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1 |Introduction 

Zadeh [1] put forward the concept of fuzzy set (FS). FS represents the uncertainty of decision information 

by the membership degree  T x , which refers to the degree that which something belongs to a certain 

judgment. However, in the process of cognition, people tend to hesitate to different degrees, so Atanassov 

[2, 3] extended the FS and proposed the concept of an intuitionistic fuzzy set (IFS). IFS considers both 

membership and non-membership information, so it has a stronger performance in dealing with uncertain 

information. Atanassov and Gargov [4] extended the IFS to an interval-value intuitionistic fuzzy set (IVIFS). 

Smarandache [5] proposed the concept of a neutrosophic set (NS). NS includes the membership degree  T x

, uncertainty degree  I x  , and non-membership degree  F x  of elements. NS can handle uncertain and 
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inconsistent information. Wang and Zhang [6] further proposed the concept of an interval neutrosophic set 

(INS), where the representation of  T x ,  I x  and  F x  extend from a single value to an interval number 

respectively. Wang and Smarandache et al. [7] proposed the single-valued neutrosophic set (SVNS) theory. 

Ye and Fang [8] proposed the linguistic neutrosophic number (LNN), which was characterized independently 

by the truth, indeterminacy, and falsity of linguistic variables. Ye [9, 10]combined the uncertain linguistic set 

with INS to define the interval neutrosophic uncertain linguistic set (INULS). The first part of the interval 

neutrosophic uncertain linguistic variable represents the subjective evaluation value of the thing being 

evaluated, and the second part indicates membership degree, uncertainty degree, and non-membership degree. 

However, the interval neutrosophic part in INULS is still the real number rather than the linguistic number 

that easily expresses the linguistic information. To overcome this shortcoming, we introduce the concept of 

ILNULN, where the INULN is extended to an interval linguistic neutrosophic number. 

Information integration is a common activity in our daily life. In decision-making problems, it is necessary to 

consider the relationship between attributes and eliminate the impact of awkward data. For this purpose, 

Bonferroni [11] proposed the Bonferroni mean (BM) operator. BM operator has a desirable characteristic 

that it can capture the interrelationship of input arguments. Yager [12] further extended the BM operator and 

proposed some more efficient integration operators. Since the arithmetic average only considers the group 

decision and ignores the individual decision, Zhou et al. [13] proposed the standardized weighted BM 

operator. Later the BM operator is extended to a neutrosophic environment. Wei et al. [14] developed an 

uncertain linguistic Bonferroni mean (ULBM) operator to aggregate the uncertain linguistic information. For 

the MAGDM problem with intuitionistic uncertain linguistic variables (IULVs) as attribute values, Liu et al. 

[15] developed a group decision-making method based on the Bonferroni mean (BM) aggregation operator. 

Liu and Wang [16] introduced a single-valued neutrosophic normalized weighted Bonferroni mean 

(SVNNWBM) operator. Wei et al. [17] proposed some single-valued neutrosophic Bonferroni power 

aggregation operators and single-valued neutrosophic geometric Bonferroni power aggregation operators. 

Wang et al. [18] developed a simplified neutrosophic linguistic Bonferroni mean (SNLBM) operator and a 

simplified neutrosophic linguistic normalized weighted Bonferroni mean (SNLNWBM) operator. 

VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [19] is a method of MADM based on the 

ideal point. This method gives the ranking index with the ideal closest to the ideal solution, which maximizes 

the group utility and minimizes individual regret when selecting a solution. At present, many scholars have 

studied the VIKOR method and its application. Lopez et al. [20] utilized fuzzy logic and the VIKOR method 

to analyze the linguistic terms collected from the DMs and to rank the best alternatives that prevent dengue 

fever. Chen et al. [21] combined social relation analysis with linguistic VIKOR to select a new project 

involving ambient intelligence products. Albahri et al. [22] combined GDP and AHP-VIKOR to evaluate and 

optimize decentralized telemedicine hospitals based on integrated techniques. Due to the traditional VIKOR 

method only considering the closeness among the alternatives and the positive ideal solution, Liu [23] 

proposed the VIKOR method based on the relative closeness coefficient. This method takes the closeness 

coefficient between alternatives and positive ideal solution as well as the closeness coefficient between 

alternatives and negative ideal solution into account.  

