. 21 

Yoa, Seungdong, et al. [20] proposed a self-supervised learning method for anomaly 22 

detection in various applications, including smart agriculture. The proposed method uses 23 

dynamic local increment to generate augmented samples from the original data and train 24 

the model in a self-supervised manner without the need for labeled data. The proposed 25 

method is evaluated using two publicly available datasets, and their results show that the 26 

proposed self-supervised learning method with dynamic local reinforcement can 27 

effectively detect anomalies in various applications, including smart agriculture, without 28 

the need for classified data. Chukkapalli, S. S. L et al.[21] proposed a cyber-physical system 29 

security monitoring system for intelligent agriculture using digital twins based on a 30 

knowledge graph. The system aims to detect and prevent cyber attacks on the smart 31 

farming system by creating a digital twin of the system and monitoring it for any abnormal 32 

behavior or security threats. The proposed system uses a knowledge graph to represent 33 

the smart farming system and its components and uses machine learning algorithms to 34 

detect anomalies and potential security threats. The system is evaluated using data 35 

collected from the smart farming system in the real world, and their findings show that 36 

the proposed system can effectively detect and prevent cyberattacks on the system. Tukur, 37 

et al.[22] discuss the challenges and insider attacks in IoT environments through the use of 38 

blockchain technologies. The authors propose the use of edge-based technology and 39 

blockchain to enhance the detection of insider attacks. This is achieved by distributing 40 

sensitive data across multiple devices in the IoT, making it difficult for attackers to access 41 
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the data in its entirety. Machine learning and artificial intelligence techniques are 1 

employed to detect abnormal patterns in the data and identify potential insider attacks. 2 

4. Methodology 3 

This section presents or explores the proposed model, describes the framework of the 4 

model, explains the data collection process, discusses the preprocessing of data, and details 5 

the steps involved in model building and training.   6 

4.1. Overview of the proposed model  7 

In this section, we propose a deep learning-based approach for detecting anomalies 8 

in smart agriculture systems on the network edge. The data flow process in securing smart 9 

farms from DDoS attacks begins at the sensor device within the farm. The sensor device 10 

collects various data points, such as environmental conditions, crop health metrics, and 11 

livestock monitoring information. These data points are then transmitted to the network 12 

edge, which serves as the first line of defense against potential DDoS attacks. At the net- 13 

work edge, the collected data is subjected to deep learning algorithms CNN-LSTM. The 14 

CNN component is responsible for extracting spatial and temporal features from the data, 15 

while the Long Short-Term Memory (LSTM) component handles the sequential analysis, 16 

capturing dependencies over time. 17 

 18 

The data is passed through the CNN-LSTM model, which has been trained on a large 19 

dataset of both normal and anomalous farm data. During the classification process, the 20 

model compares the input data to the learned patterns and determines whether it is nor- 21 

mal or anomalous. If the data is classified as normal, it is allowed to continue its flow 22 

through the network. However, if the data is classified as anomalous, an alert is promptly 23 

generated to notify the farm operator or relevant personnel about the potential security 24 

breach. Simultaneously, as the alert is sent, the anomalous data is blocked from further 25 

progression within the network. This proactive measure prevents potentially malicious or 26 

harmful data from infiltrating the smart farm system and causing disruptions or damages. 27 

By employing deep learning algorithms, specifically CNN-LSTM, at the network edge, 28 

the smart farm system can effectively analyze and classify incoming data in real time. This 29 

proactive approach ensures the security and integrity of the farm's operations by swiftly 30 

identifying and mitigating potential DDoS attacks. Furthermore, the system's ability to 31 

generate alerts enables prompt responses from farm operators or security personnel, al- 32 

lowing them to take appropriate actions to safeguard the smart farm environment. The 33 

data flow process in securing smart farms from DDoS attacks involves the collection of 34 

data from the sensor device, passing it through the network edge, and applying deep 35 

learning techniques, such as CNN-LSTM, for real-time classification. This approach en- 36 

sures that normal data is allowed to proceed while anomalous data triggers an alert and 37 

