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Abstract: To better estimate the unknown parameters of the double-diode model, a new optimi- 10

zation technique based on the newly proposed spider wasp optimizer (SWO) is introduced in 11

this study. The performance of SWO was further enhanced by integrating it with a local search 12

strategy to propose a new improved variant called ISWO. This improved variant has a high abil- 13

ity to extensively exploit the solutions surrounding the best-so-far solution in an effort to speed 14

up convergence and produce better results in fewer function evaluations. Using the RTC France 15

solar cell and three PV modules (STM6-40/36, STP6-120/36, and Kyocera KC200GT), ISWO and 16

SWO are evaluated and compared to four well-known metaheuristic optimization methods. The 17

objective values acquired by those algorithms in thirty separate runs are examined using the 18

Wilcoxon rank sum test and a number of performance measures. The experimental findings 19

demonstrate ISWO's exceptional performance for every PV module under consideration. 20

Keywords: Spider wasp optimizer; Double diode model; Local search strategy; PV modules; So- 21

lar systems. 22

1. Introduction 23

Recent years have seen a rise in the utilization of renewable energy sources, like fuel 24

energy and solar energy, as a response to climate change and the energy crisis [1]. The use 25

of photovoltaic (PV) systems to convert solar energy plays a crucial role in providing a 26

reliable and affordable renewable alternative energy source [2]. There are several PV 27

models that were presented to model, formulate, and simulate the PV systems. Those 28

models are single diode (SDM) model, double diode (DD) model, and triple diode (TD) 29

model [3]. Those models, unfortunately, have some unknown parameters, where SD 30

model has five unknown parameters, the DD model has seven unknown parameters, and 31

the TD model has nine unknown parameters; those unknown parameters stand as a strict 32

obstacle in front of precise designing the PV modules and solar cells.  33

Therefore, several studies in the literature tried to present solutions for this problem, 34

termed the parameter estimation problem of PV models. Some of those solutions were 35

based on employing traditional techniques to estimate those unknown parameters. 36

However, those techniques suffer from falling into local minima and low convergence 37

speed, especially since this problem is considered a complicated nonlinear optimization 38
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problem, which includes several local optima [3]. Therefore, metaheuristic algorithms 1 

have been employed to overcome those shortcomings when tackling this problem. The 2 

reason behind using metaheuristics is that they could achieve outstanding outcomes for 3 

several optimization problems [4]. In the rest of this section, we will review some of the 4 

recently published metaheuristic algorithms for tackling this problem. 5 

Elazab [5] used the grasshopper optimization algorithm (GOA) for the purpose of 6 

predicting the parameters of the TD model. The technique was evaluated on two modules, 7 

specifically the Kyocera KC200GT and the Solarex MSX-60 PV cells.  TLBO was proposed 8 

in [6] as a method for searching for near-optimal values for various PV models. The authors 9 

discovered that the traditional TLBO still has space for improvement, so they utilized both 10 

an elite method and a local search in order to improve both exploration and exploitation 11 

capabilities. This newly developed variant of TLBO was termed the simplified TLBO 12 

(STLBO). In Table 1, we review several other studies presented recently for this problem. 13 

 14 

Table 1. Review of some studies proposed recently for the parameter estimation of PV models. 15 

Year Algorithm Objective 

function 

Modelling References 

2023 Improved moth flame algorithms RMSE SD model; DD 

model 

[7] 

2023 Hybrid grey wolf optimization RMSE DD model [8] 

2023 Tree seed algorithm RMSE SD model [9] 

2023 Northern Goshawk Optimization algorithm  TD model [10] 

2023 Chaos game optimization algorithm RMSE SD model; DD 

model; TD 

model 

[11] 

2023 Artificial hummingbird optimization algorithm RMSE; Lambert W 

function; Iterate 

Newton–Raphson 

approach 

SD model; DD 

model 

[12] 

2023 Squirrel search algorithm RMSE SD model; DD 

model 

[13] 

2023 Growth Optimizer RMSE SD model; DD 

model 

[14] 

2023 L-SHADE RMSE SD model [15] 

2023 Opposition-Based Initialization Particle Swarm Opti-

mization 

RMSE SD model [16] 

2023 Chimp optimization algorithm RMSE SD model; DD 

model; TD 

model 

[17] 

2023 Harris Hawks optimization algorithm RMSE TD model [18] 

2023 Improved Cheetah Optimizer RMSE SD model; DD 

model 

[19] 

