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1 |Introduction 

Studies used in accordance with the concepts of classical logic have provided many methods that can be used 

to generate random variables that follow probability distributions, which have many uses in practical fields. 

One of these methods is the inverse transformation method, which can be used in probability distributions 

whose cumulative distribution function has an inverse function, but the results that we obtained are specific 

results that do not take into account the changes that may occur in the operating environment of the system 

to be simulated and to keep up with recent studies that have been presented using neutrosophic logic. Which 

included most branches of science [1-17], to obtain more accurate results, we presented in previous research 

a neutrosophical study to generate random numbers that follow a regular distribution with no specificity that 

can be enjoyed by either or both ends of the field [0,1]. Then we convert these random numbers into 

neutrosophic random variables that follow the probability distributions according to which the systems under 

study operate according to [18-26]. We used various methods in the conversion process, including the 

transformation method that was used to generate random variables that follow the regular distribution in the 

field [a, b] and the exponential distribution[ 19, 20], and given the great importance of the Weibull distribution 
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In practical applications, we encounter many systems that cannot be studied directly, and the reason for this is due 

to the nature of the system or to the high cost. Therefore, we resort to the simulation process, which depends on 

conducting the study on systems similar to real systems, and then projecting these results, if they are appropriate, 

onto the system. The real system. The simulation process depends on generating a series of random numbers that 

follow a uniform probability distribution in the field [0, 1], then converting these random numbers into random 

variables that follow the probability distribution in which the system to be simulated operates. One of the most 

important conversion methods is the conversion method. The opposite. This method is used for probability 

distributions in which we can obtain a function inverse of its cumulative distribution function. In two previous 

researches, we used this method to generate neutrosophic random variables that follow a uniform distribution in 

the field [a, b] and the exponential distribution. In this research, we present a valuable study to clarify how to use 

this method. The method for generating neutrosophic random variables follows the Weibull distribution and the 

geometric distribution, based on what was presented in the classic study and in the research on neutrosophic 

random number generation. 
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  and the geometric distribution, we present in this research a neutrosophical study of how to use the inverse 

transformation method to obtain random variables that follow them, which enables us to obtain more 

accurate simulation results that take into account all the conditions that the system’s operating environment 

may experience to be simulated. 

2 |Discussion 

2.1 |Previous Studies 

1. To generate classical random numbers that follow a uniform distribution in the interval [0,1]:[27] 

Several methods can be used to obtain a series of classical random numbers. 

𝑅1, 𝑅2, … that follow a uniform distribution in the range [0,1]. In this research, we will use the mean square 

method defined according to the following relation: 

𝑅𝑖+1 = 𝑀𝑖𝑑[𝑅𝑖
2] ; 𝑖 = 0,1,2,3,               (1) 

Where 𝑀𝑖𝑑 is the middle four ranks of 𝑅𝑖
2, and 𝑅0 is chosen, i.e., a fractional random number composed of 

four ranks (called a seed) that does not contain zero in any of its four ranks. 

2. To convert these random numbers into neutrosophic random numbers that follow a uniform distribution 

over the field [0,1]with the indeterminacy that can be enjoyed by either or both ends of the field: [18]. 

To convert the numbers resulting from (1) into neutrosophic random numbers that follow a uniform 

distribution over the field [0,1], we distinguish the following forms for the field [0,1] with the margin of 

indeterminacy 𝛿 where 𝛿 ∈ [0, 𝑚] and 0 < 𝑚 < 1. 

 The first form: Indeterminacy at the minimum of the field, i.e., [0 + 𝛿, 1]. In this case, we substitute 

in the following relation: 

𝑁𝑅𝑖 =
𝑅𝑖−𝛿

1−𝛿
                 (2) 

 The second form is indeterminacy at the upper limit of the field, i.e., [0,1 + 𝛿]. In this case, we 

substitute in the following relation: 

𝑁𝑅𝑖 =
𝑅𝑖

1+𝛿
                (3) 

 The third form is indeterminacy in the upper and lower limits of the field, i.e., [0 + 𝛿, 1 + 𝛿]. In this 

case, we substitute in the following relation: 

𝑁𝑅𝑖 = 𝑅𝑖 − 𝛿                (4) 