subsequent blocking. By implementing such a robust security system, smart farms can 38 

operate with enhanced protection against DDoS attacks, maintaining the integrity and 39 

uninterrupted functionality of their agricultural operations. In conclusion, using this pro- 40 

posed approach at the edge of the network offers several advantages. Firstly, it enables 41 

real-time analysis and classification of incoming data, allowing for immediate action in 42 

case of anomalies. Secondly, by applying the model at the network edge, the 43 
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computational burden is distributed, reducing the reliance on cloud-based solutions and 1 

potentially improving response times. Additionally, it adds an extra layer of security by 2 

detecting and blocking anomalous data at the network edge itself. 3 

 4 

4.2. The framework of the proposed model  5 

To identify DDoS attacks in smart agriculture, we present deep learning-based IDS 6 

models, including CNN and LSTM. The framework of the developing security systems 7 

for protecting smart agriculture is presented in Figure 7. Two public datasets, IoT-23 [13] 8 

and CICDDoS19 [29] are used to train and test the proposed models. 9 

   10 

Data Stream:  This step involves defining the stream of data from the source (IoT-23 and 11 

CICDDoS19 datasets) to the final output (anomaly detection). It involves identifying the 12 

data sources, data collection methods, and data processing steps required to achieve the 13 

desired output. 14 

Data Collection:  In this step, the IoT-23 and CICDDoS19 datasets are collected and pre- 15 

pared for analysis. This involves understanding the structure and format of the data, iden- 16 

tifying any missing or corrupt data, and cleaning the data to ensure it is ready for pro- 17 

cessing. 18 

Data Preprocessing:  This step involves preparing the data for analysis by applying vari- 19 

ous techniques such as Data balancing, Handling Null values, and Drop Data duplicates. 20 

This is done to ensure the data is in a format that can be used by the anomaly detection 21 

algorithm. For instance, removing duplicate data, handling missing values, and normal- 22 

izing the data. 23 

Concept Drift Detection:  This step involves identifying changes in the underlying data 24 

distribution over time, which could indicate a concept drift. The CNN-LMST algorithm, 25 

along with the use of a dummy encoding function, is employed to identify patterns in the 26 

Figure 7. Diagram flow of the Data proposed into the Smart Agriculture System. 
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data that deviate from the expected behavior and signal any changes in the data distribu- 1 

tion. 2 

A Classifier:  In this step, The LabelEncoder function was used to convert categorical la- 3 

bels into numerical representations, such as changing "DDoS attack" and "normal" to the 4 

numerical values 1 and 0. This conversion enhances the algorithms' ability to learn from 5 

the data and improves the accuracy of classification by presenting the data in a numeric 6 

form. 7 

Clustering:  In this step, the anomalous data is clustered based on the patterns of anoma- 8 

lous behavior. This is done to identify the source of the anomalies and understand the 9 

nature of the attack. 10 

 11 

Detecting:  In this step, the clustered anomalous behavior is analyzed to detect anomalous 12 

behavior in real time. If anomalous behavior is detected, an alert is generated to notify the 13 

appropriate personnel. 14 

Response:  This step involves developing an appropriate response to the detected anom- 15 

aly. The response could involve shutting down the system, implementing additional se- 16 

curity measures, or taking other appropriate action to mitigate the impact of the anomaly 17 

(See Figure 8). 18 

4.3. Data Collection 19 

4.3.1.  IoT-23 datasets  20 

The IoT-23 data is a comprehensive collection of network traffic data gathered from 21 

IoT devices. It contains 20 malware captures from infected IoT devices and 3 captures of 22 

benign IoT traffic. The data was captured between 2018 and 2019 at the Stratosphere La- 23 

boratory in the Czech Republic, with the current version captured in 2023. The dataset 24 

aims to provide researchers with a rich source of labeled IoT malware infections and be- 25 

nign IoT traffic for the development of machine learning algorithms.[13]. Each data unit 26 

in the dataset consists of several attributes of the captured packet, as well as its label. The 27 

label indicates whether the packet is normal (labeled "Benign") or represents some kind of 28 

attack (labeled according to the attack type). The attack types include C&C, DDoS, 29 