2023 Amended reptile search algorithm RMSE SD model; DD 

model 

[20] 

 16 

The algorithms presented for this problem still suffer from stagnation into local 17 

minima and slow convergence rate. Therefore, in this paper, we propose a new parameter 18 
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estimation technique based on the spider wasp optimizer (SWO) to better solve this 1 

problem. To further improve the performance of SWO, it is integrated with a local search 2 

strategy to exploit extensively the solutions around the best-so-far solution in the hope of 3 

accelerating the convergence speed for achieving better outcomes in a smaller number of 4 

function evaluations; this improved variant of SWO was called ISWO. Both ISWO and 5 

SWO are assessed using three PV modules (STM6-40/36, STP6-120/36, and Kyocera 6 

KC200GT) and the RTC France solar cell based on the DD model, and compared to four 7 

well-established metaheuristic optimization techniques. The objective values obtained by 8 

those algorithms in 30 independent times are analyzed in terms of several performance 9 

metrics and the Wilcoxon rank sum test. The experimental results expose that ISWO has 10 

outstanding performance for all considered PV modules. 11 

This paper's remaining sections are structured as follows: The DD model's 12 

mathematical model is discussed in Section 2; in Section 3, we describe the spider wasp 13 

optimizer; the proposed algorithm is described in Section 4; Section 5 displays results and 14 

discussion; Section 6 discusses conclusion and future work. 15 

2. Double diode model  16 

 17 

The double diode (DD) model is offered as an alternative to the single diode (SD) model 18 

since the DD model performs better at low irradiance levels [21]. As shown in Fig.1, the 19 

DD model includes two diodes: the first diode acts as a rectifier while the other accounts 20 

for the current caused by recombination and the influence of non-idealities in the solar 21 

cell. The DD model’s output current is given by: 22 

𝐼 = 𝐼𝑝ℎ − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝑠ℎ  
 

(1) 

where 𝐼𝑝ℎ  refers to the current source, and 𝐼𝐷1  represents the current that flows 23 

through the first diode and is given by: 24 

𝐼𝐷1 = 𝐼𝑠𝑑1(𝑒𝑥𝑝 (
𝑉 + 𝐼 ∗ 𝑅𝑠

𝑛1 ∗ 𝑉𝑡

) − 1) 
 

(2) 

 25 

where 𝑉 is the output voltage, 𝑅𝑠 represents the resistance connected in series,  𝑛1 26 

stands for the first ideality factor, and 𝑉𝑡 is given by: 27 

𝑉𝑡 =
𝑘 ∗ 𝑇

𝑞
 

 

(3) 

where 𝑘 represents the Boltzmann constant, 𝑞 is the charge of the electron, and 𝑇 28 

represents the temperature. 𝐼𝐷2 represents the current that flows through the second di- 29 

ode and given by: 30 

𝐼𝐷1 = 𝐼𝑠𝑑2(𝑒𝑥𝑝 (
𝑉 + 𝐼 ∗ 𝑅𝑠

𝑛2 ∗ 𝑉𝑡

) − 1) 
 

(4) 

where 𝑛2 stands for the second ideality factor. 𝐼𝑠ℎ is given by the following formula: 31 

𝐼𝑠ℎ =
𝑉 + 𝐼 ∗ 𝑅𝑠

𝑅𝑠ℎ

 (5) 

where 𝑅𝑠ℎ stands for the shunt resistance. From above, we found that those equa- 32 

tions contain seven unknown parameters, namely 𝐼𝑠𝑑1 , 𝐼𝑠𝑑2 , 𝑅𝑠 , 𝑅𝑠ℎ , 𝑛1 , and 𝑛2 , that 33 

needs to be accurately estimated to accurately design the solar cell under DDM.  The 34 

amount of power produced by a solar generation unit that only comprises of one solar cell 35 

is not very high at all. Therefore, PV modules connect 𝑁𝑠 cells in series so that the output 36 

voltage of the PV system can be raised. It is also possible to formulate the PV modules by 37 
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applying the preceding equations, with the one change being that is given by the follow- 1 

ing equation [22]: 2 

  𝑉𝑡 =
𝑁𝑠∗𝑘∗𝑇

𝑞
 (6) 

