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1 |Introduction 

Veliko [13], Mashhour et al. [11], Levine [9], Njastad [12] were introduced 𝛿-closed (briefly 𝛿-𝐶) sets, pre-

open (briefly pre-𝑂) sets, semi-open (briefly semi-𝑂)sets, 𝛼-open (briefly 𝛼-𝑂)  sets respectively. Levine [10] 

introduced the concept of generalized closed (briefly 𝑔-𝐶) sets and studied their basic properties. Popa and 

Noiri [1] introduced the concept of minimal structure (briefly ℳ-structure) and also they introduced the 

notions of 𝑚𝑖𝑛𝕊-open (briefly 𝑚𝑖𝑛𝕊-𝑂) sets and 𝑚𝑖𝑛𝕊-closed (briefly 𝑚𝑖𝑛𝕊-𝐶) sets and characterize those 

sets using 𝑚𝑖𝑛𝕊-closure and 𝑚𝑖𝑛𝕊-interior respectively. They introduced the notion of ℳ-𝐶𝑂𝑁𝑇 functions 

defined between minimal structures. 

Csaszar [2] introduced the concept of generalized topology and the concept of minimal structure. In 2011, 

Iuadong S et al. [14] introduced the notion of the generalized topology and minimal structure spaces and also 

they studied some properties of closed sets on the space. V. Kokilavani [7] introduced the concept of 𝑚𝑖𝑛𝕊𝛿-

closed (briefly 𝑚𝑖𝑛𝕊𝛿-𝐶) set in ℳ-structure. 

We are going to use a term of a new class of ℳ-structure set called 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 -set and also we have to 

introduce 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊  and 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇

𝕊 -functions. 
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2 |Preliminaries 

In this section, we introduce the ℳ-structure and also its relation to them. 

Definition 2.1. [3] Let 𝕊 be a non-empty set and let 𝑚𝑖𝑛𝕊 ⊆ 𝑃(𝕊) denotes the power of 𝕊 where 𝑚𝑖𝑛𝕊 is an 

ℳ-structure (or a minimal structure) on 𝕊, if 𝜑 and 𝕊 belong to 𝑚𝑖𝑛𝕊. The members of the minimal structure 

𝑚𝑖𝑛𝕊 are called 𝑚𝑖𝑛𝕊-𝑂 set and the pair (𝕊, 𝑚𝑖𝑛𝕊) is called an 𝑚-space. The complement of 𝑚𝑖𝑛𝕊-𝑂 set is  

said to be 𝑚𝑖𝑛𝕊-𝐶 set. 

Definition 2.2. [3] Let 𝕊 be a non-empty set and let 𝑚𝑖𝑛𝕊 is an ℳ-structure (or a minimal structure) on 𝕊.  

For a subset 𝐽 of 𝕊, 𝑚𝑖𝑛𝕊-closure of  𝐽 and 𝑚𝑖𝑛𝕊-interior of  𝐽 is defined as follows: 

𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) =∩ {𝐹: 𝐽 ⊆ 𝐹, 𝕊 − 𝐹 ∈ 𝑚𝑖𝑛𝕊}. 

𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽) =∪ {𝐹: 𝐾 ⊆ 𝐽, 𝐾 ∈ 𝑚𝑖𝑛𝕊}. 

Lemma 2.1. [3] Let 𝕊 be a non-empty set and let 𝑚𝑖𝑛𝕊 is an ℳ-structure (or a minimal structure) on 𝕊. For 

subsets 𝐽 and 𝐼 of 𝕊, the following properties hold: 

a) 𝑚𝑖𝑛𝕊𝑐𝑙(𝕊 − 𝐽) = 𝕊 − 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽) 𝑎𝑛𝑑 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝕊 − 𝐽) = 𝕊 − 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽).  

b) If 𝕊 − 𝐽 ∈ 𝑚𝑖𝑛𝕊, then 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) = 𝐽 𝑎𝑛𝑑 𝑖𝑓 𝐽 ∈ 𝑚𝑖𝑛𝕊 then 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽) = 𝐽. 

c) 𝑚𝑖𝑛𝕊𝑐𝑙(𝜑) = 𝜑, 𝑚𝑖𝑛𝕊𝑐𝑙(𝕊) = 𝕊 𝑎𝑛𝑑 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝜑) = 𝜑, 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝕊) = 𝕊.  

d) If 𝐽 ⊆ 𝐼 then 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙(𝐼) 𝑎𝑛𝑑 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐼). 

e) 𝐽 ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) 𝑎𝑛𝑑 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽) ⊆ 𝐽. 

f) 𝑚𝑖𝑛𝕊𝑐𝑙(𝑚𝑖𝑛𝕊𝑐𝑙(𝐽)) = 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) 𝑎𝑛𝑑 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽)) = 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽). 

g) 𝑚𝑖𝑛𝑖𝑛𝑡(𝐽∩𝐼)
𝕊 ⊆ (𝑚𝑖𝑛𝑖𝑛𝑡(𝐽)

𝕊 ) ∩ (𝑚𝑖𝑛𝑖𝑛𝑡(𝐼)
𝕊 )𝑎𝑛𝑑 (𝑚𝑖𝑛𝑖𝑛𝑡(𝐽)

𝕊 ) ∪ (𝑚𝑖𝑛𝑖𝑛𝑡(𝐼)
𝕊 )    ⊆ 𝑚𝑖𝑛𝑖𝑛𝑡(𝐽∪𝐼).

𝕊  

h) 𝑚𝑖𝑛𝑐𝑙(𝐽∪𝐼)
𝕊 ⊆ (𝑚𝑖𝑛𝑐𝑙(𝐽)

𝕊 ) ∪ (𝑚𝑖𝑛𝑐𝑙(𝐼)
𝕊 )𝑎𝑛𝑑(𝑚𝑖𝑛𝑐𝑙(𝐽∩𝐼)

𝕊 ) ⊆ (𝑚𝑖𝑛𝑐𝑙(𝐽)
𝕊 )  ∩ (𝑚𝑖𝑛𝑐𝑙(𝐼)

𝕊 ). 

Lemma 2.2. [1] Let (𝕊, 𝑚𝑖𝑛𝕊) be an 𝑚-space and 𝐽 be a non-empty set of  𝕊. Then 𝑥 ∈ 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) if and 

only if 𝐾 ∩ 𝐽 ≠ 𝜑 for every 𝐾 ∈ 𝑚𝑖𝑛𝕊 containing 𝑥.  

Definition 2.3. [5] Let 𝕊 be a non-empty set and 𝑚𝑖𝑛𝕊 is an ℳ-structure (or a minimal structure) on 𝕊. For 

a subset 𝐽 of 𝕊, pre-closure of 𝐽 and pre-interior of 𝐽 are defined as follows: 

𝑚𝑖𝑛𝕊 − 𝑝𝑐𝑙(𝕊 − 𝐽) = 𝕊 − (𝑚𝑖𝑛𝕊 − 𝑝𝐼𝑛𝑡(𝐽)). 

