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1 |Introduction    

Natural disasters around the world have resulted in massive financial damage. These disasters are a result of 

both climate change and humankind's inadequate treatment of the environment. Some natural disasters, such 

as droughts, floods, and water shortages, have become more frequent and pose serious problems for countries 
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At the momentarily, most of the global economic losses resulting from catastrophes are brought about by aerial 

floods which are expected to intensify due to climate change. Accordingly, sea level rise brought on by climate 

change will make coastal flooding more likely in many areas. cyclone, however, is also significantly impacted by 

climate change. Whilst urban flood mitigation and management are becoming more widely acknowledged as 

worldwide concerns. Moreover, considering catalysts for seeking methodologies for treating these natural disasters.  

In the era of contemporary technology, leveraging cutting-edge technologies are being utilized extensively to both 

monitor and reconnoiter flood-affected regions and evacuate individuals and others as crops, livestock and so on 

from flooded areas. Unmanned aerial vehicles (UAVs) are widely used to solve drought and flood problems through 

capturing thermal and multispectral images for the regions which suffer from these issues. Moreover, the 

recommendation for optimal UAV from alternatives of UAVs is a thorny inevitably. Thus, this study is embracing 

this notion and attempts to treat this issue through constructing soft recommender model for recommending the 

optimal UAV. The evaluation of these alternatives of UAVs are conducted based on set of influenced criteria and 

sub-criteria. Thus, the first step toward evaluation ptocess is modeling these criteria and sub criteria into form of 

tree model through utilizing Tree Soft Model (TrSM). After that, the methods of Multi-Criteria Decision Making 

(MCDM) as MEthod based on Removal Effects of Criteria (MEREC) is utilized for estimating criteria’s weights. 

Then, the generalized weights are utilized in a combined compromise solution (CoCoSo) for ranking the candidates 

of UAVs and recommending the optimal UAV. These techniques are united with the uncertain theory of 

neutrosophic for treating with incomplete information.  
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on every continent. The rise in natural disasters, especially those with meteorological and hydrological origins, 

is significantly impacted by the unpredictability of global climate change. Drought and water shortages are 

among the devastating natural disasters that have profound impacts on the natural course of life. One such 

impact is the effect on crops, causing a shortage of food supplies for humans. Fortunately, certain crop 

varieties are resistant to drought, and it is essential to identify them to reduce yield loss and maintain a balance 

between productivity and water usage. 

Recently, UAVs have been employed to contribute to solving drought problems and determining drought-

resistant crop varieties by collecting data from images captured by sensors mounted on them, to survey areas 

affected by droughts or floods due to natural calamities, the  UAVs equipped with various sensors and 

miniature cameras that can capture thermal and multispectral images can fly without human operation [1]. 

They can take precise photos of these locations, which is beneficial in many situations, such as droughts. It 

assists in determining the water status of the crops, assessing how resilient the crops are to drought, and 

finding the crop's water deficit. In cases of flooding, images of the affected areas can be taken to take 

appropriate action and offer support. Due to the advantages of UAVs, they have a high ability to collect data 

accurately and reach areas that may be dangerous and difficult to reach by humans[2]. They can also cover 

large areas efficiently and in a short time, and therefore they can be used to identify drought-resistant crops 

effectively to minimize yield loss and preserve equilibrium between water consumption and production. But, 

one of the challenges in using UAVs is determining the best way to make decisions based on the data collected 

through them, and here comes the role of multi-criteria decision-making (MCDM) techniques.  

When evaluating criteria, decision-makers and specialists consider a variety of elements, which is why multi-

criteria procedures are employed. In our challenge, decision-makers employ MCDM technology to evaluate 

which combination of sensors that are equipped with UAVs is most effective for identifying drought-resistant 

crops based on performance, accuracy, weight restrictions, speed, and other considerations. For dealing with 

complex decision-making problems where criteria are ambiguous and conflicting, we use the single-valued 

triangular neutrosophic number, where expert opinions can be analyzed and integrated into the MCDM 

process. 

In this research, we present (MCDM-MEREC-CoCoSo) model integrated with the SVTrN to achieve two 

goals. The first is to use the MEREC method to determine the weight factors that accurately represent the 

importance of each criterion. The second is to choose the best UAV by using the CoCoSo method. 

2 |Literature Review    

The hydrologic sciences and water resources management field has traditionally relied on a combination of 

remotely sensed data and in situ measurements for research and regulatory purposes. However, the spatial 

dispersion of in situ measurements is limited by financial and logistical constraints. Remote sensing from 

manned and satellite aircraft provides spatially broad data, albeit frequently with coarse resolution. These data 

collection techniques often have limitations in responding to specific, brief occurrences where images and 

data could help with real-time assessment and decision-making, especially during and immediately after natural 

disasters. To overcome these limitations in temporal and spatial data resolution, regulators and researchers 

are increasingly using unmanned aerial vehicles (UAVs) [3]. Using traditional methods for remote sensing or 

in situ data collection can often be more expensive than utilizing Unmanned Aerial Vehicles (UAVs). The 

recent advancements in UAV design, power supply, payload capacity, and sensors have led to significant 

innovations in their use during natural disasters such as floods and droughts. Due to the importance of the 

quality of the precise cameras and sensors mounted on the UAV, there are many different types of sensors, 

each of which has its advantages and disadvantages. 

When conducting studies on droughts, floods, and water management, the two most commonly used flight 

platforms are rotary-wing and fixed-wing UAVs. Rotary-wing UAVs that are used in water management 

applications are discussed in [4-6]. In contrast, applications that used fixed-wing UAVs are discussed in [7, 8]. 