 3 

3. Spider wasp optimizer (SWO) 4 

The spider wasp optimizer (SWO) is a new metaheuristic method suggested recently 5 

to address continuous optimization issues, such as the parameter estimation of photovol- 6 

taic models [23]. The SWO algorithm is based on modeling the three distinct activities of 7 

female spider wasps: nesting, hunting, and mating. In the next sections, we'll talk about 8 

the mathematical models of these SWO-created behaviors.  9 

3.1. Hunting and nesting behavior 10 

The female spider wasp begins by doing an initial search, known as an "exploration 11 

operator," to identify potential prey. When it locates its target, it sends a signal to its ex- 12 

ploitation operator to begin closing in and attacking. The mathematical details of these two 13 

operators are provided below. 14 

3.1.1. Search stage (Exploration operator) 15 

As noted above, the female spider wasp initiates this operator at the start of the search 16 

procedure in order to locate its preferred prey. This behavior can be modeled mathemati- 17 

cally using the following expression: 18 

       �⃗�𝑖
𝑡+1 = �⃗�𝑖

𝑡 + 𝜇1 ∗ (�⃗�𝑎
𝑡 − �⃗�𝑏

𝑡 ),                                                     (7)                                                              19 

where �⃗�𝑎
𝑡  and �⃗�𝑏

𝑡  are two randomly selected solutions from the current population. The 20 

female wasp's steady forward velocity is calculated using an adaptive factor called 𝜇1, as 21 

mathematically defined in the following equation: 22 

𝜇1 = |𝑟𝑛| ∗ 𝑟1,                                                                         (8)           23 

where 𝑟1 is a random number between zero and one and 𝑟𝑛 is a random number drawn 24 

from a normal distribution. Prey that falls from the orb may be lost if the female wasps are 25 

unable to catch it. To find the lost prey, they employ a different exploring strategy, which 26 

is mathematically defined as follows: 27 

�⃗�𝑖
𝑡+1 = �⃗�𝑐

𝑡 + 𝜇2 ∗ (�⃗⃗� + 𝑟2⃗⃗⃗⃗ ∗ (�⃗⃗⃗� − �⃗⃗�)),                                                    (9) 28 

𝜇2 = 𝐵 ∗ cos(2𝜋𝑙),                                                                    (10)               29 

 𝐵 =
1

1+𝑒𝑙,                                                                            (11)                        30 

where �⃗�𝑐
𝑡 is a randomly chosen solution from the current population representing the lo- 31 

cation of the dropped prey, �⃗⃗� represents the lower bound, �⃗⃗⃗� represents the upper bound, 32 

𝑟2⃗⃗⃗⃗  is a vector including random values generated in the interval [0, 1] and 𝑙 is a random 33 

number between -1 and -2. Finally, the following equation describes the compromise be- 34 

tween (4) and (6) that moves the 𝑖𝑡ℎ solution forward. 35 

�⃗�𝑖
𝑡+1 = {

𝐸𝑞. (7)         𝑟3 < 𝑟4,

𝐸𝑞. (9)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                                                                (12) 36 

where 𝑟3 and 𝑟4 are two arbitrary numbers between zero and one. 37 

Figure. 1: DDM’s Equivalent circuit. 



SMIJ 2023, Vol. 5. 5 of 14 
 

 

3.1.2. Following and escaping stage (exploration and exploitation operator) 1 

Spider wasps use the following formula to calculate new positions in relation to the spiders 2 

in order to capture them at this time: 3 

  �⃗�𝑖
𝑡+1 = �⃗�𝑖

𝑡 + 𝐶 ∗ |2 ∗ 𝑟5⃗⃗⃗⃗ ∗ �⃗�𝑎
𝑡 − �⃗�𝑖

𝑡|,                                                    (13)                                                                 4 

  𝐶 = (2 − 2 ∗ (
𝑡

𝑡𝑚𝑎𝑥
)) ∗ 𝑟6,                                                           (14)                                                                       5 

where t and 𝑡𝑚𝑎𝑥 stand for the current function evaluation and maximum function evalu- 6 

ation, respectively. 𝑟5⃗⃗⃗⃗  is a vector that has been given numerical values that range between 7 

0 to 1 and are generated in a random fashion according to the uniform distribution. 𝑟6 is a 8 

random numerical value that is created between 0 and 1 according to the uniform distribu- 9 

tion. However, there is a possibility that the spiders will escape from the female wasps, 10 

therefore the distance between them would gradually expand. The following equation is 11 

used in order to simulate this behavior in SWO: 12 

�⃗�𝑖
𝑡+1 = �⃗�𝑖

𝑡 ∗ 𝑣𝑐⃗⃗⃗⃗⃗,                                                                       (15)           13 

where 𝑣𝑐⃗⃗⃗⃗⃗ is a vector of numerical values that are arbitrarily created between 𝑘 and −k us- 14 

ing the normal distribution. 𝑘 is produced by applying the following formula: 15 

𝑘 = 1 − 1 ∗ (
𝑡

𝑡𝑚𝑎𝑥
)                                                                    (16)               16 

