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1 |Introduction 

The problems we face daily can be resolved in a variety of ways. However, there are unknowns. Soft sets 

require a flexible approach in set theory to handle these kinds of problems and reduce ambiguity. The core 

idea behind soft set theory [1] entails parameterizing uncertainty and then describing the uncertainties with 

the help of that parameterization. Soft set theory is hence an extremely adaptable and versatile method that 

can deal with a variety of uncertainty modeling scenarios. But remember that the correctness of the parameter 

information provided and the choice of an appropriate parameter set determines how effectively soft set-

based models function [2]. A fuzzy soft set is a substantial extension of soft set theory that goes beyond 

regular sets by allowing elements to have degrees of membership, including ambiguity and uncertainty to 

enable flexible membership, and having values between 0 and 1. Healthcare uses for fuzzy logic include 

patient monitoring and diagnostic systems [3]. Image processing methods, which help with things like edge 

detection, segmentation, and object recognition, can be enhanced with the help of fuzzy set theory. Fuzzy 

logic outperforms conventional methods in handling ambiguity and uncertainty in digital images [4, 5]. 
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Type-2 Fuzzy Sets [6], Interval-Valued Fuzzy Sets [7], Intuitionistic Fuzzy Sets, Neutrosophic Sets, Hesitant 

Fuzzy Sets, Pythagorean Fuzzy Sets, Rough Fuzzy Sets [8], and Picture Fuzzy Sets [9] are various extensions 

of classical crisp sets that capture different aspects of uncertainty, imprecision, and complexity in data 

representation and decision-making emerge as extensions of fuzzy sets. 

1.1 |Background and Motivation 

When it comes to making decisions and solving problems, ambiguity is a constant obstacle. Approaches that 

may consider the imprecision, vagueness, and ambiguity in data and information are frequently required due 

to the complexities of our world. Since its introduction as a mathematical framework by Molodtsov in 1999, 

soft set theory has become a viable approach to dealing with these kinds of uncertainty. Soft sets are a flexible 

tool for modeling different types of uncertainty and indeterminacy because they allow elements to have 

varying degrees of membership. 

But when problem domains get more complex and varied, the demand for a more advanced methodology 

that can handle a wider range of uncertain scenarios emerges. As a result, the theory of soft sets is significantly 

expanded to include the idea of spherical fuzzy hypersoft sets. Spherical fuzzy hypersoft sets are based on the 

idea of parameterizing uncertainty to make it easier to describe uncertainty and make the modeling framework 

more flexible. 

The idea of a soft set was first presented as an expansion of classical set theory in Molodtsov's groundbreaking 

work, which is where soft set theory got its start. Soft sets let items have different levels of membership in a 

set, which makes them a natural and obvious approach to describe uncertainty. Soft set theory finds uses in 

fields including data mining, expert systems, and decision-making after this groundbreaking first step toward 

capturing uncertainty. 

Soft set theory has inherent limits when dealing with more intricate and diverse uncertainty scenarios, even 

while it works well for some kinds of uncertainty. When the degree of membership is binary (0 or 1), 

traditional soft sets are excellent at expressing crisp uncertainty; however, they have trouble effectively 

representing scenarios that contain gradations of uncertainty. Soft-set theory has been extended and improved 

upon, allowing it to account for a wider range of uncertainty manifestations, which has motivated researchers 

to explore. 

1.2 |Aim and Scope of the Study 

The paper's primary objectives are to introduce and explore the idea of spherical fuzzy hypersoft sets as a 

novel approach to modeling uncertainty. Through the combination of soft set flexibility and fuzzy set 

adaptability, these sets create a more sophisticated and flexible framework for managing uncertainty. By 

parameterizing uncertainty and applying fuzzy logic principles, spherical fuzzy hypersoft sets offer a workable 

solution to practical issues demanding sophisticated uncertainty modeling techniques. 

The goal of this work is to thoroughly investigate the intricacies of spherical fuzzy hypersoft sets. Our goal is 

to provide a thorough understanding of the potential and importance of this addition to soft-set theory 

through a rigorous exploration of fundamental concepts, important operations, characteristics, and practical 

applications. To close the knowledge gap between theory and practice, the project also investigates the 

practical application of spherical fuzzy hypersoft sets to real-world problems. 

1.3 |Main Structure 

The sections that follow are organized as follows: 

 The fundamental definitions needed to comprehend spherical fuzzy hypersoft sets are provided in 

Section 3. This chapter first lays the groundwork by elucidating the basic concepts of soft sets, fuzzy 

sets, and hypersoft sets in order to synthesize these notions into spherical fuzzy hypersoft sets. 
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 Section 4 delves into the basic operations of spherical fuzzy hypersoft sets and looks closely at how 

they are created. The mechanics of spherical fuzzy hypersoft sets are thoroughly explained in this 

chapter through an examination of parameterization, membership assignment degree, and set 

operations such as complement, union, and intersection. 

 Section 5 explains the suggested technique's methodology. 

 In Section 6, the focus is redirected to practical applications. Through practical case examples, it 

illustrates the adaptability of spherical fuzzy hypersoft sets. This chapter describes applications of 

spherical fuzzy hypersoft sets to image processing techniques and healthcare diagnostic systems that 

demonstrate their efficacy in solving challenging problems. 

 Section 7 presents the results of the study's exploration of spherical fuzzy hypersoft sets. This chapter 

proposes future paths and research issues while highlighting the continued importance and promise 

of spherical fuzzy hypersoft sets. 

By giving a comprehensive analysis of the concept of spherical fuzzy hypersoft sets and offering a helpful 

resource for both scholars and decision-makers, this work seeks to contribute to the expanding field of 

uncertainty modeling. We are about to embark on a journey that, by embracing the merger of soft sets, fuzzy 

sets, and parameterized uncertainty, could drastically change the way we approach and resolve difficult 

problems in an uncertain world. 