Both types of drones are equipped with different types of cameras and sensors that suit each mission, which 
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have their advantages and disadvantages. Therefore, we will present the different types of sensors for UAVs 

as follows: RGB Sensors (digital cameras), this type produce images with three values for individual RGB 

pixels, their advantages are portable, lightweight, easy to operate, inexpensive, and a wider bandwidth, but its 

spectral resolution is limited, it lacks radiometric calibration options, and with the movement of drones, it 

can capture blurry images [9, 10]. In contrast to the RGB sensors, the Multispectral sensors have a narrow 

bandwidth, which captures image data within specific wavelength ranges across the electromagnetic spectrum 

and detects reflections in near-infrared regions. It can obtain more information thanks to its green, red, and 

blue visual receptors, which are inaccessible to the human eye. But, this sensor depends on the characteristics 

of the lens used, as it may be susceptible to spectral distortions and noise, which generate an image with a 

coarse pixel resolution, In addition, the UAVs and multispectral sensors typically arrive separately; therefore, 

it need to be integrated into the UAV system.  it is considered hefty and costly[11]. The thermal sensor is 

another type, which gathers infrared radiation that is emitted by all objects on Earth's surface to create the 

images; these sensors operate in the long-wave spectral ranges so they can detect a broad range of 

temperatures. They are characterized by being light in weight and small in size. Hyperspectral Sensors can 

gather reflectance in numerous continuous, tiny bands over a broad spectral range because of their extremely 

high spectral resolutions. But, hyperspectral sensors are expensive compared with multispectral and RGB 

sensors [3]. Each type of sensor has advantages different from the others, thus choosing among multiple 

sensor types that are equipped on UAV is very important to evaluate UAV efficiency. 

   It is worth noting that, not all UAV standards are created equal. Some criteria may be more important for 

your specific needs than others. Therefore, it is crucial to identify the essential criteria for your operations and 

adjust the evaluation process accordingly. By doing so, you can weigh the pros and cons of each criterion and 

determine whether the trade-offs are acceptable. As we mentioned previously, there are different types of 

sensors, and they are considered an important factor as they affect the accuracy of the results. There is a UAV 

loaded with normal-quality sensors that take aerial images, integrated images, or digital images, and there are 

high-quality sensors that take thermal images, multispectral images, or hyperspectral and each of them can be 

used according to the need of the problem. In this research, we consider both performance and sensor quality 

as the main criteria. Additionally, we take high-quality sensors and quality sensors as sub-criteria of the sensor 

accuracy attribute, while speed, endurance, payload capacity, distance coverage, and wind resistance are 

considered sub-criteria of the performance attribute. It should be noted that all these criteria are benefit types. 

 High-quality sensor: this sensor provides a high-resolution image depending on the lens, which takes 

thermal and multispectral images. 

 Normal quality sensor: this sensor provides a normal camera that takes a low-resolution image or 

aerial images.  

 Speed: the maximum speed that a UAV can fly in kilometers per hour. 

 Payload: is used to describe the maximum weight that a UAV, including sensors, cameras, and other 

equipment, can carry while in flight. 

 Distance: The maximum distance that a drone can be controlled from its takeoff point, measured in 

meters in the shortest possible direction. 

 Endurance: refers to the amount of time that a UAV can stay airborne without requiring a battery or 

fuel refill. 

 Wind resistance: the aircraft's resistance to wind speed, expressed in kilometers per hour. 

UAVs in water management studies are divided into two classes, fixed-wings and rotary-wings. Rotary-wing 

UAVs are easy to control and maneuver since they can fly at low speeds, hover, and take off and land in any 

direction, they can also take off and land vertically and quickly [12]. On the other hand, fixed-wing aircraft 

can lift forward because of their inflexible wings. Its great flight range, straightforward design, and inexpensive 
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maintenance and repair, but the launch and recovery need a lot of space [8]. There are many different types 

of UAVs. We have only discussed 4 types as a sample of UAVs loaded with sensors. 

 3DR IRIS/SOLO (rotary-wing) denoted as (H1): is designed for aerial photography and 

cinematography purposes, it is an affordable drone that is specifically made for aerial photography 

[13]. 

 OKTO XL (rotary-wing) denoted as (H2): Its features include a Canon G11 camera, which is perfect 

for aerial photography; a 25-minute flight time; a 1.8-kg payload capacity; and the need for an 

observer to drive it [14]. 

 PARROTAR/2.0 (rotary-wing) denoted as (H3): It has multiple sensors, such as a 3-axis 

accelerometer, gyroscope, magnetometer, pressure sensor, and ultrasonic sensors to measure flying 

and ground height. Can operate on mobile or tablet operating systems. It has four brushless in-runner 

motors installed, which enable it to record video at 30 frames per second in 720 pixels [15]. 

 The DJI Matrice 300 RTK UAV rotary-wing denoted as (H4): is a more recent, bigger, more capable, 

safe to operate, and adaptable UAV. It was acquired in January 2021 so that the WRMD could carry 

out advanced operations. This aircraft has more endurance, range, and weather tolerance. Its all-

around direction and position sensors help to improve in-flight stability and safety by making obstacle 

avoidance easier. This UAV can be configured to carry several payloads, enabling the simultaneous 

mounting of up to three payloads. These payloads can include LiDAR, multispectral imaging cameras 

(visible, near- and thermal-infrared), laser range finders, water grab samplers, air monitoring sensors, 

and more. Additionally, there is a built-in satellite navigation receiver on the aircraft.    

