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Abstract
This paper proposes the concept of interval linguistic neutrosophic uncertain linguistic number (IL-NULN). As a
new and effective way of NS expression, ILNULN combines interval linguistic neutrosophic numbers and
uncertain linguistic numbers, which can better handle uncertain and inconsistent information. In the ILNULN,
the first part “uncertain linguistic number” reflects the attitude of the decision maker (DM) towards the evaluation
object, and the second part “interval linguistic neutrosophic number” reflects the subjective linguistic judgment of
the DM on the given uncertain linguistic number. In addition, considering the weighted arithmetic Bonferroni
mean (WABM) operator integrates the correlation of aggregation parameters, this paper combines the ILNULN
and WABM operator to propose the interval linguistic neutrosophic uncertain linguistic weighted arithmetic
Bonferroni mean (ILNUL-WABM) operator. Finally, under the environment of interval linguistic neutrosophic
uncertain linguistic number, this paper uses the ILNULWABM operator to make VIKOR decision based on the
relative closeness, and gives a practical example to solve multi-attribute group decision making (MAGDM)

problems.

Keywords: Multi-Attribute Group Decision-Making, Interval Linguistic Neutrosophic Uncertain Linguistic Number, Weighted
Arithmetic Bonferroni Mean Operator, VIKOR.

1 | Introduction

Zadeh [1] put forward the concept of fuzzy set (FS). FS represents the uncertainty of decision information

by the membership degree T(X), which refers to the degree that which something belongs to a certain
judgment. However, in the process of cognition, people tend to hesitate to different degrees, so Atanassov
[2, 3] extended the FS and proposed the concept of an intuitionistic fuzzy set (IFS). IFS considers both
membership and non-membership information, so it has a stronger performance in dealing with uncertain
information. Atanassov and Gargov [4] extended the IFS to an interval-value intuitionistic fuzzy set (IVIES).

Smarandache [5] proposed the concept of a neutrosophic set (NS). NS includes the membership degree T

, uncertainty degree 1) , and non-membership degree F(9) of elements. NS can handle uncertain and
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inconsistent information. Wang and Zhang [6] further proposed the concept of an interval neutrosophic set

(INS), where the representation of T (X), ') and F) extend from a single value to an interval number
respectively. Wang and Smarandache et al. [7] proposed the single-valued neutrosophic set (SVNS) theory.
Ye and Fang [8] proposed the linguistic neutrosophic number (LNN), which was characterized independently
by the truth, indeterminacy, and falsity of linguistic variables. Ye [9, 10jcombined the uncertain linguistic set
with INS to define the interval neutrosophic uncertain linguistic set (INULS). The first part of the interval
neutrosophic uncertain linguistic variable represents the subjective evaluation value of the thing being
evaluated, and the second part indicates membership degree, uncertainty degree, and non-membership degree.
However, the interval neutrosophic part in INULS is still the real number rather than the linguistic number
that easily expresses the linguistic information. To overcome this shortcoming, we introduce the concept of
ILNULN, where the INULN is extended to an interval linguistic neutrosophic number.

Information integration is a common activity in our daily life. In decision-making problems, it is necessary to
consider the relationship between attributes and eliminate the impact of awkward data. For this purpose,
Bonferroni [11] proposed the Bonferroni mean (BM) operator. BM operator has a desirable characteristic
that it can capture the interrelationship of input arguments. Yager [12] further extended the BM operator and
proposed some more efficient integration operators. Since the arithmetic average only considers the group
decision and ignores the individual decision, Zhou et al. [13] proposed the standardized weighted BM
operator. Later the BM operator is extended to a neutrosophic environment. Wei et al. [14] developed an
uncertain linguistic Bonferroni mean (ULBM) operator to aggregate the uncertain linguistic information. For
the MAGDM problem with intuitionistic uncertain linguistic variables (IULVs) as attribute values, Liu et al.
[15] developed a group decision-making method based on the Bonferroni mean (BM) aggregation operator.
Liu and Wang [16] introduced a single-valued neutrosophic normalized weighted Bonferroni mean
(SVNNWBM) operator. Wei et al. [17] proposed some single-valued neutrosophic Bonferroni power
aggregation operators and single-valued neutrosophic geometric Bonferroni power aggregation operators.
Wang et al. [18] developed a simplified neutrosophic linguistic Bonferroni mean (SNLBM) operator and a
simplified neutrosophic linguistic normalized weighted Bonferroni mean (SNLNWBM) operator.

ViseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [19] is a method of MADM based on the
ideal point. This method gives the ranking index with the ideal closest to the ideal solution, which maximizes
the group utility and minimizes individual regret when selecting a solution. At present, many scholars have
studied the VIKOR method and its application. Lopez et al. [20] utilized fuzzy logic and the VIKOR method
to analyze the linguistic terms collected from the DMs and to rank the best alternatives that prevent dengue
fever. Chen et al. [21] combined social relation analysis with linguistic VIKOR to select a new project
involving ambient intelligence products. Albahri et al. [22] combined GDP and AHP-VIKOR to evaluate and
optimize decentralized telemedicine hospitals based on integrated techniques. Due to the traditional VIKOR
method only considering the closeness among the alternatives and the positive ideal solution, Liu [23]
proposed the VIKOR method based on the relative closeness coefficient. This method takes the closeness
coefficient between alternatives and positive ideal solution as well as the closeness coefficient between

alternatives and negative ideal solution into account.

The remainder of this paper is structured as follows. Section 2 briefly introduces some concepts of uncertain
linguistic variables (ULVs), INS, INULS, related operators, and the VIKOR method. Section 3 introduces
ILNULN and ILNULWABM operators. Section 4 introduces the VIKOR method based on the relative
closeness coefficient under ILNULN and ILNULWABM operators. Section 5 gives a numerical example to
illustrate the proposed MAGDM method. Section 6 makes a sensitivity analysis and related comparison.
Section 7 is the conclusion.

2 | Preliminaries

Some basic concepts about ULVs, INS, INULS, and BM operators are reviewed to provide the mathematical
support and theoretical guarantee for this paper.
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2.1 | Uncertain Linguistic Variable

Let s ={s,,s,,...,5.,} bealinguistic set, where s;is a linguistic variable. In general, /is odd. For example, when
| =7, alinguistic term set S can be expressed as [24, 25] :
S ={s,,5,,5,,5,.5,:5,,5;:S,, S, | = {extremely poor, very poor,

poor, a little poor, medium, a little good, good, very good, €*Cellent}

Definition 1. [26-28] Suppose S=|5,,5, |, 5,5, €S and 6<p. Then sis an ULV.

