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Abstract

The paper is an introduction to Minimal structure spaces and their properties. The extension of indiscrete topology
is known as minimal structure. Indiscrete topology contains only an empty set and a universal set. The minimal
structure contains an empty set, a universal set and it may also contain any subset of universal set but it should
satisfy the first axiom of topology. We introduce the terms of Minimal delta star g alpha closed sets and also study
a new class of functions namely Minimal delta star g alpha continuous and Minimal delta star g alpha irresolute
function.

Keywords: Minimal Delta Star g Alpha Closed Sets, Minimal Delta Star g Alpha Continuous, Minimal Delta Star g Alpha
Irresolute Function.

1 | Introduction

Veliko [13], Mashhour et al. [11], Levine [9], Njastad [12] were introduced §-closed (briefly §-C) sets, pre-
open (briefly pre-0) sets, semi-open (briefly semi-O)sets, a-open (briefly a-0) sets respectively. Levine [10]
introduced the concept of generalized closed (briefly g-C) sets and studied their basic properties. Popa and
Noiti [1] introduced the concept of minimal structure (briefly M -structure) and also they introduced the
notions of minS-open (briefly min®-0) sets and minS-closed (briefly min®-C) sets and characterize those

S

sets using minS-closure and min®-interior respectively. They introduced the notion of M-CONT functions

defined between minimal structures.

Csaszar [2] introduced the concept of generalized topology and the concept of minimal structure. In 2011,
Tuadong S et al. [14] introduced the notion of the generalized topology and minimal structure spaces and also
they studied some properties of closed sets on the space. V. Kokilavani [7] introduced the concept of minS -
closed (briefly minS§-C) set in M -structure.

We are going to use a term of a new class of M -structure set called M in%* c-set and also we have to

ga—
. .S .S .
introduce Min 8" ga—CONT and Min S*ga—IRST‘ﬁmCUOﬂS-
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2 | Preliminaries

In this section, we introduce the M -structure and also its relation to them.

Definition 2.1. [3] Let S be a non-empty set and let min® € P(S) denotes the power of S where min® is an

M -structure (or a minimal structure) on S, if @ and S belong to minS. The members of the minimal structure

minS are called minS-0 set and the pair (S, minS) is called an m-space. The complement of minS-0 set is
said to be minS-C set.

S

Definition 2.2. [3] Let S be a non-empty set and let min® is an M -structure (or a minimal structure) on S.

For a subset J of S, minS-closute of ] and min®-intetior of J is defined as follows:
minScl(J) =N {F:] € F,S — F € minS}.
minSint(J) =U {F:K S J,K € min®}.

S

Lemma 2.1. [3] Let S be a non-empty set and let min® is an M -structure (or a minimal structure) on S. For

subsets J and I of S, the following properties hold:
a) minScl(S —J) = S — minSint(J) and minSint(S — J) = S — minScl(J).
b) IfS—] € minS, then minScl(J) = J and if ] € minS then minSint(J) = J.
o minScl(p) = ¢, minScl(S) = S and minSint(p) = @, minSint(S) = S.
d) 1f] € I then minScl(J) € minScl(I) and min®int(J) € minSint(I).
e) J € minScl(J) and minSint(J) < J.
) minScl(minScl())) = minScl(J) and minSint(minSint(J)) = minSint()).
9 miniSnt(]nI) < (minignt(])) n (minignt(l))and (minisnt(])) U (miniSnt(I)) = miniSnt(]UI).
h) minfl( Jun € (minfl( DL, (minfl(,))and(minfl( Jﬂl)) c (minfl( 5 N (minfl(,)).
Lemma 2.2. [1] Let (S, min%) be an m-space and J be a non-empty set of S. Then x € minScl(J) if and

only if K N J # ¢ for every K € min® containing x.

S

Definition 2.3. [5] Let S be a non-empty set and min® is an M -structure (or a minimal structure) on S. For

a subset J of §, pre-closure of J and pre-interior of | are defined as follows:
min® — pcl(S —]) = S — (min® — pInt())).
minS — pInt(S — J) = S — (minS — pcl())).