2 |Literature Review 

Since fuzzy set theory addresses the challenges of obtaining enough data for useful decision-making due to 

uncertainty in socioeconomic elements and data availability, it is frequently utilized as an effective solution to 

problems with multi-attribute decision-making procedures. The inventor of fuzzy sets was Lotfi Zadeh [10] 

in 1965 a method for dealing with vague and non-specific information. When working with data that is 

difficult to quantify or lacks distinct category boundaries, they are especially helpful. A fuzzy set's partial 

membership assigns a number between 0 and 1 to each element, denoting that element's membership level in 

the set. The membership function within the set controls how much the set contains each element, permitting 

a nuanced depiction of uncertainty. Complete membership is represented by a value of one, whereas non-

membership is indicated by a value of 0. Degrees of fuzziness or partial membership are represented by values 

between 0 and 1. Artificial intelligence, control systems, data mining, pattern recognition, and other fields 

frequently use fuzzy sets. They offer a potent tool for managing and making sense of imprecise and uncertain 

data, enabling more adaptable and realistic modeling. 

In circumstances where it is challenging to define precise rules, fuzzy logic expands classical binary logic to 

handle fuzzy sets frequently used in conjunction with fuzzy sets to perform reasoning and make judgments. 

Approximate reasoning can be represented using fuzzy logic, which also effectively represents the ambiguity 

and uncertainty prevalent in many real-world problems that call for creative solutions. Using type 2 fuzzy sets, 

Zadeh (1975) developed the idea of building upon classical fuzzy sets. Type-2 fuzzy sets provide a more 

thorough framework for capturing uncertainty or ambiguity than standard fuzzy sets provide. Fuzzy type-2 

sets have a membership function that is not limited to a single value but rather includes a range of possible 

values that together represent the degree of uncertainty associated with each membership level. The 

membership function in type-2 fuzzy sets shows two levels of uncertainty. Similar to conventional fuzzy sets, 

the first layer relates to the degree of inclusion within the set. The next layer, which is a range of values 

normally limited by higher and lower membership grades, symbolizes doubt regarding the membership 

degree. The unique benefit of type-2 fuzzy sets is that they can manage ambiguity and uncertainty better than 

type-1 fuzzy sets. They can simulate scenarios in which precise knowledge is either lacking or inconsistent in 

the available data. Because type-2 fuzzy sets capture the uncertainty associated with membership degrees, they 

are capable of handling a wider range of real-world problems. However, due to the additional procedures 

required to handle membership grade uncertainty, type-2 fuzzy sets are more computationally complex than 
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type-1 fuzzy sets. Many techniques and algorithms, such as interval arithmetic, interval-type-2 fuzzy sets, and 

type-reduction techniques, have been developed to handle type-2 fuzzy sets. 

Type-2 fuzzy sets are used in a variety of domains, such as data mining, pattern recognition, control systems, 

and decision-making, to address situations that call for skill in managing ambiguity and uncertainty. They 

provide a more robust and flexible framework for reasoning and modeling in complex and 

unpredictable contexts. An extension of classical fuzzy sets, intuitionistic fuzzy sets (IFS) provides more 

flexible representation options beyond the basic membership of uncertainty and ambiguity. Introduced by 

Atanassov [11] in 1986, IFS offers a framework for managing inaccurate or partial data by adding extra layers 

of In traditional fuzzy set theory, the degree of an element's membership in a set is represented by its 

membership degree, which ranges from 0 to 1. On the other hand, intuitionistic fuzzy sets take this idea a 

step further by including non-membership and reluctance. While reluctance describes the degree of doubt or 

unfamiliarity with an element's membership status, non-membership reflects an element's degree of exclusion 

from the set. Speaking now on spherical fuzzy soft sets: [12] creating a more flexible membership function 

configuration for the increased uncertainty framework. Shape takes on a significant role. Utilizing fuzzy 

numbers [13], They make it possible to depict a range of possible membership degrees rather than just one, 

skillfully encapsulating the imprecision prevalent in real-world situations. Intuitionistic fuzzy sets present a 

comprehensive and flexible method for representing ambiguity and uncertainty in real-world scenarios. They 

perform exceptionally well in situations requiring high levels of non-membership, which is not a feature of 

traditional fuzzy sets. Fuzzy intuition has proven useful in many fields, including expert systems, control 

systems, image processing, pattern identification, and decision-making. Atanassov [14] established operations 

on fuzzy sets [15] to aid in inference and judgment, including union, complement, and other operations inside 

intuitionistic fuzzy sets. There are developed intersection and arithmetic procedures. These procedures take 

into account the three factors that characterize intuitionistic fuzzy sets, producing results that reflect the 

underlying ambiguity and reluctance in the dataset. 

In an extended sense, intuitionistic fuzzy sets generalize the basic concepts of fuzzy sets by including the idea 

of reluctance or non-membership. This enhanced framework offers a more comprehensive structure for 

handling ambiguity and imprecision in a variety of applications, facilitating a more realistic representation of 

complex and ambiguous data. Certain medical situations have seen the practical application of intuitionistic 

fuzzy sets [16]. In 2007, the idea of fuzzy multiset was first proposed [17] and used in many fields [18-20]. 