𝑚𝑖𝑛𝕊 − 𝑝𝐼𝑛𝑡(𝕊 − 𝐽) = 𝕊 − (𝑚𝑖𝑛𝕊 − 𝑝𝑐𝑙(𝐽)). 

Definition 2.4. [5] Let 𝕊 be a non-empty set and 𝑚𝑖𝑛𝕊 is an ℳ-structure (or a minimal structure) on 𝕊. For 

a subset 𝐽 of 𝕊, semi-closure of 𝐽 and semi-interior of 𝐽 are defined as follows: 

𝑚𝑖𝑛𝕊 − 𝑠𝑐𝑙(𝕊 − 𝐽) = 𝕊 − (𝑚𝑖𝑛𝕊 − 𝑠𝐼𝑛𝑡(𝐽)). 

𝑚𝑖𝑛𝕊 − 𝑠𝐼𝑛𝑡(𝕊 − 𝐽) = 𝕊 − (𝑚𝑖𝑛𝕊 − 𝑠𝑐𝑙(𝐽)). 

Definition 2.5. [6] Let 𝕊 be a non-empty set and 𝑚𝑖𝑛𝕊 is an ℳ-structure (or a minimal structure) on 𝕊. For 

a subset 𝐽 of 𝕊, 𝛼𝑚-closure of 𝐽 and 𝛼𝑚-interior of 𝐽 are defined as follows: 

𝛼𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) =∩ {𝐹: 𝐽 ⊆ 𝐹, 𝐹 𝑖𝑠 𝛼𝑚 − 𝐶 𝑖𝑛 𝕊} 

𝛼𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽) =∪ {𝐹: 𝐾 ⊆ 𝐽, 𝐾 𝑖𝑠 𝛼𝑚 − 𝑂 𝑖𝑛 𝕊} 

Definition 2.6. A subset 𝐽 of an 𝑚-space (𝕊, 𝑚𝑖𝑛𝕊) is said to be 
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i). 𝑚𝑖𝑛𝕊-semi 𝑂 set [5] if 𝐽 ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙 (𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽)). 

ii). 𝑚𝑖𝑛𝕊-pre 𝑂 set [5] if  𝐽 ⊆ 𝑚𝑖𝑛𝕊𝑖𝑛𝑡 (𝑚𝑖𝑛𝕊𝑐𝑙(𝐽)). 

iii). 𝛼𝑚𝑖𝑛𝕊- 𝑂 set [6] if 𝐽 ⊆ 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝑚𝑖𝑛𝕊𝑐𝑙(𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝐽))). 

iv). 𝑚𝑖𝑛𝕊-regular 𝑂 set [4] if 𝐽 = 𝑚𝑖𝑛𝕊𝑖𝑛𝑡 (𝑚𝑖𝑛𝕊𝑐𝑙(𝐽)). 

The complement of a 𝑚𝑖𝑛𝕊-semi 𝑂 (resp. 𝑚𝑖𝑛𝕊-pre 𝑂, 𝛼𝑚𝑖𝑛𝕊-𝑂, 𝑚𝑖𝑛𝕏-regular 𝑂) set is called 𝑚𝑖𝑛𝕊-semi 

𝐶 (resp. 𝑚𝑖𝑛𝕊-pre 𝐶, 𝛼𝑚𝑖𝑛𝕊-𝐶, 𝑚𝑖𝑛𝕊-regular 𝐶). 

Definition 2.7.  [7] The 𝑚𝑖𝑛𝕊𝛿-interior of a subset 𝐽 of 𝕊 is the union of all 𝑚𝑖𝑛𝕊- regular 𝑂 set of 𝕊 contained 

in 𝐽 and is denoted by 𝑚𝑖𝑛𝕊𝑖𝑛𝑡𝛿(𝐽). The subset 𝐽 is called 𝑚𝑖𝑛𝕊𝛿-𝑂 if 𝐽 = 𝑚𝑖𝑛𝕊𝑖𝑛𝑡𝛿(𝐽), i.e.  a set is 𝑚𝑖𝑛𝕊𝛿-

𝑂 if it is the union of 𝑚𝑖𝑛𝕊-regular 𝑂 sets.  The complement of a 𝑚𝑖𝑛𝕊𝛿-𝑂 is called 𝑚𝑖𝑛𝕊𝛿-𝐶. Alternatively, 

a set (𝕊, 𝑚𝑖𝑛𝕊)
  

is called 𝑚𝑖𝑛𝕊𝛿-𝐶 if 𝐽 = 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐴), where 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) = {𝑥 ∈

𝕊: 𝑚𝑖𝑛𝕊𝑖𝑛𝑡 (𝑚𝑖𝑛𝕊𝑐𝑙(𝐾)) ≠ 𝜑, 𝐾 ∈ 𝑚𝑖𝑛𝕊 𝑎𝑛𝑑 𝑥 ∈ 𝐾}.   

Definition  2.8.  A subset 𝐽 of an 𝑚-space(𝕊, 𝑚𝑖𝑛𝕊)
 
is called 

i). A 𝑚𝑖𝑛𝕊- generalized-𝐶 (briefly 𝑚𝑖𝑛𝕊-𝑔-𝐶) set [4] if 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) ⊆ K 

whenever 𝐽 ⊆  𝐾  and 𝐾 belong to 𝑚𝑖𝑛𝕊. 

ii). A 𝑚𝑖𝑛𝕊- generalized semi-𝐶 (briefly 𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶) set [4] if 𝑚𝑖𝑛𝕊𝑠𝑐𝑙(𝐽) ⊆ K      

whenever 𝐽 ⊆  𝐾  and 𝐾 belong to 𝑚𝑖𝑛𝕊. 

iii). A 𝑚𝑖𝑛𝕊- 𝛼 generalized-𝐶 (briefly 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶) set [7] if 𝑚𝑖𝑛𝕊𝛼𝑐𝑙(𝐽) ⊆ 𝐾 

whenever 𝐽 ⊆  𝐾  and 𝐾  is 𝑚𝑖𝑛𝕊-𝑂 set in (𝕊, 𝑚𝑖𝑛𝕊). 

iv). A 𝑚𝑖𝑛𝕊- generalized pre-𝐶 (briefly 𝑚𝑖𝑛𝕊-𝑔𝑝-𝐶) set [4] if 𝑚𝑖𝑛𝕊𝑝𝑐𝑙(𝐽) ⊆ 𝐾     

whenever 𝐽 ⊆  𝐾  and 𝐾 belong to 𝑚𝑖𝑛𝕊. 

The complement of a 𝑚𝑖𝑛𝕊-𝑔-𝐶(resp. 𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶, 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶, 𝑚𝑖𝑛𝕊-𝑔𝑝-𝐶) set is called 𝑚𝑖𝑛𝕊-𝑔-𝑂 (resp. 

𝑚𝑖𝑛𝕊-𝑔𝑠-𝑂, 𝑚𝑖𝑛𝕊-𝛼𝑔-𝑂, 𝑚𝑖𝑛𝕊-𝑔𝑝-𝑂). 