FileDownload, HeartBeat, Mirai, Okiru, PartOfAHorizontalPortScan, and Torii. For this 30 

project, we used one scenario from the dataset: "CTU-IoT-Malware-Capture-1-1." This 31 

Figure 8. Framework of the proposed model 
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scenario contains over a million records (1,008,748 to be exact), which was more than suf- 1 

ficient for our purposes. The packets in this scenario are either the Benign (normal) or 2 

Malicious type.  Each packet contains information such as source and destination IP ad- 3 

dresses, length, size, and other details. In total, there are 23 features listed in Appendix A. 4 

 5 

4.3.2. CIC-DDoS2019 Dataset 6 

The CICDDoS2019 dataset is a valuable resource for DDoS research due to several 7 

significant characteristics. It offers a diverse range of DDoS attacks, allowing researchers 8 

to investigate distinct attack vectors' attributes and trends. The dataset was obtained from 9 

a simulated network environment that closely emulated real-world scenarios, making it 10 

practical and facilitating the creation of resilient defense strategies. It contains network 11 

traffic from various sources and destinations, showcasing a broad range of traffic patterns 12 

and behaviors [29]. The dataset includes various attributes for each network flow, such as 13 

source and destination IP addresses, port numbers, protocol types, and payload sizes, 14 

providing ample data for feature engineering and analysis. It also includes annotated la- 15 

bels for every network flow denoting the presence of DDoS attacks, enabling the imple- 16 

mentation of supervised learning methodologies and the assessment of detection algo- 17 

rithms. Lastly, the dataset consists of over 15 million network flow records, indicating 18 

scalability and providing a vast amount of data for comprehensive analysis and model 19 

training. 20 

4.4.  preprocessing Data 21 

In this study, two datasets, namely IoT-23 and CICDDoS19, were utilized, and their 22 

details are presented in Tables 2 and 3. To begin the analysis, the Scenario packets were 23 

loaded into a data frame using the Pandas library in Python. The data was preprocessed 24 

by removing any null values to ensure high-quality results.  25 

 26 

Table 2. IoT-23 dataset attack classification 27 

NO Category Volume 

1 Normal 43177 

2 Mirai 756 

3 File download 8035 

4 HeartBeat 12895 

5 C&C 2381 

6 Torii 33858 

7 Port Scan 6544 

8 DDoS 20769 

9 Okiru 13718 

 28 

 29 

Table 3. CICDDoS2019 dataset attack classification 30 

NO Category Volume 

1 Normal 21366 

2 DrDoS_LDAP 199957 

3 DrDoS_SNMP 199942 

4 DrDoS_SSDP 199884 
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5 DrDoS_NetBIOS 199409 

6 DrDoS_MSSQL 199347 

7 TFTP 199171 

8 DrDoS_UDP 199069 

9 DrDoS_DNS 198249 

10 UDP-lag 195886 

11 DrDoS_NTP 187325 

12 WebDDoS 421 

 1 

 The one-hot-encoding algorithm was applied to the labels, converting the Benign 2 

class into 0 and the Malicious class into 1. A correlation matrix was then calculated to 3 

analyze the dependencies between the data. Some features, such as "missed bytes," were 4 

found to be constant across all values. These features were dropped, along with any un- 5 

necessary features such as timestamps, which showed a very weak correlation with the 6 

label of the dataset. Some values were not numerical, such as the IP source and destination 7 

of the packet, and could not be included in the correlation matrix. These features were 8 

converted into their numerical representation. Other values, such as the protocol of each 9 

packet (e.g., HTTP, TCP, or UDP), were represented using the one-hot-encoding method. 10 

The correlation matrix was recalculated after representing all features in numerical form. 11 

Figure 9 Correlation matrix after and before representing all the features in a numerical form of IoT-

23 Dataset 
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 1 

4.4.1 Preprocessing IoT-23 dataset 2 

In the IoT-23 dataset, the testing was conducted on Google Colab Pro with a Tesla 3 