Neutrosophic sets [21], also known as neutrosophy or neutrosophic logic, represent an improvement on fuzzy 

sets. that permits the representation and handling of indeterminacy, ambiguity, and inconsistency in a more 

nuanced way. Neutrosophy was introduced by the philosopher and mathematician Florentin Smarandache 

[22] in the 1998s. Florentin Smarandache [23] presented the extension of soft sets to hypersoft sets. He 

expanded by converting the function F into a multi-attribute function, one can turn a soft set into a hypersoft 

set, yielding a hypersoft set in the process parameterized collection of soft sets. This advanced structure goes 

beyond being a mere assembly of sets, presenting a collection of collections of sets. Hypersoft sets have found 

applications in decision-making, data mining, image processing, and addressing uncertainty in natural language 

processing and artificial intelligence. Within the hypersoft set framework, fundamental properties like non-

Set, Subset, Absolute Set, and Aggregation Operations such as Restricted Union, Extended Intersection, 

Relevant Complement, Restricted Difference, and Restricted Symmetric Difference are defined, 

supplemented by illustrative examples. Novel notions of connection, function, and fundamental attributes 

are introduced "Regarding hypersoft sets, an illustrative display includes a matrix portrayal, accompanied by 

an array of operations." in [24]. Basic operations on soft sets were also discussed in [25] in detail. Detailed 

study of hypersoft sets were discussed in [26-28]. Florentin Smarandache [23] "defined as a fusion of the 

foundational concepts of fuzzy sets and hypersoft sets, we have crisp hypersoft sets. These sets incorporate 

the fundamental principles from both fuzzy sets and hypersoft sets to create a novel framework known as 

fuzzy hypersoft sets" which offer an enhanced framework to effectively handle uncertainty, vagueness, and 

indeterminacy present within data. They allow for the representation of complex membership structures that 

can capture various degrees of uncertainty in a more nuanced way. In fuzzy hypersoft sets [23], the level of 
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  an element's membership signifies its extent of affiliation with a specific set, whereas the indeterminacy degree 

quantifies the uncertainty linked to that membership degree. This indeterminacy degree imparts 

supplementary insights into the level of uncertainty and ambiguity surrounding the membership. of ambiguity 

or lack of information regarding the membership status of an element. This concept was later used in many 

fields [22, 28-32]. In Pythagorean fuzzy sets [33], each element has three values associated with it: comprising 

these three factors that describe the nature of items within a set: a level of mem, a level of Nmem, and a level 

of indeterminacy. The level of indeterminacy indicates the level of ambiguity or uncertainty around both the 

level of mem and the level of Nmem aspects. The level of meme measures the level of an element's affiliation, 

and the degree of non-membership measures its non-affiliation. Further properties and operations were 

discussed in [34-37]. Membership and non-membership levels, which indicate partial or complete absence of 

membership, are established within the range of [0,1]. Like that, the indeterminacy degree, which also spans 

[0, 1], denotes whether there is some indeterminacy or all of it. Picture fuzzy sets (PFS) are an expansion of 

both fuzzy sets and intuitionistic fuzzy sets. Kreinovich and Cuong invented it [38]. A PFS is defined as a 

mapping from a discourse domain X to a set with three membership degrees-positive, negative, and neutral 

degrees sum up to 1. 

PFSs can be used [39] to model uncertainty in situations where there are more than two possible answers. 

For example, a PFS could be used to model the results of a survey where participants were requested to 

evaluate a product using a scale ranging from 1 to 5. The positive membership degree would represent the 

number of respondents who gave the product a rating of 4 or 5, and the number of negative members would 

equal the level of negative mem. The percentage of respondents giving a product a rating of 1 or 2 coupled 

with the percentage of neutral respondents equals the number of respondents giving the product a rating of 

3. Whenever making decisions, Picture Fuzzy Sets (PFSs) prove valuable for representing varied viewpoints 

of decision-makers. For instance, a PFS might depict diverse investor opinions within a group considering an 

investment in a specific stock. Detailed discourse concerning picture fuzzy sets and the operations performed 

on fuzzy sets are as follows and are discussed in detail in [40-42]. The notion of a Picture fuzzy hypersoft set 

was invented in [43]. Picture fuzzy soft set builds upon the foundation laid by the idea of picture fuzzy soft 

sets. A detailed discussion on picture fuzzy hypersoft sets is done in detail, with operations of union and 

intersection. The definition of extended union and restricted intersections are defined and other properties 

of with applications are discussed in [43-44]. Its membership function defines a spherical fuzzy set, which 

establishes a correlation between points on a sphere and real numbers that fall within the range of [0,1]. This 

membership function quantifies the extent to which a point on the sphere pertains to the set. The definition 

of spherical fuzzy numbers, their inherent properties, and the establishment of the union and intersection 

operations are outlined within the context. [45]. The extension of the TOPSIS multi-criteria decision-making 

approach is converted into spherical fuzzy TOPSIS, and an exemplary case is shown. In addition, a 

comparison with intuitionistic fuzzy TOPSIS (IF-TOPSIS) is performed, and other concepts and their use in 

decision-making are discussed in [46]. 

3 |Preliminaries 

Definition 1. (Fuzzy Set)  

In the context of a fuzzy set [10] theory, denoted as A, operating within the universe of discourse ℧′, its 

definition is reliant on a membership function 𝜇𝐴(𝜚′). This function allocates a membership degree to every 

element 𝜚′ present in ℧′. The membership function, 𝜇𝐴(𝜚′), essentially transforms each component into a 

level of membership to a number in the range [0,1], showing how closely 𝜚′ is related to 𝐴. 

The membership function can be expressed mathematically as follows: 

𝜇𝐴(𝜚′): ℧′ → [0,1]

𝐴 = {(𝜚′, 𝜇𝐴(𝜚′)): 𝜚′ ∈ ℧′}
 



   Saeed et al. | HyperSoft Set Meth. Eng. 2 (2024) 38-61 

 

09 

When performing the union operation on fuzzy sets, care must be made to account for the membership 

values assigned to each element within the sets. The combination of two fuzzy sets, represented as 𝐴 and 𝐵, 

is 𝐴 ∪ 𝐵, yielding a unique fuzzy set. Each element's membership value in this union is equal to the maximum 

of its corresponding membership values in sets 𝐴 and 𝐵. It is also possible to expand this union 

strategy to include more than two sets. When three fuzzy sets 𝐴, 𝐵, and 𝐶 are taken into consideration, for 

example, their union would be written as 𝐴 ∪ 𝐵 ∪ 𝐶. 

