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1 |Introduction    

Numerous challenges in science and engineering can be mathematically described through linear or nonlinear 

ordinary differential equations, often tied to specific initial or boundary conditions. Examples abound, from 

predicting the trajectory of a ballistic missile or charting the path of an artificial satellite in its orbit, to modeling 

theories related to electrical networks, beam bending, and aircraft stability [3]. 

Regrettably, most of these differential equations resist analytical solutions, necessitating the reliance on 

numerical treatment as a potent alternative to solve these equations, typically formulated as initial value 

problems [1]. Within the realm of numerical methods, the Obrechkoff method, with its efficiency and 

accuracy, has emerged prominently and has seen increased interest for problem-solving systems in recent 

years, as referenced by [10]. 

Scholar [11] proposed a one-step method for addressing first-order initial value problems using interpolation 

and collocation approaches. This method was subsequently implemented through Taylor series expansion. 

Concurrently, research by [12] introduced and applied a three-step backward differential formula specifically 

tailored for stiff initial value problems in ordinary differential equations, proving efficient and accurate for 

such scenarios. 

  HyperSoft Set Methods in Engineering   

  Journal Homepage: sciencesforce.com/hsse  

             HyperSoft Set Meth. Eng. Vol. 1 (2024) 84–94 

Paper Type: Original Article 

A One-Step Hybrid Obrechkoff-Type Block Method for First-

Order Initial Value Problems in Ordinary Differential Equations 
 

 

Lawrence Osa Adoghe 1 , Ukpebor Luke 1 , Benjamin Ononogbo 1,* , and Edward Airemen 1  

 

1 Department of Mathematics, Ambrose Alli University, Ekpoma, Edo State, Nigeria; 

 Emails: adolaw@aauekpoma.edu.ng; upkebor@aauekpoma.edu.ng; ononogbochibuike58@gmail.com; airemen26@gmail.com. 

 

 

Received: 25 Oct 2023          Revised: 14 Feb 2024           Accepted: 09 Mar 2024           Published: 12 Mar 2024 

 

Abstract 
In this paper, we propose a one-step hybrid block method of the Obrechkoff-type block method for solving initial 

value problems in ordinary differential equations using Taylor series expansion. The new method was implemented 

with some selected initial value problems to determine the efficiency and accuracy of the method. The convergence 

and stability properties were also examined. It was discovered that the new method compared favorably with other 

existing methods in the selected literature.  

Keywords: One-Step, Hybrid Block Method, Obrechkoff-Type Block Method, Taylor’s Series Expansion, Consistency, 
Convergence, Error Analysis. 

https://doi.org/10.61356/j.hsse.2024.111850
https://sciencesforce.com/index.php/hsse
https://orcid.org/0000-0002-5012-9983
https://orcid.org/0000-0002-8779-2252
https://orcid.org/0000-0003-3118-1011
https://orcid.org/0009-0002-3409-5549
https://sciencesforce.com/
https://sciencesforce.com/index.php/hsse


 Adoghe et al.| HyperSoft Set Meth. Eng. 1 (2024) 84-94 

 

58 

Recent studies, such as those detailed in [4], have contrasted Obrechkoff against super-implicit methods for 

solving first and second-order initial value problems. Additionally, [10] suggested a numerical solution for 

first-order initial value problems utilizing a self-starting implicit two-step Obrechkoff-type block method, 

among other approaches. 

Notably, the one-step hybrid block method, reminiscent of Obrechkoff's type, demonstrates superior 

accuracy compared to existing methods for solving initial value problems within ordinary differential 

equations. Further efforts have been directed towards simplifying the complexity involved in deriving this 

method. 

With this in mind, the present paper endeavors to introduce a novel, efficient numerical algorithm designed 

specifically for solving initial value problems of the following type: 

       1

0 0, , ,y f x y y x y a b             (1.1) 

Where gradient function f(x, y), may have points of discontinuities and the specific objective are; 

 Derive a one-step hybrid block method of Obrechkoff type for solving initial value problems. 

 Determine the order, consistency and stability of the method. 

 Draw the absolute stability region of the method. 

 Implement and compare the performance of the method with other existing methods using some 

tested initial value problems. 