V100-SXM2 equipped with 27.4GB of RAM. The dataset was initially split into training 4 

and testing sets, with 80% allocated for training and 20% for testing purposes. In the IoT- 5 

23 dataset highest 9 features in the correlation matrix with respect to the label were taken 6 

and the rest of the 21 features were dropped to speed up the computation and reduce the 7 

noise that might affect the performance of the model as shown in Figure 9. These features 8 

are listed as follow:  ['proto', 'history', 'id.resp_p', 'orig_ip_bytes', 'id.orig_p', 'orig_pkts', 9 

'duration', 'conn_state', 'id.orig_h'] These are the features that will represent the input of 10 

the model and the output will represent the type of the packet whether it is a safe packer 11 

or malicious. The data then is normalized using the max-min normalization algorithm to 12 

eliminate the possibility of one feature being dominant and negate the weight of the other 13 

features.  14 

4.4.2 Preprocessing CICDDoS2019 dataset 15 

In the CICDDoS2019 dataset, there was a significant difference in terms of the size of 16 

the data and the number of features compared to the first dataset. The number of features 17 

Figure 10. Correlation matrix after and before representing all the features in a numerical form of CICDDoS2019 



SMIJ 2023, Vol. 3. 21 of 31 
 

 

was much larger, requiring more powerful hardware. As a result, we had to change the 1 

testing environment and conducted the test on an Amazon Web service mi.m5.16xlarge 2 

with 64 VCPUs and equipped with 256 gigabytes of RAM. Initially, the dataset was split 3 

into training and testing sets, with 80% devoted to training and 20% to testing. The 4 

CICDDoS2019 dataset contains 83 features as shown in Figure 10, the top 69 features in 5 

the correlation matrix were taken with respect to the label, and the rest of the features 6 

were dropped to speed up the computation and reduce noise that might affect model per- 7 

formance. These features are listed in Appendix B.  These are the features that will repre- 8 

sent the form input and the output will represent the type of package whether it is a safe 9 

or malicious package. The data is then normalized using a minimum normalization algo- 10 

rithm to eliminate the possibility that one trait is dominant and unweight the other fea- 11 

tures. In the CICDDoS2019 dataset After conducting a correlation matrix analysis, the de- 12 

cision was made to eliminate the four features that displayed the least amount of correla- 13 

tion. To decrease the dimensionality of the dataset and eliminate characteristics that ex- 14 

hibit minimal correlation with the target variable or other pertinent features, a correlation 15 

matrix was computed. The dataset underwent feature selection based on correlation anal- 16 

ysis, resulting in the identification and subsequent removal of the four features with the 17 

lowest correlation. This procedure facilitates the optimization of the dataset by eliminat- 18 

ing features that may be redundant or lack informative value. 19 

 20 

It is often necessary to encode textual columns, such as the "Label" column, into nu- 21 

merical values to effectively utilize them in machine learning algorithms. During this 22 

stage, a suitable encoding methodology was implemented to transform the textual labels 23 

into numerical representations. Typical techniques for encoding data involve label encod- 24 

ing, one-hot encoding, or ordinal encoding, contingent upon the particular needs of the 25 

analysis. Omitting null values is a crucial step in ensuring the precision and dependability 26 

of the analysis. The absence or nullity of values can have a substantial impact on the re- 27 

sults. Consequently, in this stage, any rows or columns that contained null values were 28 

eliminated from the dataset. In cases where data is missing, imputation methods may be 29 

utilized to complete the dataset, taking into account the type and scope of the absent in- 30 

formation. In cases where the quantity of missing values is significant or if imputation is 31 

deemed unsuitable, the exclusion of null values is a legitimate method to safeguard the 32 

dataset's integrity. The CICDDoS2019 dataset underwent preprocessing procedures to fa- 33 

cilitate further analysis, which involved ensuring data consistency, reducing dimension- 34 

ality, and addressing missing values. The aforementioned preprocessing procedures es- 35 