The following equation could be used to arrive at an acceptable compromise between (10) 17 

and (12): 18 

�⃗�𝑖
𝑡+1 = {

𝐸𝑞. (13)         𝑟3 < 𝑟4

𝐸𝑞. (15)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.                                                          (17)             19 

In SWO, the following equation is used to tradeoff between (12) and (17): 20 

�⃗�𝑖
𝑡+1 = {

𝐸𝑞. (12)            𝑝 < 𝑘

𝐸𝑞. (17)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                                                          (18)           21 

where 𝑝 is a number picked at random from the range [0, 1] based on the characteristics of 22 

the uniform distribution. 23 

3.1.3. Nesting behavior (exploitation operator) 24 

Female wasps pull the broken spider into their nest. Spider wasps can dig and create cells 25 

in soil, make mud nests in leaves or rocks, and exploit pre-existing nests or cavities. Spider 26 

wasps have many nesting habits, thus SWO uses two equations to model them. The first 27 

equation considers drawing the spider to the region with the best spider to create a nest for 28 

the immobilized spider and egg over its abdomen, as defined in the following formula: 29 

       �⃗�𝑖
𝑡+1 = �⃗�∗ + cos(2𝜋𝑙) ∗ (�⃗�∗ − �⃗�𝑖

𝑡),                                               (19) 30 

where �⃗�∗ denotes the optimal solution obtained so far. The second equation builds the 31 

nest in the position of a female spider that is selected randomly from the population. This 32 

equation also includes an additional step size, which helps to ensure that no two nests are 33 

built in the same position. This equation is mathematically described below:  34 

     �⃗�𝑖
𝑡+1 = �⃗�𝑎

𝑡 + r3 ∗ |𝛾| ∗ (�⃗�𝑎
𝑡 − �⃗�𝑖

𝑡) + (1 − 𝑟3) ∗ �⃗⃗⃗� ∗ (�⃗�𝑏
𝑡 − �⃗�𝑐

𝑡),                         (20) 35 

where 𝛾 is a random numerical value selected based on the levy flight, and U is a vector 36 

consisting of binary values that determine whether or not the additional step size is utilized 37 

in the process of updating. Whether or not the additional step size is used can be determined 38 

by the following defined factor: 39 

�⃗⃗⃗� = {
1            𝑟4⃗⃗⃗ ⃗ > 𝑟5⃗⃗⃗⃗
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                                                                  (21)                      40 

where 𝑟4⃗⃗⃗ ⃗ and 𝑟5⃗⃗⃗⃗   are two random vectors from a uniform distribution containing 41 

numerical values between zero and one. To update each solution during optimization, (16) 42 

and (17) are randomly swapped according to the following formula:  43 

�⃗�𝑖
𝑡+1 = {

𝐸𝑞. (19)         𝑟3 < 𝑟4

𝐸𝑞. (20)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.                                                          (22)             44 

At last, during SWO optimization, the following formula is used to swap out the hunting 45 

behaviors defined using (18) and the nesting behaviors defined using (21): 46 

�⃗�𝑖
𝑡+1 = {

 𝐸𝑞. (18)            𝑖 < 𝑁 ∗ 𝑘
𝐸𝑞. (22)         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                       (23)       47 
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3.2.  Mating behavior  1 

The method by which SWO creates new solutions or spider wasp eggs is character- 2 

ized by the following equation: 3 

�⃗�𝑖
𝑡+1  =  𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(�⃗�𝑖

𝑡 , �⃗�𝑚
𝑡 , 𝐶𝑟),                                                       (24)                 4 

where �⃗�𝑚
𝑡  and �⃗�𝑖

𝑡  are two vectors for the female and male spider wasps, respec- 5 

tively, and Crossover is the uniform crossover operator applied to �⃗�𝑚
𝑡  and �⃗�𝑖

𝑡 with 6 

a probability, Cr. To identify male spider wasps from females, the following formula 7 

is used in SWO:  8 

     �⃗�𝑚
𝑡+1 = �⃗�𝑖

𝑡 + 𝒆𝑙 ∗ |𝛽| ∗ �⃗�1 + (1 − 𝒆𝑙) ∗ |𝛽1| ∗ �⃗�2,                                    (25)     9 

where 𝛽 and 𝛽1 are two randomly selected numbers from the normal distribution, 10 

and �⃗�1 and �⃗�2 are two vectors generated by the following formula: 11 

�⃗�1 = {
�⃗�𝑎 − �⃗�𝑖                  𝑓(�⃗�𝑎) < 𝑓(�⃗�𝑖)