S

Definition 2.4. [5] Let S be a non-empty set and min® is an M -structure (or a minimal structure) on S. For

a subset | of §, semi-closute of | and semi-intetior of | are defined as follows:
min® — scl(S — ]) = S — (min® — sint())).
minS — sint(S —J) = S — (minS — scl())).

S

Definition 2.5. [6] Let S be a non-empty set and min® is an M -structure (or a minimal structure) on S. For

a subset | of §, am-closure of | and am-interior of | are defined as follows:
aminScl(J) =N {F:] €S F,Fisam —Cin S}
aminSint(J) =U{F:K € J,Kisam — 0 in S}

Definition 2.6. A subset J of an m-space (S, minS) is said to be
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i). minS-semi O set [5] if ] € minScl (minSint(])).

ii). minS-pre O set [5] if ] € minSint (mingcl(])).

iif). aminS- 0 set [6] if ] S minSint(mingcl(mingint(]))).

iv). minS-regular O set [4] if ] = minSint (mingcl(])).
The complement of a minS-semi O (resp. minS-pre 0, amin®-0, min®-regular 0) set is called minS-semi
C (resp. minS-pre C, aminS-C, minS-regular C).

Definition 2.7. [7] The minS§-interior of a subset J of § is the union of all minS- regular 0 set of S contained
in J and is denoted by min®ints(J). The subset J is called minS8-0 if ] = minSints(J), i.e. a setis minSé-
0 if it is the union of minS-regular O sets. The complement of a min®8-0 is called minS8-C. Alternatively,
a set (S, min®) is called min®5-C if J=minSclg(A), where minSclg(]) = {x €
S: minSint (mingcl(K)) # @, K eminSand x € K}.
Definition 2.8. A subset J of an m-space(S, min®) is called
i). A minS- generalized-C (briefly minS-g-C) set [4] if minScl(J) € K
whenever ] € K and K belong to min®.
ii). A minS- generalized semi-C (briefly minS-gs-C) set [4] if minSscl(J) € K
whenever ] € K and K belong to min®.
iii). A minS- a generalized-C (briefly minS-ag-C) set [7] if minSacl(J) € K
whenever ] € K and K is minS-0 set in (S, min®).
iv). A minS- generalized pre-C (briefly minS-gp-C) set [4] if minSpcl(J) € K
S

whenever ] €& K and K belong to min®.

The complement of a minS—g—C(resp. minS-gs-C, minS-ag-C, minS-gp-C) set is called min®-g-0 (resp.
minS-gs-0, min®-ag-0, minS-gp-0).

Definition 2.9. A function f: (S, minS) — (]R, minR) is called
). g-(mins, minR) CONT [4]if £f~1(0) is min®-g-C in (S, min§) for every min®-C in (]R, minR).

if). gs-(minS,minR) CONT [4] if f~1(0) is minS-gs-C in (S,mins) for every min®-C in
(R, min®).

iif). A minSa generalized CONT [8] if £~1(0) is @ minS-C in (S, min%) for every min®-C in
(R, min®).

iv). gp-(minS, min®) CONT [4] if f~2(0) is minS-gp-C in (S,min®) for every min®-C in
(]R,minR).

3 | Properties of M inS(s* ga—c-Sets in M'structure Spaces

Definition 3.1. A subset J of an m-space (S, ming) is said to be

i). minfemi_preo-set if | € minScl(minSint(minScl())))
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ii).

ming_,-setif ] € minSint(cl(J)) U minScl(int()))

Definition 3.2. A subset J/ of an m-space (S, minS) is called

i).

vi).

vii).

. Amin

A minﬁgenemlized_ ¢ (briefly min§g_c)-set ifminScls(J) € U then] € K where K is minS-0 set
in (S, mins).

Amind ; i ore ¢ (briefly minde,_ o) -set it minSspcl(J) € K then | € K where K is
generalized semi pre— C y gsp—C

minS-0 set in (S, ming).