2.2 |Interval Neutrosophic Set

Definition 2. [5] Let X be a set of objects and x be the element in X. The NS 4 in X consists of the

membership degree Ta (X), uncertainty degree (%) , and non-membership degree Fa(X) , and it is defined
A={(xT, (). LX) FL ()X e X} 1 (x) 1(x)

the sum of 1A (X), 14(%) and Fa(¥) i unlimited, so

and Fa() are non-standard subsets in 107,171 . Due to
0 <T,(X)+1,(X)+F,(x)<3

as

Definition 3. [6] Let X be a set of objects and x be the element in X. The NS .4 on X consists of the
membership degree Ta () , uncertainty degree (%) and non-membership degree Fa (%) When TA(X), (%)

and Fa() are interval values in [0,1] respectively, then 4 is an INS which can be expressed as:

A= ([T 0T 0L (10911 [ (%) F 09 ke X .

Similarly, the sum of T, (x), Ia(x) and F,(x) satisfies 0<Ty (x)+13 (x)+FY (x)<3

2.3 |Interval Neutrosophic Uncertain Linguistic Set

Definition 4. Let X be a set of objects and x be the element in X. An INULS 4 on X can be defined as
A= (0[50 S0 ([T TE (OLL1E00 12 (0], [FE ). FR () lxe x|+ where s, and s,
belong to linguistic set S, [Ty ()T (¥)]<[04, (110,12 0] <oy and [E2 (x).FY (0] <[oa] with the
condition 0<TY (x)+1¥ (x)+FY (x)<3 for any X€ X . The function T, (x), 1,(x) and F,(x) represents

the membership degree, uncertainty degree, and non-membership degree respectively with interval values of

the element x in X to the uncertain linguistic variable [Sg(x) , SP(X)] .

Definition 5. For any two interval neutrosophic uncertain linguistic variables (INULVs):

1B <[ Sapso | ([T H(@)-TH@)TH (@) T2 () +T2 () -T2 ()78 (2] (15 (2)1: (=),
J{a Ft(a,), A<a1>F:<a2>])>

< oe)otar)’ ([TAL (3)T) ()T,

o 17 (3, ][F (a)+Fy(a,)-F:(a)F(

%«x=<[smal,,sw}([l—@—ﬁ<a1>)‘,1—(1—15 (@) B0 @) (2 @) (@) (7 (@) (220

@) & =[5, (@) (T @) ][00 @) 212 @) J[1-(0-F (2)) -1 ) ]| (220)
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Definition 6. Broumi et al. [9] For any two INULV's a :qsﬂaﬂlsmﬂ“[r(al)‘Tu (al)]v[lk(al)vﬁ (al)]’([FAL (al)iFAU (al)]»

A A

o= ([0S JT )T @)1 2) 12 (@] R (a).F (2)])) T Hamming distance between ar and azis defined

as:

d(a,a,)= s 1(\ (a)T{(a)-0(a,)T () +|0(a)TAa)-0(a,)T5(a,) +|0(a)11a) - 6(a,)113,) +|0(a)1{a) - 6(a,)14a,)|+

|6(a)F{a)-0(a,)F{a,) +|0(a)F{a)-0(a,)F{a,) Mp )T{a) - p(a,)T &) +|p(@)Ta) - p(a,)THa,)|+
p(2)113) - p(a,)1{a,)|+|p@)14a) - p(a,)14a,)|+|p(@)F{a) - p(&,)F{&,)|+|p(@)F{a) - p(a,)F{a)])
Definition 7. [10] For an INULV a :<[Sn9(a)’sp(a)]’ (I:TAL (a),T: (a)],[lk(a), I;J (a)]:I:FAL (a), F:' (a):l)> , then the

score function of  can be expressed as:

S(a)= l(9() +p(@)(4+T3(a)- 1(8)- Fi(a)+T,(a)- 13(@) - Fi(a)).
12

2.4 | Related Operators

Definition 8. [11] Let p,q>0, and a(i=12..n) be a collection of nonnegative real numbers. If

BM " (a,,a,,..a,) = ( n(nl—l) anlzillai”a? ]mq _ then BM™ is called the Bonferroni mean (BM) operator.

2.5 | VIKOR Method

Definition 9. [19] VIKOR is a method of MADM based on the ideal point. It is regarded as a pragmatic
approach to search for a compromise solution appearing in a set that includes conflicting criteria. The multi-

o . : L o
criterion measurement of compromise order is developed from the —® measure and it is an aggregate

function of distance functions. L is the sum of all individual regrets, and L. is the maximum of individual
regrets. The assembly function of the VIKOR method is as follows:

Ta(f*f)r |
L.,=12 ﬁ’ 1< p<+4ow,j=12..N

Where o, (j=12,..n) is the relevant weight of the criteria, L., represents the distance of each alternative from

the positive ideal solution, fi= represents the positive ideal solution, and f;= mjin f j represents the

=max fy

negative ideal solution. The main advantage of this method is that it produces a solution by maximizing group
utility and minimizing the opponent's individual regret.

2.5.1 | Calculation Steps of VIKOR Method

A={A A,..A s aset of alternatives; c={(C,C,,..C,} represents n criteria; and w=(w,,®,,..®,)" denotes a weight

vector of criteria with @, >0 (j = 1, 2,---, n) and ZCU —1. The decision matrixis Y = (yij )mxn .
j=1

Step 1: Normalize the decision matrix Y = (yi,. )mxn
Step 2: Calculate the positive ideal alternative y: and the negative ideal alternative y; by score function

y;={maxy,}={maxs(y,)}. y;={miny,}={mins(y,)}

Step 3: Compute the group utility values S and the individual regret values R =1 2-m 1iy [23]
thought that the traditional VIKOR method was not reasonable to consider only the closeness of the
alternative to the positive ideal solution. So she proposed the VIKOR method based on the relative closeness
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coefficient. This method takes the closeness coefficient between alternatives and positive ideal solution as
well as the closeness coefficient between alternatives and negative ideal solution into account and aims to

obtain a relative optimal compromise solution through relative group utility and relative individual regret.

The utility value S, and the regret value R (i = 1, 2,---, m) by following formulations:

d(y,-y,)-d(y; -v,) d(y;-y)-d(y; -v)

AS = n , AR =
’ T )

SRy
Step 4: Calculate the values Q,

S-S R -R

= l-g)———
QI gS+_S—+( 5) R"—R”

Where S" = max S, szmiin S, R = max R, szmiin R and e represents the weight of the strategy of ‘the

majority of criteria’. In the comprehensive evaluation, the value of € is determined according to the subjective
tendency of the DM. If the DM pays more attention to group benefits, then € > 0.5; if the DM is focused
more on individual regret minimization, then € < 0.5; otherwise if the DM pursues both the group benefit

and the individual regret value minimum, then & = 0.5.