According to [2], the general form of the k-step Obrechkoff method with l derivatives of y is given as: 

 '

0 1 1

; 1
k l k

i

j n j ij n j k

j i j

y h y   

  

                       (1.2) 

With the implicit k = 1; l = 2. The error constant decreases more rapidly with increasing 𝑙 rather than the 

step k. It is difficult to satisfy the zero-stability for large k. The weak stability interval appears to be small [2]. 

In addition, the implicit one –step method of order 4 is given by: 

         
2

1 1 2 2

1
1 12 2

n n
n n n n

h h
y y y y y y

 
              (1.3) 

According to [2], we define k-step hybrid formula to be: 

0 1

k k

j n j j n j v n v

j j

y h f h f    

 

                         (1.4

 0 01, , , 0,1,...kwhere are not both zero v k     . These methods are similar to linear multi-step 

methods in predictor-corrector mode, but with one essential modification, an additional predictor is 

introduced at off-step point. This means that the final (corrector) stage has an additional derivative 

approximation to work from. This greater generality allows the consequences of the Dahlquist barrier to be 

avoided and it is actually possible to obtain convergent at k-step methods with 2 1 7k up to k  . This paper 

has the following structure: Section 2 presents, derivation of the method.  Section 3, presents the consistency, 

convergence, the stability and the region of absolute stability of the method. Section 4, presents the 

implementation of the method, also a display of solution tables will be provided by way of comparison with 

other existing methods. Finally, we gave the conclusion. 
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2 | Derivation of One-Step Hybrid Block Method    

In this section, we proposed One-Step Hybrid Obrechkoff Type Block method. An approximation solution 

of the form (2.1) is considered. 

 
1

0 1 1

, 1, 2
k l k

ii

n j j n j ij n j

j i j

y y h y k l 


  

  

     
 

 

           1 1 1 2 2 2
2

1 11 0 10 1 11 20 1 21
1 11 2

2 22 2

n n
n n n n n n

y y h hy y y y y y      
   

   
         

   
               (2.1) 

Expanding (2.1) by Taylor’s series about  nx  we have: 

     
     

     
     

     
       

   

                   

   

       
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0
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1
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2
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2
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...
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2
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n

n
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y x

hh
y x

h
y x hy x y x



 



       

      
      

         
 

  
  
     

 

   
     

     
     

3 4 5

4 5 6
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 
 
 
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 
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 
  
     

  
  
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                
   

   
    

    
 

  
       
  

  



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

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
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
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Where         
     

     
2 3

1 2 3
...

2! 3!
n a n n n n n

ah ah
y y x ah y x ahy x y x y x         

Rewriting this expression in matrix form, where the coefficients of 
   ii

nh y x  are equated to give: 
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2

1       0        0        0        0          0     0    

0      1         1        1        0          0     0    

1
0      0               1       1         1       1 

2

1

12
0      0           

2! 2!

 
 
 

3 2

4 3

5 4

1
  0              1 

2

1 1

1 12 2
0      0             0        

3! 3! 2! 2!

1 1

1 12 2
0      0             0          

4! 4! 3! 3!

1 1

1 12 2
0      0              0          

5! 5! 4! 4!

   
   
   

   
   
   

   
   
   

0
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1
1

2
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1
2

2
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1

1

1

2

1

6

1

24

1
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1
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













 
 
 

  
  
  
    
    
    
    
    
    

     
    
    
    
    
    

    
  
  
    

 
 
    

Solving the matrix we have: 

0 10 1 11 20 1 21
1 2

2 2

7 8 7 1 1
, , , , , , 1, , , , ,0,

30 15 30 60 60

T T

      
   

    
  

 

Substituting the value of  0 10 1 11 20 1 21
1 2

2 2

, , , , , , and        into Eq. (2.1) we have  

2
' ' ' '' ''

1 1 1 1

2

7 16 7
30 60

n n n n n n
n

h h
y y y y y y y  



 
         

 
                                                                   (2.2) 

To implement the method derived in Eq. (2.2), an additional method is needed. This method is obtained by 

considering the one-step method given as: 

 
1

'

1

0 1 12

k l k
i

j n j ij n j
n

j i j

y y h y 


 


  

   
                      (2.3) 

Following the same steps adopted, we have the additional method as: 

2
' ' ' ' ' ' ' ' '

1 1 1 1 1

2 2 2

101 128 11 13 40 3
480 960

n n n n n
n n n

h h
y y y y y y y y 

  

   
         

   
                     (2.4) 