CAMINeneratized a— ¢ (briefly minSy,_¢) -set if minScl(J) S K then | S K where K is

minga_o set in (S, minS).

generalized 5— ¢ (briefly min§5_c) -setif minScl(J) € K then ] € K where K is min3_, set

in (S, min%).

.S . .S . S . .S
AMINg generatizeasr— ¢ (briefly mingg,_c)-setif min>cls(J) S K then J S K where K is ming_,
set in (S, minS).

S
Aming
ming_g set in (S, minS).

eneralized & semi — ¢ (briefly ming(gs_c)—set if minSscl(J) € K then ] € K where K is

A minS ; _ riefly min3 ,,,_~)-set if minSbcl(J) € K thenJ € K where K is min_
8 generalized b— C Y Sgb—C §-0

setin (S, min%).

Definition 3.3. A function f: (S, minS) — (]R, minR) is called

i),

iii).

).

vi).

Vi),

. § . .S . _ . .S . RS
A MINg generalized—CONT (briefly mlndg—CONT) if f 1(E) Is MNgg_c 10 (S' mn ) for every
minS-C in (R, min®).

S . S I . .S ) s
A MINgeneralized semi pre— CONT (briefly mm’gsp—CONT) if fH(E) is minggp—c 10 (S' mn ) for

evety minS-C in (]R, minR).

.S . S . _ . .S . S
A MINYeperatizea s—cont (briefly mings_cony) if f=1(E) is mings_c in (S, min ) for every
minS-C in (]R, minR).

.8 . .S . _ . .S . . g
A MINS generatizedr—cont (briefly Mingg,_conr) if f=1(E) is mingg,_¢ 1r1(§, min ) for every
min®-C in (]R{, minR).

.S . .S e . .S . .S
A MNgeneralized 5 semi—CONT (briefly mlng&s—CONT) if f I(E) 1s MNgss_c ln(S, min ) for

every min®-C in (]R{, minR).

.S . S P . .S . .S
Aming generalized pre—CONT (briefly mln&gp—CONT) lff (E)is MINggp—c 1n(§, min ) for every
minS-C in(R, min®).

.S . .S 1 . S . S
A ming generalized b—CONT (briefly MiNggp_cont) if f~1(E)is mingg,_c m(S, min ) for every
minS-C in(R, min®).

Theorem 3.1. Every minS-0 set is minfga_o set.

Proof.

Let J be min®-0 set in' S, then S — ] is minS-C set. Therefore minScl(S—]))=S—-J €S

whenever S — ] € Sand S is minga_o implies § — J is minfga—c set.
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Theorem 3.2. Every minS5-C set is minfga_c set.

Proof. Let | be minS8-C set and K be any minga—o set containing J. Since J is minS6-C, minSclg(J) = J.

Therefore min®cls(J) € ] € K. We know that minScl(J) € minSclg(J) € K. Hence J is minfga_c set.
Definition 3.4. A subset ] of an m-space (S, min®) is called Min%. ;,_¢ if minScls(J) € K whenever | €
KandKisa minfga_o set in (S, minS).

Theorem 3.3. Every minS6-C set is Min%*ga_c set but the converse is not true.

Proof. I.et ] € K and K is minfga_o set. Since J is minS8-C , minSclg(J) = J, then minScls(J) € K.
Therefore J is Min%*ga_c set.

Example 1. Let S = {h,i,k},min5-0 = {9,S,{h},{k},{h k}}; Here {k}is Min%. , . but not
minS§-C in (S, min®).

Theorem 3.4. Every Minga*ga_c set is minS-gs-C set but the converse is not true.

Proof. Let /] € K and K is minfga—o set. Since every minS-0 set is minfga—o set [by theorem 3.1], then K
is minfga_o set. Since J is MinSB*ga_C set, then minSclg(J) € K. But minSscl(J) € minScls(J), then

min®scl(]) € K. Therefore ] is minS-gs-C set.

Example 2. Let S = {h,i,k},minS-0 = {¢,S,{h},{h,i}}; Here {i} is minS-gs-C but not Minsa*ga_c
in (S, ming).

Theorem 3.5. Every Min%*ga_c set is minS-ag-C set but the converse is not true.