If 𝐴 is defined as (𝜚′, 𝜇𝐴(𝜚′)) and 𝐵 as (𝜚′, 𝜇𝐵(𝜚′)) for the same universe of discourse ℧′, their union 

denoted by 𝐶 = 𝐴 ∪ 𝐵 can be formulated as: 

𝐶 = {(𝜚′, max(𝜇𝐴(𝜚′), 𝜇𝐵(𝜚′)))} 

The intersection of fuzzy sets is a technique for merging two or more fuzzy sets into a single new fuzzy set. 

An element's membership degree within the resultant fuzzy set is determined by the minimum of its 

membership degrees across the underlying fuzzy sets. This intersection function is crucial to fuzzy logic since 

uncertainties and partial memberships are common in pattern recognition, control systems, and decision-

making. 

A mathematical process known as each element in a fuzzy set has a level of Nmem that is determined by the 

complement of the fuzzy set. It quantifies the extent to which an element is not considered part of the set. 

It's important to distinguish between the complement of a crisp set and that of a fuzzy set. Unlike the 

complement of a crisp set, which encompasses all elements the complement is absent from the set in fuzzy 

sets signifies the degree of non-membership. This concept goes beyond simple binary classification of 

whether an element belongs or does not belong. 

Definition 2. (Intuitionistic Fuzzy Sets) [11]  

An Intuitionistic Fuzzy set 𝑊 stated as 

𝑊 = {(𝑐′, ⟨𝐴𝑊(𝑐′), 𝐵𝑊(𝑐′)⟩) ∣ 𝑐′ ∈ 𝑀} 

such that 𝐴𝑊: 𝑀 → 𝐼 and 𝐵𝑊: 𝑀 → 𝐼, where 𝐴𝑊(𝑐′) and 𝐵𝑊(𝑐′) specify the value of belonging and the 

value of not belonging to 𝑐′ ∈ 𝑊 with the restriction that 0 ≤ 𝐴𝑊(𝑐′) + 𝐵𝑊(𝑐′) ≤ 1 and the degree of 

hesitancy 𝐻𝑊(𝑐′) = 1 − 𝐴𝑊(𝑐′) − 𝐵𝑊(𝑐′). 

Definition 3. (Soft Set)  

If 𝑋 is the universal set and 𝐸 is a set of parameters, 𝑃(𝑋) represents the power set of 𝑋. Let 𝐴 be a set of 

effective parameters where 𝐴 ⊂ 𝐸. The concept of a soft set, as developed by Moldsove [47], is defined by 

the mapping. 

𝑊: 𝐴 → 𝑃(𝑋) 

The above definition shows the soft set Commencing from 𝐴, which constitutes a set of effective attributes, 

and relating it to the power set of 𝑋 (where 𝑋 represents a universal set), a soft set emerges as a mathematical 

entity defined by: the framework that expands on the idea of a set by allowing elements to have degrees of 

membership rather than the traditional binary notion of belonging or not belonging. In a soft set, each 

element is assigned a membership function that determines its degree of inclusion in the set. Soft sets allow 

for a more flexible representation of uncertainty and ambiguity compared to traditional crisp sets. They find 

applications in a multitude of fields, spanning decision-making and pattern recognition data analysis, and 

information fusion, where imprecise or uncertain information needs to be handled. 

Definition 4. (Spherical Fuzzy Sets) [45]  

A spherical fuzzy set 𝐴 in a universe of discourse 𝑋 is defined by its core 𝑐𝐴 ∈ 𝑋, radius 𝑟𝐴 ≥ 0, and 

membership function 𝜇𝐴: 𝑋 → [0,1] such that for any element 𝑥 in 𝑋 : 
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𝜇𝐴(𝑥) = {
1 −

𝑑(𝑥, 𝑐𝐴)

𝑟𝐴
,  if 𝑑(𝑥, 𝑐𝐴) ≤ 𝑟𝐴

0,  otherwise 

 

where 𝑑(𝑥, 𝑐𝐴) represents the distance between 𝑥 and the core 𝑐𝐴. 

Definition 5. (Fuzzy Soft Set) [48]  

A fuzzy soft set FS in a universe of discourse 𝑋 is defined by a triple (�̃�, 𝜆, 𝜋), where: 

 �̃� is the underlying set of elements with a membership function 𝜇�̃�: 𝑋 → [0,1] representing the level 

of inclusion of components in �̃�. 

 𝜆 is the parameter set associated with �̃�. 

 𝜋: �̃� × 𝜆 → [0,1] gives each constituent a membership degree of �̃� with respect to each parameter 

in 𝜆. 

For any element 𝑥 in �̃� and parameter 𝑝 in 𝜆, the membership degree of 𝑥 with respect to 𝑝 is denoted as 

𝜋(𝑥, 𝑝). 

Fuzzy soft sets amalgamate characteristics from both fuzzy sets and soft sets, providing a framework to 

concurrently handle data that is unclear and ambiguous. Within a fuzzy soft set, elements possess varying 

degrees of membership while being linked to diverse potential values, thereby capturing uncertain or 

imprecise information regarding the elements. 

Definition 6. (Hypersoft Sets)  

The idea of a hypersoft set, developed by Smarandache in 2018 [23], involves a pair denoted as (𝜁, 𝐺), which 

operates within the universe 𝑈. In this framework, 𝐺 represents the Cartesian product of 𝑛 separate attribute-

valued sets, denoted as 𝐺1, 𝐺2, … , 𝐺𝑛. These sets correspond to distinct properties 𝑔1, 𝑔2, … , 𝑔𝑛 respectively, 

and they are defined as follows: 

𝜁: 𝐺 → 𝒫(𝑈) 

The mapping 𝜁 establishes the essential foundation of a hypersoft set, associating elements from 𝐺 with 

subsets of 𝑈. 