3. Reverse conversion method: [27] 

Using the sequence of random numbers 𝑅1, 𝑅2, … and the cumulative distribution function for the random 

variable, and since each of them is defined on the field [0,1], we find that: 

𝐹(𝑋) = 𝑅                  (5) 

⟹ 𝑋 = 𝐹−1(𝑅)                 (6) 

2.2 |The Current Study 

1. Generating neutrosophic random variables following the Weibull distribution: 

The Weibull distribution is continuous. The Weibull distribution is defined by the following probability 

density function: 

𝑓(𝑥) = 𝛼𝛽𝑥𝛽−1𝑒−𝛼𝑥𝛽
      ; 𝑥 ≥ 0                  (7) 
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For 𝑥 > 0 , 𝛼 > 0, 𝛽 > 0, the Weibull density function generates a family of probability density curves when 

the values of, 𝛼, 𝛽 To generate random variables that follow it, we find the cumulative distribution function: 

𝐹(𝑋) = 𝛼𝛽 ∫ 𝑡𝛽−1𝑒−𝛼𝑡𝛽
𝑑𝑡

𝑥

𝑡=0

 

We make a change in the variable we impose: 

𝑦 = 𝛼𝑡𝛽 ⟹ 𝑑𝑦 = 𝛼𝛽𝑡𝛽−1𝑑𝑡 

Substituting we find: 

𝐹(𝑋) = 𝛼𝛽 ∫ 𝑡𝛽−1𝑒−𝑦
𝑑𝑦

𝛼𝛽𝑡𝛽−1

𝛼𝑥𝛽

0

⟹ 𝐹(𝑋) = 1 − 𝑒−∝𝑥𝛽
 

𝐹(𝑋) = 1 − 𝑒−∝𝑥𝛽
 

According to relation (5) we find: 

1 − 𝑅 = 𝑒−∝𝑥𝛽
 

𝑅 follows a uniform distribution in the domain [0,1]. Also, 1 − 𝑅 follows a uniform distribution in the same 

domain, so: 

𝑅 = 𝑒−∝𝑥𝛽
⟹ 𝑥 = [−

1

𝛼
𝑙𝑛𝑅]

−
1
𝛽

 

Therefore, to generate random variables that follow the Weibull distribution, we substitute the following 

relation: 

𝑥𝑖 = [−
1

𝛼
𝑙𝑛𝑅𝑖]

−
1

𝛽
                (8) 

2. Generating neutrosophic random variables following the Weibull distribution: 

We know that to obtain neutrosophic random variables that follow a probability distribution based on a series 

of classical or neutrosophic random numbers, we distinguish three cases: 

 The first case: Neutrosophic random numbers and the probability distribution are given in the 

classical form: 

In this case, the relation (8) is written as follows: 

𝑥𝑖 = [−
1

𝛼
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽
               (9) 

Therefore, to generate neutrosophic random variables that follow the Weibull distribution 

 We generate a series of random numbers that follow a uniform distribution in the range [0,1] 

, 𝑅1, 𝑅2, … using the relation (1). 

 We convert these random numbers into neutrosophic random numbers by substituting them into 

one of the relations (2), (3), and (4). 

 Substituting these resulting neutrosophic random numbers into the relation (9) we obtain what is 

required. 

 The relation we get using the first form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (2), and the result is substituted into 

relation (9) we get: 
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𝑥𝑖𝑁 = [−
1

𝛼
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽
=  [−

1

𝛼
𝑙𝑛 (

𝑅𝑖−𝛿

1−𝛿
)]

−
1

𝛽
          (10) 

 The relation we get using the second form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (3), and the result is substituted into 

relation (9) we obtain: 

𝑥𝑖𝑁 = [−
1

𝛼
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽
=  [−

1

𝛼
𝑙𝑛 (

𝑅𝑖

1+𝛿
)]

−
1

𝛽
          (11) 

 The relation we get using the third form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (4), and the result is substituted into 

relation (9) we get: 

𝑥𝑖𝑁 = [−
1

𝛼
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽
=  [−

1

𝛼
𝑙𝑛(𝑅𝑖 − 𝛿 )]

−
1

𝛽
           (12) 

 In the second case: the random numbers are classical and the probability distribution is given in 

the neutrosophic form: 

In this case, the relation (8) is written as follows: 

𝑥𝑖 = [−
1

𝛼𝑁
𝑙𝑛𝑅𝑖]

−
1

𝛽𝑁
 

Therefore, to generate neutrosophic random variables that follow the Weibull distribution 

We generate a series of random numbers that follow a uniform distribution in the range [0,1], 

𝑅1, 𝑅2, …, using the relation (1). 

