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1 |Introduction 

Since F. Smarandache introduced the "neutrosophic" in [1,2] "neutrosophic" studied in many sciences, such 

as algebra by introducing neutrosophic group which played a basic role in studying many neutrosophic 

algebraic structures as a neutrosophic ring, neutrosophic module, and neutrosophic vector space. 

In recent years, Agboola et al. studied the concept of “ neutrosophic group “ and “ neutrosophic ring “ in [3, 

4], They also, In 2015, introduced the concept of “ refined neutrosophic algebraic structures ” [5], and 

presented “ refined neutrosophic groups”. Also, Adeleke et al. in [6, 7] in 2020, studied several refined 

concepts such as “refined neutrosophic rings”, “refined neutrosophic ideals” and “refined neutrosophic 

homomorphisms” in detail. 

Also, many researchers study applications of “ neutrosophic group “ in topology, such as R. Al-Hamido, in 

2021, [8] studied “ neutrosophic bi-topological groups ”, and investigated its basic properties. 

Before this study, Q. Imran, et al. in [9] studied several types of “neutrosophic topological groups” and 

introduced their basic properties. Also, Sumathi et al. in [10] introduced the concept of “neutrosophic 

topological groups”. 

Also, P. K. Singh, et al. in [11] defined the concept of a “symbolic Turiyam ring “as an application of the 

“Turiyam symbolic set” [12, 13] and as a “new generalization” of “neutrosophic rings”. 
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  Also, R. Al-Hamido, in [14] defined “new neutrosophic algebraic structures” as “new neutrosophic groupoid” 

and “new neutrosophic monoid”. 

The “neutrosophic group” is not “a group” and also has many properties that hold in the “classical group”, 

and that do not hold in “neutrosophic group theory”. So we think about defining a “new neutrosophic group” 

which is different from the “neutrosophic group”.  

In this paper, we defined and studied a “new neutrosophic group” and a “new neutrosophic subgroup “for 

the first time. This “ new neutrosophic group “ opens the door to re-defining many “ neutrosophic algebraic 

structures ”, such as the “new neutrosophic ring”, and it may contribute to solving some open problems that 

the “ neutrosophic group” could not solve. 

Also, we studied the basic properties of this “new neutrosophic algebraic structure”. 

2 |Preliminaries 

Remark 2.1: the neutrosophic element I where I is an “indeterminate” and (I) is such that (I2 = I).  

Definition 2.2. [10] If (Ģ, ⁕) is any group, the "neutrosophic group" is generated by (I) and (Ģ) under (⁕) 

denoted by Ŋ(Ģ)={< Ģ I>,⁕}. 

Theorem 2. 3. [10] If (Ģ, ⁕) be a group, then Ŋ(Ģ) = {〈 Ģ ∪ I 〉, ⁕} be the “neutrosophic group”. 

i. Ŋ(Ģ) is not a group (in general). 

ii. Ŋ(Ģ) contains a” group “. 

Definition 2.4. [11] If 𝑅 be a “ring”, we define the “symbolic Turiyam ring” (𝑆𝑇𝑅) as 

𝑇𝑅={𝑎+𝑏𝑇+𝑐𝐹+𝑑𝐼+𝑒𝑌;𝑎,𝑏,𝑐,𝑑,𝑒∈𝑅}. 

 In case 𝑅 is a “field” then 𝑇𝑅 is called “symbolic Turiyam field “(𝑆𝑇𝐹). 

Definition 2.5. [14] If (Ģ,⁕) be an “groupoid” and let Ģ(I)={+I : ,   Ģ}, And ' ∗̌ '  be a “binary 

operation” on Ģ(I) defined as : 

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ Ģ 

Then: (Ģ(I),∗̌) is a “groupoid”, called it “new neutrosophic groupoid”. 

Definition 2.6. [14] If (Ģ,⁕) be an “semigroup” and let Ģ(I)={+I : ,   Ģ}, And ' ∗̌ '  be a” binary 

operation“ on Ģ(I) defined as: 

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ Ģ 

Then: (Ģ(I).∗̌) is a “semigroup”, called it “new neutrosophic semigroup”. 

3 |New Neutrosophic Group 

In this part, we defined “new neutrosophic group” and “new neutrosophic subgroup” and studied its 

“basic properties”.   