Step 5: Sort the Q, in ascending order.

Step 6: Test the compromise solution.

Condition 1: Acceptable advantage/

Q( A2 )_Q( Al) >1/(m-1) Where A? ranks second in the ordered list by Q ;
Condition 2: Acceptable stability in the process of decision-making

A' must be the best sorted by S or/and R . This compromise solution holds steady during the whole
decision-making process.

A set of compromise solutions is obtained if it does not satisfy one of the following conditions:

A A% LAY

1 2 . . . .. . . .
A" and A" are compromise solutions if only condition 2 is not satisfied; or are compromise

solutions if condition 1 is not satisfied; and A" is decided by the constraint: Q(AM )—Q(Al)gll (M-1) for

maximum M.

3 |[ILNULN and ILNULWABM Operator

Definition 10. Let X be a set of objects and x be the element in X. An ILNULN _4 in X can be defined as

A:<|:SH(X)'SP(X):|'({Sﬁ(x)’STE(XJ'{Slk(x)'SIH(X):|’|:SFAL(X)’SFE(X):|)>’ where SES . The function [STALM'STE(X>J'[S|k(x)'S.g(xJ and

|:SFL(X) , SFU(X):| represents the membership degree, uncertainty degree, and non-membership degree respectively
A A

with interval values of the element x in X to the uncertain linguistic number [S{,(X) , Sp(x)] .

Definition 11. For any two ILNULNS, a'l = <|:S€La1) ) Sﬂ(%):|'(|:STk(al) 'STE(al)j|'|:Slk(a1) ' Slg(al) }’{SF}{(@) ) SFE(al) i|)>7

a,= <[Sy(a2),Sp(az)},([swaz) ‘STE(aZ)}’[Sl,&(a;)‘Slk(az)}’[sﬁ(a;)‘SFE(az)})> , then the operational laws for ILNULNS are as follows:
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808, = <|:So(a1)+o(az) ! Sp(a1)+p(az) :I ! ([STk(al)wk(az)-Tk(al)TAL(az)v STE(al)n}\’(az)-TE(al)T}\J(az) :| ! |:S|,k(al)|k(a2)vslk(al)|2(a2) :|’

)
|:S Su . :|)
FA(a,) FA(a) FR(3,)FR(a2)

&od, = <[S€(al>€(az> ' Sp(a)oa;) J ! ([STk(al)Tk(az)’STE(al)TE(az) } ! [Slk(al)ﬂk(az)-lk(al)lk(az)vslk(ap+|X(az)-lk(a1)Ik(az)}

@ 5.
x(a )+FA a)-Fi(a )FA(aZ) FA(a )+F3 (3)- FA(a )FR (ay)

. , >
< A0(@)! Aﬂ(aﬂ 1(1Tk<a1))*’ Sl(1TE(al))*]{S(lkwl))“s(lx(ag)"}’{S(Fk(ao)‘S(Fk(al))‘D>(/1_0)

= . . ) . 2
@) al <[Se‘(a1) Sp @J ([S(Tual))%S(Tk’(al»‘]’[51- u-lk(al»ﬂsl- <1-I&{<a1>>‘}[s(1- <1-Fk<a1>)‘vsu1-FE(a1)>‘ })>(/1 0)

Definition 12. For any two ILNULNs alz<[sa<a1)’5p<a1)]([ST;(al)'ST,g(al)]'[S.;<31)'S.g(alj'[sp,k(al)’Sr,?(al)]»’

a, :<|:S€(a2)’sp(az):|‘ (|:ST}:(E2)’STE(ag)j|7|:SI'/:(a2)’slg(az)i|'I:SF}:(EQ)’SF}\J(E\Q)J)> , then the operational properties for ILNULNs

are as follows:

(1) a ®a, =2, ®a,
(2) a,®a,=a, ®a,
(3) aa, @a,)=1a @ 1a,,(1=0)

# ra®ra= (4+4) a,(120)
©®) a’ ®a, ' =(a, ®a,)",(1=0)
A A —n (At2p)
© 8" ®a=a*",(1>0)
Definition 13. For any two ILNULNs a = <[sg(al),sp(al)] (EESN T { ()])>

a, = <[su(az) + S ) ] , ([Smaz) , STg(a2>]’[5.,§(az) , Slg(az):|’|:SF,':(a2) , SFE(az):|)> , the Hamming distance between @7 and a2

is defined as:

aa) = (0@ {a)-Ola)ria) + ot Tz<al)—e(a)Tz(az)\+
|0@)1(2)-0(2,)11(8,) +[0@)1{a) - 0(,)1 ()| +
|6(a)F (a)-6(a,)F {a,)|+|0(a)F{(a)-0 (2) {a)|+
p(@)T{a) - p(,)T1,)|+|p(a)THa) - p(a,)THa,) +
lp(@)11(a) - pa,)1{a,)|+|p(a)1{a) - p(a,)1{a)|+
|p(a)Fi(a) - p(a,)F (a,)|+|p(a)Fia) - p(@,)F{3,)))

Ta(a)

score function of a is expressed as: S(a):é(@(aﬂ p(a)) (4+T1(a)-1(@)- FA@)+T(a)- 1%(a) - (@)

Definition 14. For an ILNULN a:<[s 'S ]({S , , the
: o) ele) P\ Srogay J| Sk Siga | Seia) Seva)

Definition 15. Let p,q 20,4 :<[Se<r«>'Sn(a)}’([sw)’sw(@)] [S,k(%),slgm][sw), . @J)> be a set of ILNULNS, and

o=(w, @,,..o,) be the weight vector of @, @ >0 (j = 1, 2,---, n) and Zn:w —1. Then the aggregated result

by ILNULWABM operator is expressed as:
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p.a _ 1 oo ) ] g _
ILNULWABM (al,az,...an)_{n(n_l);‘igl(a)iai) (wjaj> ] s - ﬁ,S . .
J {n(n1 1);]2;}("491)']( lel)q} [M:Q;%(Mﬂl)p(%ﬂ,)q}
s 1
o e
s s N
[lflﬁ{l(lw @) ) J“]”‘"”J [H FI(frtiar ko J“J"””J
S 1
n n 1 \p+a
1{11_[ [1—(142(6“)"") (l—lﬁ(aj)“’l ]q]( 1)}
e < B 0
1 \peq
: 0 (o P (1 (0 D
s , {” ort et ) ]
. L Vow
il [1—(1_Fk(ai )mi)p[l—FAL(aj K j“]"(m)J