tablish the fundamental framework for proficient modeling and analysis of the given da- 36 

taset. 37 

4.5. Model Building and Training 38 

In the IoT-23 dataset, this Keras Sequential model comprises four layers: a convolu- 39 

tional layer, a max pooling layer, a long short-term memory (LSTM) layer, and a dense 40 

layer. The model's input shape is defined as a tuple (9, 1), indicating that the input data 41 

consists of sequences of length 9, with each element being a single value. 42 

• The first layer is a Conv1D layer that performs one-dimensional convolution op- 43 

erations using 512 filters of size 3 and a ReLU activation function. This layer 44 
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extracts features from the input data by applying a set of filters. The filters slide 1 

over the input data and perform element-wise multiplication followed by summa- 2 

tion to produce a single output value for each filter. The ReLU activation function 3 

is then applied to introduce non-linearity into the model. 4 

• The second layer is a MaxPooling1D layer that performs one-dimensional max 5 

pooling operations with a pool size of 5. This operation takes the maximum value 6 

over a sliding window of size 5 along the temporal dimension of the feature maps 7 

produced by the convolutional layer. This reduces the dimensionality of the fea- 8 

ture maps while retaining the most important information. 9 

• The third layer is an LSTM layer with 64 units. LSTM is a type of recurrent neural 10 

network (RNN) capable of processing sequences of inputs while maintaining an 11 

internal state. This layer processes the pooled feature maps using LSTM cells to 12 

capture temporal dependencies in the data. LSTM cells have an internal memory 13 

and use gating mechanisms to control the flow of information into and out of the 14 

cell. 15 

• The fourth and final layer is a dense layer that produces the final output of the 16 

model. This layer takes the output from the LSTM layer and applies a linear trans- 17 

formation followed by an activation function to produce the final output. The 18 

model is illustrated in Figure 11. 19 

In the CICDDoS2019 dataset, this Keras Sequential model comprises four layers: 20 

a convolutional layer, a max pooling layer, a long short-term memory (LSTM) 21 

layer, and a dense layer. The model's input shape is defined as a tuple (69, 1), 22 

indicating that the input data consists of sequences of length 69, with each element 23 

being a single value. 24 

• The first layer is a Conv1D layer that performs one-dimensional convolution op- 25 

erations using 128 filters of size 3 and a ReLU activation function. This layer 26 

Figure 11. The model structure IoT-23 dataset 
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extracts features from the input data by applying a set of filters. The filters slide 1 

over the input data and perform element-wise multiplication followed by summa- 2 

tion to produce a single output value for each filter. The ReLU activation function 3 

is then applied to introduce non-linearity into the model. 4 

• The second layer is a MaxPooling1D layer that performs one-dimensional max 5 

pooling operations with a pool size of 2. This operation takes the maximum value 6 

over a sliding window of size 2 along the temporal dimension of the feature maps 7 

produced by the convolutional layer. This reduces the dimensionality of the fea- 8 

ture maps while retaining the most important information. 9 

• The third layer is an LSTM layer with 100 units. LSTM is a type of recurrent neural 10 

network (RNN) capable of processing sequences of inputs while maintaining an 11 

internal state. This layer processes the pooled feature maps using LSTM cells to 12 

capture temporal dependencies in the data. LSTM cells have an internal memory 13 

and use gating mechanisms to control the flow of information into and out of the 14 

cell. 15 

• The fourth and final layer is a dense layer that produces the final output of the 16 

model. This layer takes the output from the LSTM layer and applies a linear trans- 17 

formation followed by an activation function to produce the final output. The 18 

model is illustrated in Figure 12. 19 

5. Results and Discussion 20 

  This section presents the results and discussion of the evaluation of different algo- 21 

rithms for the study. It presents the results obtained from comparing and analyzing the 22 

performance of the algorithms employed in the study. 23 

5.1. Performance metrics 24 

In this research, the various performance metrics are used to analyze the appropri- 25 

ateness of the proposed design for detecting DDoS attacks. One of these is the confusion 26 

matrix, a standard metric for assessing an IDS's effectiveness. Other evaluation metrics, 27 