Hence, Eqs. (2.2) and (2.4) are the required One-Step Hybrid Obrechkoff-Type Block method for the solution 

of Eq. (1.1)  

3 | Analysis of the Method    

3.1 | Order of the Methods 

We define a linear operator L by: 
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     '

0

:
k

j n j n

j

L y x h y x jh h y x jh 


                              (2.5) 

where  y x  is an arbitrary test function that is continuously differentiable in the interval  ,a b . Expanding 

   '

n ny x jh and y x jh   by Taylor’s series about the point nx  and collecting like terms in h 

and y give: 

         ' 2 ''

0 1 2: ... p p

pL y x h C y x C hy x C h y x C h y x         [12]
      (2.6) 

Definition 3.1: According to [5], the differential Eq. (2.5) and the associated LMM are said to be of order p 

if  

0 1 2 1... 0, 0p pC C C C C                (2.7) 

Definition 3.2: The term 
1pC 
 is called error constant and it implies that the local truncation error is given 

by: 
 

   
1

1 2

1 1

p
p p

p p nE C h y x O h


 

   [11]           (2.8) 

Following Definition 3.1 and 3.2, we obtained the order of the method to be; 

0

1 1 0

1 1 0
C

   
    

   
 

1

7 8 7
1

030 15 30

01 101 4 11

2 480 15 480

C

  
           

    
    
  

     

2
2

1 1 8 7 1 1
0

2 2 15 30 60 60
0

1 0
1 4 11 13 1 12

2! 2 15 480 960 24 320

C

   
       

   
 

                      
   

2

3
3 2

1

1 8 1 7 1 12
0
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0
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4 1 11 1 1 12 2
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C

   
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                 
  

   
    

       
                        
  
  
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3 2

4
4 3 2

1 1

1 8 1 7 1 12 2
0
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0

01 1 1

4 1 11 1 1 12 2 2
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                   
  

   
    

         
                            
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4 3

5
5 4 3
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0
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                   
  

   
    

         
                            
  
  

5 4

6
6 5 4
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C

     
     

                   
  

   
    

         
                            
  
  

0 1 2 3 4 5 6 0C C C C C C C        . Therefore, the new method is order six with error constant as; 

1 1
,

604800 1209600

T

 
 
 

 

3.2 | Consistency and Zero Stability 

The linear multi-step method is said to be consistent if it has order 1p  . Therefore, our method is consistent. 

Definition 3.3: A hybrid Block method is said to be zero- stable if the roots Z of the characteristic polynomia

 p Z


 defined by: 

  0 'detp Z ZA A


             

Satisfies 1Z   and every root with  0 1Z   has multiplicity not exceeding two in the Limit as 0h  

Putting Eqs. (2.2) and (2.4) in matrix form as a block we obtain: 
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1

2

1

1 0

0 1

n

n

y

y





  
  
    

=
1 1 1

2 2 2

1

7 16 7
0

0 1 30 30 30

0 1 101 128 11
0

480 480 480

n n n

n n n

y f f

h

y f f

  



    
          
           
                        

1 1
2

2 2

1

1 1
0 0

60 60

13 40 3
0

960 960 960

n n

n n

g g

h

g g

 



    
       

        
                  

 

The following matrix difference equation will be in form of: 

     ' ' '0 ' 2 '

1 1 1 1n n n n n nA y A y h B f B f h C g C g   
       
   

   

The first characteristics polynomial of the above matrix is given by  

  0 'detP Z ZA A     

0
1 0

0 1
A

 
  
 

,        
'

0 1

0 1
A

 
  
 

 

 
1 0 0 1

det
0 1 0 1

0 0 1 1
det det

0 0 1 0 1

P Z Z

Z Z

Z Z

    
     

    

       
        

      

 

   1P Z Z Z     

Therefore, 0 1Z and Z  . The hybrid method is zero stable. 

3.3 | Convergence 

The primary goal of a numerical method revolves around generating solutions that closely resemble the 

theoretical solution consistently. Assessing the convergence of the One-Step Hybrid Obrechkoff Type Block 

method involves considering its alignment with fundamental properties discussed earlier, in correlation with 

Dahlquist's fundamental theorem [5] for linear multi-step methods. Without delving into the proof, we 

present Dahlquist's theorem as outlined in [5]. 

Theorem 3.4: The necessary and sufficient condition for a multi-step method to be convergent is for it to 

be consistent and zero stable. 