Definition  2.9.  A function 𝑓: (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) is called 

i). 𝑔-(𝑚𝑖𝑛𝕊, 𝑚𝑖𝑛ℝ) 𝐶𝑂𝑁𝑇 [4] if  𝑓−1(𝑂)  is  𝑚𝑖𝑛𝕊-𝑔-𝐶 in (𝕊, 𝑚𝑖𝑛𝕊) for every 𝑚𝑖𝑛ℝ-𝐶 in (ℝ, 𝑚𝑖𝑛ℝ). 

ii). 𝑔𝑠-(𝑚𝑖𝑛𝕊, 𝑚𝑖𝑛ℝ) 𝐶𝑂𝑁𝑇 [4] if  𝑓−1(𝑂)  is  𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶 in (𝕊, 𝑚𝑖𝑛𝕊) for every 𝑚𝑖𝑛ℝ-𝐶 in 

(ℝ, 𝑚𝑖𝑛ℝ). 

iii). A 𝑚𝑖𝑛𝕊𝛼 generalized 𝐶𝑂𝑁𝑇 [8] if 𝑓−1(𝑂) is 𝛼 𝑚𝑖𝑛𝕊-𝐶 in (𝕊, 𝑚𝑖𝑛𝕊) for every 𝑚𝑖𝑛ℝ-𝐶 in 

(ℝ, 𝑚𝑖𝑛ℝ). 

iv). 𝑔𝑝-(𝑚𝑖𝑛𝕊, 𝑚𝑖𝑛ℝ) 𝐶𝑂𝑁𝑇 [4] if  𝑓−1(𝑂)  is  𝑚𝑖𝑛𝕊-𝑔𝑝-𝐶 in (𝕊, 𝑚𝑖𝑛𝕊) for every 𝑚𝑖𝑛ℝ-𝐶 in 

(ℝ, 𝑚𝑖𝑛ℝ). 

3 |Properties of 𝑴𝒊𝒏 𝜹∗𝒈𝜶−𝑪
𝕊 -Sets in 𝓜structure Spaces 

Definition 3.1. A subset 𝐽 of an 𝑚-space (𝕊, 𝑚𝑖𝑛𝕊) is said to be 

i). 𝑚𝑖𝑛𝑠𝑒𝑚𝑖−𝑝𝑟𝑒𝑂
𝕊 -set if 𝐽 ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙(𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝑚𝑖𝑛𝕊𝑐𝑙(𝐽)))  
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ii).  𝑚𝑖𝑛𝑏−𝑂
𝕊 -set if 𝐽 ⊆ 𝑚𝑖𝑛𝕊𝑖𝑛𝑡(𝑐𝑙(𝐽)) ∪ 𝑚𝑖𝑛𝕊𝑐𝑙(𝑖𝑛𝑡(𝐽))  

Definition 3.2. A subset 𝐽 of an 𝑚-space (𝕊, 𝑚𝑖𝑛𝕊) is called  

i). 𝐴 𝑚𝑖𝑛𝛿𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑− 𝐶
𝕊  (briefly 𝑚𝑖𝑛𝛿𝑔−𝐶

𝕊 )-set if 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝑈 then 𝐽 ⊆ 𝐾 where 𝐾 is 𝑚𝑖𝑛𝕊-𝑂 set 

in (𝕊, 𝑚𝑖𝑛𝕊). 

ii). 𝐴 𝑚𝑖𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑒𝑚𝑖 𝑝𝑟𝑒− 𝐶
𝕊  (briefly 𝑚𝑖𝑛𝑔𝑠𝑝−𝐶

𝕊 ) -set if 𝑚𝑖𝑛𝕊𝑠𝑝𝑐𝑙(𝐽) ⊆ 𝐾 then 𝐽 ⊆ 𝐾 where 𝐾 is 

𝑚𝑖𝑛𝕊-𝑂 set in (𝕊, 𝑚𝑖𝑛𝕊). 

iii). 𝐴 𝑚𝑖𝑛∗𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝛼− 𝐶
𝕊  (briefly 𝑚𝑖𝑛∗𝑔𝛼−𝐶

𝕊 ) -set if 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) ⊆ 𝐾 then 𝐽 ⊆ 𝐾 where 𝐾 is 

𝑚𝑖𝑛𝑔𝛼−𝑂
𝕊  set in (𝕊, 𝑚𝑖𝑛𝕊). 

iv). 𝐴 𝑚𝑖𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝛿− 𝐶
𝕊  (briefly 𝑚𝑖𝑛𝑔𝛿−𝐶

𝕏 ) -set if 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) ⊆ 𝐾 then 𝐽 ⊆ 𝐾 where 𝐾 is 𝑚𝑖𝑛𝛿−𝑂
𝕊  set 

in (𝕊, 𝑚𝑖𝑛𝕊). 

v). 𝐴 𝑚𝑖𝑛𝛿 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑∗− 𝐶
𝕊  (briefly 𝑚𝑖𝑛𝛿𝑔∗−𝐶

𝕊 )-set if 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾 then 𝐽 ⊆ 𝐾 where 𝐾 is 𝑚𝑖𝑛𝛿−𝑂
𝕊  

set in (𝕊, 𝑚𝑖𝑛𝕊). 

vi). 𝐴 𝑚𝑖𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝛿 𝑠𝑒𝑚𝑖 − 𝐶
𝕊  (briefly 𝑚𝑖𝑛𝑔𝛿𝑠−𝐶

𝕊 )-set if 𝑚𝑖𝑛𝕊𝑠𝑐𝑙(𝐽) ⊆ 𝐾 then 𝐽 ⊆ 𝐾 where 𝐾 is 

𝑚𝑖𝑛𝛿−𝑂
𝕊  set in (𝕊, 𝑚𝑖𝑛𝕊). 

vii). 𝐴 𝑚𝑖𝑛𝛿 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑏− 𝐶
𝕊  (briefly 𝑚𝑖𝑛𝛿𝑔𝑏−𝐶

𝕊 )-set if 𝑚𝑖𝑛𝕊𝑏𝑐𝑙(𝐽) ⊆ 𝐾 then 𝐽 ⊆ 𝐾 where 𝐾 is 𝑚𝑖𝑛𝛿−𝑂
𝕊  

set in (𝕊, 𝑚𝑖𝑛𝕊). 