When making decisions that involve multiple criteria, the importance of each criterion is a critical factor that 

greatly affects the outcome. Multi-criteria decision-making (MCDM) is an essential and multidisciplinary field 

of operations research that has gained significant attention in recent years. It consists of two branches, multi-

objective decision-making (MODM) and multi-attribute decision-making (MADM) [16]. MODM tackles the 

challenge of finding an ideal or nearly ideal solution within a viable solution space that is based on numerous 

objectives and numerous variables, factors, and limitations. Linear and non-linear programming models are 

popular methods for addressing MODM problems. On the other hand, MADM is a subset of MCDM that 

focuses on problems with discrete decision variables and a small set of choices and qualities [2-5]. There are 

various approaches and strategies for Multiple Criteria Decision Making (MCDM) that have been described 

in the literature. Many researchers have used some of the well-known MCDM techniques in different fields 

of study. These methods include the Weighted Sum Model (WSM), Weighted Aggregated Sum Product 

Assessment (WASPAS), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Vise 

Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR), Preference Ranking Organization Method 

for Enrichment of Evaluations (PROMETHEE), ELimination Et Choix Traduisant la REalité (ELECTRE), 

Complex Proportional Assessment (COPRAS), Evaluation based on Distance from Average Solution 

(EDAS), Analytic Hierarchy Process (AHP), and Best Worst Method (BWM) [17-19]. To address this issue, 

researchers have developed several techniques for determining the weights of the criteria. Subjective 

weighting methods (in which the decision-maker preferences determine how much weight each criterion is 

given, such as pairwise comparison and SMART methods), objective weighting methods (in which the 

criteria's weights are assessed impartially, unaffected by the decision-makers individual preferences, such as 

CRITIC, SECA and Entropy methods), and hybrid weighting methods (in which is a combination of 

subjective and objective weighing techniques is used).   

3 | Preliminaries    

In this part, some significant concepts of tree soft and neutrosophic principles are presented. 
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3.1 | Tree Soft 

Tree soft is described in [20] as follows: Let 𝑈 be a universe of discourse, and 𝐻 a non-empty subset of 𝑈, 

with 𝑃(𝐻) the powerset of 𝐻. Let 𝐴 be a set of attributes (parameters, criteria, etc.), 𝐴 = {𝐴1,𝐴2,, … . , 𝐴𝑛, for 

integer𝑛 ≥ 1, where 𝐴1, 𝐴2,… , 𝐴𝑛 are considered attributes of first level (since they have one-digit indexes). 

Each attribute  𝐴𝑖, 1 ≤ 𝑖 ≤ 𝑛,is formed by sub-attributes: 

𝐴1  = {𝐴11,𝐴12,, … . }  , 𝐴2  = {𝐴21,𝐴22,, … . } , 𝐴𝑛  = {𝐴𝑛1,𝐴𝑛2,, … . } given that the aforementioned 

𝐴𝑖𝑗have two-digit indexes, making them sub-attributes or second-level attributes. Once more, sub-sub-

attributes (third-level attributes) combine to generate each sub-attribute 𝐴𝑖𝑗 is: 𝐴𝑖𝑗𝑘 And so on, as much 

refinement as needed into each application, up to sub-sub-…-sub-attributes (or attributes of m-level (or 

having m digits into the indexes) : 𝐴𝑖1,𝑖2…..𝑖𝑚 , 

Consequently, a graph tree is created, which we refer to as Tree (A), with A as its root (which is regarded as 

level zero), followed by nodes at levels 1, 2, and m. All nodes that have no descendants are referred to as 

terminal nodes. Then the Tree Soft Set is: 

𝐹 ∶ 𝑃(𝑇𝑟𝑒𝑒(𝐴)) → 𝑃(𝐻) 

The graph tree's collection of all nodes and leaves (from level 1 to level m) is called Tree (A), and its power 

set is denoted by 𝑃(𝑇𝑟𝑒𝑒(𝐴)). 

All node sets of the Tree Soft Set of level 𝑚 are: 

𝑇𝑟𝑒𝑒(𝐴) = { 𝐴𝑖1|𝑖1 = 1,2, … } 

3.2 | Neutrosophic Concepts 

Neutrosophic set (NS): A neutrosophic set is a generalization of a classical set, fuzzy set, and intuitionistic 

fuzzy set since it takes into account an indeterminacy function 𝐼𝐷 in addition to the truth 𝑇𝐷 and falsity 

membership, where 𝑇𝐷 , 𝐼𝐷 𝑎𝑛𝑑 𝐹𝐷  are real standard elements of [0,1] [21], which is highly evident in real-

world scenarios. It can be represented as 𝐷 = {< 𝑥 , (𝑇𝐷(𝑥), 𝐼𝐷(𝑥), 𝐹𝐷(𝑥)) >∶ 𝑥 ∈ 𝐸, 𝑇𝐷 , 𝐼𝐷, 𝐹𝐷  ∈

]0−1, 1+[ } There is no limitation on the sum of 𝑇𝐷(𝑥), 𝐼𝐷(𝑥)𝑎𝑛𝑑 𝐹𝐷(𝑥)  so, 

0−1 ≤ 𝑇𝐷(𝑥) + 𝐼𝐷(𝑥) + 𝐹𝐷(𝑥) ≥ 1
+                                                                                                                              (1) 

The score function (SF) is used to obtain the crisp values in SVTrN represented as follows: 

𝑆𝑐𝑜𝑟𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑆𝐹) =  
(𝐿𝑖𝑗+𝑀𝑖𝑗+ 𝑈𝑖𝑗 )

9
∗ (2 + 𝑇 − 𝐼 − 𝐹)                                                                                             (2) 