Proof: Firstly, we need to prove that

3> (@a) (wa,) =( |s

=t g%(“ﬁ&)p(lajgj)q ’Séé(‘”q)p(“”’”)q

; jis ° )
S .. p ay 1] S a p .
1721[]3[17[17(171—2 (a ))‘“‘) [17(17Tk’ (aj ))"’J’j ] li:lll;!(lf(lflk(ai )‘“‘) [14/&(6,- )WJJ ]
S, . U i \P U wj Y s S, . . L s (2)
T o™ ' T ot (ot )|
S

I oot ont o

By the ogerations of ILNULN defined in definition 16, we have
wa; =

I:S,‘,IH, 'Sw,P. :I’ Sl, 1Tk (a))” 1S(ai)17 7Y (a)" ’|:Slk(a.)mi 'Slg(ai)“" ]’[SFAL(aI)Mi ’SF}\J(ai)”‘ j|) ,
( ) ( )
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(wa) = <[s<wﬂ'f Snt }Hs[l@w)’“f ’s(lf(l—w @[ }’{sl(“w)” Pt }’{Sw”ﬂm“)” Cpertiar) D>

Then
(wa)" x(a)jaj )q

1 s Is .
=(|s rS lls q 1(1|k<eu)‘“‘)p[1Ix(a.')“”)q} { f-rb@)") (1-rk ()"
<l: (@6)°(0305) (@) (@305) [ [17(14

i fef* | [-emb )"

_— S q '

; ot ot D>
st v [ oar oo

(a) When n=2, we can get

2 2

P a_ p q p q_
;;(wiai) (wiai) _(a)lal) (wzaz) +(w2a2) (wlal) _<[Sl”{€1)p(1"2€2)q’S(’”lpl)p(”"zpz)qj|’
i

i#

N

S P alt P »\ !
1: [1—(1—T,\L(a1))”‘) (1—(1—T,§(a2))”2] [1—(1—TE (al))“‘lj (17[143(32))%] ]

SL‘DL1Q,SUIPUIQ,
1’(14/\(5'1)”1) (1’|A(az)uz) 1’(14»1(31)”1) [1’|A(az)q)

S Lo\ fh el ‘“S U Plcu e\ +
{Fh (@) ) (-rh ) ?) {1 (o)) R )2

S S JA1S )
<[ (05" ()" (“zﬂz)p("{/’l)q:l H (l_(l_TAL(az))"’?]”[1-(14;@))"‘)“

S

1 s i

[17(14}; (2 ))m)p[lf(u}f (al))"“]q ] |: 1—(14/5(32)02)p(l"ﬁ\(al)ql )q
sU/rquﬁq’s Lﬂpo/qlS U@\ pU e |
1*(1*|A(32) ) (14;\(31)1) 1’(1’5\(32)2) (1’FA (31)4) 1’(1’FA (32))2) (1’FA (al)l) /

S ]S )
<[ (@6)° (@6,) +(028)° (@61)* (ﬁam)p(wzﬂz)”+(alz/’z)p(ﬁaﬂ)“:|

Hsl[1(1<1w>>“f(1waz»”TJ{lElwﬁzn‘”)“(lvWTJ'

fner et Hof e ot

S[l-(l-lk(an”l)” ot oot ot | S(l-(l-lx oo ) oo o oot o7
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That is, when n=2, Eq. (2) is right.

(b) Suppose that when n=4, Eq. (2) is right; that is, ii(wiai )’ (60,-3-,- )q
EWE
1
= Sk « ,S K K S Kk q
23 (me) Xm0 o) 171‘1[11[17(17(14&@ ) [k ) ) ]
S p q Sy p q 1S a
1—1_1[1;![1—(1—(1—Tk' (a ))qj [1’(14}3(31 ) JJ J 1_1[1;![17(14,&(@)“") [le(ai)”) ] Hg[lf(lflﬁ(a )mi) [Plg(al) ]j J
S« \p m.q’skk P wj\9
1;[1;![17(17&'- (a)™) [17FA‘ (aj) ’] J 1;[1;!(17(1*':}3 (a)™) (1*':}3 (ai) J] J
Then, when n=4+1, we have
k+1 k+1 P q k Kk o q k b q
2(ea) (o) =23 (wa) (0a) +>(@a)" (o.8,.)
i=1 I]:l i=1 |J:l i=1 (3)
] . ] X .
+Z(a)k+1ak+1) (a)jaj )
=

Firstly, we prove that

i=1

i(wiai )P (a)k+1ak+1 )q = <{S

k ) S k L
Z(ﬂ%'ﬂ)p(%ugkn)q Z(ﬂ’i%’-)p(ﬂkﬁmu)q J
i1 i1

’ 1:[[1—[14“@ [t 51:[[17[1—12 et | @

S,

1‘—1[(1_(1_5& (@) )p[l—FAL(aM)Wl )“] ’ Sli[[l—[l—F}f (&) )p[l‘F}kj (aku)m‘J)q]]J>

We also use the mathematical induction on £ as follows:

(i) When k=2, we have

4 P a _
‘wiai) (0)33.3) h <[s(w.0.)p(ws%)q 'S(fm)p(%ﬂs)q ],{I:S[l(lTAL(ai))q ]p[l—(lfTAL(aS))%Jq |

’

S P q ’ S P q
|: [17(14)3 (ai))““] [17(14)3 (aa))ij } |: 17(17|,§(ai)‘“‘) (le(as)“g)

S U e \P (v w4 |’ S (AL L)t
1R (@) ) (1-1% (20)) L{Fr @) ) (1-Fh ()
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S ’
1—(1— FY (a)™ )p (1—F/§J (ag)™ )q :D

and

3 (0a) (08,) =(0a) (0a,) +(@.2,) (08,)

i=1

S , S J1S )
<[ ()" (s6)° m)"(am)q} [(1_(1_TAL(al))m]”[1_(1_T,k<a3>)’”3]q

S

’

s
(e @) ) (e ) ] { it ) ) (i )

S

1 s 1
1(1|X(a1)q)p(1'2(as)%)q:| |: 1*(1*FAL(ai)(q)p(lf':){(as)%)q
S ’
R (@) (1R () ) D>

+ <|:S p q ! S p a :| ! S P q?
(@202)" (@305)" " (@202)" (@3p3) [1,(14“&12))&7] [17(14“&{3))“8]