�⃗�𝑖 − �⃗�𝑎                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                                                       (26) 12 

�⃗�2 = {
�⃗�𝑏 − �⃗�𝑐                    𝑓(�⃗�𝑏) < 𝑓(�⃗�𝑐)

�⃗�𝑐 − �⃗�𝑏                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                                                      (27) 13 

The factor TR is responsible for the compromise between equations (23) and (24).  14 

 15 

3.3.  Population reduction and memory saving  16 

The female spider will seal the nest and move on to a more covert position once she 17 

has finished laying her eggs on the host's belly. This idea suggests that the female's contri- 18 

bution to the optimization process is complete and that the other wasps may be able to 19 

produce better results by doing the remaining function evaluations. To speed up the con- 20 

vergence time of the optimization process, a fraction of the wasps in the population will be 21 

removed. This will enhance the number of function evaluations that the surviving wasps 22 

may execute. During optimization, the population size is dynamically updated using the 23 

following formula:   24 

𝑁 = 𝑁𝑚𝑖𝑛 + (𝑁 − 𝑁𝑚𝑖𝑛) × 𝑘,                                                          (28)      25 

where 𝑁 is the population size and 𝑁𝑚𝑖𝑛  is the smallest population size that will 26 

keep the optimization process from getting stuck in local minima. Last but not least, SWO 27 

Figure. 2: SWO’s Flowchart 
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uses a memory preservation technique to pass on each wasp's highest ranking to the next 1 

generation. In a nutshell, the new position proposed by each wasp is compared to the exist- 2 

ing position, and the latter solution is replaced if it is worse. Finally, the SWO’s flowchart 3 

is shown in Fig. 2. 4 

4. The proposed improved SWO for parameter estimation 5 

To begin the optimization process, most metaheuristic algorithms generate an initial 6 

population that is based on generating N solutions with d dimensions within the search 7 

boundary of each dimension. Those solutions are randomly initialized within the search 8 

boundary, as defined in the following equation: 9 

𝑥𝑖⃗⃗⃗ ⃗ = �⃗⃗� + (�⃗⃗⃗� − �⃗⃗�) ∗ 𝑟                                                                                                   (29) 10 

where 𝑟 is a random vector between 0 and 1. At first, the proposed improved SWO 11 

(ISWO) uses these N solutions  𝑥⃗⃗⃗𝑖(𝑖 ∈ 𝑁), where the number of dimensions d in each solu- 12 

tion is equal to seven unknown parameters (𝐼𝑝ℎ, 𝐼𝑠𝑑1, 𝐼𝑠𝑑2, 𝑅𝑠, 𝑅𝑠ℎ, 𝑛1, 𝑛2) in the DD model 13 

to be optimized. Those solutions are initialized using (29) and evaluated using the root 14 

mean squared error (RMSE) which is described in the following formula:  15 

 16 
𝑅𝑀𝑆𝐸 = 𝑓(𝑥𝑖⃗⃗⃗ ⃗)

=  √
1

𝑀
∗ ∑(𝐼𝑚 − 𝐼𝑒(𝑉𝑒 , 𝑥𝑖⃗⃗⃗ ⃗))

𝑀

𝑘=1

2

 

   
(30) 

where 𝐼𝑚  refers to the measured current, and 𝐼𝑒  is the estimated current. 𝑀 repre- 17 

sents the data point number. 𝑥𝑖⃗⃗⃗ ⃗ represents the solutions obtained by ISWO either in the 18 

initialization stage or the optimization stage. 𝐼𝑒  is solved by  𝑥𝑖⃗⃗⃗ ⃗ and the Newton–Raphson 19 

method as defined following to achieve more accurate parameters [24]: 20 

𝐼 = 𝐼 −
𝐼

𝐼′
 (31) 

where 𝐼′ represents the I’s first derivative. After evaluating the initial solutions, the 21 

optimization process of SWO is started to search for better solutions. Those solutions are 22 

also evaluated using (30) and compared with the best solution obtained so far. However, 23 

we found that the performance of SWO suffers from slow convergence speed which 24 

makes it require a huge number of function evaluations for achieving better outcomes. 25 