Definition 7. (Fuzzy Hypersoft Sets)  

Suppose 𝐹(𝑈) is the collection of fuzzy sets over 𝑈. Let {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} be different properties, and their 

corresponding value sets be 𝐺1, 𝐺2, 𝐺3, … , 𝐺𝑛. A fuzzy hypersoft set [49] is known as (𝜁fhs , 𝐺) = 

{(𝑔, 𝜁fhs (𝑔)): 𝑔 ∈ 𝐺, 𝜁fhs (𝑔) ∈ 𝐹(𝑈)}, where 𝜁fhs : 𝐺 → 𝐹(𝑈), and ∀𝑔 ∈ 𝐺, 

𝐺 = 𝐺1 × 𝐺2 × 𝐺3 × … × 𝐺𝑛 

The membership function 𝜁fhs (𝑔) for each property combination, 𝑔 is described as follows: 

𝜁fhs (𝑔) = {𝜇𝜙fhs (𝑔)/𝑢: 𝑢 ∈ 𝑈, 𝜇𝜙fhs (𝑔(𝑢)) ∈ [0,1]} 

Here, 𝜇𝜙fhs (𝑔) represents the level of membership for the property combination 𝑔(𝑢) of element 𝑢 in the 

universe of discourse 𝑈, with the membership value within the interval [0,1]. 

The fuzzy hypersoft set framework captures relationships between properties and their values using fuzzy 

sets, allowing for a flexible representation of uncertainty and imprecision in a structured manner. 

Definition 8. (Intuitionistic Fuzzy Hypersoft Sets)  
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Assume 𝑈 is a universal set. An intuitionistic fuzzy hypersoft set [29] (IFHs-set) over 𝑈 is represented by a 

mapping 𝐴: 𝑈 → [0,1] × [0,1]𝑐 , 𝑐 is a positive integer, in this case. In this mapping, for each element 𝑥 ∈ 𝑈, 

there exists a pair of values (𝜇, 𝜆), where 𝜇 and 𝜆 belong to the intervals [0,1] and [0,1]𝑐, respectively. These 

values 𝜇 and 𝜆 quantify the level of mem and Nmem, respectively, for the element 𝑥 within the set. 

In simpler terms, an intuitionistic fuzzy hypersoft set characterizes each element in the universal set by 

indicating the strength of its belongingness (level of mem) and the strength of its non-belongingness (degree 

of non-membership) to the set. This representation allows for more intricate handling of uncertainty and 

imprecision. 

Definition 9. (Interval-Valued Intuitionistic Fuzzy Set)  

Suppose that ℧ is a universe of discourse then an IVIFS [50] can be described as: 

𝐹 = {⟨𝜚, 𝜇𝐹(𝜚), 𝑉𝐹(𝜚)⟩ ∣ 𝜚 ∈ ℧} 

where 𝜚 is the set of elements of ℧. 𝜇𝐹(𝜚) represents the interval-valued degree membership of ℧ as 

[𝜇𝐹
+, 𝜇𝐹

−] ⊆ [0,1] and 𝑉𝐹(𝜚) represents the interval-valued degree non-membership of all elements of ℧ as 

[𝑉𝐹
+, 𝑉𝐹

−] ⊆ [0,1]. The sum of the supremum of level membership and supremum of level non-membership 

lies between 0 and 1 as 

0 ≤ sup𝜇𝐹(𝜚) + sup𝑉𝐹(𝜚) ≤ 1,  𝜚 ∈ ℧ 

The provided diagram illustrates that Crisp sets, Fuzzy sets, and Intuitionistic Fuzzy sets (IFS) are subsets of 

Interval Valued Intuitionistic Fuzzy sets (IVIFS). Here, 𝜋𝐹 (varrho) denotes the level of N-determinacy within 

set mem. When both the lower and upper bounds of degree membership and degree Nmem align, an IVIFS 

transforms into an IFS. A crisp set adheres to the traditional set concept where elements are either included 

or excluded. Each element possesses a definite membership value of either 0 or 1. Fuzzy sets accommodate 

varying degrees of membership, reflecting uncertainty or ambiguity. Elements within a fuzzy set are assigned 

membership values ranging from 0 to 1, signifying their extent of belonging to the set. Rather than assigning 

a single membership value to each element, IVFS assigns a range of values that represents the degree of 

membership. This interval may vary from a single point to a wide range of values. 

Definition 10. (Spherical Fuzzy Soft Sets)  

Assume the universe set be denoted as ℝ. To explain the idea of a Spherical Fuzzy Soft Set [12], we can 

represent it as follows: 

𝐴∗ = {⟨𝑟, 𝑃𝐴(𝑟), 𝐼𝐴(𝑟), 𝑁𝐴(𝑟)⟩: 𝑟 ∈ ℝ} 

where: 

𝑃𝐴(𝑟): ℝ → [0,1]
𝐼𝐴(𝑟): ℝ → [0,1]

𝑁𝐴(𝑟): ℝ → [0,1]
 

In this context: 

 𝑃𝐴(𝑟) signifies the level of favorable membership of element 𝑟 in the set ℝ. 

 𝐼𝐴(𝑟) represents the level of neutral membership of element 𝑟 in ℝ. 

 𝑁𝐴(𝑟) indicates the level of negative membership of element 𝑟 in ℝ. 

It's important to satisfy the following conditions for these membership functions: 

0 ≤ 𝑃𝐴
2(𝑟) + 𝐼𝐴

2(𝑟) + 𝑁𝐴
2(𝑟) ≤ 1 
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  This formulation captures the essence of a Spherical Fuzzy Soft Set, wherein elements in the universe ℝ are 

characterized based on their degrees of membership that are favorable, neutral, and negative while ensuring 

that the sum of squared membership degrees remains bounded within the interval [0,1]. 