; q { y
(1 (-7 (@) ] 1 (-7 (a '3] :l ’2 (1—! (a )”3)

: :|’|:S X
17(142 (3 Rk ()7

S

1 (1 FY (ap) 1 FY (a3)™ ]>

S H
<|: (@0)P (0305)" +(020)" (0303)" (am) (@305)" +(@202)° (wsﬂa)q]

S

1{1,(1,(14 k@)* ]p [17(14,& (@))"° ]q }[17[17(1%& (@) jp (1*(14,& (as))? ]ﬂ J |

S

17[17(17(14;' (al))q)p[l—(l—Tk' (2a))® )q HL(L(LT,&' (@) ]p(l—(l—T}f (@) ]q)
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| \

’S 1
El(ll%(aﬂ"’l)“(uwas)““)q} %1(1Fk(al)"’i)p(le(asrﬂ)“} (s s /

1—(1—|X (ap) )p (1—|X (ag)™® )qj 1—(1— Fi(ap)? )p (1—FAL (ag)® )q) [17(14}\’(32)"2)‘)(14* (a3)”’3)q}

s S
El(llk(a)‘”l)”(uk(aa)"“ '}

1—(1—|';(a2 )2 )p (l—"/i(aa )”? )q]

lSZ H S

22: (@16)° (As26k:1)° ;(fmm)p(%+1pk+1)q l—ﬁ[l—(l—(l—ﬂ:(ai ))’“i jp[l (1 T (ak+1)) *1]ql

-1

s , ) q ’
1—1;[[1,(17(1;* (@))” ) [1—[1;r,kJ (3s1 ))wﬂ] ]
S, s, .
L li:![l’(l—lk(ai)“) ( R (8i1)™ ) ] 1._1[( (1 e ‘W) (17|H(ak+l)am1) ]
S, p ) q
ot ot ot Pt

(i) Suppose that when £=/, the Eq.(4) is right; that is,

eh

03) (9.8.) =(|s N ’
( ,a.) ( |+1a|+1) z': Pl Z': P (amt)]
=1

i=L i=]

Then, when k=/+1, we have

LI e

(wa) I+2 I+2 Z Cl)a I+2a1+2 ( I+lal+l) ( I+2 I+2)q

i=
S, S, )
sz [CRUR 2)q z *(@i202)°
i1 =1
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| + <|:S p a 'S P a :|' S p q 1
H[L(LF“\J (a )M)D(LFE (auz)mm )“] (@atha)” (@.2.2) (@ana)"(4201:2) (1—(1—TAL(3|>1))%1) (17(1—TL(3|\2))%2]

A
i=1

S

: S s
(1(1Tg(w)“+1]"[1(ng(a,q))‘wj“] { -t ()™ ) (1 )™ 1(1IE(a.AW)”(lIE(MWJ“} { {1k ) ) (1R 22

v VP U o = Siu 'St y
1’(14:‘ (a'*l)um) (I’FA (a'*Z)LM) Z(“ﬁﬂ)p(ﬂﬂn@nz)q (@p1)" (120122

i=1 i=1

Sm » qnsm b q ’
[ [k(l—lk(a)"‘) (-1 (a0)"2) ] H(lf(lflﬂ(a.)”‘) (118 (a2 ]
s|+1 | 1

1[-fort o st e |

That is, for k=/H1, Eq. (4) is also right.
(iii) So, for all k, Eq. (4) is right.

Similarly, we can prove that

(wk+1ak+1)p (a)jaj )q =S q'

1

NSel

«
Zmﬁm j0;)
xl

k
Z 1Py &JJ/?J
i =

S S

st | s ot

j=

S,

H{l—(l—FAL(akﬂ)w”l) (1 Fi(a)” ]q],sﬁ[l—(yay(am)“’“l) (1 R (a)) )q]_

L it =

So, the Eq (3) can be transformed as

k+1 k+1 k K k
> > (@ p(a)jaj)q => > (wa)" (o, )q +> (wa)" (o..8,.,)"
=1 j-1 =1 j-1 =

i*j i ]

LS q
+z(wk+1ak+1 )p (wja,- )
=

= Siaxa » St i . |
ZZ(‘%O) “’J()J) ZZ((M) “’Jpj)
i-1 I 1 i=1 J:l
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S

HH[(( @) ) (- () Jq] |
=]
Sk+1 k+1 q b Sk+1 k+1 q
(6o G ) T o) G )
Sk+1 k+1 q)? K+1 k+1 q
TIEH (s (e (een™ TRt o) ook ™))

So, when n=k+1, Eq (2) is also right. Thus, Eq.(2) is right for all n.

(2) Then, we prove Eq (1) is right. By Eq (2), we can get

" — 1 L L P a m p—
ILNULWABMn‘j“(ai,aZ,...an){n(n_l)gi?l(a),a, (w,a) J =( s - LS -
J [ﬁg‘%(”ﬂ ) (@65 )u} [n(nlfl).z,il 171(@‘)‘ )p(w‘pj )q
] 1,8 P
{l,ng[l,(l,(m(m)q (rt o | } {l—ng[ i) [tk ) )7]

S 1’ S 1

[H ok s ) | } [““[ g sta ) ' }
s L S 4

Next, some special cases of the ILNULWABM operator concerning the parameters p and q will be
demonstrated respectively.

(1) When p=1 and q=0, then

1
pia
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ILNULWABM *92 (5,5, .5, )

19990009y

= S 1 nn IS 1 nn 1 S n o |S n o )
n(n-1);§’"'€‘ n(n-1)iz1:§”"p' LH(H,&(a,))n(H) LH(H}{ (@)D
S n i ? S n i > S n i ’ S n wj
TT(A@))ESD TR (@)D TI(FA o) TI(FR (@0)"e
=1 =1 i—1 i—1
2) When p=1 and q=1, then
@ P q=1,
1
l n n 2
|LNULWABMSp=q:1(81,82,...Sn): ZZa)ia)jaiaj
© n(n-1) <= 4=
i=j
=( |s N
S 1
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s N
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1
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1—[1—ﬁ 11 (1—(1— FA(ap)™ )(1— Fi(a;)™! D"(””J
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S

1 17151[ :[]j(l—(l—FX (a;)“ )(14:}3 (a;)“ )Jﬁ
J=i

1

2

(3) When p=0.5 and q=0.5, then

=g=0.! .5
ILNULWABM =% (s, 5,,...5, ) = 1)22(a),a, ) (w,a,)

i=1 j=1
i

= S 'S o5 |’ S i
n(n" 1)21112%(@9) *(30;)° n(n 1)21:%:(@9 )% (@;05) l—fﬂj[l-((l—(l—ﬁ(ai))“ }[1—(1—T,k(aj))”j ]]05}"(”4)
s L s L
1’1313(1{[1*(14/&’ @)" J[lf(lka’ (a)" Do.s]n(n—l) ljljj[l’((l"k(ai ) )(1—Ik(aj z Duan(nA)
S L | S R
]Ijljj[l [(1 19 (a5 )" )(1 Y (a )@l ))OS]n(n 1) qg[ ((1—Fk(ai )i )(1—Fk (a; )(,)J- jj . ]n(n—l)
S

n

gljj(l [(1 FR (ai)™ )(1 FY (a;)" D“]ﬁ

Definition 16. The following section investigates some additional properties of the ILNULWABM operator.