Therefore, it is improved using a local search strategy to exploit the regions around the 26 

best-so-far solution in the hope of improving the exploitation operator of SWO for accel- 27 

erating the convergence speed. This strategy is mathematically defined as follows: 28 

�⃗�𝑖
𝑡+1 = �⃗�∗ + (r3 ∗ (1 − 𝑟2) + 𝑟2) ∗ (�⃗�𝑎

𝑡 − �⃗�𝑏
𝑡 ) + (r4 ∗ (1 − 𝑟5) + 𝑟6) ∗ (�⃗�𝑐

𝑡 − �⃗�𝑑
𝑡 ),            (32)                 29 

 30 

where 𝑟2, 𝑟3, 𝑟4, and 𝑟5 are four numbers selected at random between 0 and 1. This 31 

strategy is integrated with SWO to propose a new variant with a better exploitation oper- 32 

ator; this variant is called improved SWO (ISWO). The pseudocode of this variant is stated 33 

in Algorithm 1. 34 

Algorithm 1 The proposed ISWO 

Input: TR, Cr, N, 𝑁𝑚𝑖𝑛  , 𝑡𝑚𝑎𝑥 

Output: �⃗�∗ 

1.   Initialize N solutions, �⃗�𝑖(𝑖 = 1,2,3, … . , 𝑁), by (29) 

2. Evaluating each �⃗�𝑖 by (30) 

3. Extracting the best-so-far solution  

4. 𝑡 = 1; //the current function evaluation 

5. while (𝑡 < 𝑡𝑚𝑎𝑥) 

6.      r₆: Creating a number at random in the range [0, 1]. 

7.      if (𝑟6 < 𝑇𝑅)  

8.           for i=1:N 

9.             Updating �⃗�𝑖
𝑡+1 using (23) 
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10.             Evaluating  �⃗�𝑖
𝑡+1 by (30) 

11.             Update �⃗�∗ if there is a better solution. 

12.      t = t + 1 
13.    End for 

14. Else %% Mating Behavior 

15.           for i=1:N 

16.                Updating �⃗�𝑖
𝑡+1 using (24) 

17.                Evaluating  �⃗�𝑖
𝑡+1 by (30) 

18.                Update �⃗�∗ if there is better solution. 

19.          t = t + 1 
20.    End for 

21.  End if 

22.       Applying Memory Saving 

23.     for i=1:N %% Applying the local search strategy  

24.                Updating �⃗�𝑖
𝑡+1 using (32) 

25.                Evaluating  �⃗�𝑖
𝑡+1 by (30) 

26.                Update �⃗�∗ if there is better solution. 

27.          t = t + 1 
28. End for 

29.       Applying Memory Saving 

30.       Updating N by (28)  

31. End while 

 1 

5.  Results and Discussion 2 

     In this study, the proposed ISWO is assessed using a well-known solar cell known 3 

as RTC France, and three PV modules known as STM6-40/36 (STM), STP6-120/36 (STP), 4 

and Kyocera KC200GT (KK). These PV models’ characteristics, as defined in [21], are 5 

given in Table 2. The upper and lower bounds of each unknown parameter are presented 6 

in Table 3. To observe the effectiveness of ISWO, it is compared to several optimization 7 

techniques, such as the African vultures optimization algorithm (AVOA) [25], light spec- 8 

trum optimizer (LSO) [26], RUN [27], gradient-based optimizer (GBO) [28], and classical 9 

SWO.  tmax , N are set to 40,000 and 25, respectively, to ensure a fair comparison, while 10 

the other parameters of these algorithms are selected in accordance with the cited articles. 11 

All algorithms are implemented in MATLAB R2019a under the same device. 12 

 13 

Table 2: Characteristics of solar cell and PV modules  14 

Characteristics KK STM STP RTC 

𝑃𝑚[𝑊] 200 25.5 102 0.31 

𝑉𝑚[𝑉] 26.3 16.98 14.93 0.459 

𝐼𝑚[𝐴] 7.61 1.5 6.83 0.6755 

𝑉𝑜𝑐[𝑉] 32.9 21.02 19.21 0.5736 

𝐼𝑆𝐶[𝐴] 8.21 1.663 7.48 0.7605 

𝑁𝑠 54 36 36 1 

𝐾𝑖 0.0318 -0.00065 0.00065 0.000387 

𝐾𝑣 -0.123 -0.00346 -0.003466 -0.003739 

 15 

Table 3: Upper bound and lower bound of unknown parameters 16 

    