Definition 3.3.  A function 𝑓: (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) is called 

i). A 𝑚𝑖𝑛𝛿 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑−𝐶𝑂𝑁𝑇
𝕊  (briefly 𝑚𝑖𝑛𝛿𝑔−𝐶𝑂𝑁𝑇

𝕊 ) if 𝑓−1(𝐸) is 𝑚𝑖𝑛𝛿𝑔−𝐶
𝕊  in

 
(𝕊, 𝑚𝑖𝑛𝕊) for every 

𝑚𝑖𝑛𝕊-𝐶 in (ℝ, 𝑚𝑖𝑛ℝ). 

ii). A 𝑚𝑖𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑒𝑚𝑖 𝑝𝑟𝑒− 𝐶𝑂𝑁𝑇
𝕊  (briefly 𝑚𝑖𝑛𝑔𝑠𝑝−𝐶𝑂𝑁𝑇

𝕊 ) if 𝑓−1(𝐸) is 𝑚𝑖𝑛𝑔𝑠𝑝−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊) for 

every 𝑚𝑖𝑛𝕊-𝐶 in (ℝ, 𝑚𝑖𝑛ℝ). 

iii). A 𝑚𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝛿−𝐶𝑂𝑁𝑇
𝕊  (briefly 𝑚𝑖𝑛𝑔𝛿−𝐶𝑂𝑁𝑇

𝕊 ) if 𝑓−1(𝐸) is 𝑚𝑖𝑛𝑔𝛿−𝐶
𝕊  in

 
(𝕊, 𝑚𝑖𝑛𝕊) for every 

𝑚𝑖𝑛𝕊-𝐶 in (ℝ, 𝑚𝑖𝑛ℝ). 

iv). 
 A 𝑚𝑖𝑛𝛿 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑∗−𝐶𝑂𝑁𝑇

𝕊  (briefly 𝑚𝑖𝑛𝛿𝑔∗−𝐶𝑂𝑁𝑇
𝕊 ) if 𝑓−1(𝐸) is 𝑚𝑖𝑛𝛿𝑔∗−𝐶

𝕊   in(𝕊, 𝑚𝑖𝑛𝕊) for every 

𝑚𝑖𝑛𝕊-𝐶 in (ℝ, 𝑚𝑖𝑛ℝ). 

v). 
 A 𝑚𝑖𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝛿  𝑠𝑒𝑚𝑖−𝐶𝑂𝑁𝑇

𝕊  (briefly 𝑚𝑖𝑛𝑔𝛿𝑠−𝐶𝑂𝑁𝑇
𝕊 ) if 𝑓−1(𝐸) is 𝑚𝑖𝑛𝑔𝛿𝑠−𝐶

𝕊   in(𝕊, 𝑚𝑖𝑛𝕊) for 

every 𝑚𝑖𝑛𝕊-𝐶 in (ℝ, 𝑚𝑖𝑛ℝ). 

vi). A 𝑚𝑖𝑛𝛿 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑟𝑒−𝐶𝑂𝑁𝑇
𝕊  (briefly 𝑚𝑖𝑛𝛿𝑔𝑝−𝐶𝑂𝑁𝑇

𝕊 ) if 𝑓−1(𝐸) is 𝑚𝑖𝑛𝛿𝑔𝑝−𝐶
𝕊   in(𝕊, 𝑚𝑖𝑛𝕊) for every 

𝑚𝑖𝑛𝕊-𝐶  in(ℝ, 𝑚𝑖𝑛ℝ). 

vii). A 𝑚𝑖𝑛𝛿 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑏−𝐶𝑂𝑁𝑇
𝕊  (briefly 𝑚𝑖𝑛𝛿𝑔𝑏−𝐶𝑂𝑁𝑇

𝕊 ) if 𝑓−1(𝐸) is 𝑚𝑖𝑛𝛿𝑔𝑏−𝐶
𝕊   in(𝕊, 𝑚𝑖𝑛𝕊) for every 

𝑚𝑖𝑛𝕊-𝐶 in(ℝ, 𝑚𝑖𝑛ℝ). 

Theorem 3.1. Every  𝑚𝑖𝑛𝕊-𝑂 set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set. 

Proof.  Let 𝐽 be 𝑚𝑖𝑛𝕊-𝑂 set in 𝕊, then 𝕊 − 𝐽 is 𝑚𝑖𝑛𝕊-𝐶 set.  Therefore  𝑚𝑖𝑛𝕊𝑐𝑙(𝕊 − 𝐽) = 𝕊 − 𝐽 ⊆ 𝕊 

whenever 𝕊 − 𝐽 ⊆ 𝕊 and 𝕊 is 𝑚𝑖𝑛𝑔𝛼−𝑂
𝕊  implies 𝕊 − 𝐽 is 𝑚𝑖𝑛∗𝑔𝛼−𝐶

𝕊  set. 
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Theorem 3.2. Every 𝑚𝑖𝑛𝕊𝛿-𝐶 set is 𝑚𝑖𝑛∗𝑔𝛼−𝐶

𝕊  set. 

Proof. Let 𝐽 be 𝑚𝑖𝑛𝕊𝛿-𝐶 set and 𝐾 be any 𝑚𝑖𝑛𝑔𝛼−𝑂
𝕊  set containing 𝐽. Since 𝐽 is 𝑚𝑖𝑛𝕊𝛿-𝐶, 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) = 𝐽.  

Therefore 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐽 ⊆ 𝐾. We know that 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. Hence 𝐽 is 𝑚𝑖𝑛∗𝑔𝛼−𝐶
𝕊  set. 

Definition 3.4. A subset 𝐽 of an 𝑚-space (𝕊, 𝑚𝑖𝑛𝕊)  is called 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  if 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾 whenever 𝐽 ⊆

𝐾 and 𝐾 is a 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set in (𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.3. Every 𝑚𝑖𝑛𝕊𝛿-𝐶 set is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set but the converse is not true. 

Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set. Since 𝐽 is 𝑚𝑖𝑛𝕊𝛿-𝐶 , 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) = 𝐽, then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. 

Therefore 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set. 

Example 1.  Let 𝕊 =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂 =  {𝜑, 𝕊, {ℎ} , {𝑘} , {ℎ, 𝑘}};  𝐻𝑒𝑟𝑒 {𝑘} is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  but not 

𝑚𝑖𝑛𝕊𝛿-𝐶 in (𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.4.  Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set is 𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶 set but the converse is not true. 

Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set. Since every 𝑚𝑖𝑛𝕊-𝑂 set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊  set [by theorem 3.1], then 𝐾 

is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set. Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  set, then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. But 𝑚𝑖𝑛𝕊𝑠𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), then 

𝑚𝑖𝑛𝕊𝑠𝑐𝑙(𝐽) ⊆ 𝐾. Therefore 𝐽 is 𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶 set. 

Example 2. Let 𝕊 =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂
 

=  {𝜑, 𝕊, {ℎ} , {ℎ, 𝑖}};  𝐻𝑒𝑟𝑒 {𝑖} is 𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶 but not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  

in (𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.5.  Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set is 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶 set but the converse is not true. 

Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛𝕊-𝑂
 
set. Since every 𝑚𝑖𝑛𝕊-𝑂 set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊  set, then 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set. 

Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 , then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. But 𝑚𝑖𝑛𝕊𝛼𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) set, then 𝑚𝑖𝑛𝕊𝛼𝑐𝑙(𝐽) ⊆ 𝐾. 

Therefore 𝐽 is 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶 set. 

Example 3. Let 𝕊 =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂
  

=  {𝜑, 𝕊, {𝑘} , {ℎ, 𝑘}};  𝐻𝑒𝑟𝑒 {ℎ} is 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶 set but not 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.6.  Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊   set is 𝑚𝑖𝑛𝕊-𝑔𝑠𝑝-𝐶 set but the converse is not true. 

 Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛𝕊-𝑂
 
set. Since every 𝑚𝑖𝑛𝕊-𝑂

 
set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊  set, then 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set. 

Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set, then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. But 𝑚𝑖𝑛𝕊𝑠𝑝𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), then 𝑚𝑖𝑛𝕊𝑠𝑝𝑐𝑙(𝐽) ⊆

𝐾. Therefore 𝐽 is 𝑚𝑖𝑛𝕊-𝑔𝑠𝑝-𝐶 set. 

Example 4. Let 𝕊 = {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂 =  {𝜑, 𝕊, {ℎ, 𝑖}};  𝐻𝑒𝑟𝑒 {ℎ} is 𝑚𝑖𝑛𝕊-𝑔𝑠𝑝-𝐶 set but not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  

in (𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.7.  Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set is 𝑚𝑖𝑛𝕊-𝑔𝑝-𝐶 set but the converse is not true. 

Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛𝕊-𝑂
 
set. Since every 𝑚𝑖𝑛𝕊-𝑂

 
set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊  set, then 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set. 

Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 , then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. But 𝑚𝑖𝑛𝕊𝑝𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), then 𝑚𝑖𝑛𝕊𝑝𝑐𝑙(𝐽) ⊆ 𝐾. 

Therefore 𝐽 is 𝑚𝑖𝑛𝕊-𝑔𝑝-𝐶 set. 

Example 5. Let 𝕊 = {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂 =  {𝜑, 𝕊, {𝑖, 𝑘}};  𝐻𝑒𝑟𝑒 {𝑖} is 𝑚𝑖𝑛𝕊-𝑔𝑝-C but not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in 

(𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.8.  Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set is 𝑚𝑖𝑛𝛿𝑔𝑝−𝐶

𝕊  set but the converse is not true. 
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Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛𝕊𝛿-𝑂 set. Since every 𝑚𝑖𝑛𝕊𝛿-𝑂 set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊 , then 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊  set. 

Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set, then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. But 𝑚𝑖𝑛𝕊𝑝𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), then 𝑚𝑖𝑛𝕊𝑝𝑐𝑙(𝐽) ⊆ 𝐾. 

Therefore 𝐽 is 𝑚𝑖𝑛𝛿𝑔𝑝−𝐶
𝕊  set. 

Example 6. Let 𝕊 =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂 =  {𝜑, 𝕊, {ℎ}, {𝑖}, {ℎ, 𝑖}, {𝑖, 𝑘}};  𝐻𝑒𝑟𝑒 {ℎ, 𝑖} is 𝑚𝑖𝑛𝛿𝑔𝑝−𝐶
𝕊   but not 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.9.  Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set is 𝑚𝑖𝑛𝑔𝛿−𝐶

𝕊  set but the converse is not true. 

Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛𝕊𝛿-𝑂 set. Since every 𝑚𝑖𝑛𝕊𝛿-𝑂 set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊 , then 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊  set. 

Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set, then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. But 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), then 𝑚𝑖𝑛𝕊𝑐𝑙(𝐽) ⊆ 𝐾. 

Therefore 𝐽 is 𝑚𝑖𝑛𝑔𝛿−𝐶
𝕊  set. 

Example 7. Let 𝕊 =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂 =  {𝜑, 𝕊, {𝑖, 𝑘}};  𝐻𝑒𝑟𝑒 {𝑘} is 𝑚𝑖𝑛𝑔𝛿−𝐶
𝕊  set but not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in 

(𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.10.  Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set is 𝑚𝑖𝑛𝑔𝛿∗−𝐶

𝕊  set but the converse is not true. 

Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛𝕊𝛿-𝑂 set. Since every 𝑚𝑖𝑛𝕊𝛿-𝑂 set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊 , then 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊 -set. 

Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 , then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. Therefore 𝐽 is 𝑚𝑖𝑛𝑔𝛿∗−𝐶

𝕊 -set. 

Example 8. Let 𝕊 =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂 =  {𝜑, 𝕊, {𝑖}};  𝐻𝑒𝑟𝑒 {𝑖} is 𝑚𝑖𝑛𝑔𝛿∗−𝐶
𝕊   but not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in 

(𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.11.  Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set is 𝑚𝑖𝑛𝑔𝛿𝑠−𝐶

𝕊  set but the converse is not true. 

Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛𝕊𝛿-𝑂 set. Since every 𝑚𝑖𝑛𝕊𝛿-𝑂 set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊 , then 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊 -set. 

Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 , then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. But 𝑚𝑖𝑛𝕊𝑠𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), then 𝑚𝑖𝑛𝕊𝑠𝑐𝑙(𝐽) ⊆ 𝐾. 

Therefore 𝐽 is 𝑚𝑖𝑛𝑔𝛿𝑠−𝐶
𝕊  set. 

Example 9. Let 𝕊 =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂
  

=  {𝜑, 𝕊, {𝑘}, {ℎ, 𝑘}};  𝐻𝑒𝑟𝑒 {ℎ, 𝑘} is 𝑚𝑖𝑛𝑔𝛿𝑠−𝐶
𝕊   but not 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.12.  Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  -set is 𝑚𝑖𝑛𝛿𝑔𝑏−𝐶

𝕊  set but the converse is not true. 

Proof. Let 𝐽 ⊆ 𝐾 and 𝐾 is 𝑚𝑖𝑛𝕊𝛿-𝑂 set. Since every 𝑚𝑖𝑛𝕊𝛿-𝑂 set is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊 , then 𝐾 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊 -set. 

Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 , then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. But 𝑚𝑖𝑛𝕊𝑏𝑐𝑙(𝐽) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), then 𝑚𝑖𝑛𝕊𝑏𝑐𝑙(𝐽) ⊆ 𝐾. 

Therefore 𝐽 is 𝑚𝑖𝑛𝛿𝑔𝑏−𝐶
𝕊 -set. 

Example 10. Let 𝕊 =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂
  

=  {𝜑, 𝕊, {ℎ, 𝑖}};  𝐻𝑒𝑟𝑒 {ℎ, 𝑖} is 𝑚𝑖𝑛𝛿𝑔𝑏−𝐶
𝕊  but not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  

in (𝕊, 𝑚𝑖𝑛𝕊). 

Theorem 3.13. The finite union of 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 -sets is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  set. 

Proof. Let {𝐽𝑖  / 𝑖 = 1,2,3 … 𝑛} be a finite class of 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  subsets of an 𝑚-space (𝕊, 𝑚𝑖𝑛𝕊). Then for 

each 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set 𝐾𝑖 in 𝕊 containing 𝐽𝑖 , 𝑐𝑙𝛿(𝐽𝑖) ⊆ 𝐾𝑖, 𝑖 ∈ {1,2,3 … . 𝑛}. Hence ∪𝑖  𝐽𝑖 ⊆ ∪𝑖  𝐾𝑖 = 𝐸. Since 

the arbitrary union of 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  sets in (𝕊, 𝑚𝑖𝑛𝕊) is also 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊 -set in (𝕊, 𝑚𝑖𝑛𝕊), 𝐸 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  in 

(𝕊, 𝑚𝑖𝑛𝕊). Also ∪𝑖 𝑐𝑙𝛿(𝐽𝑖) = 𝑐𝑙𝛿(∪𝑖 𝐽𝑖) ⊆ 𝐸. Therefore ∪𝑖 𝐽𝑖 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊). 