The remainder of this paper is structured as follows. Section 2 briefly introduces some concepts of uncertain 

linguistic variables (ULVs), INS, INULS, related operators, and the VIKOR method. Section 3 introduces 

ILNULN and ILNULWABM operators. Section 4 introduces the VIKOR method based on the relative 

closeness coefficient under ILNULN and ILNULWABM operators. Section 5 gives a numerical example to 

illustrate the proposed MAGDM method. Section 6 makes a sensitivity analysis and related comparison. 

Section 7 is the conclusion. 

2 |Preliminaries 

Some basic concepts about ULVs, INS, INULS, and BM operators are reviewed to provide the mathematical 

support and theoretical guarantee for this paper. 
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2.1 |Uncertain Linguistic Variable 

Let

 

 0 1 1
, ,...,

l
S s s s


  be a linguistic set, where si is a linguistic variable. In general, l is odd. For example, when 

7l  , a linguistic term set S can be expressed as [24, 25]：  

  0 1 2 3 4 5 6 7 8
, , , , , , , , extremely poor,very poor,S s s s s s s s s s 

poor a little poor,medium,a little good good,very good,， ， excellent . 

Definition 1. [26-28] Suppose ,s ss
 

    , ,s s S
 

  and   . Then s is an ULV. 

2.2 |Interval Neutrosophic Set 

Definition 2. [5] Let X be a set of objects and x be the element in X. The NS A in X consists of the 

membership degree  AT x , uncertainty degree  AI x  , and non-membership degree  AF x , and it is defined 

as 
      ,, , 

A A A
A x T x I x F xx X

.  AT x ,  AI x  and  AF x  are non-standard subsets in ]0 [,1 

. Due to 

the sum of  AT x ,  AI x  and  AF x  is unlimited, so      0 3A A AT x I x F x    . 

Definition 3. [6] Let X be a set of objects and x be the element in X. The NS A on X consists of the 

membership degree  AT x , uncertainty degree  AI x  and non-membership degree  AF x . When  AT x ,  AI x  

and  AF x  are interval values in [0,1] respectively, then A is an INS which can be expressed as:
 

  , ( ) ( ) , ( ) ( ) , ( ) ., , ,          
L U L U L U

A A A A A A
A x T x T x I x I x F x F x x X

 

Similarly, the sum of  AT x ,  AI x  and  AF x  satisfies      0 3U U U

A A AT x I x F x   . 

2.3 |Interval Neutrosophic Uncertain Linguistic Set 

Definition 4. Let X be a set of objects and x be the element in X. An INULS A on X can be defined as

            , , , ,, , ,L U L U

A A A Ax x
A x s s T x T x I x I x

 
          

     ,L U

A AF x F x x X



 , where 
 x

s
  

and 
 x

s
  

belong to
 

linguistic set S,      0 1, ,   
L U

A AT x T x ,      0 1, ,   
L U

A AI x I x  and      0 1, ,   
L U

A AF x F x  with the 

condition      0 3U U U

A A AT x I x F x    for any x X . The function  AT x ,  AI x  and  AF x  represents 

the membership degree, uncertainty degree, and non-membership degree respectively with interval values of 

the element x in X to the uncertain linguistic variable    
, 

 x x
s s
  . 

Definition 5. For any two interval neutrosophic uncertain linguistic variables (INULVs): 

                
1 11 1 1 1 1 1 1

, , ,, , ,,L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

 
              ，

                
2 2 2 2 2 2 22 2

, ,, , ,L U L U L U

A A A A A Aa a
a s s T T I Ia a a a aF F a

 
            ， ， ，then the operational laws for INULVs are as follows: 

(1)                            
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Definition 6. Broumi et al. [9] For any two INULVs 

                
1 11 1 1 1 1 1 1

, , ,, , ,,L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

 
              ，

 

                
2 22 2 2 2 2 2 2

, , ,, , ,,L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

 
             

, the Hamming distance between a1 and a2 is defined 

as: 

 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
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Definition 7. [10] For an INULV    
[ , ],

a a
a s s

 
   , ,( ) ( ) , ,( ) ( ) , ( ) ( )L U L U L U

A A A A A A
T a T a I a I a F a F a          

, then the 

score function of a can be expressed as: 

  ( ) (
1

( ) 4+ + .
12

) L L L U U U
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2.4 |Related Operators 

Definition 8. [11] Let , 0p q  , and  1,2,...ia i n  be a collection of nonnegative real numbers. If

 

1

n
,

1 2

i=1 1

1
, ,...