Theorem 1. (commutativity). Let (al,a-z,ah) be any permutation of (a,a,,..a,) ; then
ILNULWABM?“ (,,a, .., ) = ILNULWABM/“ (a,,a,,..3,)

Proof: Let

1

p+q

1

ILNULWABM ™" (8,,a,,..,) =[

, |LNULWABM{§**(a;,az,...a;):{n(n_l)i%(ma\) (w2 )]

Since (al,az,an) is any permutation (a,,a,,...a, ), we have

1 e P q Pra 1 o o L )
[n(n_l)ﬁjzl(w.%) (w,aj)} =[n(n_1)§%(@a) (a)JaJ)] ,
Such, ILNULWABM (apam%) = ILNULWABM?* (al’az,an]

Theorem 2. (monotonicity) Let a, and b, be two collections of ILNULNs. If a <b for all i, ie.

>, .S, =S8, S, 2§,

>
§ <5 5§ <5 St = Sy S = V) Sek) = ek Sebia) = R then

< <
o) = “o(b)" “pla) = n(m’sr,&(a)‘STk(m’STEm‘STEm)’

ILNULWABM *“ (a,,3,,..2, ) < ILNULWABM ** (b, b,,...b, )
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Proof:

(1) Since S@(ai) o) and S n ) p(h) for all i, we have g(a )< 6(b)and p(a )< p(b)- So

1

q
and

=
T

L » ’ ' ﬁ< 1 o o q
[n(n.l)%i#(w.e(a.)) (w,e(al))] [n(n.l)é_ (w6(0)) ( ]a(bj))]

N
pH

1 ag p g ﬁ 1 aa .
[n(n-l)éz(w‘p(ai)) (@0(a)) J S{n(n-l)%Z(wp(b ) (@b, ]

(2) Since Sy, < S1)> We have T (a)<Tr (b)) and (1—TAL(81.))q 2(1—TBL(bI)){q ,(1—TAL(aj ))w' Z(l—TBL(bj ))NJ. Due to

P.q=0,so (17(14;(@))””)"(17(14; (a)) )q <[t (bl))"ﬁ)p(l—(l—TBL (b))” )u

Further, we get

Finally, we get

1 1
_1 Yp+a _ 1 Yprg
1‘HH[1‘[1‘(1‘T)\' (a ))Mi ]p[l'(l‘Tk (aj ))mi ]qJn(nl)J s{l—HH[l {1—(1—TBL(bi ))wi ]p(l—(l—TE';‘ (b; ))mj )qJn(M)J .
=5 =5
Similarly,

1 j=1
i=]

e e g e mm-@-@(bw-ﬂ} .
(3)Since S'k(ai) > S.g(m and Slk(aj) Zslg(nj) , we have I}(a):
to p,q=0,so

(1-15(a)") =(1-15(0)") ,(1— 1L (a,)" )q 3(1_ 15 (b, )) ,
(1)) (1@ ) <(-1e@) ) (-1 o))

Further, we get
(1—(1—*(31)“ Fattta) ) ) (@) o)) )
and HH( ( )p(l—l;(aj) )) 1)>HH[ ( M)P(l_lé(bj)w, )qj(ll)

1J1 7111

Finally we get
{ HH( T e )q)mrg[l_li[ji%(l—(l—lg(bi)”)”(1_|;(b,-)”’)q]ml”JM,

l_[l_ljlil(l—(l— I ()" )p (1_ It (aj )m‘ )a jn(nly]"*q >1_[1 HH( (l— Is(b)" )” (1— Iy (b,- )"" )“jn(n—l} ]M .

111
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Similarly,

-1
=

-T1IT
= a

(1—(1— Fr(a)') (1— Fr(a)” )an(nll) }M >1-

1

[1—(1— F(a)") (1— FY(a)” )q )n(nll)]mq >1-

n n

11

i=1 j=1
i

#

1—HH
=

1

(1_(1_ F-(b)" )“ (1_ F (o) )a jﬁ

1

o)

In summary, we can prove
ILNULWABM (al, a,,..4, ) < ILNULWABM P (bl,bz,...bn).
Theorem 3. (boundedness) The ILNULWABM operator lies between the max and min operators:

PLLTCENES)

< ILNULWABM?“ (a,a,,..2,
” n

min(a,,a,,..a,)
n

Proof: Let a~ = min(alyaw,_,ah) and a* = max(%,aQ,,__ah).
Since a” <a ,a, <a’, according to the monotonicity in Theorem 2, we know that

ILNULWABM“(a",a’,..a ) < ILNULWABM >“ (a,a,...a, ),
ILNULWABM* (a,,a,,..a, ) < ILNULWABM **(a"a",..a"). Duc t©

LNULWABM“(a",a",..a"

ILNULWABMj“(a*,a*,___a*):( 1

So, 2 < ILNULWABM"“ (a,,a,,..a,) < 2
n n

4 | The VIKOR Method Based on Relative Closeness Coefficient
under ILNULN and ILNULWABM Operator

For a MAGDM problem, there are a discrete set of alternatives A={A, A,,.., A } and attributes c={C,C,,..C,} with

.
weight vector a):(a)l,wz,---wn) . There are A DMs D={D,,D,,...D,} assess this problem and the relative

importance vector is W= (W, W, W, )T. For the DM D", the evaluation value of A on attribute C, is represented

by the decision matrix Rk:(rk )m , where

i

L :<[So<nr>’sp<m]'qsﬂm'STUM'[S'L&%)’SIUMJ’{SFM)’SFU(nn

relative closeness coefficient under ILNULNs and ILNULWABM operators are shown as follows:

5,

D> The steps of the VIKOR method based on the

Step 1: Normalize the decision matrix R =(

The normalized matrix F is calculated by:

(i=12,..,m;j=12,..,n).
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Step 2: Aggregate information from each DM. To aggregate the evaluation values of DMs, we use the

ILNULWABM operator to aggregate the evaluation information matrix F* to obtain the integration matrix
Fop=(f,),,. T, = ILNULWABM (f}, f/,..f)

Step 3: Compute the positive ideal alternative f," and the negative ideal alternative .