Theorem 3.1: If (Ģ,⁕) be an “group” and let Ģ(I)={ +I : ,   Ģ }, And ' ∗̌ '  be a “binary operation” 

on Ģ(I) defined as follows: 

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ Ģ 

Then: (Ģ(I).∗̌) is a “group” we called it “new neutrosophic group”. 

Proof: 

i. ∀ ( + I) ∗̌ (𝔠 + 𝔰I) ∈ Ģ(I) then   ( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I ∈ Ģ(I)  implies that  Ģ is 

closed under ∗̌ . 
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ii. ∀ ( + I), (𝔠 + 𝔰I), (ℯ + 𝒻I) ∈ Ģ(I) then   [( + I) ∗̌ (𝔠 + 𝔰I)] ∗̌ (ℯ + 𝒻I) =    

[( + I) + (𝔠 + 𝔰I)] ∗̌ (ℯ + 𝒻I) = [(⁕𝔠)⁕ℯ] + [(⁕𝔰)⁕𝒻]I (Since ⁕ such that associative Law) 

= [⁕(𝔠⁕ℯ)] + [⁕(𝔰⁕𝒻)]I = ( + I) ∗̌ [(𝔠⁕ℯ) + (𝔰⁕𝒻)I] 

= ( + I) ∗̌ [(𝔠 + 𝔰I) ∗̌ (ℯ + 𝒻I)]   

 (Associative law). 

i. for every (𝔠 + 𝔰I) ∈ Ģ(I)There exists an identity element (ℯ + ℯI)Ģ(I) such that 

(𝔠 + 𝔰I) ∗̌ (ℯ + ℯI) = (𝔠⁕ℯ) + (𝔰⁕ℯ)I = (𝔠 + 𝔰I) 

(ℯ + ℯI) ∗̌ (𝔠 + 𝔰I) = (ℯ⁕𝔠) + (ℯ⁕𝔰)I = (𝔠 + 𝔰I) 

Therefore(𝔠 + 𝔰I) ∗̌ (ℯ + ℯI) = (ℯ + ℯI) ∗̌ (𝔠 + 𝔰I) = (𝔠 + 𝔰I). 

ii. for every (a + bI) ∈ Ģ(I) there exists an element (a−1 + b−1I) ∈ Ģ(I)  such that 

(𝔠 + 𝔰I) ∗̌ (𝔠−1 + 𝔰−1I) = (𝔠⁕𝔠−1) + (𝔰⁕𝔰−1)I = ℯ + ℯI 

(𝔠−1 + 𝔰−1I) ∗̌ (𝔠 + 𝔰I) = (𝔠−1⁕𝔠) + (𝔰−1⁕𝔰)I = ℯ + ℯI 

 

Therefore (𝔠 + 𝔰I) ∗̌ (𝔠−1 + 𝔰−1I) = (𝔠−1 + 𝔰−1I) ∗̌ (𝔠 + 𝔰I) = ℯ + ℯI 

(The existence of inverse in Ģ(I) ). 

If (Ģ,⁕) be an “group” and let Ģ(I)={ +I : ,   Ģ }, And ' ∗̌ '  be a “binary operation” on Ģ(I) 

defined as follows: 

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ Ģ 

Then: (Ģ(I).∗̌) is a “group” we called it “new neutrosophic group”. 

 

Definition 3.2: If (Ģ,⁕) be an “group” and let Ģ(I)={ +I : ,   Ģ }, And ' ∗̌ '  be a “binary 

operation” on Ģ(I) defined as follows: 

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ Ģ 

Then: (Ģ(I).∗̌) is a “group” we called it “new neutrosophic group”. 

 

Example 3.3: If (Ɍ,+) be an “group” and let Ģ(I)={ +I : ,   Ɍ }, And ' ∗̌ '  be a “binary operation” 

on Ģ(I) defined as the following:  

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ Ɍ. 

Then: (Ɍ(I).∗̌) is a new neutrosophic group 

 

Example 3.4: Let ℛ̅= ℛ -{0} then (ℛ̅,.) be an “group” and let Ģ(I)={ +I : ,   ℛ̅ }, And ' ∗̌ '  be a 

“binary operation” on Ģ(I) defined as: 

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ ℛ̅ 

Then: (ℛ̅(I).∗̌) is a “new neutrosophic group”. 
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  Remark 3.5: We know that a “neutrosophic group” is not a “group”, but a “new neutrosophic group” is a 

“group”. 