Proof. Let ] € K and K is min®-0 set. Since every minS-0 set is minfga—o set, then K is minfga_o set.
then minSclg(J) € K. But minSacl(J) € minSclgs(]) set, then minSacl()) € K.

Thetefore ] is minS-ag-C set.

. . .S
Since J is Min's+gq_c»

Example 3. Let S = {h,i,k},minS5-0 = {,S,{k},{h k}}; Here {h}is minS-ag-C set but not
Min%y. ;o in (S, min®).

Theorem 3.6. Every Min%*ga_c set is minS-gsp-C set but the converse is not true.

Proof. Let ] € K and K is minS-0 set. Since every minS-0 set is minfga—o set, then K is minfga—o set.
Since J is Min%*ga_c set, then minSclg(J) € K. But minSspcl(J) € minSclg(J), then minSspcl(J) S

K. Therefore ] is minS-gsp-C set.

Example 4. Let S = {h,i,k},min®-0 = {¢,S,{h,i}}; Here {h}is minS-gsp-C sct but not Minss*

in (S, mins).

ga—-C

Theorem 3.7. Every Min%*ga_c set is min®S-gp-C set but the converse is not true.

Proof. Let ] € K and K is min®-0 set. Since every minS-0 set is minfga—o set, then K is minfga_o set.
then minScls(J) € K. But minSpcl(J) € minSclg()), then minSpcl(J) € K.

Therefore ] is minS-gp-C set.

Since | is Min%*ga—o

Example 5. Let S = {h,i,k},min®-0 = {,S,{i,k}}; Here {i} is minS-gp-C but not Min%*ga_c in
(S, minS).

Theorem 3.8. Every Mingg*ga_c set is min§gp_c set but the converse is not true.
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Proof. Let ] € K and K is minS8-0 set. Since every minS8-0 set is minfga_o, then K is minfga_o set.
Since J is Minga*ga_c set, then minSclg(J) € K. But minSpcl(J) € minScls(J), then minSpcl(J) € K.

. .S
Therefore J is mingg, . set.

Example 6. Let S = {h,i,k}, minS-0 = {¢,S,{h},{i},{h,i},{i,k}}; Here {h,i}is minggp_c but not
Mingg*ga_c in (S, min%).

Theorem 3.9. Every Mingg*ga_c set is minga_c set but the converse is not true.

Proof. Let ] € K and K is minS8-0 set. Since every minS8-0 set is mi”fga—o' then K is minfga_o set.
Since [ is Min%*ga_c set, then minSclg(J) € K. But minScl(J) € min®cls(J), then minScl(J) € K.

Therefore J is minja_c set.

Example 7. Let S = {h,i,k}, minS-0 = {¢,S,{i,k}}; Here {k}is mings_ set but not Min%y. ;,_c in
(S, min®).

Theorem 3.10. Every Min%*ga_c set is minf]a*_c set but the converse is not true.

Proof. Let ] € K and K is minS6-0 set. Since every minS8-0 set is minfga_o, then K is minfga_o—set.

Since | is Minga*ga—c’ then minSclg(J) € K. Therefore J is mingg*_c—set.

Example 8. Let S = {h,i,k}, minS-0 = {o,S,{i}}; Here {i} is mings*_c but not Minsa*ga_c in
(S,ming).

Theorem 3.11. Every Min%*ga_c set is mind

g8s—c sct but the converse is not true.

Proof. Let ] € K and K is minS§-0 set. Since every min®6-0 set is minfga_o, then K is minfga_o—set.

Since J is Min%*ga_c, then minSclg()) € K. But min®scl(J) € minSclg(J), then minSscl(J) € K.

. .S
Therefore J is mings;_ set.

Example 9. Let S = {h,i,k}, min5-0 = {o,S,{k},{h k}}; Here {h, k}is min§5s_c but not

.S . .S
Min%y. o _c in (S, min®).
Theorem 3.12. Every Min%*ga_c -set is min%gb—c set but the converse is not true.

Proof. Let ] € K and K is minS6-0 set. Since every minS8-0 set is minfga_o, then K is minfga_o—set.