Fuzzy values assigned to points in a multidimensional space provide membership degrees for spherical fuzzy 

sets, which are a subset of classical fuzzy sets. In contrast to conventional fuzzy sets predominantly delineated 

along linear scales, spherical fuzzy sets manifest on a spherical continuum. Within a spherical fuzzy set, every 

point within the multidimensional space links to a fuzzy value signifying its membership degree. These fuzzy 

values are often visualized as points on a unit sphere, where the distance from the sphere's center symbolizes 

the extent of membership. 

Definition 11. (score and accuracy function)  

Suppose 𝛽 = (𝜚𝛽 , 𝜑𝛽) be a SFHSS. 

 The mathematical representation of a score function is typically denoted as 𝕊(𝛽) = 𝜚𝛽
2 − 𝜍𝛽

2 − 𝜑𝛽
2 . 

 The mathematical representation of an accuracy function is typically denoted as 𝔸(𝛽) = 𝜚𝛽
2 + 𝜍𝛽

2 +

𝜑𝛽
2 . 

4 |Spherical Fuzzy Hypersoft Set 

This section introduces the idea of the spherical fuzzy hypersoft set (SFHS) and its operations. It will cover 

the values between 0 and 1, but the advantages here are that in a hypersoft set, we can take multi-attribute 

values instead of single-attribute values. In other words, we take attributes and their corresponding attribute 

values instead of single attribute values, like we take single values in soft sets. We will talk about some 

fundamental manipulations on spherical fuzzy hypersoft sets in this part. The Subset of two spherical fuzzy 

hypersoft numbers is known and further created with the help of numerical examples. An extended Union of 

two spherical fuzzy hypersoft numbers is defined, as an extended intersection, union with restrictions 

Restricted intersections, and complement of spherical fuzzy hypersoft numbers. In the next part of this 

section, further operations of addition and multiplications of spherical fuzzy hypersoft numbers are defined. 

Basic properties of spherical fuzzy hypersoft numbers like commutative property w.r.t addition and 

multiplication are defined. The associative property of spherical fuzzy hypersoft numbers is defined w.r.t 

addition and multiplication. In the end, some other properties are also defined. 

Definition 12. Spherical Fuzzy Hypersoft Set 

Let 𝑈 be a universe of discourse. Let 𝐸 be a set of distinct attributes and 𝐴 ⊂ 𝐸 a pair ⟨𝐺, 𝐴∗⟩. 

𝐺: 𝐴∗ → 𝑆𝐹𝐻𝑆(𝑈) 

or 

𝐺: 𝐴∗ → 𝑃(𝑈) 

where 𝐴∗ is the Cartesian product of 𝑛 disjointly valued sub-parameter sets {𝐴1, 𝐴2, … , 𝐴𝑛}, 

𝑛 ≥ 1 

corresponding to distinct parameters 𝑒1, 𝑒2, … , 𝑒𝑛 respectively. 𝑒∗ of 𝐴∗ is an n-tuple of elements. 

𝐺(𝑒∗) = ⟨𝑥, 𝑃𝐺(𝑒∗)(𝑥), 𝑁𝐺(𝑒∗)(𝑥), 𝐼𝐺(𝑒∗)(𝑥)⟩: 𝑥 ∈ 𝑈 

where 𝑃𝐺(𝑒∗)(𝑥) is called the level of favorable membership, 𝐼𝐺(𝑒∗)(𝑥) is called the level of non-favorable 

membership, and 𝑁𝐺(𝑒∗)(𝑥) is called the degree of neutral membership. 

𝑃𝐺(𝑒∗)(𝑥), 𝐼𝐺(𝑒∗)(𝑥), and 𝑁𝐺(𝑒∗)(𝑥) satisfy the following conditions: 
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0 ≤ 𝑃𝐺(𝑒∗)
2 (𝑥) + 𝑁𝐺(𝑒∗)

2 (𝑥) + 𝐼𝐺(𝑒∗)
2 (𝑥) ≤ 1 

and 

𝜓𝑠𝑓ℎ𝑠(𝑔) = {𝜇𝜓𝑠𝑓ℎ𝑠(𝑔)(𝑥), 𝜂𝜓𝑠𝑓ℎ𝑠(𝑔)(𝑥), 𝜈𝜓𝑠𝑓ℎ𝑠(𝑔)(𝑥)}

𝜇𝜓𝑠𝑓ℎ𝑠(𝑔)(𝑥) ∈ [0,1]

𝜂𝜓𝑠𝑓ℎ𝑠(𝑔)(𝑥) ∈ [0,1]

𝜈𝜓𝑠𝑓ℎ𝑠(𝑔)(𝑥) ∈ [0,1]

 

for a spherical fuzzy hypersoft set 

{𝑥, 𝑃𝐺(𝑒∗)(𝑥), 𝑁𝐺(𝑒∗)(𝑥), 𝐼𝐺(𝑒∗)(𝑥): 𝑥 ∈ 𝑈} 

which is called a triple component. 