( 1)






 
 
 
 

 ，

p q
n

p q p q

n i j

j
i j

BM a a a a a
n n

then 
,p qBM  is called the Bonferroni mean (BM) operator.

 

2.5 |VIKOR Method 

Definition 9. [19] VIKOR is a method of MADM based on the ideal point. It is regarded as a pragmatic 

approach to search for a compromise solution appearing in a set that includes conflicting criteria. The multi-

criterion measurement of compromise order is developed from the P
L  measure and it is an aggregate 

function of distance functions. 1
L  is the sum of all individual regrets, and 

L  is the maximum of individual 

regrets. The assembly function of the VIKOR method is as follows: 

 
 

1

,
1

,1 , 1,2,...



 


    
      

    



p p

n j
ij ij

p j
j

ij ij

p j n
f f

L
f f



 
Where  1,2,...

j
j n  is the relevant weight of the criteria, 

Pj
L  represents the distance of each alternative from 

the positive ideal solution, =maxij ij
j

f f
  represents the positive ideal solution, and = min



ij ij
j

f f  represents the 

negative ideal solution. The main advantage of this method is that it produces a solution by maximizing group 

utility and minimizing the opponent's individual regret. 

2.5.1 |Calculation Steps of VIKOR Method 

 1 2
= , ,...

m
A A A A is a set of alternatives;  1 2

= , ,...
n

C C C C represents n criteria; and 
1 2

=( , ,... )T

n
   

 
denotes a weight 

vector of criteria with 
j

  1,  2, , ) 0 (  j n  and  
1

1.



n

j
j



 

The decision matrix is  



ij m n

Y y . 

Step 1: Normalize the decision matrix  



ij m n

Y y  

Step 2: Calculate the positive ideal alternative 

j
y  and the negative ideal alternative -

j
y  by score function

         -= max max = min minj ij ij j ij ijy y S y y y S y = ， . 

Step 3: Compute the group utility values i
S  and the individual regret values   1,  2, ,( ) 

i
i mR  . Liu [23] 

thought that the traditional VIKOR method was not reasonable to consider only the closeness of the 

alternative to the positive ideal solution. So she proposed the VIKOR method based on the relative closeness 
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coefficient. This method takes the closeness coefficient between alternatives and positive ideal solution as 

well as the closeness coefficient between alternatives and negative ideal solution into account and aims to 

obtain a relative optimal compromise solution through relative group utility and relative individual regret. 

The utility value 
i

S  and the regret value   1,  2, ,( ) 
i

i mR  by following formulations: 

   
 

   
 1

max
n

j ij j ij j ij j ij

i j i j
j

j j j j j

d y y d y y d y y d y y
S R

d y y d y y
 

   

   


     
   

 
 ，

 

Step 4: Calculate the values 
i

Q
 

 1
 

   

 
  

 

i i

i

S S R R
Q

S S R R
 

 

Where max 
i

i
S S , =min

i
i

S S , max 
i

i
R R , =min

i
i

R R  and ɛ represents the weight of the strategy of ‘the 

majority of criteria’. In the comprehensive evaluation, the value of ɛ is determined according to the subjective 

tendency of the DM. If the DM pays more attention to group benefits, then ɛ > 0.5; if the DM is focused 

more on individual regret minimization, then ɛ < 0.5; otherwise if the DM pursues both the group benefit 

and the individual regret value minimum, then ɛ = 0.5. 

Step 5: Sort the 
i

Q in ascending order. 

Step 6: Test the compromise solution. 

Condition 1: Acceptable advantage/ 

   12 - 1/( -1)Q A Q A m where 
2A  ranks second in the ordered list by Q ;  

Condition 2: Acceptable stability in the process of decision-making 

1A must be the best sorted by S  or/and R . This compromise solution holds steady during the whole 

decision-making process. 

A set of compromise solutions is obtained if it does not satisfy one of the following conditions: 

1A  and 
2A  are compromise solutions if only condition 2 is not satisfied; or 

1 2, ,... MA A A  are compromise 

solutions if condition 1 is not satisfied; and 
MA  is decided by the constraint：    1- 1/( 1)MQ A Q A m    for 

maximum M. 