(SVTrN − Number) (𝐷1
~ =< 𝑎1, 𝑏1,, 𝑐1; 𝑇𝐷 , 𝐼𝐷 , 𝐹𝐷 >), 𝑇, 𝐼, 𝐹 memberships are represented as follows: 

𝑇𝐷 = 

{
 
 

 
  
(𝑥 − 𝑎1)𝑇𝐷

(𝑏1 − 𝑎1)
⁄   , (𝑎1  ≤ 𝑥 ≤  𝑏1)

𝑇𝐷                                                         , (𝑥 =  𝑏1)
(𝑐1 −  𝑥)𝑇𝐷

(𝑐1 − 𝑏1)
⁄   , (𝑏1  ≤ 𝑥 ≤  𝑐1)

0                                                        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                         (3) 

𝐼𝐷 = 

{
 
 

 
  
(𝑏1 − 𝑥 − 𝐼𝐷(𝑥 − 𝑎1))

(𝑏1 − 𝑎1)
⁄          , (𝑎1  ≤ 𝑥 ≤  𝑏1)

𝐼𝐷                                                                              , (𝑥 =  𝑏1)

(𝑥 − 𝑏1 + 𝐼𝐷(𝑐1 −  𝑥))
(𝑐1 − 𝑏1)
⁄   , (𝑏1  ≤ 𝑥 ≤  𝑐1)

1                                                        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                              (4) 
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𝐹𝐷 = 

{
 
 

 
  
(𝑏1 − 𝑥 + 𝐹𝐷(𝑥 − 𝑎1))

(𝑏1 − 𝑎1)
⁄          , (𝑎1  ≤ 𝑥 ≤  𝑏1)

𝐹𝐷                                                                             , (𝑥 =  𝑏1)

(𝑥 − 𝑐1 + 𝐹𝐷(𝑐1 −  𝑥))
(𝑐1 − 𝑏1)
⁄   , (𝑏1  ≤ 𝑥 ≤  𝑐1)

1                                                        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                           (5) 

. 

4 |Methodology    

This study utilized two decision-making techniques to assess the effectiveness of Unmanned Aerial Vehicles 

(UAVs) for water management applications, specifically during droughts or floods. We are exploiting MEREC 

to obtain attributes' weights, which are represented in soft trees, while the CoCoSo method is used to rank 

the UAVs within their respective categories based on the weights derived from MEREC. As shown in Figure 

1, Level 0 (the root); Level 1 is formed by the nodes: sensor quality denoted as (𝐴1), performance denoted 

as (A2); Level 2 is formed by the nodes, high quality, normal quality, Speed, Payload, Distance, Endurance, 

wind resistance, which denoted as {A11, A12, A21, A22, A23, A24, A25} respectively. 

Let’s consider H = {h1, h2, h3, h4} be a set of UAV’s type, and P (H) the power set of H.  The set of attributes 

is {A1, A2} , since A1 is sensor quality, A2 is performance. Then, A1 = {A11, A12 } =

{high quality, normal quality}, A2 = {A21, A22, A23A24, A25  }={Speed, Payload, Distance, Endurance, 

Resistance to wind}. 

 

Figure 1. Determined Leaves in our tree. 

Step 1: Construct the tree set. 

 Determining influential attributes of UAV as main attributes (An) in level 1 in form {A1, A2,…An}. The 

inherent attribute of main in level 1 form in level 2 which entails sub-attributes related to level 1 as 

{A1i , A2i, . . Ani}. 

 Determining the set of alternatives as {H1, H2, … . Hn} 
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Step 2: Evaluating and analyzing level 1 and level 2 characteristic data.  

 Created expert linguistics' decision matrix for evaluating attributes (An) in level 1 {A1, A2…An}. Also, 

it is created for evaluating attributes (Ani) in level 2 {A1i , A2i, . . Ani}. 

 Constructed decision matrices are valuing based on the scale of single value Triangular Neutrosophic 

sets (SVTNSs), which are used to convert the linguistic scale into a corresponding numerical scale, using 

the terminology used by experts to construct decision matrices, using score function (SF) shown in 

equation 2. Decision makers may evaluate and rank attributes objectively thanks to this process, which 

facilitates more data-driven decision–making. 

 The decision matrix that is created, displays the ratings or values of each possibility according to each 

attribute. The elements of this matrix, labeled as 𝑥𝑖𝑗 , should be greater than zero: 𝑥𝑖𝑗 > 0. In case the 

decision matrix contains negative values, those values should be converted into positive values by 

appropriate means. Assuming there are 𝑚 attributes and 𝑛 alternatives, the decision matrix would have 

'm' rows and 'n' columns. The decision matrix forms as follows: 

𝑋 = [

𝑥11 ⋯ 𝑥1𝑚
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

]   

 MEREC technique starts to be implemented in constructed decision matrices for UAV’s sensor over 

criteria (An) in level 1 and UAV’s sensor over criteria (Ani) in level 2 through the following sub-steps: 

Step 2.1: Decision matrices are transformed into crisp matrices by Eq. (2). 

Where, 𝐿𝑖𝑗, 𝑀𝑖𝑗, 𝑈𝑖𝑗 refers to lower, medium, upper, and 𝑇, 𝐼, 𝐹 refers to truth, false, and indeterminacy 

respectively. 

Step 2.2: (Aggregated decision matrix): Eq. (6) is utilized to combine all these matrices into one matrix called 

aggregated matrix  

𝑌𝑖𝑗 = 
∑ 𝑞𝑖𝑗
𝑁
𝑗=1

𝑁
                                                                                                                                                 (6) 

Where 𝑞𝑖𝑗 represents the value of the attribute in the matrix, N represents the number of experts   

Step 3: Normalize the decision matrix based on the MEREC technique. 