We can use the score function to obtain the positive ideal alternative and the negative ideal alternative:

f={max f,}={maxS(f,)f, f;={minf,|={minS(f, )}
3(f‘,v):E(e(fﬁ)+p(fii))(4+TAL(fii)- (1) R AT - () - F(F)
Step 4: Compute the group utility values AS, and individual regret values AR, .

ASi=ian:wjd(fj_f(”) d(Jf;_f“), ARiszaxg) a(f; - () df(]; ij)

Step 5: Compute the values Q,

+(1-¢)

Ab —AS”
AS+ AS™

AR —AR™
AO = o B
R AR" —AR™

Where AS" = max AS, | AS’:miin AS, | AR" = max AR, AR’:miin AR and € represents the weight of the
strategy of the “the majority of criteria”.

Step 6: Sort the AQ, in descending order.

Step 7: Test the compromise solution.

5 | A Numerical Example

This article proposes the concept of interval linguistic neutrosophic uncertain linguistic numbers. ILNULN
consists of two parts: interval linguistic neutrosophic and uncertain linguistic number. The interval linguistic
neutrosophic reflects the subjective linguistic judgment of the decision maker on the given uncertain linguistic
number, and the uncertain linguistic number reflects the attitude of the decision maker towards the evaluation
object. Now we consider a MAGDM problem. Suppose there are four alternatives labeled A, A, A, A, and

three attributes labeled C,,C,,C, whose weight vector is »=(0.35,0.4,0.25)" . Three DMs assess this problem

and the relative importance vector is w=(0.33,0.17,0.5) . Here, we let s={s]i=012,.8} where Si

represents a possible value for a linguistic number, and
S ={5:55,,5,15,,5:5;:5,, S, } = {extremely poor, very poor,
poor, a little poor, medium, a little good, good, very good, excellent} . The DMs assign values to the alternatives

through ILNULNSs to form three decision matrices, as shown in Tables 1-3.

Step 1: Normalize the decision matrix R*.

Step 2: Aggregate information from each DM. We use the ILNULWABM operator to gather decision
information from all DMs. Here we let p=1 and q=1. The group decision matrix is shown in Table 4.

Table 1. Decision matrix R1 of the DM D*.

Ci C, C;
A <(85,54),([S6,57][S2,S4][S0,S1])> <(85,56),([S5,56][S2,55][S1,52])> <(84,55),([S4,55][S2,55][S5,S4])>
A; < (S4,SS>’([S5’S(>] [84385] [Sz,S%]) > < (S4,Ss>,([S4,Ss] [83384] [82383]) > < (87,58),([55 S(’] [S ] [SZ 83]) >
A <ESOISSISSISSD>  <SOMSeSISSISSD> <80, (SoSSsSIS:54)>
[ [ [ [ [ [

[S2,8411
A <(55.50,(855d[52.55[52,55)> <(86:57),(155,5452.8[34,55)> <(57.59), (575 [S2. 55 [Su,S11)>
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Table 2. Decision matrix R2 of the DM D?

C: C; G
A <SSOSSASSISSD>  <(S689,(S5SdS:S[S5)> <(S259,(S5S[S:54[S2,5)>
Az <(86:57),(IS4,55[S5,54][S2,83])> <(57,58),([S5,571[S5,54][S1,82])> <(57,56),([S4,55][S2,55][S5,84])>
As <(82,89),([S6,;37[S1,52][S0,S11)> <(85,84),([S4,35][S2,55][S3,84]) > <(85,86),([S6,S71[S3,S4][S0,S11)>
Ay <(57,58),([S5,56][S2,55][S2,83])> <(55,56),(1S6,571[S5,54][S1,82])> <(54,55),([S5,S6][S2,55][S2,83])>

Table 3. Decision matrix R3 of the DM D°.

Cy C; Cs
Ay <(54,55),([S6,57][S2,53][S1,S2])> <(84,55),([S5,56][S2,53][S1,52]) > <(82,53),([S6,57][S2,54][S1,52])>
Az <(83,54),([S5,56][S1,52] [S2,S3])> <(86,57),([S7,58] [S1,52][S0,S1])> <(85,56),([S5,56] [S2,53][S3,54])>
As <(52,53),([S4,55][S2,56][Ss,S4])> <(52,53),(86,57][S2,55][S1,82])> <(83,54),([S5,56][Se,54][S2,55])>
As <(86,57),([S7,56][S2,54][So,S1])> <(85,56),([S5,6][S2,54] [S2,S3]) > <(87,58),([S4,56][S2,53] [S3,54]) >

Table 4. Group decision matrix F.
Cy C,

Ay <(80.1099,50.1197),([S0.2445,90.2372],[S0.8138,90.8241],[S0.5002,50.6011])> | <(S0.1465,50.1498),,([S0.1940,90.1907],[S0.7770,50.7668] ,[S0.7353,90.7676]) >
Ar <(S0.1503,50.1541),([S0.1614,90.1671],[S0.8399,30.8241],[ S0.8376,50.8347]

A; <(S0.1118,50.1243),([S0.1664,90.1716],[S0.7220,90.7376],[S0.7819,50.8162]) > < [S0.2041,50.1996],[S0.7770,90.7931],[S0.7986,50.8068] ) >

Ay <(80.2036,550.2004),([S0.2013,90.2011],[S0.7699,50.7900],[S0.6150,50.7802]) > <(S0.1803,50.1778),([S0.1716,90.1726],[S0.8163,50.8386) [ S0.8793,50.8562] ) >

( (
> <(50.1880,90.1847),([S0.1967,50.2086) [ S0.8159,90.7975], [ S0.4487,50.7226] ) >
(80.0928,50.1052) ,(

( (

Cs
Aq <(S0.0824550.0969) ([S0.1917,50.1896] [ S0.8077,50.8219] ,[S0.7800,90.7971] ) >
A, <(S0.2058,50.2002), ([S0.1763,50.1776] [ S0.7149,50.7424] ,[S0.8514,50.8430] ) >
A; <(80.1183,90.1268) ([ S0.1968,50.1936] ,[S0.8723,90.8492] , [ S0.6841,90.7536] ) >
Ay <(80.1788,90.1778) ,([S0.2219,50.2143], [ S0.7684,90.7762] , [ S0.6211,90.7423] ) >

Step 3: Calculate the positive ideal alternative f and the negative ideal alternative f~. Use the score

function to obtain the positive ideal alternative and negative ideal alternative. The score values are as follows:

S(f,)=0.0316, S(f,)=0.033, S(f,)=00176, S(f,)=00251,
S(f,)=0.0503, S(f,)=0.0407, S(f,)=00252, S(f,)=0.0203
S(f,)=0.0251, S(f,)=00487, S(f,)=00285, S(f,)=0.0454

Due to fj*:{maxf } {maXS( )} and f; {min fij}:{mins(fij )}, apparently, the fi]-+ and fij_ are shown
f=f,, f

as follows: f*=f,_, f~=f,, f=f,, f=f,, f'=f,_, f = f,.