Neutrosophic group                                          group 

The new neutrosophic group                                   group 

Definition 3.6: If (Ģ(I), . ) be a “new neutrosophic group” then if  ∗̌  be a “commutative binary operation” 

on Ģ(I) Then: (Ģ(I).∗̌) is called the” commutative new neutrosophic group”. 

 

Example 3.7: Let ℛ̅= ℛ -{0} then (ℛ̅,.) be an “group” and let Ģ(I)={ +I : ,   ℛ̅ }, And ' ∗̌ '  be a 

“binary operation” on Ģ(I) defined as: 

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ ℛ̅ 

Then: (ℛ̅(I).∗̌) is a “commutative new neutrosophic group”, because 

 

( + I) ∗̌ (𝔠 + 𝔰I) = (. 𝔠) + (. 𝔰)I ∀ ,, 𝔠, 𝔰 ∈ ℛ̅.   

 If (Ģ,⁕) is a “commutative group”, what about  (Ģ(I).∗̌). The following remark answer   

Remark 3.8: If (Ģ,⁕) is a “ commutative group “, then  (Ģ(I).∗̌) is a “commutative new neutrosophic group”. 

Proof: 

Since (Ģ,⁕) is a “commutative group” and ' ∗̌ '  be a “binary operation” on Ģ(I) defined as : 

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ ℛ̅ 

Then: (Ģ(I).∗̌) is a “commutative new neutrosophic group”, because 

( + I) ∗̌ (𝔠 + 𝔰I) = (⁕𝔠) + (⁕𝔰)I = (𝔠⁕) + (𝔰⁕)I = (𝔠 + 𝔰I) ∗̌  ( + I)∀ ∀ ,, 𝔠, 𝔰

∈ ℛ̅ 

Definition 3.9: A subset (M.∗̌) of a “new neutrosophic group” (Ģ(I).∗̌)  is said to be a “new neutrosophic 

subgroup” of Ģ(I) if (M.∗̌) is also a” new neutrosophic group”. 

 

Example 3.10: Let ℛ̅= ℛ -{0} then (ℛ̅,.) be an “group” and let Ģ(I)={ +I : ,   ℛ̅ }, And ' ∗̌ '  be a 

“binary operation” on Ģ(I) defined as: 

( + I) ∗̌ (𝔠 + 𝔰I) = (. 𝔠) + (. 𝔰)I     ∀ ,, 𝔠, 𝔰 ∈ ℛ̅ 

Then: (ℛ̅(I).∗̌) is a “new neutrosophic group”, because 

( + I) ∗̌ (𝔠 + 𝔰I) = (. 𝔠) + (. 𝔰)I ∀ ,, 𝔠, 𝔰 ∈ ℛ̅.   

Let Ŋ ={-1,1} Then : (Ŋ(I).∗̌) is a” new neutrosophic subgroup”. 

 

Theorem 3.11: Let (Ģ(I).∗̌) is a “new neutrosophic group” and Ŋ(I) is a “subset” of Ģ(I) then: 

(Ŋ(I).∗̌) is “a new neutrosophic subgroup” of (Ģ(I).∗̌)  if it satisfied: 

1) a+bI, c+dIŊ(I) then a+bI ∗̌ c+dI Ŋ(I). 

2) a+bIŊ(I) then a−1 + b−1IŊ(I). 

Proof: 
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i. from 1)  a+bI, c+dIŊ(I) then a+bI ∗̌ c+dI Ŋ(I). 

implies Ŋ(I) is closed under∗̌ . 

ii. for all a + bIŊ(I) (from 2) ) then a−1 + b−1IŊ(I), then 

(a+bI) ∗̌ (a−1 + b−1I) = e + ei Ŋ(I)and   (a+bI) ∗̌ (e + ei) = a + ei = (e +

ei) ∗̌ (a + bi) 

iii. for all a + bIŊ(I) (from 2) ) then a−1 + b−1IŊ(I) and (a+bI) ∗̌ (a−1 + b−1I) = e +

eI=(a−1 + b−1I) ∗̌ (a + bI) 

(The existence of inverse in Ģ(I) ). 