To create a normalized decision matrix (𝑁), we need to scale the elements of the decision matrix using a 

simple linear normalization. The normalized matrix elements are denoted by 𝑛𝑖𝑗
𝑥  . If B represents the beneficial 

attribute and H represents the non-beneficial attribute, we can use the following normalizing formula: 

𝑛𝑖𝑗
𝑥 = {

min𝑥𝑘𝑗

𝑥𝑖𝑗
     𝑖𝑓 𝑗 ∈ 𝐵

𝑥𝑖𝑗

max𝑥𝑘𝑗
    𝑖𝑓 𝑗 ∈ 𝐻

                                                                                                                                (7) 

Step 4: Apply the MEREC technique to calculate the weight of attributes [22]: 

Step 4.1: Calculate the overall performance of the alternatives (𝑠𝑖). 

During this stage, we obtain the overall performance of different alternatives by using a logarithmic metric 

with equal weights for different attributes. This measure is calculated based on a non-linear function, which 

uses the normalized value obtained from the previous phase. Note that, Lower values of 𝑛𝑖𝑗
𝑥  will result in 

higher performance values (𝑠𝑖). The equation used to calculate this measure is as follows: 

𝑠𝑖 = ln(1 + (
1

𝑚
 ∑ |ln(𝑛𝑖𝑗

𝑥 )|))𝑗                                                                                                                              (8) 

 Step 4.2: Calculate the alternatives' performance by removing away each attribute. 
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 The process of using a logarithmic measure is similar to the previous step. However, in this step, we 

determine the performance of each alternative by eliminating each attribute independently. This means that 

there are 𝑚 sets of performances connected to 𝑚 attributes. To indicate how well the 𝑖𝑡ℎ alternative 

performed overall in terms of eliminating the 𝑗𝑡ℎ attribute, we use the notation 𝑆𝑆𝑖𝑗(overall performance of 

𝑖𝑡ℎ alternative concerning the removal of 𝑗𝑡ℎ attribute). The calculations for this step are done using the 

following equation: 

𝑠𝑠𝑖𝑗 = ln(1 + (
1

𝑚
 ∑ |ln(𝑛𝑖𝑗

𝑥 )|))𝑘,𝑘≠𝑗                                                                                                             (9) 

Step 4.3: Compute the summation of absolute deviations. 

The elimination effect of the 𝑗𝑡ℎ attribute is determined using the values from Steps 4.1 and 4.2. Let 𝐸𝑗 be 

the result of eliminating the 𝑗𝑡ℎ condition. The values of 𝐸𝑗  can be calculated using the following formula. 

𝐸𝑗  =  ∑ |𝑠𝑠𝑖𝑗 − 𝑠𝑖 |𝑖                                                                                                                                               (10) 

Step 4.4: Determine the final weights of attributes. 

In this phase, the weight of each attribute is determined objectively by using the removal effects (𝐸𝑗) from 

the previous step. The weight of the 𝑗𝑡ℎ attribute is represented by the letter 𝑤𝑗. The formula used to calculate 

𝑤𝑗 is as follows: 

𝑤𝑗 = 
𝐸𝑗

∑ 𝐸𝑘𝑘
                                                                                                                                                         (11) 

Step 5: Apply CoCoSo (Combined Compromise Solution) for ranking the alternative [23] 

Step 5.1: Develop the initial decision matrix. 

Step 5.2: Apply the linear normalization technique to make all the elements of the decision matrix 

comparable. 

 

rij = {

xij− minxij

xij
                       for beneficial attribute

maxxij−xij

maxxij− minxij
         for non − beneficial attribute

                                                                               (12) 

Where 𝑟𝑖𝑗 represents alternative i's normalized rating with respect to attribute𝑗, and 𝑥𝑖𝑗 represents alternative 

i's rating with respect to attribute 𝑗. 

Step 5.3: based on WSM & WPM methods, the corresponding performance indexes 𝑠𝑖 and 𝑝𝑖 for each 

alternative are estimated. 

𝑠𝑖 = ∑ 𝑟𝑖𝑗 𝑤𝑗 
𝑛
𝑗=1                                                                                                                                              (13)  

𝑝𝑖 = ∑ (𝑟𝑖𝑗)^𝑤𝑖  
𝑛
𝑗=1   

Where 𝑠𝑖 and 𝑝𝑖 represent the sum of weight-comparable sequences and weight-multiplied comparable 

sequences of the alternative 𝑖, аnd 𝑤𝑗 denotes weights of the attribute 𝑗 , which we got in step 4.4 by the 

MEREC technique. 

Step 5.4: Ranking the alternatives. 

The CoCoSo approach computes a relative performance score, 𝑘𝑖, for ranking using three aggregate estimated 

results, 𝑘𝑖𝑎, 𝑘𝑖𝑏, and 𝑘𝑖𝑐 as follows: 

𝑘𝑖 = 
1

3
 (𝑘𝑖𝑎 + 𝑘𝑖𝑏 + 𝑘𝑖𝑐) + (𝑘𝑖𝑎  𝑘𝑖𝑏 𝑘𝑖𝑐)

1

3                                                                                                         (14) 
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With  

𝑘𝑖𝑎 = 
𝑠𝑖+ 𝑝𝑖 

∑ (𝑠𝑖+ 𝑝𝑖)
𝑚
𝑖=1

                                                                                                                                                   (15) 

𝑘𝑖𝑏 = 
𝑠𝑖 

min𝑠𝑖
+ 

𝑝𝑖

min𝑝𝑖
                                                                                                                                  (16) 

𝑘𝑖𝑐 = 
ℷ𝑠𝑖+(1−ℷ) 𝑝𝑖 

ℷ𝑚𝑎𝑥𝑠𝑖+(1−ℷ)𝑚𝑎𝑥 𝑝𝑖
                                                                                                                               (17) 

Table 1. Linguistic variables of criteria and alternative in form of SVTrN-number [21]. 