3 |ILNULN and ILNULWABM Operator 

Definition 10. Let X be a set of objects and x be the element in X. An ILNULN A in X can be defined as 

                , , ,, , , , ,              L U L U L U
A A A A A AT x T x I x I x F x Fx xx

A s s s s s s s s
 

where s S . The function 
       

,, ,   
   L U L U

A A A AT x T x I x I x
s s s s

 
and 

   
, 

 L U
A AF x F x

s s

 
represents the membership degree, uncertainty degree, and non-membership degree respectively 

with interval values of the element x in X to the uncertain linguistic number    
, 

 x x
s s
 

. 

Definition 11. For any two ILNULNs,                1 1 1 1 1 1 1 1
1

, , , ,, , ,L U L U L U
A A A A A AT T Ia a a a a a a aI F F

a s s s s s s s s
 

             
，
 

                2 2 2 2 2 2 2 2
2

,, , , , ,,L U L U L U
A A A A A A

a a a a a a aT aT I I F F
a s s s s s s s s

 
               , then the operational laws for ILNULNs are as follows： 
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Definition 12. For any two ILNULNs 
   1 11

, ,
a a

a s s
 

                
1 1 1 1 1 1
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, then the operational properties for ILNULNs 

are as follows:
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1 2 2 1
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1 2 2 1
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(3)  1 2 1 2
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1 1 1
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Definition 13. For any two ILNULNs 
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, the Hamming distance between a1 and a2 

is defined as: 
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Definition 14. For an ILNULN      , ,, L
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        ,, ,
i i i i

L U L U
A A A AI I F Fa a a a

s s s s   
   

 be a set of ILNULNs, and 

 1 2
= , ,...

T

n
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 . Then the aggregated result 

by ILNULWABM operator is expressed as： 
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That is, when n=2, Eq. (2) is right. 

(b) Suppose that when n=k, Eq. (2) is right; that is,    
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We also use the mathematical induction on k as follows: 
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(ii) Suppose that when k=l, the Eq.(4) is right; that is, 
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That is, for k=l+1, Eq. (4) is also right.

 
(iii) So, for all k, Eq. (4) is right. 
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Next, some special cases of the ILNULWABM operator concerning the parameters p and q will be 

demonstrated respectively.  

(1) When p=1 and q=0, then 
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(2) When p=1 and q=1, then 
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(3) When p=0.5 and q=0.5, then 
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Definition 16. The following section investigates some additional properties of the ILNULWABM operator. 

Theorem 1. (commutativity). Let  ' ' '

1 2
, ,...

n
a a a  be any permutation of  1 2

, ,...
n

a a a ; then

   , ' ' ' ,

1 2 1 2
, ,... , ,...p q p q

s n s n
ILNULWABM a a a ILNULWABM a a a

 
  

Proof: Let  

 
 

   

1

,

1 2
1 1

1
, ,...

-1

p q
n n qpp q

n i i j j
i j

i j

ILNULWABM a a a a a
n n
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n n qp

p q

n i i j j
i j

i j

ILNULWABM a a a a a
n n


 



 


 
  
 
  . 

Since  ' ' '

1 2
, ,...

n
a a a  is any permutation  1 2

, ,...
n

a a a , we have 

 
   

 
   

1 1

' '

1 1 1 1

1 1
.

-1 -1

p q p q
n n n nq qpp

i i j j i i j j
i j i j

i j i j

a a a a
n n n n

   

 

   
 

   
    
   
     

Such,    , ' ' ' ,

1 2 1 2
, ,... , ,...p q p q

n n
ILNULWABM a a a ILNULWABM a a a

 


 

Theorem 2. (monotonicity) Let
i

a  and
i

b  be two collections of ILNULNs. If 
i i

a b for all i, i.e. 