Since J is Min%*ga_c, then minScls(J) € K. But minSbcl(J) € minSclg()), then minShcl(J) € K.

Therefore [ is min§gb_c—set.
Example 10. Let S = {h,i,k}, min®-0 = {,S,{h,i}}; Here {h, i} is ming,,_ but not Min}.

in (S, minS).

ga—-C

Theorem 3.13. The finite union of Min%*ga_c-sets is Min%*ga_c set.

Proof. Let {J; /i = 1,2,3 ...n} be a finite class of Min%*ga—c subsets of an m-space (S, minS). Then for
each minfga_o set K; in' S containing J;, cls(J;) € K;, i € {1,2,3....n}. Hence U; J; S U; K; = E. Since
the arbitrary union of minfga—o sets in (S, minS) is also minfga_o—set in (S, mins),E is minfga—o in
(S,min®). Also U; cls(J;) = cls(U; J;) € E. Therefore U; J; is Min%s 5 _c in (S, minS).

Remark 3.1. The intersection of any two Min%*ga_c in (S, mins) need not be Minsg*ga_c in (S, min§),

it can be shown through an example.
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Example  11. Let S = {hik,j},minS-0 = {(p, S,{h},{i},{h, i}}; Here {h,i}and{h, k}are

Mingg*ga_c sets but their intersection {h} is not Min%*ga_c set.

Theorem 3.14. Let ] be a Min%*ga_c of (S, min%), then minScls(J) —J does not contain a non-empty

minfga_c set.

Proof. Suppose that J is MinSa*ga_C, let F be a minfga_c set contained in minSclg(J) — J. Now F€ is
ga—cSet of (S, mins), then minSclg(J) S
F¢. 'Thus F € minScls(())°. Also F SminScls(J)—]. Therefore F < min®(cls(J))cn
minS(cls())) = . Hence F = .

minfga_oset of (S ,ming) such that J € F€, Since J is Min$.

Theorem 3.15. If ] is minS;,_o and Min%y.,_¢ subset of (S,min®) then J is a minS6-C subset of
(S, minS).

Proof. Since J is minfga_o and MinSS*ga—C» minS(Cla (])) C J. Hence J is minS6-C.

Theorem 3.16. The intersection of a Min%*ga_c set and a minS6-C set is always Min%*ga—c-

Proof. Let | be Minga*ga—c set and let F be minS§-C. If K is an minfga_o—set withJNF C K, then] C©
K NF¢ and so minSclg(J) € K N F¢. Now minSclg(JNnF) € minSclg(J) N F € K. Hence ] NF is
Min%*ga—c set.

Theorem 3.17. If | is a MinSS*ga—C set in an m-space (§, minS) and ] € I € minSclg()), then I is also a

.S
Min 5" ga—c Set.

Proof. Let K be a minfga—o set of (S,minS) such that [ C min§cl5(]), then | € K. Since [ is
Min%*ga_cset, minScls(J) € K. Also since I S minSclg(J), minScls(I) € minScls(cls(J) =

minScls(J) € K implies minSclg(I) € K. Therefore [ is also a MinSS*ga—(: set.
Theorem 3.18. Let ] be Min%*ga_c of (S, minS), then J is minS3-C iff minSclg(J) — J is minfga_c set.

Proof. Necessity. Let | be a minS8-C subset of S. Then minSclg(J) — ] and so minScls(J) —] = ¢

which is minfga_c set.

Sufficiency. Since | is Min%* by theorem 3.14, minScls(J) — ] does not contain a non-empty

ga-C»
minfga_c -set. But min®Sclg(J) — ] = ¢. That is minSclg(J) = J. Hence ] is minS8-C set.

4 | M inSa* ga—CONT Functions in M Structure Spaces

Definition 4.1. A function f : (S, min%) — (R,min®) is said to be a Mineiea star ga —conr (briefly

Mins. yo_conr) if fTH(E) is Min%y. ;,_c in (S,min®) for every min®-C in (R, min®).