Terms 𝐋,𝐌, 𝐔 Confirmation degree (𝐓, 𝐈, 𝐅) 

Absolutely  Low (AL) < (0.0.1) > Absolutely not sure (ANS) < (0.1.1) > 

Very Low (VL) < (0.1.2) > Not sure (NS)< (0.2 , 0.8, 0.8) > 

Low (L) < (1.2.3) > Slightly sure (SLS)<(0.3,0.7,0.7)> 

Medium (M) <(2.3.4)> Median sure (MS)< (0.5, .05, .05) > 

High (H) <(3.4.5)> Sure (S)< (0.7,0.4,0.4) > 

Very High (VH) <(4.5.6)> Strongly sure (STS)< (0.8,0.2,0.2) > 

Strongly very high (SVH) <(5.6.7)> Very strongly sure (VSS < (0.9,0.1,0.1) > 

Absolutely High (AH) <(7.8.9)> Absolutely sure (AS) < (1,0,0) > 

 

5 |Result and Analysis    

Three experts were tasked with evaluating the main criteria judgment using a single-valued triangular 

neutrosophic scale as in Table 1. Depending on our study, 7 criteria are presented as follows: {high quality, 

normal quality, speed, payload, distance, endurance, wind resistance}. Also, we take 4 UAVs alternatives, 

{H1, H2, H3, H4}. 

5.1 | MEREC-based tree soft set: Calculating attributes level 1’s weights 

Firstly, we create an expert linguistics decision matrix by using the SVTrN scale in Ref [21]. After that, these 

matrices are transformed into crisp matrices based on Equation (2) as appears in Tables 2 to 7. As shown in 

Table 8, the aggregated matrix created for attributes {𝐴1, 𝐴2}  based on Eq. (6), after that calculate the 

normalized matrix of attributes{𝐴1, 𝐴2} at level 1 as shown in Table 9 by use Eq. (7). In Table 12 calculate 

the weights of attributes{𝐴1, 𝐴2}  based on Eq. (11), as shown in Figure 2, the 𝐴2 is the highest criterion with 

the highest value of weight = 0.658828 while 𝐴1 is at least one. 

Table 2. Linguistic expert’s decision matrices for main attributes by the first expert in level 1. 

Alternative 
LEVEL 1 

A1 A2 

H1 AL L 

H2 M H 

H3 AH H 

H4 AH SVH 

 

Table 3. Linguistic expert’s decision matrices for main attributes by the second expert in level 1. 

Alternative 
LEVEL 1 

A1 A2 

H1 VL L 

H2 H L 

H3 VH H 

H4 AH H 
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Table 4. Linguistic expert’s decision matrices for main attributes by the third expert in level 1. 

Alternative 
LEVEL 1 

A1 A2 

H1 L M 

H2 H H 

H3 VH VH 

H4 SVH AH 

 

Table 5. Crisp decision matrix for first expert evaluation in level 1. 

Alternative 
LEVEL 1 

A1 A2 

H1 0 0.6 

H2 1.5 2.533 

H3 8 2.533 

H4 8 5.4 

 

Table 6. Crisp decision matrix for second expert evaluation in level 1. 

Alternative 
LEVEL 1 

A1 A2 

H1 0.2 0.6 

H2 2.533 0.6 

H3 4 2.533 

H4 8 2.533 

 

Table 7. Crisp decision matrix for third expert evaluation in level 1. 

Alternative 
LEVEL 1 

A1 A2 

H1 0.6 1.5 

H2 2.533 2.533 

H3 4 4 

H4 5.4 8 

 

Table 8. An aggregated matrix of attributes A1, A2 at level 1. 

Alternative A1 A2 

H1 0.26666667 0.9 

H2 2.18866667 1.88866667 

H3 5.33333333 3.022 

H4 7.13333333 5.311 

 

Table 9: Normalized matrix of attributes A1, A2 at level 1. 

Alternative A1 A2 

H1 1 1 

H2 0.1218398 0.4765267 

H3 0.05 0.297816 

H4 0.0373832 0.1694596 

 

Table 10. Calculated performance of alternatives by merec at level 1. 

Alternative A1 A2 Si 

H1 1 1 0 

H2 0.1218398 0.4765267 0.885064 

H3 0.05 0.297816 1.132532 

H4 0.0373832 0.1694596 1.261535 
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Table 11. Overall performance matrix (ssi) of alternative by merec at level 1. 

Alternative A1 A2 
Si 

 SSi 

H1 0 0.405465 0 

H2 0.31526 0.059136 0.885064 

H3 0.473522 0.024693 1.132532 

H4 0.63529 0.018519 1.261535 

 

Table 12. Weight of attributes at level 1 by merec. 

 A1 A2 

𝑬𝒋 1.855059 3.582249 

𝑾𝒋= 

𝑬𝒋
∑ 𝑬𝒌

 0.341172 0.658828 

 

 
Figure 2. Weights of attributes at level 1. 

