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1 |Introduction    

The complexity and frequency of cyber threats have increased in the digital age, making network security a 

priority. Network security is greatly aided by IDSs (IDS), which monitor and analyze network traffic to 

identify anomalous activity that may indicate impending assassinations[1] and interpretation-based. While 

signature detection is effective in detecting known threats, it is less effective in detecting new and unknown 

attacks. In contrast, anomaly detection detects anomalies in network behavior, making it useful for detecting 

new threats, but with a high percentage of false positives [2]. 

The field of intrusion detection has witnessed a rise in the use of deep learning (DL) models, especially LSTM 

networks, due to the progress made in machine learning and artificial intelligence. LSTM networks are perfect 

for analyzing network traffic patterns that change over time since they are specifically built to capture temporal 

dependencies in sequential data [3]. Because of their distinct architecture, LSTM networks can reduce the 

vanishing gradient problem, a typical difficulty with regular Recurrent Neural Networks (RNNs) and 

remember long-term dependencies. Because of this feature, LSTMs are very good at simulating the complex 

temporal dynamics found in network traffic data. 
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Promising outcomes have been observed in anomaly detection through the incorporation of LSTM networks 

into autoencoder designs. Autoencoders are composed of an encoder and a decoder that learn how to rebuild 

and compress incoming data to identify the fundamental patterns of typical behavior. According to Tang et 

al. [4], any notable variation in the reconstruction error may be a symptom of an anomaly. This method makes 

use of autoencoders' reconstruction power to effectively detect anomalies and the modeling prowess of LSTM 

networks to represent temporal relationships. 

The benefits of LSTM-based autoencoders over conventional techniques and alternative DL models have 

been emphasized by recent research. For example, Gao et al. [3] showed that by efficiently collecting 

complicated temporal patterns in network data, LSTM networks could greatly improve the accuracy of IDSs. 

Furthermore, in some aspects of anomaly identification, LSTM-based models outperform Convolutional 

Neural Networks (CNNs) and Transformer models due to their capacity to manage long-term dependencies 

[5]. Although Transformers are great at capturing global dependencies through attention processes and CNNs 

are good at extracting spatial features, LSTMs are still the best option when it comes to jobs that require 

modeling temporal sequences. 

This study's objectives are to explore the software of LSTM-based autoencoder models in intrusion detection, 

specializing in their effectiveness in figuring out and mitigating diverse sorts of network intrusions. By 

leveraging contemporary deep getting-to-know techniques, this observation seeks to cope with the limitations 

of traditional IDS and beautify the accuracy and reliability of intrusion detection structures. The results of 

this observation, which done an impressive accuracy of 99.9%, don't forget of 0.99, and an F1-score of 0.99 

at the NSL-KDD dataset, underscore the capability of LSTM-primarily based fashions in advancing network 

safety. 

The rest of this paper is classified as follows: Section 2 provides the background needed for this study. Section 

3 presents the methodology of this study. Section 4 presents the proposed model. Section 5 presents 

experimental results. Section 6 illustrates the conclusion and future directions of this proposal. 

2 |Related Work 

In this section, we provide a literature review on DL-based models for intrusion detection. 

Elsayed et al.[6] introduced CNN for IDSs and proposed a technique to improve its performance using two 

popular regularization techniques to address the overfitting problem. Information detection systems (IDS) 

can identify hidden intrusion events more effectively because of this technology. They trained and assessed 

this technology's performance using the InSDN standard dataset. The outcomes demonstrated that 

regularization techniques can enhance CNN-based anomaly detection models' performance in an SDN 

(software-defined networking) setting. 

Thirimanne et al.[7] presented a model that uses large-scale machine learning techniques to develop an IDS 

to detect and classify network-level and host-level cyberattacks in a timely and automatic manner. This can 

be particularly challenging because numerous forms of invasions happen on a dynamic scale. However, such 

incursions can be identified with the aid of data sets and ongoing updates. One particularly noteworthy 

method is the DNN (Deep Neural Network), a kind of DL model that aids in the creation of an adaptable 

and successful IDS to identify and categorize unforeseen and unexpected cyberattacks.  