Therefore(Ŋ(I).∗̌) is “a new neutrosophic subgroup” of (Ģ(I).∗̌). 

 

Theorem 3.12: Let (Ģ(I),∗̌) is “a new neutrosophic group” and Ŋ(I) is a subset of Ģ(I) then: 

 (Ŋ(I),∗̌) is “a new neutrosophic subgroup” of (Ģ(I),∗̌)  if it satisfied: 

 a + bI.  c + dIŊ(I)  then (a+bI) ∗̌  (c−1 + d−1I) Ŋ(I). 

Proof: 

i. For all a + BiŊ(I), since a + BiŊ(I) then   e+eI= a + bI ∗̌ (a−1 + b−1I)Ŋ(I). Therefore (e+eI) 

∗̌ (a−1 + b−1I) = (a−1 + b−1I)Ŋ(I). 

Therefore for all a + bIŊ(I) then (a−1 + b−1I)Ŋ(I). 

ii.  a + bi, c + diŊ(I) then (a + bi) ∗̌ (c + di)Ŋ(I).since (c + di)Ŋ(I) then c−1 + d−1IŊ(I), 

therefore (a + bi) ∗̌ (c−1 + d−1I)−1 = (a + bi) ∗̌ (c + di)Ŋ(I) 

by i) and ii) and theorem 3.11 (Ŋ(I).∗̌) is “a new neutrosophic subgroup” of (Ģ(I).∗̌). 

 

Theorem 3.13: If  (Ŋ, ⁕) is a “subgroup” of (Ģ. ⁕) then: 

A subset (Ŋ(I).∗̌) is said to be “a new neutrosophic subgroup” of (Ģ(I).∗̌). 

Proof: 

Since (Ŋ. ⁕) is a “subgroup” of (Ģ. ⁕) then (Ŋ. ⁕) is also a “group”, therefore  (Ŋ(I).∗̌) is a “new neutrosophic 

group”, so (Ŋ(I).∗̌) is “a new neutrosophic subgroup” of (Ģ(I).∗̌). 

 

Theorem 3.14: If a subset Ŋ of the “group” (Ģ. ⁕) such that: 

1) a,bN then a⁕bŊ. 

2)  aŊ then a-1Ŋ. 

Then: (Ŋ(I).∗̌) is “a new neutrosophic subgroup” of (Ģ(I).∗̌). 

Proof: 

i. From 1)  a,bŊ then a⁕bŊ. 

Implies that Ŋ is closed under ⁕. 

ii. for all aŊ (From 2) then a-1Ŋ, then a⁕a−1 = e ∈ Ŋ and   a⁕e = e⁕a = a. 
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iv. for all aŊ (from 2)  ) then a-1Ŋ.  

(The existence of inverse). 

Therefore (Ŋ. ⁕) is “subgroup of the group” (Ģ. ⁕), therefore(Ŋ(I).∗̌) is “a new neutrosophic subgroup” of 

(Ģ(I).∗̌). 

 

Example 3.15: Let Q̌=Q-{0} then (Q̌,.) be an “group” and let Ģ(I)={ +I : ,   Q̌ }, And ' ∗̌ '  be a 

“binary operation” on Ģ(I) defined as the following: 

( + I) ∗̌ (𝔠 + 𝔰I) = (. 𝔠) + (. 𝔰)I ∀ ,, 𝔠, 𝔰 ∈ Q̌.   

Then: (Q̌(I).∗̌) is a “new neutrosophic group”.  

Let N={-1,1} Then(Ŋ,.) be an “subgroup” and therefore (Ŋ(I).∗̌) is a “neutrosophic subgroup”. 

 

Example 3.16: Let (R,+) be an “group” and let Ģ(I)={ +I : ,   R }, And ' ∗̌ '  be a” binary operation” 

on Ģ(I) defined as: 

( + I) ∗̌ (𝔠 + 𝔰I) = ( + 𝔠) + ( + 𝔰)I ∀ ,, 𝔠, 𝔰 ∈ R 

Then: (R(I).∗̌) is a “new neutrosophic group”. 

We now That (Z,+) be an subgroup of (R,+)  and therefore (Z(I),∗̌) is a “neutrosophic subgroup” of (R(I).∗̌). 