Remark 3.1. The intersection of any two 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊) need not be 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in (𝕊, 𝑚𝑖𝑛𝕊), 

it can be shown through an example. 
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Example 11. Let  𝕊 =  {ℎ, 𝑖, 𝑘, 𝑗}, , 𝑚𝑖𝑛𝕊-𝑂

  
=  {𝜑, 𝕊, {ℎ}, {𝑖}, {ℎ, 𝑖}};  𝐻𝑒𝑟𝑒 {ℎ, 𝑖}𝑎𝑛𝑑{ℎ, 𝑘}are 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  sets but their intersection {ℎ} is not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  set.  

Theorem 3.14. Let 𝐽 be a 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  of (𝕊, 𝑚𝑖𝑛𝕊), then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) − 𝐽 does not contain a non-empty 

𝑚𝑖𝑛∗𝑔𝛼−𝐶
𝕊  set. 

Proof. Suppose that 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 , let 𝐹 be a 𝑚𝑖𝑛∗𝑔𝛼−𝐶

𝕊  set contained in 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) − 𝐽. Now 𝐹𝑐 is 

𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊 set of (𝕊 , 𝑚𝑖𝑛𝕊) such that 𝐽 ⊆ 𝐹𝑐 . Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊 set of (𝕊, 𝑚𝑖𝑛𝕊), then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆

𝐹𝑐 . Thus 𝐹 ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿((𝐽))𝑐 . Also 𝐹 ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) − 𝐽. Therefore 𝐹 ⊆ 𝑚𝑖𝑛𝕊(𝑐𝑙𝛿(𝐽)) ⊂∩

𝑚𝑖𝑛𝕊(𝑐𝑙𝛿(𝐽)) = 𝜑. Hence 𝐹 = 𝜑. 

Theorem 3.15. If 𝐽 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  and 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  subset of (𝕊, 𝑚𝑖𝑛𝕊) then 𝐽 is a 𝑚𝑖𝑛𝕊𝛿-𝐶 subset of 

(𝕊, 𝑚𝑖𝑛𝕊). 

Proof. Since 𝐽 is 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  and  𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊 , 𝑚𝑖𝑛𝕊(𝑐𝑙𝛿(𝐽)) ⊆ 𝐽. Hence 𝐽 is 𝑚𝑖𝑛𝕊𝛿-𝐶. 

Theorem 3.16. The intersection of a 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set and a 𝑚𝑖𝑛𝕊𝛿-𝐶 set is always 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊 . 

Proof. Let 𝐽 be 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set and let 𝐹 be 𝑚𝑖𝑛𝕊𝛿-𝐶. If 𝐾 is an 𝑚𝑖𝑛∗𝑔𝛼−𝑂

𝕊 -set with 𝐽 ∩ 𝐹 ⊆ 𝐾, then 𝐽 ⊆

𝐾 ∩ 𝐹𝑐 and so 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾 ∩ 𝐹𝑐 . Now 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(J ∩ F) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(J) ∩ F ⊆ 𝐾. Hence 𝐽 ∩ 𝐹 is 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set. 

Theorem 3.17. If 𝐽 is a 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set in an 𝑚-space (𝕊, 𝑚𝑖𝑛𝕊) and 𝐽 ⊆ 𝐼 ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), then 𝐼 is also a 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set. 

Proof. Let 𝐾 be a 𝑚𝑖𝑛∗𝑔𝛼−𝑂
𝕊  set of (𝕊, 𝑚𝑖𝑛𝕊) such that 𝐼 ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), then 𝐽 ⊆ 𝐾. Since 𝐽 is 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 set, 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾. Also since 𝐼 ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽), 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐼) ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝑐𝑙𝛿(𝐽) =

𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝐾 implies 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐼) ⊆ 𝐾. Therefore 𝐼 is also a 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set. 

Theorem 3.18. Let 𝐽 be 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  of (𝕊, 𝑚𝑖𝑛𝕊), then 𝐽 is 𝑚𝑖𝑛𝕊𝛿-𝐶 iff 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) − 𝐽 is 𝑚𝑖𝑛∗𝑔𝛼−𝐶

𝕊  set. 

Proof. Necessity. Let 𝐽 be a 𝑚𝑖𝑛𝕊𝛿-𝐶 subset of 𝕊. Then 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) − 𝐽 and so 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) − 𝐽 = 𝜑 

which is 𝑚𝑖𝑛∗𝑔𝛼−𝐶
𝕊  set. 

Sufficiency. Since 𝐽 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 , by theorem 3.14, 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) − 𝐽 does not contain a non-empty 

𝑚𝑖𝑛∗𝑔𝛼−𝐶
𝕊  -set. But 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) − 𝐽 = 𝜑. That is 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) = 𝐽. Hence 𝐽 is 𝑚𝑖𝑛𝕊𝛿-𝐶 set. 

4 |𝑴𝒊𝒏 𝜹∗𝒈𝜶−𝑪𝑶𝑵𝑻
𝕊  Functions  in 𝓜Structure Spaces 

Definition 4.1. A function 𝑓 ∶ (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) is said to be a 𝑀𝑖𝑛 delta star 𝑔𝛼 −𝐶𝑂𝑁𝑇
𝕊  (briefly 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 ) if 𝑓−1(𝐸) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in (𝕊, 𝑚𝑖𝑛𝕊) for every 𝑚𝑖𝑛𝕊-𝐶 in (ℝ, 𝑚𝑖𝑛ℝ). 

Theorem 4.1. Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕏  is 𝑚𝑖𝑛𝕏-𝑔𝑠-𝐶𝑂𝑁𝑇 (resp. 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶𝑂𝑁𝑇, 𝑚𝑖𝑛𝕊-𝑔𝑠𝑝-𝐶𝑂𝑁𝑇, 𝑚𝑖𝑛𝕏-

𝑔𝑝-𝐶𝑂𝑁𝑇) but the converse is not true. 

Proof. Let 𝐸 be a 𝑚𝑖𝑛𝕊-𝐶 set in (ℝ, 𝑚𝑖𝑛ℝ). Since 𝑓 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊  map. 𝑓−1(𝐸) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in 

(𝕊, 𝑚𝑖𝑛𝕊). Since every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set is 𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶 (resp 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶, 𝑚𝑖𝑛𝕊-𝑔𝑠𝑝-𝐶, 𝑚𝑖𝑛𝕊-𝑔𝑝-𝐶), 

therefore 𝑓−1(𝐸) is 𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶 (resp 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶, 𝑚𝑖𝑛𝕊-𝑔𝑠𝑝-𝐶, 𝑚𝑖𝑛𝕊-𝑔𝑝-𝐶) in (𝕊, 𝑚𝑖𝑛𝕊). Hence 𝑓 is 

𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶𝑂𝑁𝑇 (resp. 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶𝑂𝑁𝑇, 𝑚𝑖𝑛𝕊-𝑔𝑠𝑝-𝐶𝑂𝑁𝑇, 𝑚𝑖𝑛𝕊-𝑔𝑝-𝐶𝑂𝑁𝑇). 