Therefore, since the block method is consistent and zero-stable, it is likewise convergent. The region of 

absolute stability is determined by obtaining the stability polynomial obtained as: 

4 3 2

4 3 2

2 36 225 162 2880
,

2 36 135 1602 2880

z z z z
z h

z z z z


    


   
 

Plotting the roots of the stability polynomial with MATLAB, then we have the region of absolute stability as: 
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4 | Implementation of the New Method    

In this section we present some numerical results to test the efficiency and usability of our new method with 

other existing methods. The notations are used in the tables of results: 

 1SHBM:  The New One-Step Hybrid Block Method  Of Obrechkoff Type. 

 Error = Computed solution Minus Exact Solution. 

Problem 1: [10]  

     ' 0.50.5 1 , 0 0.5, 0.1 1 0.5 xy y y h with exact solution y x e     
  

Problem 2: [1] 

   ' , 0 1, 0.1 xy y y h with exact solution y x e      

Problem 3:  [10] In an oil refinery, a storage tank contains 2000 gal of gasoline that initially has 100 lb of an 

additive dissolved in it. In the preparation for winter weather, gasoline containing 2 lb of additive per gallon 

is pumped into the tank at a rate of 40𝑔𝑎𝑙𝑚𝑖𝑛−1the well-mixed solution is pumped out at a rate of 

40𝑔𝑎𝑙𝑚𝑖𝑛−1. Using a numerical integrator, how much of the additive is in the tank 0.1, 0.5 and 1 min after 

the pumping process begins?. Let y be the amount (in pounds) of additive in the tank at time t. we know that 

y=100 when t=0. Thus, the initial value problem modeling the mixture process is; 

 
 ' 45

80 , 0 100, 0.1
2000 5

y y h
t

   


  

With theoretical solution: 

-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Re(z)

Im
(z

)

Region of Absolute Stability of one step hybrid Block Method of obrechkoff method for solving odes  
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   
 

 
9

9

3900
2 2000 5 2000 5

2000
y t t t      

 

Table 1a. Comparison of computed results for problem 1. 

X Exact solution 
Computed solution 

(Zurni, et al.,2016) 

Computed solution 

(Sunday et al., 2013) 

Computed solution 

( 1 SHBM) 

0.1 0.52438528774964299546 0.52438528774960472804 0.5243852877552174 0.52438528774964238100 

0.2 0.54758129098202021342 0.54758129098194536511 0.5475812909859664 0.54758129098201904445 

0.3 0.56964601178747109638 0.56964601178736527269 0.5696460117956543 0.56964601178746942845 

0.4 0.59063462346100907066 0.59063462346087361956 0.5906346234953703 0.59063462346100695522 

0.5 0.61059960846429756588 0.61059960846413739010 0.6105996086572718 0.61059960846429505054 

0.6 0.62959088965914106696 0.62959088965895722513 0.6295908898470451 0.62959088965913819578 

0.7 0.64765595514064328282 0.64765595514044005788 0.6476559553183269 0.64765595514064009648 

0.8 0.66483997698218034963 0.66483997698195855368 0.6648399771546479 0.66483997698217688570 

0.9 0.68118592418911335343 0.68118592418887672320 0.6811859243738679 0.68118592418910964657 

1.0 0.69673467014368328820 0.69673467014343242661 0.6967346704442603 0.69673467014367937035 

 

 

 

Table 1b. Comparison of ERROR for problem 1. 

x 
ERROR 

(Zurni et al.,2016) 

ERROR 

(Sunday et al., 2013) 

ERROR 

( 1 SHBM) 

0.1 3.826740E-14 5.574430E-12 6.1446 10−16 

0.2 7.484830E-14 3.946177E-12 1.16897 10−15 

0.3 1.058240E-13 8.183232E-12 1.66793 10−15 

0.4 1.354510E-13 3.436118E-11 2.11544 10−15 

0.5 1.601760E-13 1.929473E-10 2.51534 10−15 

0.6 1.838420E-13 1.879040E-10 2.87118 10−15 

0.7 2.032250E-13 1.776835E-10 3.18634 10−15 

0.8 2.217960E-13 1.724676E-10 3.46393 10−15 

0.9 2.366300E-13 1.847545E-10 3.70686 10−15 

1.0 2.508620E-13 3.005770E-10 3.91785 10−15 

 

 

 

Table 2a. Comparison of computed results for problem 2. 