Figure 12. The model structure IoT-23 dataset 
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such as F1-Score, precision, recall, and accuracy, are also considered to compare our 1 

model with the existing techniques. 2 

The CNN-LSTM models are validated using the accuracy, precision, recall, and F1 3 

score. Accuracy is expressed as the proportion of accurately identified samples to the total 4 

number of samples. Precision is measured by the ratio of appropriately classified items to 5 

the total TP (True Positive) and FP (False Positive). The recall value is determined by cal- 6 

culating the overall amount of TP measurements by the total number of TP and FN (False 7 

Negative). Finally, the F1 score is computed as the weighted average of precision and re- 8 

call. Additionally, we also calculate TPR, TNR, FPR, and FNR. Where TPR (True Positive 9 

Rate) refers to the number of abnormal items that test positive, the TNR (True Negative 10 

Rate) is the number of normal samples that are found to be negative, the number of normal 11 

samples that test positive is known as the FPR (False Positive Rate), and FNR (False Neg- 12 

ative Rate) is the number of abnormal samples that test negative.  13 

Accuracy is to calculate the level of agreement between the predicted or calculated 14 

values and the actual or expected values in a given context. It helps assess the correctness 15 

and precision of the calculations, models, or measurements being performed. Accuracy is 16 

crucial in various fields such as scientific research, data analysis, engineering, and deci- 17 

sion-making, as it enables reliable and trustworthy results to be obtained. 18 

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
 

 

(1) 

Precision is to calculate the consistency and reproducibility of measurements or cal- 19 

culations. It quantifies the degree of exactness or refinement in the results obtained. Preci- 20 

sion focuses on the level of variability or scatter in the data points or measurements, indi- 21 

cating how closely they cluster around each other. A high level of precision suggests min- 22 

imal variation and a high degree of repeatability, while low precision indicates significant 23 

variability and lack of consistency in the measurements or calculations. Precision is im- 24 

portant in fields such as scientific experiments, quality control, and statistical analysis, as 25 

it helps assess the reliability and consistency of the data or results being obtained. 26 

Precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (2) 

  27 

Recall is to calculate the ability of a system or model to correctly identify or retrieve 28 

relevant information or instances from a given set. It measures the completeness or the 29 

proportion of true positives that are correctly identified out of all actual positives in a da- 30 

taset. Recall is particularly important in tasks such as information retrieval, classification, 31 

and pattern recognition. A high recall indicates that the system is effectively capturing a 32 

large portion of the relevant information, while a low recall suggests that there is a signif- 33 

icant number of missed or undetected instances. Maximizing recall is crucial in scenarios 34 

where it is important to minimize false negatives and ensure comprehensive coverage of 35 

the target population or desired outcomes. 36 

Recall =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

(3) 
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F1 score is a metric that combines precision and recall into a single measure. It pro- 1 

vides a balanced evaluation of a classification or information retrieval system's perfor- 2 

mance. The F1 score is calculated as the harmonic mean of precision and recall, ranging 3 

from 0 to 1. It is particularly useful for assessing performance in imbalanced datasets and 4 

considers both false positives and false negatives. 5 

F − score = 2x
(Precision x Recall)

(Precision +  Recall)
 (4) 

 The CNN-LSTM model accuracy and loss were measured for both the training 6 

and validation sets at each epoch value. It allows us to assess if the model has been suffi- 7 

ciently learned to differentiate between various anomalies and how many data points in 8 

the validation set have been correctly identified. In addition, the accuracy and loss of the 9 