Example 12. Let 𝕊 = ℝ =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂
 

=  {𝜑, 𝕊, {ℎ}, {𝑖}, {ℎ, 𝑖}}; 𝑚𝑖𝑛ℝ-𝑂
  

=  {𝜑, ℝ, {𝑖}, {ℎ, 𝑘}}  
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Def 𝑓 ∶ (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) where 𝑓(ℎ) = ℎ, 𝑓(𝑖) = 𝑖, 𝑓(𝑘) = 𝑘, 

𝑚𝑖𝑛𝕊𝑔𝑠𝐶(𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑖}, {𝑘}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

𝑚𝑖𝑛𝕊𝑔𝑠𝑝𝐶(𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑖}, {𝑘}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

𝑀𝑖𝑛 𝛿∗𝑔𝛼𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {𝑘}, {ℎ, 𝑘}, {𝑖, 𝑘}}; 

Here 𝑓−1[{i}] = {i} is not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊), therefore it is 𝑚𝑖𝑛𝕊-𝑔𝑠-𝐶𝑂𝑁𝑇, 𝑚𝑖𝑛𝕊-𝑔𝑠𝑝-𝐶𝑂𝑁𝑇 but 

not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 . 

Example 13. Let 𝕊 = ℝ =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂
 

=  {𝜑, 𝕊, {𝑘}, {ℎ, 𝑘}}; 𝑚𝑖𝑛ℝ-𝑂 =  {𝜑, ℝ, {𝑖, 𝑘}}  

Def 𝑓 ∶ (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) where 𝑓(ℎ) = ℎ, 𝑓(𝑖) = 𝑖, 𝑓(𝑘) = 𝑘, 

𝑚𝑖𝑛𝕊𝑔𝑝𝐶(𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑖}, {𝑘}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

𝑀𝑖𝑛 𝛿∗𝑔𝛼𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑖}, {ℎ, 𝑖}, {𝑖, 𝑘}} 

Here 𝑓−1[{h}] = {h} is not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊), therefore it is 𝑚𝑖𝑛𝕊-𝑔𝑝-𝐶𝑂𝑁𝑇 but not 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 . 

Example 14. Let 𝕊 = ℝ =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂
 

=  {𝜑, 𝕊, {ℎ}, {ℎ, 𝑖}}; 𝑚𝑖𝑛ℝ-𝑂
  

=  {𝜑, ℝ, {𝑖}, {𝑘}, {ℎ, 𝑘}}  

Def 𝑓 ∶ (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) where 𝑓(ℎ) = ℎ, 𝑓(𝑖) = 𝑖, 𝑓(𝑘) = 𝑘, 

𝑚𝑖𝑛𝕊𝛼𝑔𝐶(𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {𝑖}, {𝑘}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

𝑀𝑖𝑛 𝛿∗𝑔𝛼𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {𝑘}, {ℎ, 𝑘}, {𝑖, 𝑘}}; 

Here 𝑓−1[{i}] = {i} is not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊), therefore it is 𝑚𝑖𝑛𝕊-𝛼𝑔-𝐶𝑂𝑁𝑇 but not 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 . 

Theorem 4.2. Every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊  is 𝑚𝑖𝑛 𝛿𝑔−𝐶𝑂𝑁𝑇

𝕊 (resp 

𝑚𝑖𝑛 𝛿𝑔𝑝−𝐶𝑂𝑁𝑇
𝕊 , 𝑚𝑖𝑛 𝛿𝑔∗−𝐶𝑂𝑁𝑇

𝕊 , 𝑚𝑖𝑛 𝑔𝛿𝑠−𝐶𝑂𝑁𝑇
𝕊 , 𝑚𝑖𝑛 𝛿𝑔𝑏−𝐶𝑂𝑁𝑇

𝕊 ) but the converse is not true. 

Proof. Let 𝐸 be a 𝑚𝑖𝑛𝕊-𝐶 set in (ℝ, 𝑚𝑖𝑛ℝ). Since 𝑓 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊  map. 𝑓−1(𝐸) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in 

(𝕊, 𝑚𝑖𝑛𝕊). Since every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊 -set is 𝑚𝑖𝑛 𝛿𝑔−𝐶

𝕊  (resp 𝑚𝑖𝑛 𝛿𝑔𝑝−𝐶
𝕊 , 𝑚𝑖𝑛 𝛿𝑔∗−𝐶

𝕊 , 𝑚𝑖𝑛 𝑔𝛿𝑠−𝐶
𝕊 , 𝑚𝑖𝑛 𝛿𝑔𝑏−𝐶

𝕊 ), 

therefore 𝑓−1(𝐸) is𝑚𝑖𝑛 𝛿𝑔−𝐶
𝕊  (resp 𝑚𝑖𝑛 𝛿𝑔𝑝−𝐶

𝕊 , 𝑚𝑖𝑛 𝛿𝑔∗−𝐶
𝕊 , 𝑚𝑖𝑛 𝑔𝛿𝑠−𝐶

𝕊 , 𝑚𝑖𝑛 𝛿𝑔𝑏−𝐶
𝕊 ) in (𝕊, 𝑚𝑖𝑛𝕊). Hence 𝑓 is 

𝑚𝑖𝑛 𝛿𝑔−𝐶𝑂𝑁𝑇
𝕊 (resp 𝑚𝑖𝑛 𝛿𝑔𝑝−𝐶𝑂𝑁𝑇

𝕊 , 𝑚𝑖𝑛 𝛿𝑔∗−𝐶𝑂𝑁𝑇
𝕊 , 𝑚𝑖𝑛 𝑔𝛿𝑠−𝐶𝑂𝑁𝑇

𝕊 , 𝑚𝑖𝑛 𝛿𝑔𝑏−𝐶𝑂𝑁𝑇
𝕊 ). 

Example 15.  Let 𝕊 = ℝ =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂
 

=  {𝜑, 𝕊, {𝑖}}; 𝑚𝑖𝑛ℝ-𝑂
  

=  {𝜑, ℝ, {ℎ}, {𝑖}, {ℎ, 𝑖}, {ℎ, 𝑘}}  

Def 𝑓 ∶ (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) where 𝑓(ℎ) = ℎ, 𝑓(𝑖) = 𝑖, 𝑓(𝑘) = 𝑘, 

𝑚𝑖𝑛 𝛿𝑔𝑏𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑖}, {𝑘}, {ℎ, 𝑖}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

𝑚𝑖𝑛 𝑔𝛿𝑠𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑖}, {𝑘}, {ℎ, 𝑖}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

𝑀𝑖𝑛 𝛿∗𝑔𝛼𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑘}, {ℎ, 𝑖}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

Here 𝑓−1[{i}] = {i} is not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊), therefore it is  𝑚𝑖𝑛 𝛿𝑔𝑏−𝐶𝑂𝑁𝑇

𝕊 , 𝑚𝑖𝑛 𝑔𝛿𝑠−𝐶𝑂𝑁𝑇
𝕊  but not 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 . 