⟨𝑃𝐺(𝑒∗)(𝑥), 𝑁𝐺(𝑒∗)(𝑥), 𝐼𝐺(𝑒∗)(𝑥)⟩ 

are called spherical fuzzy hypersoft numbers (SFHSNs). can be denoted by 

𝑟 = ⟨𝑃𝑟, 𝑁𝑟 , 𝐼𝑟⟩ 

where 𝑃𝑟 ∈ [0,1], 𝑁𝑟 ∈ [0,1], 𝐼𝑟 ∈ [0,1], with the condition 

0 ≤ 𝑃𝑟
2 + 𝑁𝑟

2 + 𝐼𝑟
2 ≤ 1 

Definition 13. (Averaging and geometric operator) 

Suppose 𝛽1, … , 𝛽𝑛 be some collection of SFHSNs as The SFHSA operator is called SFHSA(𝛽1, … , 𝛽𝑛) 

( √(1 − ∏  𝑚
𝑗=1  (∏  𝑛

𝑖=1   (1 − (𝜚𝛽𝑖
)

𝑛
)))

𝑛

, ∏  𝑚
𝑗=1   (∏  𝑛

𝑖=1   (𝜍𝛽𝑖
)

𝑛
), ∏  𝑚

𝑗=1  (∏  𝑛
𝑖=1   (𝜑𝛽𝑖

)
𝑛

))                            (1) 

The SFHSG operator is called SFHSG (𝛽1, … , 𝛽𝑛) = 

(∏  𝑚
𝑗=1   (∏  𝑛

𝑖=1   (𝜚𝛽𝑖
)

𝑛
), √(1 − ∏  𝑚

𝑗=1  (∏  𝑛
𝑖=1   (1 − (𝜍𝛽𝑖

)
𝑛

)))
𝑛

, √(1 − ∏  𝑚
𝑗=1  (∏  𝑛

𝑖=1   (1 − (𝜑𝛽𝑖
)

𝑛
)))

𝑛
             (2) 

4.1 |Some Fundamental Operations with Spherical Fuzzy Hypersoft Sets 

Assuming the two spherical fuzzy hypersoft numbers 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩
 

be two SFHS. 

4.2 |Subset 

The subset of the two numbers 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩ 

and 

𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩ 

is defined as 𝑟𝑗 ⊂ 𝑟𝑘 if for all 𝑥 ∈ 𝑈, 
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  𝑃𝑟𝑗 ≤ 𝑃𝑟𝑘

𝑁𝑟𝑗  ≤ 𝑁𝑟𝑘

𝐼𝑟𝑗 ≥ 𝐼𝑟𝑘

 

4.3 |Numerical Example 

Consider that a person wishes to select a hospital for treatment. A number of three hospitals which is a set 

of discourse 𝐴 ⊂ 𝐸. 

𝑈 = {𝑍1, 𝑍2, 𝑍3, 𝑍4} 

Attributes and their values are: 

 𝑣1 = Location 

 𝑣2 = All Facilities 

 𝑣3 = Treatment Fee 

Then the attribute-valued sets are: 

 Location = 𝑉1 = {𝑣11 =  near, 𝑣12 =  far }

 All Facilities = 𝑉2 = {𝑣21 =  available, 𝑣22 =  not available }

 Treatment Fee = 𝑉3 = {𝑣31 =  cheap }

𝑌 = 𝑉1 × 𝑉2 × 𝑉3

𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4}

 

where 

𝑦1 = {𝑣11, 𝑣21, 𝑣31}

𝑦2 = {𝑣11, 𝑣22, 𝑣31}

𝑦3 = {𝑣12, 𝑣21, 𝑣31}

𝑦4 = {𝑣12, 𝑣22, 𝑣31}

𝐴 = {(𝜁fhss , 𝑦1) = (0.3,0.1,0.3)/𝑍1, (0.4,0.1,0.3)/𝑍2, (0.2,0.3,0.4)/𝑍3, (0.5,0.1,0.3)/𝑍4,

(𝜁fhss , 𝑦2) = (0.2,0.1,0.3)/𝑍1, (0.3,0.2,0.3)/𝑍2, (0.2,0.3,0.4)/𝑍3, (0.4,0.1,0.3)/𝑍4

(𝜁fhss , 𝑦3) = (0.2,0.1,0.4)/𝑍1, (0.3,0.1,0.3)/𝑍2, (0.3,0.1,0.4)/𝑍3, (0.3,0.1,0.3)/𝑍4,

(𝜁fhss , 𝑦4) = (0.4,0.1,0.3)/𝑍1, (0.5,0.2,0.3)/𝑍2, (0.2,0.1,0.4)/𝑍3, (0.5,0.2,0.3)/𝑍4}

𝑉 = {(𝜁fhss , 𝑦1) = (0.4,0.3,0.2)/𝑍1, (0.5,0.2,0.2)/𝑍2, (0.3,0.4,0.3)/𝑍3, (0.6,0.3,0.2)/𝑍4,

(𝜁fhss , 𝑦2) = (0.5,0.2,0.1)/𝑍1, (0.4,0.3,0.1)/𝑍2, (0.3,0.4,0.1)/𝑍3, (0.6,0.3,0.2)/𝑍4,

(𝜁fhss , 𝑦3) = (0.4,0.3,0.2)/𝑍1, (0.5,0.2,0.1)/𝑍2, (0.4,0.3,0.3)/𝑍3, (0.4,0.3,0.2)/𝑍4,

(𝜁fhss , 𝑦4) = (0.5,0.3,0.2)/𝑍1, (0.6,0.3,0.2)/𝑍2, (0.4,0.3,0.3)/𝑍3, (0.6,0.3,0.2)/𝑍4}

 

Then 𝐴 ⊆ 𝑉. 

4.4 |Extended Union 

Assuming the two spherical fuzzy hypersoft numbers 

Let 𝑟𝑗 =< 𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗 > and 𝑟𝑘 =< 𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘 > be two SFHSs. 

The extended union of the two numbers 

𝑟𝑗 =< 𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗 > 

and 

𝑟𝑘 =< 𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘 > 



   Saeed et al. | HyperSoft Set Meth. Eng. 2 (2024) 38-61 

 

03 

is defined as 

𝐺(𝑒∗) = {< 𝑥, max(𝑃(𝑟𝑗), 𝑃(𝑟𝑘)), min(𝑁(𝑟𝑗), 𝑁(𝑟𝑘)), min(𝐼(𝑟𝑗), 𝐼(𝑟𝑘)) >: 𝑥 ∈ 𝑋} 

where 𝐺(𝑒∗) denotes the extended union of two SFHSs. 