Yin et al. [8] implemented a Deep Learning-based IDS using RNNs. The authors of this study used simple 

RNNs. A training set was sent into a data processing block in their system, which was responsible for 

converting categorical data into numerical inputs. Additionally, a scaling function was used to normalize each 

input. In addition, information for training and model construction would be sent from the data processing 

block to the training block. The NSL-KDD dataset was utilized in this investigation. 
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Pelletier et al.[9] proposed an architecture using artificial neural networks (ANN) with information gain as 

feature selection methods, using the CICIDS2017 dataset. After applying a software package called Boruta 

for feature selection, they were able to extract the top ten most crucial traits. 

Wang et al.[10] developed an integrated deep intrusion detection model using SDAE-ELM and DBN-

Softmax to improve detection accuracy and training efficiency. They used a small gradient descent method to 

optimize the network, and their performance was demonstrated in experiments on various datasets. 

Laghrissi et al.[11] used DL to detect attacks using LSTM and principal component analysis (PCA) techniques. 

They tested their approach on the KDD99 dataset, achieving the best accuracy in binary and multi-class 

classification. Table 1 summarizes all the aforementioned related works in terms of the year, dataset, DL 

models, and the obtained accuracy. 

Table 1. Summarization of intrusion detection studies based on DL. 

Ref. Year Dataset DL model Evaluation (AUC.) 

[6] 2021 InSDN CNN 93.01% 

[7] 2022 NSL-KDD DNN 81.87% 

[8] 2017 NSL-KDD RNN 83.28% 

[9] 2020 CICIDS2017 ANN 96.00% 

[10] 2021 KDD Cup99 SDAE-ELM 93.46% 

[11] 2021 KDD Cup99 LSTM 91.00% 

 

3 |Methodology 

3.1 |Long Short-Term Memory 

The LSTM model, a type of Recurrent Neural Network (RNN), is especially perfect for sequential information 

because of their potential to preserve long-term dependencies. This makes LSTMs perfect for reading time-

series statistics generated by way of network traffic, where the order of events is vital for detecting anomalies 

[12].  

An LSTM community consists of a series of cells, every containing several key components: an input gate, a 

neglect gate, a mobile country, an output gate, and a hidden kingdom. Which is demonstrated in Figure 1. 

These gates adjust the flow of information, allowing the community to keep or discard records as needed. 

Forget Gate  

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1 , 𝑥𝑡] +  𝑏𝑓)                                                 (1) 

Input Gate  

 𝑖𝑡 =  𝜎(𝑊𝑖  . [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑖)                                                 (2) 

�̃�𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐  . [ℎ𝑡−1 , 𝑥𝑡] +  𝑏𝑐)                                              (3) 

Cell State Update 

𝐶𝑡 =  𝑓𝑡  ⊙  𝐶𝑡−1 +  𝑖𝑡  ⊙ �̃�𝑡                                                 (4) 

Output Gate  

𝑜𝑡 =  𝜎(𝑊𝑜 . [ℎ𝑡−1 , 𝑥𝑡] +  𝑏𝑜)                                                (5) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡)                                               (6) 

where: 𝒙𝒕 is the input at time t step, ⊙ is the element-wise dot product, 𝒊𝒕, 𝒐𝒕, 𝒇𝒕 is the input gate, output 

gate and forget gate respectively, 𝒄𝒕 is the cell state, W, U, and b model parameters. 
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Figure 1. The LSTM architecture [13]. 

3.2 |Autoencoder 

An unsupervised way to learn efficient coding is to implement an autoencoder in artificial neural networks. 

Their goal is to analyze a set of reference facts, usually to reduce dimensionality or learning features. The 

encoder and decoder are the two main components of the environment[14]. Autoencoder architecture is 

shown in Figure 2. 

3.2.1 |Structure of Autoencoders 

 Encoder: The input right is compressed right into a latent-vicinity illustration by way of the encoder 

factor of the community. Typically, it's miles a sequence of layers with fewer neurons in every layer 

after the only earlier than it. This phase of the network requires a more condensed illustration of the 

entered information. 