Example 16.  Let 𝕊 = ℝ =  {ℎ, 𝑖, 𝑘}, 𝑚𝑖𝑛𝕊-𝑂
 

=  {𝜑, 𝕊, {ℎ}}; 𝑚𝑖𝑛ℝ-𝑂
  

=  {𝜑, ℝ, {ℎ}, {𝑖}, {𝑖, 𝑘}}  
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Def 𝑓 ∶ (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) where 𝑓(ℎ) = ℎ, 𝑓(𝑖) = 𝑖, 𝑓(𝑘) = 𝑘, 

𝑚𝑖𝑛 𝛿𝑔𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑖}, {𝑘}, {ℎ, 𝑖}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

𝑚𝑖𝑛 𝛿𝑔𝑝𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑖}, {𝑘}, {ℎ, 𝑖}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

𝑚𝑖𝑛 𝛿𝑔∗𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {ℎ}, {𝑖}, {𝑘}, {ℎ, 𝑖}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

𝑀𝑖𝑛 𝛿∗𝑔𝛼𝐶
𝕊 (𝕊, 𝑚𝑖𝑛𝕊) = {𝜑, 𝕊, {𝑖}, {𝑘}, {ℎ, 𝑖}, {𝑖, 𝑘}, {ℎ, 𝑘}}; 

Here 𝑓−1[{h}] = {h} is not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (𝕊, 𝑚𝑖𝑛𝕊), therefore it is  

𝑚𝑖𝑛 𝛿𝑔−𝐶𝑂𝑁𝑇
𝕊 , 𝑚𝑖𝑛 𝛿𝑔𝑝−𝐶𝑂𝑁𝑇

𝕊  , 𝑚𝑖𝑛 𝛿𝑔∗−𝐶𝑂𝑁𝑇
𝕊 but not 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇

𝕊 . 

5 |𝑴𝒊𝒏 𝜹∗𝒈𝜶−𝑰𝑹𝑺𝑻
𝕊  Functions  in 𝓜Structure Spaces 

The authors introduce the following definition. 

Definition 5.1. A function 𝑓 ∶ (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) is said to be a 𝑀𝑖𝑛 delta star 𝑔𝛼 −𝐼𝑅𝑆𝑇
𝕊  (briefly 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇
𝕊 ) if 𝑓−1(𝐸) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in (𝕊, 𝑚𝑖𝑛𝕊) for every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in (ℝ, 𝑚𝑖𝑛ℝ). 

Theorem 5.1. Let 𝑓: (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) and 𝑔: (ℝ, 𝑚𝑖𝑛ℝ) ⟶ (ℙ, 𝑚𝑖𝑛ℙ) be any two functions, then 

i). 𝑔°𝑓: (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℙ, 𝑚𝑖𝑛ℙ) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊  if 𝑔 is 𝑚𝑖𝑛𝕊-𝐶𝑂𝑁𝑇 and 𝑓 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇

𝕊 . 

ii). 𝑔°𝑓: (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℙ, 𝑚𝑖𝑛ℙ) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇
𝕊  if both  𝑔 and 𝑓 is  𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇

𝕊 . 

iii). 𝑔°𝑓: (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℙ, 𝑚𝑖𝑛ℙ) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊  if 𝑔 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇

𝕊  and 𝑓 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇
𝕊 . 

Proof.  

i). Let 𝑣 be a 𝑚𝑖𝑛𝕊-𝐶 set in (ℙ, 𝑚𝑖𝑛ℙ). Since 𝑔 is 𝑚𝑖𝑛𝕊-𝐶𝑂𝑁𝑇, 𝑔−1(𝑣) is 𝑚𝑖𝑛𝕊-𝐶 in (ℝ, 𝑚𝑖𝑛ℝ). 

Since 𝑓 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 , 𝑓−1(𝑔−1(𝑣)) = (𝑔°𝑓)−1(𝑣) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in (𝕊, 𝑚𝑖𝑛𝕊), therefore 𝑔°𝑓 

is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 . 

ii). Let 𝑣 be a 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set in (ℙ, 𝑚𝑖𝑛ℙ). Since 𝑔 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇

𝕊 , 𝑔−1(𝑣) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  in 

(ℝ, 𝑚𝑖𝑛ℝ). Since 𝑓 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇
𝕊 , 𝑓−1(𝑔−1(𝑣)) = (𝑔°𝑓)−1(𝑣) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in (𝕊, 𝑚𝑖𝑛𝕊), 

therefore 𝑔°𝑓 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇
𝕊 . 

iii). Let 𝑣 be a 𝑚𝑖𝑛𝕊-𝐶 set in (ℙ, 𝑚𝑖𝑛ℙ). Since 𝑔 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 , 𝑔−1(𝑣) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in 

(ℝ, 𝑚𝑖𝑛ℝ). Since 𝑓 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇
𝕊 , 𝑓−1(𝑔−1(𝑣)) = (𝑔°𝑓)−1(𝑣) is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  in (𝕊, 𝑚𝑖𝑛𝕊), 

therefore 𝑔°𝑓 is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 . 

Theorem 5.2. Let 𝑓: (𝕊, 𝑚𝑖𝑛𝕊) ⟶ (ℝ, 𝑚𝑖𝑛ℝ) be a surjective, 𝑚𝑖𝑛∗gα−IRST
𝕊  and 𝑚𝑖𝑛 δ−C

𝕊  map. Then 𝑓(𝐽) 

is 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set of (ℝ, 𝑚𝑖𝑛ℝ) for every 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶

𝕊  set of (𝕊, 𝑚𝑖𝑛𝕊). 

Proof. Let 𝐽 be a 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set of (𝕊, 𝑚𝑖𝑛𝕊). Let 𝐾 be a 𝑚𝑖𝑛∗gα−O

𝕊  set of (ℝ, 𝑚𝑖𝑛ℝ) such that 𝑓(𝐽) ⊆ 𝐾. 

Since 𝑓 is surjective and 𝑚𝑖𝑛∗gα−IRST
𝕊 , 𝑓−1(𝐾) is 𝑚𝑖𝑛∗gα−O

𝕊  set in (𝕊, 𝑚𝑖𝑛𝕊). Since 𝐽 ⊆ 𝑓−1(𝐾) and 𝐽 is 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set of (𝕊, 𝑚𝑖𝑛𝕊), 𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽) ⊆ 𝑓−1(𝐾) . Then 𝑓[𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽)] = 𝑚𝑖𝑛𝕊𝑐𝑙𝛿 [𝑓 (𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽))]. 

This implies 𝑚𝑖𝑛𝕊𝑐𝑙𝛿[𝑓(𝐽)] ⊆ 𝑚𝑖𝑛𝕊𝑐𝑙𝛿[𝑓(𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽)] = 𝑓[𝑚𝑖𝑛𝕊𝑐𝑙𝛿(𝐽)] ⊆ 𝐾, Therefore 𝑓(𝐽) is a 

𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set of (ℝ, 𝑚𝑖𝑛ℝ). 
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6 |Conclusion 

This article defined 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶
𝕊  set in Minimal structure spaces and some of their properties were discussed. 

Also 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐶𝑂𝑁𝑇
𝕊 , 𝑀𝑖𝑛 𝛿∗𝑔𝛼−𝐼𝑅𝑆𝑇

𝕊  functions were introduced and their properties. In the future, this work 

will be extended to neutrosophic topological spaces.  
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