Theorem 3.17: If A subset Ŋ of the “group” (Ģ. ⁕) such that: 

 a,bŊ then a⁕b-1Ŋ. 

then: 

(Ŋ(I).∗̌) is a “neutrosophic subgroup” of (Ģ(I).∗̌). 

Proof. 

i. for all aŊ, since aŊ then   e=a⁕ a-1Ŋ. Therefore e⁕ a-1= a-1Ŋ 

Therefore  aŊ then a-1Ŋ 

ii.  a,bŊ then a⁕bŊ.since bŊ then b-1Ŋ,therefore a⁕(b−1)−1 = a⁕b ∈ Ŋ 

by i) and ii) and theorem3 (Ŋ. ⁕) is a subgroup of (Ģ. ⁕). 

Therefore (Ŋ(I).∗̌) is a “new neutrosophic subgroup” of (Ģ(I).∗̌). 

 

Theorem 3.18: If  (Ŋ. ⁕) is a “subgroup” of (M. ⁕) and  (M. ⁕) is a “subgroup” of (Ģ. ⁕)then: (Ŋ(I).∗̌) is a 

“new neutrosophic subgroup” of (Ģ(I).∗̌) 

Proof: 

Since (Ŋ. ⁕) is a “subgroup” of (M. ⁕) and  (M. ⁕) is a “subgroup” of (Ģ. ⁕)then: (Ŋ. ⁕) is a subgroup of 

(Ģ. ⁕). Therefore (Ŋ(I).∗̌) is a new neutrosophic subgroup of (Ģ(I).∗̌). 

Theorem 3.19: If  (N(I).∗̌) is a new neutrosophic subgroup of (M(I).∗̌) and  (M(I).∗̌) is a “new neutrosophic 

subgroup” of (Ģ(I).∗̌)then: (Ŋ(I).∗̌) is a “new neutrosophic subgroup” of (Ģ(I).∗̌) 

Proof: 

Follow from theorem 3.18. 
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4 | A New Neutrosophic Symbolic Turiyam Group 

In this section, we studied the neutrosophic symbolic Turiyam group and the new neutrosophic symbolic 

Turiyam group and studied its important properties.   

Definition 4.1: Let (Ģ,*) be a “group”, we define the “neutrosophic symbolic Turiyam group” (N𝑆𝑇Ģ) as : 

(𝑇Ģ ,*) where 𝑇Ģ={𝑎+𝑏𝑇+𝑐𝐹+𝑑𝐼+g𝑌;𝑎,𝑏,𝑐,𝑑,g∈𝑅}. 

Theorem 4.2: Let (Ģ,⁕) be an “group” and let 𝑇Ģ ={ 𝑎+𝑏𝑇+𝑐𝐹+𝑑𝐼+g𝑌;𝑎,𝑏,𝑐,𝑑,g ∈ Ģ }, and ' #̌ '  be a 

“binary operation” on 𝑇Ģ defined as the following: 

(a + bT + cF + dI + gY)#̌(à + b̀T + c̀F + d̀I + g̀Y)

= (a⁕à) + (b⁕b̀)T + (c⁕c̀)F + (d⁕d̀)I + (g⁕g̀)Y  ∀ a, b, c, d, g, à, b̀, c̀, d̀, g̀ ∈ Ģ 

Then: (TĢ , #̌) is a group we called it “new neutrosophic symbolic Turiyam group”. 

Proof: 

i. ∀ (a + bT + cF + dI + gY), (à + b̀T + c̀F + d̀I + g̀Y) ∈ TĢ then   (a + bT + cF + dI + gY)#̌(à +

b̀T + c̀F + d̀I + g̀Y) = (a⁕à) + (b⁕b̀)T + (c⁕c̀)F + (d⁕d̀)I + (g⁕g̀)Y ∈ TĢ  implies that  TĢ is closed 

under #̌. 