 Parameter  

�⃗⃗⃗� �⃗⃗⃗� 
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𝐼𝑝ℎ(𝐴) 0.9𝐼𝑆𝐶  1.1𝐼𝑆𝐶 

𝐼𝑠𝑑𝑖(𝐴), 𝑖 ∈ 1: 2 1 𝑛𝐴 10 𝜇𝐴 

𝑅𝑠(𝛺) 0 0.5 

𝑅𝑠ℎ(𝛺) 0 500 

𝑎1 1 2 

𝑎2 1.2 2 

 1 

 2 

5.1. RTC France 3 

 To collect the statistical data presented in Table 4 (Best, average (Avg), worst (Wrst), 4 

Friedman mean rank (F-rank), and standard deviation (SD)), for this solar cell, all algo- 5 

rithms are executed 30 independent times. Using the Wilcoxon rank-sum test, we can as- 6 

sess whether or not ISWO differs significantly from the other algorithms by looking at the 7 

p-value. If the p-value is less than 5%, then there is a difference. According to this table, 8 

ISWO could be better than all algorithms for all considered performance metrics. In addi- 9 

tion, its outcomes are significantly different, as shown in the p-value column presented in 10 

this table. Fig. 3(a) shows that ISWO converges faster than all the compared algorithms; 11 

Figs. 3(b) and (c) show that the parameters of ISWO could generate consistent I-V and P- 12 

V curves with those generated under the measured data. 13 

 14 

Table 4: Comparison among algorithms over DDM-based RTC France 15 

Algorithms Best Wrst Avg SD F-rank p-value 

ISWO 7.32648E-04 7.50983E-04 7.37540E-04 4.07801E-06 1.10  

SWO 7.32648E-04 7.72723E-04 7.49563E-04 1.09958E-05 2.07 2.7829E-07 

AVOA 8.24308E-04 5.70239E-03 2.45739E-03 1.10198E-03 5.00 3.0199E-11 

GBO 7.39344E-04 6.94424E-02 5.46518E-03 1.73930E-02 3.17 4.1997E-10 

RUN 7.85314E-04 4.28320E-03 2.06421E-03 1.16173E-03 4.73 3.0199E-11 

LSO 1.04082E-03 3.02446E-03 2.14766E-03 4.50612E-04 4.93 3.0199E-11 

 16 

 

a)  

 

b) 

 

        c) 

Figure. 3: Comparison among algorithms when estimating the unknown parame- 17 

ters of DDM based on RTC France: a) Convergence curve; b) P-V curve; c) I-V curve. 18 

 19 

5.2. KK module 20 

All algorithms are run 30 times in a row to compute (Best, Avg, Wrst, F-rank, and SD) for 21 

this PV module, and present them in Table 5. This table suggests that ISWO may have the 22 

best overall performance of any algorithm. The p-value column in this table further 23 

demonstrates the vast dissimilarity between the ISWO outcomes and those of the rival 24 

optimizers. In Fig. 4(a), we can see that ISWO converges more quickly than any of the 25 

other rival algorithms; in Figs. 4(b) and (c), we can see that ISWO's parameters can 26 
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produce I-V and P-V curves that are compatible with those produced under the measured 1 

data. 2 

Table 5: Comparison among algorithms over DDM-based KK module 3 

Algorithms Best Wrst Avg SD F-rank p-value 

ISWO 2.82117E-02 3.66776E-02 2.94687E-02 2.02154E-03 1.10  

SWO 2.82141E-02 4.56896E-01 1.35828E-01 1.80216E-01 3.00 2.6641E-09 

AVOA 3.74544E-02 4.57603E-01 1.35055E-01 1.47326E-01 5.23 3.0199E-11 

GBO 3.37116E-02 4.56896E-01 6.19611E-02 7.51918E-02 3.53 4.5043E-11 

RUN 2.96735E-02 9.85216E-02 5.88377E-02 1.85134E-02 3.87 8.1527E-11 

LSO 3.98071E-02 8.66341E-02 6.07863E-02 1.51501E-02 4.27 3.0199E-11 

                4 

 

a)  

 

       b) 

        

c) 

Figure.4: Comparison among algorithms when estimating the unknown parame- 5 

ters of DDM based on KK module: a) Convergence curve; b) P-V curve; c) I-V curve. 6 

 7 

5.3.   STM module 8 

  Table 6 displays the analysis of 30 independent times of each algorithm repre- 9 

sented in the Best, Avg, Wrst, F-rank, and SD for this PV module. Based on this data, 10 