Substituting these resulting random numbers into the relation (9) we get: 

𝑥𝑖𝑁 = [−
1

𝛼𝑁
𝑙𝑛𝑅𝑖]

−
1

𝛽𝑁             (13) 

 The third case: Neutrosophic random numbers and the probability distribution are given in the 

neutrosophic form: 

𝑥𝑖 = [−
1

𝛼𝑁
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽𝑁             (14) 

Therefore, to generate neutrosophic random variables that follow the Weibull distribution. 

We generate a series of random numbers that follow a uniform distribution in the range [0,1], 

𝑅1, 𝑅2, …  , using the relation (1). 

We convert these random numbers into neutrosophic random numbers by substituting them into 

one of the relations (2), (3), and (4). 

Substituting these resulting neutrosophic random numbers into the relation (14) we obtain what is 

required. 

 The relation we get using the first form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (2), and the result is substituted into 

relation (9) we get: 

𝑥𝑖𝑁 = [−
1

𝛼
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽 =  [−
1

𝛼
𝑙𝑛 (

𝑅𝑖−𝛿

1−𝛿
)]

−
1

𝛽
          (15) 
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 The relation we get using the second form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (3), and the result is substituted into relation 

(9) we obtain: 

𝑥𝑖𝑁 = [−
1

𝛼𝑁
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽𝑁 =  [−
1

𝛼𝑁
𝑙𝑛 (

𝑅𝑖

1+𝛿
)]

−
1

𝛽𝑁          (16) 

 The relation we get using the third form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (4), and the result is substituted into 

relation (9) we get: 

𝑥𝑖𝑁 = [−
1

𝛼𝑁
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽𝑁 =  [−
1

𝛼𝑁
𝑙𝑛(𝑅𝑖 − 𝛿 )]

−
1

𝛽𝑁         (17) 

3. Generating random variables that follow a geometric distribution: 

A geometric distribution of discrete distributions. A random variable 𝑋, defined by the number of failures in 

a series of Bernoulli trials before the first success occurs, is said to be a geometric random variable. It has 

been used in the field of quality control and lag distributions in econometric models. 

The following probability density function is known: 

𝑓(𝑥) = 𝑝𝑞𝑥     ; 𝑥 = 0,1,2, … 

𝑝  is defined as the probability of success in each Bernoulli trial, and it is 𝑞 = 1 − 𝑝. The cumulative 

distribution function is given by the following relation: 

𝐹(𝑥) = ∑ 𝑝𝑞𝑘

𝑥

𝑘=0

 

To generate random variables that follow it, we take advantage of the following relation: 

1 − 𝐹(𝑥) = 𝑞𝑥+1 

and 
[1−[𝐹(𝑥))]

𝑞
 has a range equal to one. 

Using the inverse transformation method, we find: 

𝑅 = 𝑞𝑥 ⟹ 𝑙𝑛𝑅 = 𝑥𝑙𝑛𝑞 

Since 𝑥 must be an integer, we choose 𝑥 as the largest integer that satisfies the relation: 

𝑥 ≤
𝑙𝑛𝑅

𝑙𝑛𝑞
 

So, to generate random variables that follow a geometric distribution, we substitute into the following relation: 

𝑥𝑖 ≤
𝑙𝑛𝑅𝑖

𝑙𝑛𝑞
               (18) 

Where 𝑅𝑖 are random numbers that follow a uniform distribution in the range [0,1]. 

4. Generating neutrosophic random variables following a geometric distribution: 

We know that to obtain neutrosophic random variables that follow a probability distribution based on a series 

of classical or neutrosophic random numbers, we distinguish three cases: 

 The first case: Neutrosophic random numbers and the probability distribution are given in the 

classical form: 

In this case, the relation (81) is written as follows: 
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𝑥𝑖 ≤

𝑙𝑛𝑅𝑖𝑁

𝑙𝑛𝑞
              (19) 

Therefore, to generate neutrosophic random variables that follow a geometric distribution, we 

generate a series of random numbers that follow a uniform distribution in the range [0,1] , 𝑅1, 𝑅2, … , 

using the relation (1). 