               
, ,, ,

L L U U
i i i i A i A i A i A i

a b a b T a T b T a T b
s s s s s s s s
   

                  
, , ,

L L U U L L U U
A i A i A i A i A i A i A i A iI a I b I a I b F a F b F a F b

s s s s s s s s    ， then 

   , ,

1 2 1 2
, ,... ,b ,...bp q p q

n n
ILNULWABM a a a ILNULWABM b

 
 . 
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Proof： 

(1) Since
    i ia b
s s
 

  and
    i ia b
s s
 

 for all i, we have    i i
a b  and    i i

a b  . So  

 
     

 
     

1 1

1 1 1 1

1 1

-1 -1

p q p q
n n n nq qp p

i i j j i i j j
i j i j

i j i j
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n n n n

      

 

   
 

   
    
   
   

and 
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n n n n

       

 

   
 

   
    
   
     

(2) Since    L L
A i B iT a T b

s s , we have    L L

A i B i
T a T b  and
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j ji iL

A i

L L L
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Further, we get  
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i.e. 
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Similarly,  
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In summary, we can prove  

   , ,
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Theorem 3. (boundedness) The ILNULWABM operator lies between the max and min operators: 

 
 

 1 2 1 2,
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min , ,... max , ,...
, ,... .
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a a a a a a
ILNULWABM a a a
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Proof: Let  1 2
a min , ,...

n
a a a   and  1 2

max , ,...
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a a a a  . 

Since
 ,

i j
a a a a   , according to the monotonicity in Theorem 2, we know that 
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So,  ,

1 2
, ,...p q

n

a a
ILNULWABM a a a

n n


 

  . 

4 |The VIKOR Method Based on Relative Closeness Coefficient 

under ILNULN and ILNULWABM Operator 

For a MAGDM problem, there are a discrete set of alternatives  1 2
= , ,...,

m
A A A A  and attributes  1 2

= , ,...
n

C C C C  with 

weight vector  1 2
= , ,...

T

n
    . There are λ DMs  1 2

= , ,...D D D D
  

assess this problem and the relative 

importance vector is  1 2
= , ,...

T

W W W W


. For the DM 
kD , the evaluation value of 

i
A  on attribute 

j
C  is represented 

by the decision matrix  =


k k

ij m n
R r , where 

           ( ) ( )
, , ,, , ., ,

       
        


        

k k L k U k L k U k L k U k
ij ij ij ij ij ij ij ijr r T r T r I r I r F r F

k

i rj
s s s s sr s s s
 

 The steps of the VIKOR method based on the 

relative closeness coefficient under ILNULNs and ILNULWABM operators are shown as follows: 

Step 1: Normalize the decision matrix  k


k

ij m n
R r . 

The normalized matrix F  is calculated by: 

 
 

 
k

k

2
k

1

1,2,..., ; 1,2,..., .
ijk

ij mm n

ij

i m n

r
F f i m j n

r
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Step 2: Aggregate information from each DM. To aggregate the evaluation values of DMs, we use the 

ILNULWABM operator to aggregate the evaluation information matrix 
kF  to obtain the integration matrix 

F :    1 2, , ,...


 
ij ij ij ij ijm n

F f f ILNULWABM f f f 

. 

Step 3: Compute the positive ideal alternative 

ij
f  and the negative ideal alternative 

ij
f . 

We can use the score function to obtain the positive ideal alternative and the negative ideal alternative:

         -= max max = min min = ，
j ij ij j ij ij

f f S f f f S f
 

  
1

( ) 4+
12

( ) ( )
ij ij ij ij ij ij

L L L

ij ij

U U U

A A A A A A ij
S f f f f f fT I F T f fI Ff   ( ) - ( ) - ( ) + ( ) - ( ) - ( )

 

Step 4: Compute the group utility values 
i

S  and individual regret values 
i

R . 

   
 

   
 1

max
n

j ij j ij j ij j ij

i j i j
j

j j j j j

d f f d f f d f f d f f
S R

d f f d f f
 

   

   


     
   

 
 ，  

Step 5: Compute the values 
i

Q
 

 1
 

   

   
   

   

i i

i

S S R R
Q

S S R R
 

 

Where max  
i

i
S S , =min 

i
i

S S , max  
i

i
R R , =min 

i
i

R R  and   represents the weight of the 

strategy of the “the majority of criteria”. 

Step 6: Sort the 
i

Q in descending order. 

Step 7: Test the compromise solution. 