Theotem 4.1. Every Min's: 5 _cony is Min*-gs-CONT (resp. minS-ag-CONT, minS-gsp-CONT, min*-

gp-CONT) but the converse is not true.

Proof. Let E be a2 min®-C set in (]R, minR). Since f is MinSS*ga—CONT map. f1(E) is MinSB*ga—c in

(S,minS). Since every Min%* ¢ set is minS-gs-C (resp minS-ag-C, minS-gsp-C, minS-gp-C),

ga-
therefore f~(E) is minS-gs-C (resp minS-ag-C, minS-gsp-C, minS-gp-C) in (S, mins). Hence f is

minS-gs-CONT (resp. minS-ag-CONT, minS-gsp-CONT, min®-gp-CONT).
Example 12. Let S = R = {h,i,k},min5-0 = {o,S,{h},{i},{h i}};min®-0 = {o,R,{i},{h k}}
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Def f : (S,minS) — (R, min®) where f(h) = h, f (i) = i, f(k) =k,

minSgSC(S, minS) = {(p, S, {h}, {i}, {k},{i, k},{h, k}};

minSgSpC(S, minS) = {(p, S, {h}, {i}, {k},{i, k}, {h, k}};

Miny. 500 (S,min®) = {o,S, {k}, {h, k3, {i, k}};

Here f1[{i}] = {i} is not Min%*ga_c in (S, minS), therefore it is minS-gs-CONT, minS-gsp-CONT but
not MinS(S*ga—CONT'

Example 13. Let S = R = {h,i,k},minS-0 = {o,S,{k},{h, k}};min®-0 = {o,R,{i,k}}

Def f : (S,min®) — (R, min®) where f(h) = h, f(i) =i, f(k) =k,

minSgpC(S, min®) = {o, S, {h}, {i}, {k}, {i, k}, {h, k}};

Min%y ;oo (S,mind) = {0, s, {h}, {1}, {h, i}, (i, k}}

Here f~1[{h}] ={h} is not Min%*ga_c in (S,min®), therefore it is minS-gp-CONT but not
Min%*ga—cowr-

Example 14. Let S = R = {h,i,k},min5-0 = {,S,{h},{h,i}};min®-0 = {o,R,{i},{k},{h, k}}
Def f : (S,minS) — (R, min®) where f(h) = h, f() =i, f(k) =k,

minSagC (S, min®) = {¢,S,{i}, {k}, {i, k}, {h, k3}};

Miny. ;oo (S, min®) = {, S, {k}, (b, k3, {i, k}};

Here f7U[{}] ={i} is not Min%. . cin (S,minS), therefore it is minS-ag-CONT but not
Minga*ga—com-

Theorem 4.2, Every M in%* ga—CONT is min%g_co N (tesp

minSSgp—CONT' minSSg*—CONT' min%as-com' minSchb—CONT) but the converse is not true.

Proof. Let E be a minS-C set in (]R, minR). Since f is Min%*ga_CONT map. f1(E) is MinS&*ga—C in

(S, minS). Since every Min%*ga_c—set is min%g_c (tesp min%gp_c, minS(‘ig*—Clmin%(ss—(."mingé'gb—c),

therefore f_l(E) isminsag_c (tesp mingagp_c, min%g*_c, mini&s—c’ min%gb_c) in (S, min§). Hence f is
.S .S .S S S

MIN'sg_cont (fesp MM sy _cont» MM §gs—conT» TUN g55—cont MU 59— CONT)-

Example 15. LetS = R = {h,i,k},min5-0 = {p,S,{i}}; min®-0 = {o, R, {n},{i},{h i},{h k}}

Def f : (S, min’) — (R, min®) where f(h) = h, f (i) = i, f (k) = k,

mlnagbc , min = (p; ) » s ) y Ui ) ) )
in%s gpc (S, min® S, {h}, {i}, {k} {h, i}, {0, k}, {h K}

min%, s (S, min®) = {o, S, (n}, {1}, (k},{h, i}, {i, k3, {h, k}};

Miny. 50 (S, min®) = {0, S, {h}, {k}, {h, i}, (i, k3, (b, k}};