We convert these random numbers into neutrosophic random numbers by substituting them into 

one of the relations (2), (3), (4) 

Substituting these resulting neutrosophic random numbers into the relation (19) we obtain what is 

required. 

 The relation we get using the first form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (2), and the result is substituted into 

relation (9) we get: 

𝑥𝑖𝑁 ≤
𝑙𝑛𝑅𝑖𝑁

𝑙𝑛𝑞
=   

ln (
𝑅𝑖−𝛿

1−𝛿
)

𝑙𝑛𝑞
             (20) 

 The relation we get using the second form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (3), and the result is substituted into 

relation (9) we obtain: 

𝑥𝑖𝑁 ≤
𝑙𝑛𝑅𝑖𝑁

𝑙𝑛𝑞
=  

ln (
𝑅𝑖

1+𝛿
)

𝑙𝑛𝑞
             (21) 

 The relation we get using the third form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (4) and the result is substituted into relation 

(9) we get: 

𝑥𝑖𝑁 ≤
𝑙𝑛𝑅𝑖𝑁

𝑙𝑛𝑞
 =

ln (𝑅𝑖−𝛿 )

𝑙𝑛𝑞
             (22) 

 The second case: The random numbers are classical and the probability distribution is given in 

the neutrosophic form:  

In this case, the relation (8) is written as follows: 

𝑥𝑖 ≤
𝑙𝑛𝑅𝑖

𝑙𝑛𝑞𝑁
 

Therefore, to generate neutrosophic random variables that follow the geometric distribution: 

 We generate a series of random numbers that follow a uniform distribution in the range 

[0,1] , 𝑅1, 𝑅2, … , using the relation (1). 

 Substituting these resulting random numbers into the relation (9) we get: 

𝑥𝑖𝑁 ≤
𝑙𝑛𝑅𝑖

𝑙𝑛𝑞𝑁
 

 The third case: Neutrosophic random numbers and the probability distribution are given in 

the neutrosophic form: 

𝑥𝑖𝑁 ≤
𝑙𝑛𝑅𝑖𝑁

𝑙𝑛𝑞𝑁
              (24) 

Therefore, to generate neutrosophic random variables that follow the Weibull distribution 
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 We generate a series of random numbers that follow a uniform distribution in the range 

[0,1], 𝑅1, 𝑅2, …, using the relation (1). 

 We convert these random numbers into neutrosophic random numbers by substituting them 

into one of the relations (2), (3), and (4). 

 Substituting these resulting neutrosophic random numbers into the relation (19) we obtain 

what is required. 

 The relation we get using the first form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (2), and the result is substituted into 

relation (9) we get: 

𝑥𝑖𝑁 ≤
𝑙𝑛𝑅𝑖𝑁

𝑙𝑛𝑞𝑁
=   

ln (
𝑅𝑖−𝛿

1−𝛿
)

𝑙𝑛𝑞𝑁
             (25) 

 The relation we get using the second form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (3), and the result is substituted into 

relation (9) we obtain: 

𝑥𝑖𝑁 ≤
𝑙𝑛𝑅𝑖𝑁

𝑙𝑛𝑞𝑁
=  

ln (
𝑅𝑖

1+𝛿
)

𝑙𝑛𝑞𝑁
             (26) 

 The relation we get using the third form: 

We substitute the random numbers 𝑅1, 𝑅2, … into relation (4), and the result is substituted into 

relation (9) we get: 

𝑥𝑖𝑁 ≤
𝑙𝑛𝑅𝑖𝑁

𝑙𝑛𝑞𝑁
 =

ln(𝑅𝑖−𝛿 )

𝑙𝑛𝑞𝑁
             (27) 

3 |Practical Example 

Starting from the seed 𝑅0 = 0.2151, find two neutrosophic random variables. 