5 |A Numerical Example 

This article proposes the concept of interval linguistic neutrosophic uncertain linguistic numbers. ILNULN 

consists of two parts: interval linguistic neutrosophic and uncertain linguistic number. The interval linguistic 

neutrosophic reflects the subjective linguistic judgment of the decision maker on the given uncertain linguistic 

number, and the uncertain linguistic number reflects the attitude of the decision maker towards the evaluation 

object. Now we consider a MAGDM problem. Suppose there are four alternatives labeled 
1 2 3 4
, , ,A A A A  and 

three attributes labeled 
1 2 3
, ,C C C  whose weight vector is  = 0.35,0.4,0.25

T

 . Three DMs assess this problem 

and the relative importance vector is  = 0.33,0.17,0.5
T

W . Here, we let  0,1,2,...8 
i

S s i  where is  

represents a possible value for a linguistic number, and 

  0 1 2 3 4 5 6 7 8
, , , , , , , , extremely poor,very po  or,S s s s s s s s s s   

poor,a little poor,medium,a little good good,very good,， excel  lent . The DMs assign values to the alternatives 

through ILNULNs to form three decision matrices, as shown in Tables 1-3.  

Step 1: Normalize the decision matrix 
kR .  

Step 2: Aggregate information from each DM. We use the ILNULWABM operator to gather decision 

information from all DMs. Here we let p=1 and q=1. The group decision matrix is shown in Table 4. 

Table 1. Decision matrix R1 of the DM
1D . 

 C1 C2 C3 

A1 <(S3,S4),([S6,S7][S2,S4][S0,S1])> <(S5,S6),([S5,S6][S2,S3][S1,S2])> <(S4,S5),([S4,S5][S2,S3][S3,S4])> 

A2 <(S4,S5),([S5,S6][S4,S5][S2,S3])> <(S4,S5),([S4,S5][S3,S4][S2,S3])> <(S7,S8),([S5,S6][S1,S2][S2,S3])> 

A3 <(S7,S8),([S4,S5][S2,S3][S3,S4])> <(S3,S4),([S6,S7][S2,S4][S1,S2])> <(S3,S4),([S4,S5][S3,S4][S3,S4])> 

A4 <(S5,S6),([S5,S6][S2,S3][S2,S3])> <(S6,S7),([S3,S4][S2,S4][S4,S5])> <(S7,S8),([S7,S8][S2,S3][S0,S1])> 
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Table 2. Decision matrix R2 of the DM 
2D . 

 1C 2C 3C 

1A ])>2,S1][S4,S3][S8,S7),([S4,S3<(S ])>3,S2][S3,S2][S6,S5),([S5,S4<(S ])>3,S2][S4,S3][S6,S5),([S3,S2<(S 

2A ])>3,S2][S4,S3][S5,S4),([S7,S6<(S ])>2,S1][S4,S3][S7,S5),([S8,S7<(S ])>4,S3][S3,S2][S5,S4),([S8,S7<(S 

3A ])>1,S0][S2,S1][S7,S6),([S3,S2<(S ])>4,S3][S3,S2][S5,S4),([S4,S3<(S ])>1,S0][S4,S3][S7,S6),([S6S,5<(S 

4A ])>3,S2][S3,S2][S6,S5),([S8,S7<(S ])>2,S1][S4,S3][S7,S6),([S6,S5<(S ])>3,S2][S3,S2][S6,S5),([S5,S4<(S 

 

Table 3. Decision matrix R3 of the DM 
3D . 

 1C 2C 3C 

1A ])>2,S1][S3,S2][S7,S6),([S5,S4<(S ])>2,S1][S3,S2][S6,S5),([S5S,4<(S ])>2,S1][S4,S2][S7,S6),([S3,S2<(S 

2A ])>3,S2][S2,S1][S6,S5),([S4,S3<(S ])>1,S0][S2,S1][S8,S7),([S7,S6<(S ])>4,S3][S3,S2][S6,S5),([S6,S5<(S 

3A ])>4,S3][S3,S2][S5,S4),([S3,S2<(S ])>2,S1][S3,S2][S7,S6),([S3,S2<(S ])>3,S2][S4,S3][S6,S5),([S4,S3<(S 

4A ])>1,S0][S4,S2][S8,S7),([S7,S6<(S ])>3,S2][S4,S2][S6,S5),([S6,S5<(S ])>4,S3][S3,S2][S5,S4),([S8,S7<(S 

 
Table 4. Group decision matrix  F. 