 

5.2 | MEREC-based tree soft set: Calculating attributes level 2’s weights 

We need to perform calculations on two sets of attributes - performance attributes {𝐴21 ∶ 𝐴25} and sensor 

quality attribute {𝐴11: 𝐴12}. We will follow the same steps as we did in the first level to calculate the weights 

in the second level. Tables 13, 14, and 15, show linguistic expert’s decision matrices for the main attributes 

of the three experts. Tables 16, 17, and 18, show a crisp decision matrix for three experts’ evaluation in level 

2. Table 19 aggregated matrix of performance attributes  𝐴21 ∶  𝐴25 at level 2 are calculated. Table 20 shows 

the normalized matrix of performance attributes  𝐴21 ∶  𝐴25 at level 2.  The weight of performance attributes 

𝐴21 ∶  𝐴25 at level 2 is shown in Table 22, which  𝐴22 is the highest attribute with the highest value of weight 

while 𝐴24 is least one 

The sensor quality attribute {𝐴11, 𝐴12} Calculation: Table 23 shows, the aggregated matrix of sensor quality 

attributes  𝐴11, 𝐴12  at level 2. In Table 24 the normalized matrix of sensor quality attributes  𝐴11, 𝐴12  at 

level 2 is calculated by Equation 9. Table 26 shows, the weight of sensor quality attributes 𝐴11, 𝐴12 at level 2. 

 Figures 4 and 5 represent the final weights for the tree’s attributes. According to Figures 4 and 5, the high-

quality sensor (𝐴11) attribute is the optimal with weight =  0.232248, while (𝐴12) is the least with weight 

=  0.108924. 
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Table 13. Linguistic expert’s decision matrices for sub-attribute by the first expert in level 2. 

Alternative 
LEVEL 2 

A11 A12 A21 A22 A23 A24 A25 

H1 AL VL VL L M L M 

H2 L M M H M H H 

H3 H VH H VH M M H 

H4 AH SVH VH H VH VH H 

 

Table 14. linguistic expert’s decision matrices for main sub-attribute by the second expert in level 2. 

Alternative 
LEVEL 2 

A11 A12 A21 A22 A23 A24 A25 

H1 VL L VL M M H L 

H2 H M H L H M M 

H3 VH H M VH VH H M 

H4 SVH H VH H H VH VH 

 

Table 15. Linguistic expert’s decision matrices for sub-attribute by the third expert in level 2. 

Alternative 
LEVEL 2 

A11 A12 A21 A22 A23 A24 A25 

H1 AL VL L VL M L L 

H2 M M H VH H M H 

H3 H VH M H H SVH M 

H4 AH SVH VH H VH VH H 

 

Table 16. Crisp decision matrix for second expert evaluation in level 2. 

Alternative 
LEVEL 2 

A11 A12 A21 A22 A23 A24 A25 

H1 0 0.2 0.2 0.6 1.5 0.6 1.5 

H2 0.6 1.5 1.5 2.533 1.5 2.533 2.533 

H3 2.533 4 2.533 4 1.5 1.5 2.533 

H4 8 5.4 4 2.533 4 4 2.533 

 

Table 17. Crisp decision matrix for second expert evaluation in level 2. 

Alternative 
LEVEL 2 

A11 A12 A21 A22 A23 A24 A25 

H1 0.2 0.6 0.2 1.5 1.5 2.533 0.6 

H2 2.533 1.5 2.533 0.6 2.533 1.5 1.5 

H3 4 2.533 1.5 4 4 2.533 1.5 

H4 5.4 2.533 4 2.533 2.533 4 4 

 

Table 18. Crisp decision matrix for third expert evaluation in level 2. 

Alternative 
LEVEL 2 

A11 A12 A21 A22 A23 A24 A25 

H1 0 0.2 0.6 0.2 1.5 0.6 0.6 

H2 1.5 1.5 2.533 4 2.533 1.5 2.533 

H3 2.533 4 1.5 2.533 2.533 5.4 1.5 

H4 8 5.4 4 2.533 4 4 2.533 
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Table 19. Aggregated matrix of performance attributes  𝐴21 ∶  𝐴25 at level 2. 

Alternative 
LEVEL 2 

Speed Payload Distance Endurance Resistance to wind 

H1 0.33333333 0.76666667 1.5 1.54433333 0.9 

H2 2.18866667 2.37766667 2.18866667 1.84433333 2.18866667 

H3 1.84433333 3.511 2.67766667 3.14433333 1.84433333 

H4 4 2.533 3.511 4 3.022 

 

Table 20:. Normalized matrix of performance attributes 𝐴21 ∶  𝐴25 at level 2. 

Alternative 

LEVEL 2 

Speed Payload Distance Endurance 
Resistance to 

wind 

H1 1 1 1 1 1 

H2 0.1523 0.322445 0.685349 0.83734 0.411209259 

H3 0.180734 0.218361 0.560189 0.491148 0.487981205 

H4 12 0.302671 0.386083 0.386083 0.297816016 

 

Table 21. Overall performance matrix (SSi) of alternative by MEREC at level 2. 

Alternative 

LEVEL 2 

SSi 

Speed Payload Distance Endurance Resistance to wind 

H1 0 0 0 0 0 

H2 0.415525 0.509935 0.596626 0.618446 0.538723 

H3 0.534101 0.556032 0.658641 0.644933 0.644254 

H4 0.621629 0.751377 0.774081 0.774081 0.749851 

 

Table 22. Weight of performance Attributes 𝐴21 ∶  𝐴25 at level 2 by MEREC. 

 
LEVEL 2 

Speed Payload Distance Endurance Resistance to wind 

𝑬𝒋 0.7151532 0.728561 0.561965 0.553853 0.610025 

𝑾𝒋= 

𝑬𝒋
∑ 𝑬𝒌

 0.22563181 0.229862 0.177301 0.174741 0.192464 

 

 

 
Figure 3. Weights of performance attributes 𝐴21 ∶  𝐴25at level 2. 
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Table 23. Aggregated matrix of sensor quality attributes  𝐴11, 𝐴12  at level 2. 