They follow the Weibull distribution in the following two cases: 

 𝛼 = 2  , 𝛽 = 3 

 𝛼𝑁 ∈ {2,4}  , 𝛽 = 3 

The solution: 

Starting from the seed 𝑅0 = 0.2151 and using the mean square method we obtain the following two classical 

random numbers: 

𝑅1 = 0.6268     , 𝑅2 = 0.2878 

To obtain two Neutrosophic random variables following a Weibull distribution, we find: 

 For the first case, the neutrosophic random numbers and the Weibull distribution are given in the 

classical form: 

We substitute the following data, = 2  , 𝛽 = 3 , 𝑅1 = 0.6268  , 𝑅2 = 0.2878 , 𝛿 = [0,0.04]. In 

relations (10), (11), (12) we find: 

 From relation (10) we find: 



Inverse Transformation to Generate Neutrosophic Random Variables Following Weibull and Geometric Distributions 

 

241

 

  

𝑥𝑖𝑁 = [−
1

𝛼
𝑙𝑛𝑅𝑖𝑁]

−
1
𝛽

=  [−
1

𝛼
𝑙𝑛 (

𝑅𝑖−𝛿

1 − 𝛿
)]

−
1
𝛽

      (10)        

𝑥1𝑁 = [−
1

2
𝑙𝑛𝑅1𝑁]

−
1
3

=  [−
1

2
𝑙𝑛 (

0.6268 − [0,0.04]

1 − [0,0.04]
)]

−
1
3

=   [−
1

2
𝑙𝑛 (

[0.5868,0.6268]

[0.96,1]
)]

−
1
3

 

=  [[0.2461,0.2336]]
−

1
3 = [1.5957,1.6237]  

⟹ 𝑥1𝑁 ∈ [1.5957,1.6237] 

𝑥2𝑁 = [−
1

2
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

2
𝑙𝑛 (

0.2878 − [0,0.04]

1 − [0,0.04]
)]

−
1
3

=   [−
1

2
𝑙𝑛 (

[0.2478,0.2878]

[0.96,1]
)]

−
1
3

 

=  [[0.2581,0.2878]]
−

1
3 = [1.5146,1.5706] 

⟹ 𝑥2𝑁 ∈ [1.5146,1.5706] 
From relation (10) we get the following two neutrosophic random numbers: 

𝑥1𝑁 ∈ [1.5957,1.6237]   ,   𝑥2𝑁 ∈ [1.5146,1.5706] 

 From relation (11) we find: 

𝑥𝑖𝑁 = [−
1

𝛼
𝑙𝑛𝑅𝑖𝑁]

−
1
𝛽

=  [−
1

𝛼
𝑙𝑛 (

𝑅𝑖

1 + 𝛿
)]

−
1
𝛽

      (11)        

 

𝑥1𝑁 = [−
1

2
𝑙𝑛𝑅𝑖𝑁]

−
1
3

=  [−
1

2
𝑙𝑛 (

0.6268     

[0.96,1]
)]

−
1
3

=  [−
1

2
𝑙𝑛[0.6268,0.6529]]

−
1
3

= [0.2336,0.2132]−
1
3

= [1.6739,1.6260]   

⟹ 𝑥1𝑁 ∈ [1.6739,1.6260] 

𝑥2𝑁 = [−
1

2
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

2
𝑙𝑛 (

   0.2878     

[0.96,1]
)]

−
1
3

=  [−
1

2
𝑙𝑛[0.2878,0.2998]]

−
1
3

= [0.6023,0.6227]−
1
3

= [1.1710,1.1841]   

⟹ 𝑥2𝑁 ∈ [1.1710,1.1841]   

From relation (11) we get the following two neutrosophic random numbers: 

𝑥1𝑁 ∈ [1.6739,1.6260]  ,   𝑥2𝑁 ∈ [1.1710,1.1841] 

 From relation (12) we find: 

𝑥𝑖𝑁 = [−
1

𝛼
𝑙𝑛𝑅𝑖𝑁]

−
1
𝛽

=  [−
1

𝛼
𝑙𝑛(𝑅𝑖 − 𝛿 )]

−
1
𝛽

      (12)        

𝑥1𝑁 = [−
1

2
𝑙𝑛𝑅𝑖𝑁]

−
1
3

=  [−
1

2
𝑙𝑛(0.6268 − [0,0.04])]

−
1
3

=     [−
1

2
𝑙𝑛([0.5868,0.6268])]

−
1
3

= [0.2336,0.2665]−
1
3 = [1.5539,1.6237]   

⟹ 𝑥2𝑁 ∈ [1.5539,1.6237]   
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𝑥2𝑁 = [−
1

2
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

2
𝑙𝑛(0.2878 − [0,0.04])]