 1C 2C 

1A ])>69110.,S50020.],[S82410.,S81380.],[S23720.,S24450.),([S0.1197,S0.1099<(S ])>76760.,S73530.],[S76680.,S77700.],[S9070.1,S19400.),([S0.1498,S650.14<(S 

2A ])>83470.,S83760.],[S82410.,S83990.],[S6710.1,S6140.1),([S0.1541,S0.1503<(S ])>72260.,S4870.4],[S79750.,S81590.],[S20860.,S9670.1),([S0.1847,S0.1880<(S 

3A ])>81620.,S8190.7],[S73760.,S72200.],[S7160.1,S4660.1),([S0.1243,S0.1118<(S ])>80680.,S79860.],[S79310.,S77700.],[S9960.1,S20410.),([S0.1052,S0.0928<(S 

4A ])>78020.,S61500.],[S79000.,S76990.],[S20110.,S20130.),([S0.2004,S0.2036<(S ])>85620.,S7930.8],[S38680.,S81630.],[S7260.1,S7160.1),([S0.1778,S0.1803<(S 

 3C 

1A ])>79710.,S78000.],[S82190.,S80770.],[S8960.1,S9170.1),([S0.0969,S0.0824<(S 

2A ])>84300.,S85140.],[S74240.,S71490.],[S7760.1,S7650.1),([S0.2002,S0.2058<(S 

3A ])>75360.,S41680.],[S84920.,S87230.],[S9360.1,S9680.1),([S0.1268,S0.1183<(S 

4A ])>74230.,S2110.6],[S77620.,S76840.],[S21430.,S22190.),([S0.1778,S0.1788<(S 

 

Step 3: Calculate the positive ideal alternative 

ij
f  and the negative ideal alternative 

ij
f . Use the score 

function to obtain the positive ideal alternative and negative ideal alternative. The score values are as follows: 

11 12 13 21

22 23 31 32

33 41 42 43

( ) 0.0316 ( ) 0.033 ( ) 0.0176 ( ) 0.0251

( ) 0.0503 ( ) 0.0407 ( ) 0.0252 ( ) 0.0203

( ) 0.0251 ( ) 0.0487 ( ) 0.0285 ( ) 0.0454

S f S f S f S f

S f S f S f S f

S f S f S f S f

   

   

   

， ， ， ，

， ， ， ，

， ， ，

 
Due to     = max max

j ij ij
f f S f =

 
and - =

j
f      min min

ij ij
f S f= , apparently, the ijf 

 and ijf 
 are shown 

as follows: 
1 41 1 21 2 22 2 32 3 43 3 13

= , = , = , = , = , .f f f f f f f f f f f f        

Step 4: Compute the group utility values 
i

S and individual regret values 
i

R
 

1 2 3 4

1 2 3 4

-0.4896, 0.6922, -0.8550, 0.7706, 

0.032, 0.4, -0.105, 0.35.

S S S S

R R R R

       

         

Step 5: Compute the values 
i

Q
. 
Here we make ɛ = 0.5. The VIKOR values 

i
Q for each alternative can 

be calculated as follows:
 1 2 3 4

0.2480 0.9759 0 0.9505Q Q Q Q       ， ， ，  

Step 6: Sort the 
i

Q
 
in descending order. 

We can sort the alternatives according to the values of 
i

S , 
i

R  and 
i

Q . The larger the value, the better 

the alternative. Then, according to the ranking process, three ordered lists can be obtained as displayed in 

Table 5. 
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Table 5. Group utility value, individual regret value. 

 1A 2A 3A 4A Ranking results 

iSΔ -0.4896 0.6922 -0.855 0.7706 3A ≻1A ≻2A ≻4A 

iRΔ 0.032 0.4 -0.105 0.35 3A ≻1A ≻4A ≻2A 

iQΔ 0.2480 0.9759 0.0000 0.9505 3A ≻1A ≻4A ≻2A 

 

Step 7: Test the compromise solutions. The alternatives are ranked by Q：
2 4 1 3

      Q Q Q Q . The best 

alternative is
2

A  and the second alternative is 
4

A . Due to 
2 4

1
0.0254 0.3333

4 1
Q Q    


, so it doesn't 

satisfy condition 1- acceptable advantage. So
 2
A

 
is the best alternative and 

4
A could be the compromise 

solution. 

6 |Sensitivity Analysis and Related Comparison 

6.1 |Sensitivity Analysis  

Due to the decision result being related to the parameters p, q, so it is necessary to analyze different p and q. 

The sorting result is shown in Table 6. 