If the input data 𝑥 is passed through the encoder, the output is the latent representation 𝑧 

𝑧 = 𝑓(𝑥)                                                 (7) 

where 𝑓 represents the encoder function. 

 Latent Space: The latent space (or code) is the compressed representation of the input data. It 

contains the essential features needed to reconstruct the original input. 

 Decoder: The decoder part of the community reconstructs the entered information from the latent 

illustration. It mirrors the encoder shape but in reverse, typically increasing the compressed statistics 

again to its unique dimensions. 

The latent representation 𝑧 is passed through the decoder to reconstruct the output �̂� 

𝑥 = 𝑔(𝑧)                                                 (8) 

where 𝑔 represents the decoder function. 

 Loss Function: The autoencoder is trained to minimize the difference between the input 𝑥 and the 

reconstructed output �̂�. This is usually done using a loss function such as mean squared error (MSE): 

ℒ(𝑥, 𝑥) =∥ 𝑥 − 𝑥 ∥2                                               (9) 
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Figure 2. Autoencoder architecture [15]. 

4 |Proposed Work 

The proposed method uses an autoencoder based on LSTM for intrusion detection. The architecture is an 

encoder-decoder framework designed to identify and reconstruct common patterns from network traffic data 

by detecting anomalies Encoder LSTM layers capture time dependencies in sequential data, compressing input 

sequences to make them hidden representations. In contrast, decoder LSTM layers reconstruct input 

sequences from hidden representations, reducing reconstruction error by Mean Squared Error (MSE) loss 

This approach leverages LSTM's ability to model long-term reliability, which is important for analyzing 

dynamic network character and effectively detect subtle anomalies. The proposed model architecture is shown 

in Figure 3. 

The proposed LSTM-based auto-encoder model adopts an encoder-decoder architecture designed to detect 

and reconstruct common patterns from network traffic data when identifying anomalies [16]. The encoder 

LSTM layers process the input sequence𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} to capture its temporal dependencies and 

compress it into a latent representationℎ𝑡 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1)                                               (10) 

where ℎ𝑡 represents the hidden state at time step 𝑡 

The decoder LSTM layers reconstruct the input sequence from the latent representation, minimizing the 

Mean Squared Error (MSE) loss function: 

ℒ𝑀𝑆𝐸 =  
1

𝑇
∑(𝑥𝑡 − 𝑥𝑡)2

𝑇

𝑡=1

 

                                              (11) 

where  𝑥𝑡 denotes the reconstructed output at time step 𝑡.  
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Figure 3. The proposed LSTM-Based Autoencoder model architecture. 

4.1 |Training and Evaluation 

The LSTM-based autoencoder model is trained using stochastic gradient descent (SGD) with time-referenced 

back propagation (BPTT). Over parameters such as learning rate, batch size, and number of epochs are 

optimized by a validation suite to maximize model performance. Evaluation criteria including accuracy, 

precision, recall, and F1-score have been calculated to assess the ability of the model to accurately detect 

intrusive networks. 
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The model is implemented using TensorFlow/Keras, a popular DL framework. The training process consists 

of preprocessing the data set, building the LSTM-based auto-encoder architecture, training the model on the 

training set, and evaluating its performance on the test set the implementation leverages GPU acceleration 

for efficient computation, ensuring scalability and efficiency in dealing with large network traffic data. 

5 |Results and Discussion 

This section investigates the performance of the proposed model using a widely used NSL-KDD dataset [17]. 

5.1 |Dataset Description 

The LSTM-based autoencoder model is trained using stochastic gradient descent (SGD) with time-referenced 

back propagation (BPTT).  

NSL-KDD is a standard benchmark dataset for intrusion detection research. The dataset includes labeled 

network traffic data with normal activities and different types of attacks, allowing a comprehensive assessment 

of the model's performance in different intrusion scenarios.  