−
1
3

=     [−
1

2
𝑙𝑛([0.2478,0.2878])]

−
1
3

= [0.6227,0.6976]−
1
3 = [1.1275,1.1710]   

⟹ 𝑥2𝑁 ∈ [1.1275,1.1710]   

From relation (12) we get the following two neutrosophic random numbers: 

𝑥1𝑁 ∈ [1.5539,1.6237]  ,   𝑥2𝑁 ∈ [1.1275,1.1710] 

In order to, 𝛼 = 2  , 𝛽 = 3, 𝑅1 = 0.6268  , 𝑅2 = 0.2878, 𝛿 = [0,0.04]. The two neutrosophic random 

numbers are: 

𝑥1𝑁 ∈ [1.5957,1.6237]  , 𝑥2𝑁 ∈ [1.5146,1.5706] or 

𝑥1𝑁 ∈ [1.6739,1.6260] , 𝑥2𝑁 ∈ [1.1710,1.1841]or 

𝑥1𝑁 ∈ [1.5539,1.6237]  ,   𝑥2𝑁 ∈ [1.1275,1.1710] 

 For the second case, the classical random numbers and the Weibull distribution are given in the 

neutrosophic form: 

We substitute the following data, 𝛼𝑁 ∈ {2,4}  , 𝛽 = 3, 𝑅1 = 0.6268  , 𝑅2 = 0.2878  

In relation (13) we find: 

𝑥𝑖𝑁 = [−
1

𝛼𝑁
𝑙𝑛𝑅𝑖]

−
1
𝛽

     (13) 

𝑥1𝑁 = [−
1

{2,4}
ln (0.6268)]

−
1
3

  

𝛼𝑁 ∈ {2,4} So, for 𝛼𝑁 = 2 and 𝛽 = 3 we find: 

𝑥1 = [−
1

2
ln (0.6268)]

−
1
3

= (0.2336)−
1
3 = 1.6237 

𝑥2 = [−
1

2
ln (0.2878)]

−
1
3

= (0.6227)−
1
3 = 1.1710  

𝛼𝑁 ∈ {2,4} So, for 𝛼𝑁 = 4 and 𝛽 = 3 we find: 

𝑥1 = [−
1

4
ln (0.6268)]

−
1
3

= (0.1168)−
1
3 =  2.0457 

𝑥2 = [−
1

4
ln (0.2878)]

−
1
3

= (0.3114)−
1
3 = 1.4753 

From relation (13) we get the following two neutrosophic random numbers: 
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  𝑥1𝑁 ∈ {[1.2309,1.4384], [1.359,1.7106]}    

𝑥2𝑁 ∈ {[1.07,1.1257], [1.1814,1.3387]}    

 For the third case, the random numbers are neutrosophic and the probability distribution is given 

in the neutrosophic form: 

We substitute the following data: 𝛼𝑁 ∈ {2,4}  , 𝛽 = 3, 𝑅1 = 0.6268  , 𝑅2 = 0.2878  ،  𝛿 = [0,0.04]  

In relations (15), (16), (17) we find: 

 From relation (15) we find: 

𝑥𝑖𝑁 = [−
1

𝛼𝑁
𝑙𝑛𝑅𝑖𝑁]

−
1
𝛽

=  [−
1

𝛼𝑁
𝑙𝑛 (

𝑅1−𝛿

1 − 𝛿
)]

−
1
𝛽

        (15)       

𝑥1𝑁 = [−
1

{2,4}
𝑙𝑛𝑅1𝑁]

−
1
3

=  [−
1

{2,4}
𝑙𝑛 (

0.6268 − [0,0.04]

1 − [0,0.04]
)]

−
1
3

=   [−
1

{2,4}
𝑙𝑛 (

[0.5868,0.6268]

[0.96,1]
)]

−
1
3

= [−
1

{2,4}
𝑙𝑛([0.6113,0.6268])]

−
1
3

  

𝑥2𝑁 = [−
1

{2,4}
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

{2,4}
𝑙𝑛 (

0.2878 − [0,0.04]

1 − [0,0.04]
)]

−
1
3

=   [−
1

{2,4}
𝑙𝑛([0.2581,0.2878])]

−
1
3
 

𝛼𝑁 ∈ {2,4} So, for 𝛼𝑁 = 2 and 𝛽 = 3 we find: 