X Exact solution 
Computed solution 

(Zurni et al.,2016) 

Computed solution 

( Badmus et al., 2015) 

Computed solution 

( 1 SHBM) 

0.1 0.90483741803595957316 0.90483741804503260091 0.904837417881202 0.90483741803610926985 

0.2 0.81873075307798185867 0.81873075309534995788 0.818730752939751 0.81873075307825276100 

0.3 0.74081822068171786607 0.74081822070486153894 0.740818220548903 0.74081822068208554991 

0.4 0.67032004603563930074 0.67032004606407889464 0.670320045918305 0.67032004603608289288 

0.5 0.60653065971263342360 0.60653065974444846468 0.606530659599218 0.60653065971313514706 

0.6 0.54881163609402643263 0.54881163612895298782 0.548811635994641 0.54881163609457120641 

0.7 0.49658530379140951470 0.49658530382799175192 0.496585303694640 0.49658530379198460169 

0.8 0.4493289641172215914 0.44932896415534885121 0.449328964033219 0.44932896411781628883 

0.9 0.40656965974059911188 0.40656965977917485733 0.406569659658082 0.40656965974120447940 

1.0 0.36787944117144232160 0.36787944121046227174 0.367879441100594 0.36787944117205094291 
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Table 2b. Comparison of ERROR for problem 2. 

x 
ERROR 

(Zurni et al.,2016) 
ERROR 

(Badmus et al., 2015) 
ERROR 

( 1 SHBM) 

0.1 9.0730E-12 1.5476E-10 1.4969669 10−13 

0.2 1.1768E-11 1.3823E-10 2.7090233 10−13 

0.3 2.3144E-11 1.3282E-10 3.6768384 10−13 

0.4 2.8440E-11 1.1733E-10 4.4359214 10−13 

0.5 3.1815E-11 1.1342E-10 5.0172346 10−13 

0.6 3.4927E-11 9.9385E-11 5.4477378 10−13 

0.7 3.6582E-11 9.6770E-11 5.7508699 10−13 

0.8 3.8127E-11 8.4003E-11 5.9469740 10−13 

0.9 3.8576E-11 8.2517E-11 6.0536752 10−13 

1.0 3.9020E-11 7.0848E-11 6.0862131 10−13 

 

 

Table 3a. Comparison of computed results and error for problem 3. 

x Exact solution 
Computed solution 

((2SEM)Zurni et al.,2016) 

Computed solution 

( 1 SHBM) 

ERROR 

((2 SEM) Zurni 

et al.,2016) 

ERROR 

( 1SHBM) 

0.1 107.7662301168309486 107.76623267141251405 107.7662301168309486 2.554000E-06 7.11492085 10−9 

0.2 115.5149409193028512 115.51494346840455900 115.51494094899193368 2.549000E-06 2.968908248 10−9 

0.3 123.2461630508845221 123.24616814117862409 123.24616312018877335 5.090000E-06 6.930425125 10−8 

0.4 130.9599271090910725 130.95993218819786255 130.95992722081203719 5.079000E-06 1.1172096469 10−7 

0.5 138.6562636455413535 138.65627125250773431 138.65626380247096727 7.607000E-06 1.5692961377 10−7 

0.6 146.3352031660153396 146.33521075612409816 146.33520337093594185 7.590000E-06 2.0492060225 10−7 

0.7 153.9967761305114566 153.99678623520317743 153.99677638619580276 1.010000E-05 2.5568434616 10−7 

0.8 161.6410129533038516 161.64102303550463010 161.64101326251512505 1.008000E-05 3.0921127345 10−7 

0.9 169.2679440029996051 169.26795658656269977 169.26794436849142965 1.258000E-05 3.6549182455 10−7 

1.0 176.8775996025958863 176.87761215807155490 176.87760002711233848 1.256000E-05 4.2451645218 10−7 

 

5 |Conclusions    

A recently introduced One-Step Hybrid Obrechkoff Type Block method has been created and utilized to 

address first-order initial value problems. This method is self-initiating and specifically crafted for solving a 

wide range of general first-order initial value problems within ordinary differential equations. Evaluations of 

the method's characteristics indicate its zero stability, consistency, convergence, and a sixth-order algebraic 

precision. Moreover, numerical assessments affirm its efficiency, demonstrating favorable comparisons 

against various existing methods detailed in Tables 1-3 within the literature. 
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