227 2 327 3 437

Step 4: Compute the group utility values AS, and individual regret values AR,

AS, =-0.4896, AS, =0.6922, AS, =-0.8550,AS, = 0.7706,
AR =0.032, AR, =0.4,AR, =-0.105, AR, = 0.35.

Step 5: Compute the values AQ, Here we make € = 0.5. The VIKOR values AQ, for each alternative can
be calculated as follows: AQ, =0.2480, AQ, =0.9759, AQ, =0, AQ, =0.9505
Step 6: Sort the AQ, in descending order.

We can sort the alternatives according to the values of AS, , AR, and AQ, . The larger the value, the better

the alternative. Then, according to the ranking process, three ordered lists can be obtained as displayed in
Table 5.
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Table 5. Group utility value, individual regret value.

A4 A; A; Ay Ranking results
AS; -0.4896 0.6922 -0.855 0.7706 Ay A= Ar> A;
AR; 0.032 0.4 -0.105 0.35 A= A= A> A

AQ; 0.2480 0.9759 0.0000 0.9505  Ax> Ag> Ar> As

Step 7: Test the compromise solutions. The alternatives are ranked byAQ: AQ, > AQ, > AQ, > AQ, . The best

alternative is A, and the second alternative is A, . Due to AQ, —AQ, =0.0254 < 1 =0.3333, so it doesn't
4-1

satisfy condition 1- acceptable advantage. So A, is the best alternative and A, could be the compromise

solution.

6 | Sensitivity Analysis and Related Comparison

6.1 | Sensitivity Analysis

Due to the decision result being related to the parameters p, ¢, so it is necessary to analyze different p and 4.
The sorting result is shown in Table 6.

It can be seen that the optimal solution is always A, based on different p and 4. But the overall order is a
little different. So p and ¢ have a limited impact on the ranking result.

Similarly, in the VIKOR method, the compromise evaluation value of each alternative is affected by the group
utility weight e. In order to consider the impact of different values of € on the evaluation results, the analysis

is performed by setting different € to observe their impact. The impact of the sorting result is shown in Table
7. It can see that when £={0,0.2,0.4,0.5,0.6}, the best alternative is A, ; when ¢={0.8,1}, the best alternative

is A, . € has an effect to decision result.

Table 6. Ranking results under different P,

Ay A; A; Ay Ranking results Best alternative
p=1,q=1 0.2480 0.9759 0 0.9505 Ao> Ay> Ar> As Az
p=1,9=0 0.0588 1 0 0.8907 Ao> Ay> Ar> As As
p=0,9=1 0.0588 1 0 0.8907 Ao> Ay> Ar> As As

p=0.5,q=0.5 0 1 0.6824 0.9102 Ax> Ay> A> Ay Az

Table 7. Ranking results under different € (p=1,q=1).

Ay A, Aj Ay Ranking results Best alternative

£=0 0.2712 1.0000 0.0000 0.9010 Ap> Ay> A> As A

€=0.2 0.2642 1.0000 0.0000 0.9309 Ar> Ap> A> As A

=04 0.2572 1.0000 0.0000 0.9608 A> Au> A1> Aj As

AQ €=0.5 0.2480 0.9759 0.0000 0.9505 Ap> Ay> A> As A
€=0.6 0.2502 1.0000 0.0000 0.9908 A> Au> A1> Aj As

€=0.8 0.2432 1.0000 0.0000 1.0207 Ap> A> A> As Ay

e=1 0.0472 1.0000 0.0000 1.0506 As> Ap> A1> Aj Ay

6.2 | Related Comparison

To illustrate the effectiveness and superiority, we compared the proposed MAGDM method with the WAA
operator, TOPSIS, and the original VIKOR method, respectively. For convenient comparison, Table 8 lists
all the MAGDM results.

As shown in the table, similar sorting results are obtained through the calculation of the same example, and
the best alternative is always Ax. However, different from the WAA operators, the ILNULWABM operators
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depend on input parameters and consider the interaction between different attributes. And the VIKOR
method based on the relative closeness coefficient applies the TOPSIS method's closeness to the VIKOR
method to make the decision result more reasonable.

Table 8. Comparison table based on the numerical example above.

Method Ranking results Best alternative
Method of this article Ap> Ay Ar> As A
Method based on WAA operator Ap> Ay> Ar> As A
TOPSIS Ax> A= As> Ay Ar

7 | Conclusion

This article proposes the concept of ILNULN. ILNULN consists of two parts: interval linguistic
neutrosophic and uncertain linguistic number. The interval linguistic neutrosophic reflects the subjective
linguistic judgment of the DM on the given uncertain linguistic number, and the uncertain linguistic number
reflects the attitude of the DM towards the evaluation object. Based on ILNULN, this paper studies its basic
properties, algorithms, scores function, and Hamming distance. WABM operator integrates the correlation
of aggregation parameters. So we combine the ILNULN and WABM operator to propose the ILNULWABM
operator. In addition, this paper applies ILNULN and ILNULWABM operators to the VIKOR method
based on the relative closeness coefficient and discusses the impact of different parameters p, q, and € on the
MAGDM.

This article discusses and studies the WABM operator with ILNULN, and it has achieved certain results. But
this research still needs to be further improved:

This article only considers the MAGDM problem in which the attribute weights and DM weights are crisp
numbers but doesn't consider the linguistic value. However, this situation is common in practical decision-
making problems. Therefore, we can conduct further research in the future.

In future research, it will be necessary and meaningful to apply the proposed interval linguistic neutrosophic
uncertain linguistic MAGDM method to solve some practical problems in other areas, such as personnel
evaluation, medical artificial intelligence, and pattern recognition.
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