𝑥1𝑁 = [−
1

2
𝑙𝑛([0.6113,0.6268])]

−
1
3

= ([0.2461,0.2336])−
1
3 = [1.5957,1.6237]  

⟹ 𝑥1𝑁 ∈ [1.5957,1.6237] 

𝑥2𝑁 = [−
1

2
𝑙𝑛([0.2581,0.2878])]

−
1
3

=  ([0.2581,0.2878])−
1
3 = [1.5146,1.5706] 

⟹ 𝑥2𝑁 ∈ [1.5146,1.5706] 

𝛼𝑁 ∈ {2,4} So, for 𝛼𝑁 = 4 and 𝛽 = 3 we find: 

𝑥1𝑁 = [−
1

4
𝑙𝑛([0.6113,0.6268])]

−
1
3

= [[0.1230,0.1168]]
−

1
3 = [2.0108,2.0457]  

⟹ 𝑥1𝑁 ∈ [2.0108,2.0457] 

𝑥2𝑁 = [−
1

4
𝑙𝑛([0.2581,0.2878])]

−
1
3

=  ([0.3114,0.3386])−
1
3 = [1.4347,1.4753] 

⟹ 𝑥2𝑁 ∈ [1.4347,1.4753] 

From relation (15) we get the following two neutrosophic random numbers: 

𝑥1𝑁 ∈ {[1.5957,1.6237], [2.0108,2.0457]}    

𝑥2𝑁 ∈ {[1.5146,1.5706], [1.4347,1.4753]}    

 From relation (16) we find: 
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𝑥𝑖𝑁 = [−
1

𝛼𝑁
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽𝑁
=  [−

1

𝛼𝑁
𝑙𝑛 (

𝑅𝑖

1 + 𝛿
)]

−
1

𝛽𝑁
        (16)        

𝑥1𝑁 = [−
1

{2,4}
𝑙𝑛𝑅1𝑁]

−
1
3

=  [−
1

{2,4}
𝑙𝑛 (

0.6268

1 − [0,0.04]
)]

−
1
3

=   [−
1

{2,4}
𝑙𝑛 (

0.6268

[0.96,1]
)]

−
1
3

= [−
1

{2,4}
𝑙𝑛([0.6529,0.6268])]

−
1
3
 

𝑥2𝑁 = [−
1

{2,4}
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

{2,4}
𝑙𝑛 (

0.2878

1 − [0,0.04]
)]

−
1
3

=  [−
1

{2,4}
𝑙𝑛 (

0.2878

[0.96,1]
)]

−
1
3

 [−
1

{2,4}
𝑙𝑛([0.2878,0.2998])]

−
1
3
 

𝛼𝑁 ∈ {2,4} So, for 𝛼𝑁 = 2 and 𝛽 = 3 we find: 

𝑥1𝑁 = [−
1

2
𝑙𝑛𝑅1𝑁]

−
1
3

=  [−
1

2
𝑙𝑛 (

0.6268

1 − [0,0.04]
)]

−
1
3

=   [−
1

2
𝑙𝑛 (

0.6268

[0.96,1]
)]

−
1
3

= [−
1

2
𝑙𝑛([0.6529,0.6268])]

−
1
3

= ([0.2132,0.2336])−
1
3 = [1.6237,1.6739] 

𝑥2𝑁 = [−
1

2
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

2
𝑙𝑛 (

0.2878

1 − [0,0.04]
)]

−
1
3

=  [−
1

2
𝑙𝑛 (

0.2878

[0.96,1]
)]

−
1
3

 [−
1

2
𝑙𝑛([0.2878,0.2998])]

−
1
3

= ([0.6023,0.6227])−
1
3 = [1.1710,1.1841] 

𝛼𝑁 ∈ {2,4} So, for 𝛼𝑁 = 4 and 𝛽 = 3 we find: 

𝑥1𝑁 = [−
1

4
𝑙𝑛𝑅1𝑁]

−
1
3

=  [−
1

4
𝑙𝑛 (

0.6268

1 − [0,0.04]
)]

−
1
3

=   [−
1

4
𝑙𝑛 (

0.6268

[0.96,1]
)]

−
1
3

= [−
1

4
𝑙𝑛([0.6529,0.6268])]

−
1
3

= ([0.1066,0.1168])−
1
3 = [2.1090,2.0457] 