NSL-KDD is the distilled version of KDDCup 99 intrusion data. The dataset contains one label that denotes 

either normalcy or an attack for each of the 41 features that make up its 125,973 training records and 22,544 

test samples. This set is meant to enhance unique characteristics, and lower repetition hence making it quality 

for machine learning evaluation. The dataset description is summarized in Table 2. 

Impressive results were obtained after training the LSTM-based autoencoder model on the NSL-KDD 

dataset.  

Table 2. NSL-KDD dataset description. 

 No. of records No. of features No. of classes 

Train 125,973 41 23 

Test 22,544 41 23 

 

5.2 |Evaluation Metrics 

Our proposed work was evaluated using accuracy, precision, recall, and F1-score. 

 Accuracy (ACC) 

Accuracy measures the proportion of correctly classified instances among all instances: 

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

                                              (12) 

where: 

𝑇𝑃 = True Positives (correctly identified attacks) 

𝑇𝑁 = True Negatives (correctly identified normal instances) 

𝐹𝑃 = False Positives (normal instances incorrectly classified as attacks) 

𝐹𝑁 = False Negatives (attacks incorrectly classified as normal instances) 

 Precision 

Precision measures the proportion of true positive predictions among all positive predictions: 

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

                                              (13) 
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 Recall (Sensitivity or True Positive Rate) 

Recall measures the proportion of true positive instances that are correctly identified: 

    𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

                                             (14) 

 F1-score 

F1-score is the harmonic mean of precision and recall, providing a balanced measure between the 

two: 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                           (15) 

Together, these metrics examine how well the model can classify network traffic into common and attack 

categories. Higher contrasts indicate stronger performance in terms of identification while reducing false 

positives and false negatives. For LSTM-based autoencoders, these metrics provide quantitative insight into 

the efficiency and reliability of the IDS. 

5.3 |Implementation Settings 

Table 3 describes a complete detail of our implementations in consideration of parameters used in training 

DL models. 

Table 3. Implementation settings. 

Frameworks Google.Colab platform and Keras API 

Optimizer Adam 

Epochs 50 

Batch size 128 

 

5.4 |Statistical Analysis 

In this section, we provide the results of our investigation on six DL models CNNs, DNN, ANN, RNN, 

DBN, and LSTM in terms of accuracy, precision, recall, and F1-score. Table 4 shows the superior accuracy 

for ANN and the smaller accuracy. 

Table 4. Performance of different DL models for Intrusion detection. 

Model Accuracy Precision Recall F1-score 

CNN 92.7 94.0 92.3 92.6 

DNN 99.1 99.1 99.1 99.0 

ANN 53.9 26.9 50.0 34.99 

RNN 99.3 99.3 99.3 99.3 

DBN 99.0 99.1 99.0 99.0 

LSTM 99.1 99.1 99.0 99.1 

Proposed model 99.9 99.9 99.9 99.8 

 

6 |Conclusion and Future Work 

The use of an LSTM-based auto-encoder to detect intrusions has shown significant promise and effectiveness 

in protecting networks from evolving cyber threats Through rigorous implementation and analysis of the 

NSL-KDD dataset on the model, the model obtained exceptional performance parameters including 

accuracy, recall, and F1 scores of 0999 These results in network traffic data highlight the ability of LSTM 

networks to capture strong time dependence tree, and enables the distinction between normal actions in 

abnormal activity with greater accuracy. 
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 Enhancing pattern interpretation capabilities: Include methods for interpreting pattern decisions and 

anomaly identifications to provide actionable insights for network administrators. 

 Communications and real-time systems: Optimizing an LSTM-based auto-encoder for deployment 

in real-time IDSs, ensuring scalability and efficiency. 

 Evaluating ensemble methods: Evaluating ensemble learning techniques to combine the strengths of 

different models for more accurate insights and improved robustness. 

 Leveraging new threats: Continually updating and training the model on evolving data sets to better 

identify emerging threats and day-to-day attacks. 

 Privacy and ethics: Addressing privacy concerns and ethical considerations for using DL models in 

intrusion detection. 
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