Here f71[{i}] = {i} is not Minga*ga—c in (S, minS), therefore it is minS(Sgb—CONT'mini](Ss—CONT but not
S

Mins 5q_cont-

Example 16. LetS = R = {h,i,k},min®-0 = {o,S,{h}}; min®-0 = {o, R, {h},{i},{i, k}}
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Def f : (S, min’) — (R, min®) where f(h) = h, f (i) = i, f (k) =k,

min’y, . (S, min®) = {o, S, {h}, (i}, {k}, {h, i}, (i, k}, {h, k}};

min$ g0 (S, min®) = {p, S, {1}, {i}, (k}, {h, i3}, {i, k}, {h, ke 3};

minfs . (S,mins) = {9, S, {h}, (i}, {k}, {h, i}, (i, k3, {h, K}};

Mins. 50 (S,min®) = {,S, (i}, {k3}, (b, i3, (i, k3, {h, k}};

Here f{h}] = {h} is not Minga*ga—c in (S, minS), therefore it is
minsag—com' min%gp—CONT : mi“stg*—coszbut not Minga*ga—com-

5 | Min% ga—igst Functions in M Structure Spaces

The authors introduce the following definition.
Definition 5.1. A function f : (S,min%) — (R,min®) is said to be a MinSei star ga —irsy (briefly
Min%y. ;o _rsy) if fTH(E) is Min%y 5, _c in (S, min®) for every Min%y. ;,_c in (R, min®).
Theorem 5.1. Let f: (S, minS) — (]R, minR) and g: (R, minR) — (P, min®) be any two functions, then
). g°f:(S,min®) — (P,min®) is Min%. ;_cony if g is minS-CONT and f is Min%y. 5, _conr-
if). g°f:(S,min®) — (P, min®) is Min%y. ;,_jpsr if both g and f is Min% ;o jper-

iii). g°f: (S, min®) — (P, min®) is Min%. ;o _conr if g is Min'e o _cony and f is Ming jo_jpor.

i). Let v be aminS-C set in (P, min®). Since g is minS-CONT, g=1(v) is minS-C in (R, min®).
Since f is Minsﬁ*ga—CONT’ f_l(g_l(v)) = (g°f)(v)is Mi”%*ga—c in (S, min®), therefore g°f
. .S
is Min 5" ga—CONT-

if). Let v be a Min%*ga_c set in ([P’,minlp). Since g is Min%*ga_IRST, g (W) is MinSS*ga—C in
(R, min®). Since f is Min%: yo_ipsr, (971 (@)) = (¢°F) 7 () is Mine go_c in (S, min’),
therefore g°f is Min%*ga_IRST.

ii). Let v be a minS-C set in ([P’,minlp). Since g is Minsa*ga—CONT' g t(w) is Min%*ga—c in
(R, min®). Since f is Min': ;o _jpsr, (g7 () = (g°) 71 (W) is Miny. ¢ in (S, min®),
therefore g°f is Min%*ga_CONT.

Theorem 5.2. Let f: (S, minS) — (]R, minR) be a sutjective, minfgoc—lRST and min%_c map. Then f(J)
is Min%*ga—c set of (]R, minR) for every Min%*ga_c set of (S, minS).

Proof. Let J be a Minsa*ga—c set of (S, min®). Let K be a minfga_o set of (R, min®) such that f(J) € K.
Since f is sufjective and minfga—IRST' YK is minfga_o set in (S, minS). Since J € f71(K) and ] is
Min%*ga_c set of (S, minS), minSclg(J) € f~1(K) . Then f[minScl(;(])] = minSclg [f (minscl,g([))].
This implies minScls[f(J))] € mingcl(g[f(mingcl(g(])] = f[minSclg(])] € K, Therefore f(J) is a
Miny. ;¢ set of (R,min®).
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6 | Conclusion

This article defined M inS(g* ga—c setin Minimal structure spaces and some of their properties were discussed.

Also M in%* ga—conm M in%* ga—1rst functions were introduced and their properties. In the future, this work

will be extended to neutrosophic topological spaces.
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