Alternative 
Max Max 

A11 A12 

H1 0.06666667 0.333333 

H2 1.54433333 1.5 

H3 3.022 3.511 

H4 7.13333333 4.444333 

 

Table 24. Normalized matrix of sensor quality attributes 𝐴11, 𝐴12 at level 2. 

Alternative 
Max Max 

A11 A12 

H1 1 1 

H2 0.043169 0.222222 

H3 0.02206 0.09494 

H4 0.009346 0.075002 

 

Table 25. Performance of alternative by merec at level 2 over sensor quality attribute. 

Alternative 
Max Max 

Si 
A11 A12 

H1 1 1 0 

H2 0.043169 0.222222 1.200975 

H3 0.02206 0.09494 1.407138 

H4 0.009346 0.075002 1.532886 

 

Table 26. Weight of sensor quality attributes 𝐴11 at level 2 by MEREC. 

 A11 A12 

𝑬𝒋 1.971368361 0.924568 

𝑾𝒋= 

𝑬𝒋
∑ 𝑬𝒌

 0.68073613 0.319264 

 

 
Figure 4. Final weights of all attributes. 
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Figure 5. Tree with final weights of all attributes. 

 

5.3 |CoCoSo Method 

Choosing the best candidate from UAV’s type over A1:A2 in level 1: Exploiting the aggregated matrix in 

Table 8 that was constructed before from Eq. (6) and using the weight of attribute A1, A2  based on the 

MEREC method, which was previously calculated in Table 19. Calculate the normalized matrix based on Eq. 

(12), as shown in Table 27. Also, calculate the sum of the weighted comparability matrix by applying Eq. (13), 

as shown in Table 28. After that, calculate the power of the weighted comparability matrix by applying Eq. 

(13), as appears in Table 29. Aggregation of Appraisal score by applying Equation 14, as it is shown in Table 

30. The final ranking for UAV’s type {3DR IRIS/SOLO, OKTO XL, PARROTAR/2.0, DJI Matrice 300 

RTK  } based on the attributes in level 1, we demonstrated that the (DJI Matrice 300 RTK UAV), denoted 

as (H4) is the best one. For choosing the best candidate from UAV’s sensor over A21:A25 in level 2, we 

repeat the same previous steps using the aggregated matrix in Table 19 and using the weight of attribute 

A21:A25, which was previously calculated in Table 22. The DJI Matrice 300 RTK UAV is the best one over 

attribute A21:A25 in level 2. Also, for choosing the best candidate from UAV’s sensor over A11:A12 in level 

2 using the aggregated matrix in Table 23 and weight of attributes A11:A12 in Table 26, repeat the previous 

steps. The DJI Matrice 300 RTK UAV is the best over attribute A11:A12 in level 1. 

Table 27. Normalized matrix based on CoCoSo method in Level 1. 

Alternative A1 A2 

H1 0 0 

H2 0.279903 0.224137 

H3 0.737864 0.48107 

H4 1 1 

 

 

 



   Salam et al.| Climate Cha. Rep. 1 (2024) 30-47 

 

33 

Table 28. The sum of the weighted comparability matrix in level 1. 

Alternative A1 A2 Si 

H1 0 0 0 

H2 0.279903 0.224137 0.095495 

H3 0.737864 0.48107 0.251739 

H4 1 1 0.341172 

 

Table 29. Power of weighted comparability matrix in level 1. 

Alternative A1 A2 Pi 

H1 0 0 0 

H2 0.647641 0.373336 1.020977 

H3 0.901482 0.61749 1.518972 

H4 1 1 2 

 

Table 30. Aggregation of appraisal score in level 1. 

Alternative Ka Kb Kc K Rank 

H1 0 0 0 0 4 

H2 0.199021 0 0.42138 0.2068 3 

H3 0.328672 0 0.695884 0.341519 2 

H4 0.472308 0 1 0.490769 1 

 

Table 31. Aggregation of appraisal score over 𝐴21: 𝐴25  in level2. 

Alternative Ka Kb Kc K Rank 

H1 0 0 0 0 4 

H2 0.296463 0 0.076961 0.124475 3 

H3 0.329821 0 0.882544 0.404122 2 

H4 0.373716 0 1 0.457905 1 

 

Table 32. Aggregation of appraisal score over 𝐴11: 𝐴12  in level 2. 

Alternative Ka Kb Kc K Rank 

H1 0 0 0 0 4 

H2 0.19939 0 0.415492 0.204961 3 

H3 0.32072 0 0.66832 0.32968 2 

H4 0.47989 0 1 0.493297 1 

 

6 |Conclusion    

Drought and a lack of water greatly affected the production of crops, which caused a shortage of food 

resources that represented a threat to humanity. Recently, drones loaded with different types of sensors have 

been used to evaluate and research the ability of crops to resist drought. The problem is the optimal selection 

of the types of UAVs according to a set of attributes that fall under the quality of the sensor and performance. 

These attributes are divided into sub-attributes. Therefore, the problem was represented in the form of a tree. 

The result of the implementation MEREC method indicated that the high-quality sensor (A11) attribute is 

optimal based on the final value of its weight. We used the CoCoSo method after that, to rank the UAV’s 

type and select the best, the result shows that the DJI Matrice 300 RTK UAV is better than other candidates, 

since it has a high weather tolerance and a large payload, which allows the simultaneous installation of up to 

three payloads, include multi-spectral imaging cameras (visible, thermal and infrared) and laser rangefinders, 

which allows for the effective detection of drought-resistant crops. 
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