It can be seen that the optimal solution is always 
2

A  based on different p and q. But the overall order is a 

little different. So p and q have a limited impact on the ranking result. 

Similarly, in the VIKOR method, the compromise evaluation value of each alternative is affected by the group 

utility weight ɛ. In order to consider the impact of different values of ɛ on the evaluation results, the analysis 

is performed by setting different ɛ to observe their impact. The impact of the sorting result is shown in Table 

7. It can see that when  = 0 0.2 0.4 0.5 0.6 ， ， ， ， , the best alternative is 
2

A ; when  = 0.8 1 ， , the best alternative 

is 
4

A . ɛ has an effect to decision result. 

Table 6. Ranking results under different ,p q
 

 1A 2A 3A 4A Ranking results Best alternative 

p=1,q=1 0.2480 0.9759 0 0.9505 3> A1> A4> A2A 2A 

p=1,q=0 0.0588 1 0 0.8907 3> A1> A4> A2A 2A 

p=0,q=1 0.0588 1 0 0.8907 3> A1> A4> A2A 2A 

p=0.5,q=0.5 0 1 0.6824 0.9102 1> A3> A4> A2A 2A 

Table 7. Ranking results under different ɛ (p=1,q=1). 

  1A 2A 3A 4A Ranking results Best alternative 

ΔQ 

ɛ=0 0.2712 1.0000 0.0000 0.9010 3> A1> A4> A2A 2A 

ɛ=0.2 0.2642 1.0000 0.0000 0.9309 3> A1> A4> A2A 2A 

ɛ=0.4 0.2572 1.0000 0.0000 0.9608 3> A1> A4> A2A 2A 

ɛ=0.5 0.2480 0.9759 0.0000 0.9505 3> A1> A4> A2A 2A 

ɛ=0.6 0.2502 1.0000 0.0000 0.9908 3> A1> A4> A2A 2A 

ɛ=0.8 0.2432 1.0000 0.0000 1.0207 3> A1> A2> A4A 4A 

ɛ=1 0.0472 1.0000 0.0000 1.0506 3> A1> A2> A4A 4A 

 

6.2 |Related Comparison 

To illustrate the effectiveness and superiority, we compared the proposed MAGDM method with the WAA 

operator, TOPSIS, and the original VIKOR method, respectively. For convenient comparison, Table 8 lists 

all the MAGDM results.  

As shown in the table, similar sorting results are obtained through the calculation of the same example, and 

the best alternative is always A2. However, different from the WAA operators, the ILNULWABM operators 
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depend on input parameters and consider the interaction between different attributes. And the VIKOR 

method based on the relative closeness coefficient applies the TOPSIS method's closeness to the VIKOR 

method to make the decision result more reasonable. 

Table 8. Comparison table based on the numerical example above. 

Method Ranking results Best alternative 

Method of this article A2≻ A4≻ A1≻ A3 A2 

Method based on WAA operator A2≻ A4≻ A1≻ A3 A2 

TOPSIS A2≻ A4≻ A3≻ A1 A2 

 

7 |Conclusion 

This article proposes the concept of ILNULN. ILNULN consists of two parts: interval linguistic 

neutrosophic and uncertain linguistic number. The interval linguistic neutrosophic reflects the subjective 

linguistic judgment of the DM on the given uncertain linguistic number, and the uncertain linguistic number 

reflects the attitude of the DM towards the evaluation object. Based on ILNULN, this paper studies its basic 

properties, algorithms, scores function, and Hamming distance. WABM operator integrates the correlation 

of aggregation parameters. So we combine the ILNULN and WABM operator to propose the ILNULWABM 

operator. In addition, this paper applies ILNULN and ILNULWABM operators to the VIKOR method 

based on the relative closeness coefficient and discusses the impact of different parameters p, q, and ɛ on the 

MAGDM. 

This article discusses and studies the WABM operator with ILNULN, and it has achieved certain results. But 

this research still needs to be further improved: 

This article only considers the MAGDM problem in which the attribute weights and DM weights are crisp 

numbers but doesn't consider the linguistic value. However, this situation is common in practical decision-

making problems. Therefore, we can conduct further research in the future. 

In future research, it will be necessary and meaningful to apply the proposed interval linguistic neutrosophic 

uncertain linguistic MAGDM method to solve some practical problems in other areas, such as personnel 

evaluation, medical artificial intelligence, and pattern recognition. 
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