CNN and LSTM models were measured separately. Table 4 shows model training and 10 

validation for each dataset. 11 

Table 4 results of the LSTM-CNN model. 12 

Algorithms Dataset accuracy Precision Recall F1 score 

CNN-LSTM 
IoT-23 0.9822 0.9538 0.9041 0.9215 

CICDDoS2019 0.9947 0.9541 0.9021 0.9191 

CNN 
IoT-23 0.8345 0.8821 0.9026 0.8846 

CICDDoS2019 0.8136 0.7861 0.8276 0.8585 

LSTM 
IoT-23 0.7988 0.8536 0.7642 0.8123 

CICDDoS2019 0.8349 0.8646 0.8262 0.7724 

 13 

As shown in Table 4, the difference in performance between the two datasets, IoT-23 14 

and CICDDoS2019, is significant. The IoT-23 dataset achieved an accuracy rate of 0.9822, 15 

while the CICDDoS2019 dataset outperformed it with an accuracy rate of 0.9974. Despite 16 

both datasets being divided using the same 80/20 split for training and testing, the 17 

CICDDoS2019 dataset's considerably larger size and longer training duration likely con- 18 

tributed to its superior performance. 19 

The larger size of the CICDDoS2019 dataset provided a more extensive and diverse 20 

set of samples for the deep learning model to learn from, allowing it to capture a wider 21 

range of patterns and anomalies. The increased number of samples improved the model's 22 

ability to generalize and detect anomalies accurately, resulting in a higher accuracy rate. 23 

Moreover, the longer training duration for the CICDDoS2019 dataset allowed the 24 

model to explore and learn complex patterns more thoroughly. The additional training 25 

time enabled the model to fine-tune its parameters and adjust its internal representations, 26 

leading to improved performance and a higher accuracy rate observed. 27 

 28 

The upward trend of the learning curve indicates that the model learns quickly and 29 

efficiently. The rate of improvement can be observed in Figures 13 and 14 below, show- 30 

casing the progressive nature of the model's learning process. The ROC curve, depicted 31 

in Figure 15, serves as a visual representation of the model's ability to effectively learn and 32 

discriminate between different classes or categories. The steep upward trend observed in 33 

the ROC curve signifies the model's rapid acquisition of accurate prediction abilities, lead- 34 

ing to high-performance results. Consequently, the ROC curve provides valuable insights 35 
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into the model's learning capabilities and its effectiveness in accurately classifying in- 1 

stances. 2 

 3 

 4 

Figure 13. The CNN–LSTM model’s performance for IoT-23 datasets 

Figure 14. The CNN–LSTM model’s performance for CICDDoS2019 datasets 

Figure 15. The ROC Curve CNN–LSTM model’s performance for CICDDoS2019 datasets 
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The proposed CNN- LSTM models outperform all other implementations in all da- 1 

tasets included in this study in Table 5. This proposed model combines the strengths of 2 

LSTM and CNN to achieve exceptional performance in accurately classifying data. The 3 

LSTM component of the model excels at capturing long-term dependencies in sequential 4 

data, while the CNN component excels at extracting spatial features from the data. To- 5 

gether, these two components work in harmony to deliver a powerful and cutting-edge 6 

solution for data classification. Figure 16 shows a comparison between the proposed sys- 7 

tem and other systems and other state of the art systems. 8 

 9 

Table 5. Comparison between the results of different systems in detecting DDoS at- 10 

tacks. 11 

Ref. Authors &Year Technique Dataset Algorithm 
Accu-

racy 

[10] 
Yizhen Jia et al 

2020 

FlowGuard: Intelligent edge defense mechanism 

against IoT DDoS attacks 
CICDDoS 2019 LSTM 0.989 

 

[11] 

Marcos V. O. 

de Assis et al 

2020 

Near real-time security system applied to SDN envi-

ronments in IoT networks using CNN 
CICDDoS 2019 CNN 0.954  

[24] 
Yin, Jie, et al. 

2023 

anomaly traffic detection based on feature fluctuation 

for secure industrial IoT 
IoT-23 

ANN and 

GLM 

model 

0.9700  

[25] 

Abdalgawad, 

Nada, et al. 

2021 

Generative deep learning to detect cyberattacks for 

the IoT-23 dataset. 
IoT-23 

AAE and 

BiGAN 
0.9900  

[26] 
Chen, Lei, et al. 

2023 

An adversarial DBN-LSTM method for detecting and 

defending against DDoS attacks in SDN environ-

ments. 