ISWO appears to have the highest possible overall performance. This table's p-value col- 11 

umn provides further evidence of the dramatic contrast between ISWO results and those 12 

obtained using competing optimizers. The speed with which ISWO converges is illus- 13 

trated in Fig. 5(a), while the ability of ISWO's parameters to generate I-V and P-V curves 14 

that are consistent with those generated under the measured data is demonstrated in Figs. 15 

5(b) and (c). 16 

 17 

Table 6: Comparison among algorithms over DDM-based STM module 18 

Algorithms Best Wrst Avg SD F-rank p-value 

ISWO 1.67466E-03 5.00373E-03 1.91424E-03 8.39859E-04 1.67  

SWO 1.68581E-03 7.48355E-02 9.46206E-03 2.22983E-02 2.63 2.0523E-03 

AVOA 1.71041E-03 1.13256E-02 3.69549E-03 1.97573E-03 5.10 2.4386E-09 

GBO 1.67633E-03 7.48355E-02 4.21444E-03 1.33404E-02 2.53 2.0523E-03 

RUN 1.72082E-03 4.69906E-03 2.65942E-03 7.74663E-04 4.43 8.4848E-09 

LSO 1.77518E-03 3.88648E-03 2.60276E-03 4.81170E-04 4.63 8.4848E-09 

               *Bold refers to the best result. 19 
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a)  

 

b) 

        

c) 

 1 

Figure.5: Comparison among algorithms when estimating the unknown parame- 2 

ters of DDM based on STM module: a) Convergence curve; b) P-V curve; c) I-V curve. 3 

 4 

5.4.  STP module 5 

 Table 6 shows the results of the Best, Avg, Wrst, F-rank, and SD analyses of 30 repli- 6 

cated runs of each algorithm for this PV module. ISWO appears to have the best potential 7 

overall performance based on these results. The p-value column in this table further 8 

demonstrates the striking difference between ISWO and alternative optimizers' outputs. 9 

Fig. 6(a) shows how quickly ISWO converges, while Figs. 6(b) and (c) show how ISWO's 10 

parameters can produce I-V and P-V curves that are consistent with those produced under 11 

the measured data. 12 

 13 

Table 7: Comparison among algorithms over DDM-based STP module 14 

Algorithms Best Wrst Avg SD F-rank p-value 

ISWO 1.37983E-02 2.17188E-01 7.48197E-02 9.47955E-02 1.90  

SWO 1.39487E-02 2.17188E-01 1.66661E-01 8.60334E-02 4.00 5.0619E-08 

AVOA 1.40418E-02 2.57218E-01 1.12779E-01 1.12444E-01 4.00 1.1635E-05 

GBO 1.37983E-02 2.17188E-01 1.42740E-01 9.95169E-02 3.87 1.4715E-06 

RUN 1.39121E-02 2.18558E-01 1.16401E-01 1.02661E-01 3.90 3.3117E-06 

LSO 1.46570E-02 2.20647E-01 5.60676E-02 6.34974E-02 3.33 3.4957E-03 

   15 

 

a)  

 

b) 

        

c) 

Figure. 6: Comparison among algorithms when estimating the unknown parame- 16 

ters of DDM based on STP module: a) Convergence curve; b) P-V curve; c) I-V curve. 17 

6. Conclusions 18 

Using the recently developed spider wasp optimizer (SWO), this research introduces 19 

a novel optimization strategy for improving parameter estimation in the double-diode 20 

model. In order to further increase SWO's performance, a new variation dubbed ISWO 21 
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was proposed. ISWO is based on combining SWO with a local search technique to hasten 1 

convergence and yield superior outcomes with fewer function evaluations. Four popular 2 

metaheuristic optimization techniques are compared to ISWO and SWO using the RTC 3 

France solar cell and three PV modules (STM6-40/36, STP6-120/36, and Kyocera 4 

KC200GT). By employing the Wilcoxon rank sum test and other performance metrics, we 5 

compare the objective values those algorithms have obtained throughout 30 independent 6 

runs. The experimental results show that ISWO performs exceptionally well in compari- 7 

son to every other PV module. In the future, this local search strategy will be employed 8 

with some of the other metaheuristic algorithms to further investigate their performance. 9 

In addition, ISWO will be applied to solving several other optimization problems, such as 10 

the DNA fragment assembly problem, the 0-1 knapsack problem, and the multidimen- 11 

sional knapsack problem. 12 
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