ii. ∀ (a + bT + cF + dI + gY), (à + b̀T + c̀F + d̀I + g̀Y), (ä + b̈T + c̈F + d̈I + g̈Y) ∈ TĢ then: (a +

bT + cF + dI + gY)#̌ ((à + b̀T + c̀F + d̀I + g̀Y)#̌(ä + b̈T + c̈F + d̈I + g̈Y)) = (a + bT + cF + dI +

gY)#̌ ((à⁕ä) + (b̀⁕b̈)T + (c̀⁕c̈)F + (d̀⁕d̈)I + (g̀⁕g̈)Y) = a⁕(à⁕ä) + b⁕(b̀⁕b̈)T + c⁕(c̀⁕c̈)F +

d⁕(d̀⁕d̈)I + g⁕(g̀⁕g̈)Y ∈ TĢ   (since ⁕ such that associative Law) 

= (a⁕à)⁕ä + [(b⁕b̀)⁕b̈]T + [(c⁕c̀)⁕c̈]F + [(d⁕d̀)⁕d̈]I + [(g⁕g̀)⁕g̈]Y

= ((a⁕à) + (b⁕b̀)T + ((c⁕c̀))F + ((d⁕d̀)) I + ((g⁕g̀))Y) #̌(ä + b̈T + c̈F + d̈I

+ g̈Y) 

= ((a + bT + cF + dI + gY)#̌(à + b̀T + c̀F + d̀I + g̀Y)) #̌(ä + b̈T + c̈F + d̈I + g̈Y) (associative law). 

 iii. for every (a + bT + cF + dI + gY) ∈ TĢ There exists an identity element (e + eT + eF + eI + eY) 

∈ TĢ such that 

(a + bT + cF + dI + gY)#̌(e + eT + eF + eI + eY) = (a⁕e) + (b⁕e)T + ((c⁕e))F + ((d⁕e))I +

((g⁕e))Y = (a + bT + cF + dI + gY). 

In the same way, we see that: 

(e + eT + eF + eI + eY)#̌(a + bT + cF + dI + gY) = (a + bT + cF + dI + gY). 

Therefore (a + bT + cF + dI + gY)#̌(e + eT + eF + eI + eY) = (e + eT + eF + eI + eY)#̌(a + bT +

cF + dI + gY) = a + bT + cF + dI + gY. 

iv. for every 𝑥 = (a + bT + cF + dI + gY) ∈ TĢ there exists an element x−1 = (a−1 + b−1T + c−1F +

d−1I + g−1Y) ∈ TĢ    

such that x#̌x−1 = x−1#̌x = (e + eT + eF + eI + eY) 

(the existence of inverse in TĢ ). 
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Definition 4.3: Let (Ģ,⁕) be an “group” and let 𝑇Ģ ={ 𝑎+𝑏𝑇+𝑐𝐹+𝑑𝐼+g𝑌;𝑎,𝑏,𝑐,𝑑,g ∈ Ģ }, and ' #̌ '  be 

a “binary operation” on 𝑇Ģ defined as: 

(a + bT + cF + dI + gY)#̌(à + b̀T + c̀F + d̀I + g̀Y)

= (a⁕à) + (b⁕b̀)T + (c⁕c̀)F + (d⁕d̀)I + (g⁕g̀)Y  ∀ a, b, c, d, g, à, b̀, c̀, d̀, g̀ ∈ Ģ 

Then: (TĢ, #̌) is a “group” we called it “new neutrosophic symbolic Turiyam group”. 

 

Example 4.4: Let (R,+) be an group and let 𝑇Ģ ={ 𝑎+𝑏𝑇+𝑐𝐹+𝑑𝐼+g𝑌;𝑎,𝑏,𝑐,𝑑,g ∈ Ģ }, and ' #̌ '  be a “ 

binary operation” on 𝑇R defined as : 

(a + bT + cF + dI + gY)#̌(à + b̀T + c̀F + d̀I + g̀Y)

= (a + à) + (b + b̀)T + (c + c̀)F + (d + d̀)I + (g + g̀)Y  ∀ a, b, c, d, g, à, b̀, c̀, d̀, g̀

∈ R 

Then: (TR. #̌) is a group we called it “new neutrosophic symbolic Turiyam group”. 

5 |Conclusion 

In this paper, we have defined new algebraic structures such as “new neutrosophic groups” and “new 

neutrosophic subgroups”. Finally, the “new neutrosophic group” is just the beginning of a “new neutrosophic 

algebraic structure” and we have studied a few ideas only, it will be necessary to carry out “more theoretical 

research” to establish a “general framework” for the practical application. In the future, we will study special 

elements in this new neutrosophic group and subgroup. 
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