CICDDoS 2019 

DBNs, 

LSTM, and  

GAN 

0.9655  

[27] 
Dawadi, Babu 

R., et al 2023 

Deep learning technique-enabled web application 

firewall for the detection of web attacks. 
CICDDoS 2019 LSTM 0.9775  

The proposed model 
Anomaly detection for DDoS attacks on network 

edge using deep learning 

IoT-23 CNN- 

LSTM 

0.9822  

CICDDoS 2019 0.9947  



SMIJ 2023, Vol. 3. 28 of 31 
 

 

 1 

6. Conclusions and Future Works 2 

In this research, deep learning techniques have shown their ability to correctly classify 3 

anomalies in many areas of research. However, hackers use new and innovative tech- 4 

niques to launch cyberattacks. While great attempts to track down these attacks have the 5 

advantage that they continue to occur in multiple ways to cooperate with other potential 6 

attacks such as DDoS attacks and botnets. This paper proposes an anomaly detection 7 

model for IoT networks in smart agriculture using CNN-LSTM. It was performed on two 8 

different datasets, namely IoT-23 and CICDDoS2019. The proposed model achieved high 9 

accuracy for current classification strategies and modern deep learning applications. In 10 

terms of anomaly detection accuracy using the proposed model, the rate is 99.47%, and it 11 

can be more efficient if applied at the edge of the network. In future work, we will inves- 12 

tigate further anomaly detection using various deep learning methods, such as DBN and 13 

GAN, and compare the results with those obtained with CNN-LSTM. 14 

 15 

Figure 16. Visual comparison between the results the proposed mode against other models in detecting DDoS 

attacks. 
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Appendix A 20 

A.1 The IoT-23 dataset features 21 

['ts', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto', 'service', 'duration', 'orig_bytes', 22 
'resp_bytes', 'conn_state', 'local_orig', 'local_resp', 'missed_bytes', 'history', 'orig_pkts', 'orig_ip_bytes', 23 
'resp_pkts', 'resp_ip_bytes', 'tunnel_parents', 'label', 'detailed-label'] 24 

A.2 The CICDDoS2019 dataset features 25 

["Label, Packet Length Mean, Fwd Packet Length Max, Avg Fwd Segment Size, Fwd Packet Length 26 
Mean, Average Packet Size, Min Packet Length, Fwd Packet Length Min, Max Packet Length, ACK Flag 27 
Count, Protocol, Flow Bytes/s , Source Port, Init_Win_bytes_forward, Fwd IAT Mean, Flow IAT Mean, 28 
Flow IAT Std, Fwd IAT Std, Fwd IAT Max, Flow IAT Max, Idle Mean, Idle Max, Idle Min, Fwd IAT Total, 29 
Flow Duration, Subflow Fwd Bytes, Total Length of Fwd Packets, Fwd Packets/s, Idle Std, Flow Packets/s, 30 
act_data_pkt_fwd, Inbound, URG Flag Count, CWE Flag Count, min_seg_size_forward, Bwd Packet 31 
Length Min, Bwd Packet Length Mean, Avg Bwd Segment Size, Bwd IAT Min, Fwd PSH Flags, RST Flag 32 
Count, Init_Win_bytes_backward, Bwd IAT Mean, Bwd Packet Length Std, Bwd IAT Std, Bwd Packets/s, 33 
Bwd Packet Length Max, Bwd IAT Max, Packet Length Std, Fwd Header Length.1, Fwd Header Length, 34 
SimilarHTTP, Destination Port, Active Std, Total Fwd Packets, Subflow Fwd Packets, Packet Length Vari- 35 
ance, Active Max, Bwd IAT Total, Fwd Packet Length Std, Down/Up Ratio, Total Length of Bwd Packets, 36 
Subflow Bwd Bytes, Total Backward Packets, Subflow Bwd Packets, Active Min, Flow IAT Min, Bwd 37 
Header Length, Fwd IAT Min, Active Mean, SYN Flag Count"] 38 
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