𝑥2𝑁 = [−
1

4
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

4
𝑙𝑛 (

0.2878

1 − [0,0.04]
)]

−
1
3

=  [−
1

4
𝑙𝑛 (

0.2878

[0.96,1]
)]

−
1
3

 [−
1

4
𝑙𝑛([0.2878,0.2998])]

−
1
3

= ([0.3012,0.3114])−
1
3 = [1.4753,1.4918] 

From relation (16) we get the following two neutrosophic random numbers: 

𝑥1𝑁 ∈ {[1.6237,1.6739], [2.1090,2.0457]}    

𝑥2𝑁 ∈ {[1.1710,1.1841], [1.4753,1.4918]}    

 From relation (17) we find: 

𝑥𝑖𝑁 = [−
1

𝛼𝑁
𝑙𝑛𝑅𝑖𝑁]

−
1

𝛽𝑁
=  [−

1

𝛼𝑁
𝑙𝑛(𝑅𝑖 − 𝛿 )]

−
1

𝛽𝑁
        (17)        
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𝑥1𝑁 = [−
1

{2,4}
𝑙𝑛𝑅𝑖𝑁]

−
1
3

=  [−
1

{2,4}
𝑙𝑛(0.6268 − [0,0.04])]

−
1
3

=     [−
1

{2,4}
𝑙𝑛([0.5868,0.6268])]

−
1
3

   

𝑥2𝑁 = [−
1

{2,4}
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

{2,4}
𝑙𝑛(0.2878 − [0,0.04])]

−
1
3

=     [−
1

{2,4}
𝑙𝑛([0.2478,0.2878])]

−
1
3

  

𝛼𝑁 ∈ {2,4} So, for 𝛼𝑁 = 2 and 𝛽 = 3 we find: 

𝑥1𝑁 = [−
1

2
𝑙𝑛𝑅𝑖𝑁]

−
1
3

=  [−
1

2
𝑙𝑛(0.6268 − [0,0.04])]

−
1
3

=     [−
1

2
𝑙𝑛([0.5868,0.6268])]

−
1
3

= ([0.2665,0.2336])−
1
3 = [1.5539,1.6237]  

𝑥2𝑁 = [−
1

2
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

2
𝑙𝑛(0.2878 − [0,0.04])]

−
1
3

=     [−
1

2
𝑙𝑛([0.2478,0.2878])]

−
1
3

= ([0.6227,0.6976])−
1
3 = [1.1275,1.1710] 

𝛼𝑁 ∈ {2,4} So, for 𝛼𝑁 = 4 and 𝛽 = 3 we find: 

𝑥1𝑁 = [−
1

4
𝑙𝑛𝑅𝑖𝑁]

−
1
3

=  [−
1

4
𝑙𝑛(0.6268 − [0,0.04])]

−
1
3

=     [−
1

4
𝑙𝑛([0.5868,0.6268])]

−
1
3

= ([0.1333,0.1168])−
1
3 = [1.9576,2.0457]  

𝑥2𝑁 = [−
1

4
𝑙𝑛𝑅2𝑁]

−
1
3

=  [−
1

4
𝑙𝑛(0.2878 − [0,0.04])]

−
1
3

=     [−
1

4
𝑙𝑛([0.2478,0.2878])]

−
1
3

= ([0.3114,0.3488])−
1
3 = [1.4206,1.4753] 

From relation (17) we get the following two neutrosophic random numbers: 

𝑥1𝑁 ∈ {[1.5539,1.6237], [1.9576,2.0457]}    

𝑥2𝑁 ∈ {[1.1275,1.1710], [1.4206,1.4753]}    

Note  

We follow the same solution method if what is required is, starting from the seed 𝑅0 = 0.2151, find two 

neutrosophic random variables that follow the two-case distribution in the following two cases: 

 𝑝 = 0.75 

 𝑝 ∈ {0.25,0.75} 

4 |Conclusion and Results 

In this research, we presented a neutrosophic study to generate random variables that follow the Weibull 

distribution and the geometric distribution using the inverse transformation method. The study included all 

cases that produce neutrosophic random variables that can be used to simulate systems that operate according 

to the geometric distribution and the Weibull distribution and give results through which decision-makers 

can make ideal decisions. For the functioning of these systems in all conditions that the work environment 

may experience. 
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