4.5 |Numerical Example 

Let 𝑋 = {𝑥1, 𝑥2, 𝑥3} be the universe of discourse. 

Set  : 

 Center (0.6,0.7,0.8) 

 Radius 0.9 

 Membership Function 𝜇𝐴(𝑥) 

Set  : 

 Center (0.2,0.3,0.4) 

 Radius 0.5 

 Membership Function 𝜇𝐵(𝑥) 

The extended union of sets 𝐴 and 𝐵 is given by: 

𝜇𝐴⊕𝐵(𝑥) = max (min (
∥ 𝑥 − (0.6,0.7,0.8) ∥

0.9
, 1) , min (

∥ 𝑥 − (0.2,0.3,0.4) ∥

0.5
, 1)) 

where ∥ 𝑥 − 𝑐 ∥ represents the Euclidean distance between point 𝑥 and the center 𝑐. 

4.6 |Extended Intersection 

The Extended Intersection of the two numbers 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩,  𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩ 

The intersection 𝑟𝑗 ∩ 𝑟𝑘 is defined as: 

𝑟𝑗 ∩ 𝑟𝑘 = ⟨min(𝑃𝑟𝑗, 𝑃𝑟𝑘), min(𝑁𝑟𝑗 , 𝑁𝑟𝑘), max(𝐼𝑟𝑗, 𝐼𝑟𝑘)⟩ 

4.7 |Numerical Example 

Let 𝑋 = {𝑥1, 𝑥2, 𝑥3} be the universe of discourse. 

Set  : 

 Center (0.6,0.7,0.8) 

 Radius 0.9 

 Membership Function 𝜇𝐴(𝑥) 

Set  : 

 Center (0.2,0.3,0.4) 

 Radius 0.5 

 Membership Function 𝜇𝐵(𝑥) 
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  The extended intersection of sets 𝐴 and 𝐵 is given by: 

𝜇𝐴⊖𝐵(𝑥) = max (0, min (
∥ 𝑥 − (0.6,0.7,0.8) ∥

0.9
,
∥ 𝑥 − (0.2,0.3,0.4) ∥

0.5
)) 

where ∥ 𝑥 − 𝑐 ∥ represents the Euclidean distance between point 𝑥 and the center 𝑐. 

5 |Restricted Union 

Assuming the two spherical fuzzy hypersoft numbers 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩
 

are two SFHSs, the Restricted Union of 𝑟𝑗 and 𝑟𝑘 is defined as 

𝐺(𝑒∗) = {⟨𝑥, max(𝑃(𝑟𝑗), 𝑃(𝑟𝑘)), max(𝑁(𝑟𝑗), 𝑁(𝑟𝑘)), min(𝐼(𝑟𝑗), 𝐼(𝑟𝑘))⟩: 𝑥 ∈ 𝑋} 

where 𝐺(𝑒∗) denotes the restricted union of two SFHSS. The intersection of 𝑟𝑗 and 𝑟𝑘 is non-empty. 

6 |Numerical Example 

Let 𝑋 = {𝑥1, 𝑥2, 𝑥3} be the universe of discourse. 

Set: Center (0.6,0.7,0.8) 

Radius 0.9 

Membership Function 𝜇𝐴(𝑥) 

Set: Center (0.2,0.3,0.4) 

Radius 0.5 

Membership Function 𝜇𝐵(𝑥) 

The restricted union of sets 𝐴 and 𝐵 is given by: 

𝜇𝐴⊗𝐵(𝑥) = {
min (1, max (

∥ 𝑥 − (0.6,0.7,0.8) ∥

0.9
,
∥ 𝑥 − (0.2,0.3,0.4) ∥

0.5
))  if max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) > 0

0  otherwise 

 

where ∥ 𝑥 − 𝑐 ∥ represents the Euclidean distance between point 𝑥 and the center 𝑐. 

7 |Restricted Intersection 

Assuming the two spherical fuzzy hypersoft numbers 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩
 

are two SFHSs, the Restricted Intersection of 𝑟𝑗 and 𝑟𝑘 is defined as 

𝐺(𝑒∗) = {⟨𝑥, max(𝑃(𝑟𝑗), 𝑃(𝑟𝑘)), max(𝑁(𝑟𝑗), 𝑁(𝑟𝑘)), min(𝐼(𝑟𝑗), 𝐼(𝑟𝑘))⟩: 𝑥 ∈ 𝑋} 

where 𝐺(𝑒∗) denotes the restricted intersection of two SFHSS. The restricted intersection of 𝑟𝑗 and 𝑟𝑘 is non-

empty. 
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8 |Numerical Example 

Let 𝑋 = {𝑥1, 𝑥2, 𝑥3} be the universe of discourse. 

Set: Center (0.6,0.7,0.8) 

Radius 0.9 

Membership Function 𝜇𝐴(𝑥) 

Set: Center (0.2,0.3,0.4) 

Radius 0.5 

Membership Function 𝜇𝐵(𝑥) 

The restricted intersection of sets 𝐴 and 𝐵 is given by: 

𝜇𝐴⊙𝐵(𝑥) = {
max (0, min (

∥ 𝑥 − (0.6,0.7,0.8) ∥

0.9
,
∥ 𝑥 − (0.2,0.3,0.4) ∥

0.5
))  if min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) > 0

0  otherwise 

 

where ∥ 𝑥 − 𝑐 ∥ represents the Euclidean distance between point 𝑥 and the center 𝑐. 

9 |Complement 

Assuming the spherical fuzzy hypersoft number 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩ 

the Complement of 𝑟𝑗 is defined as 

𝑟𝑗
𝑐 = ⟨𝐼𝑟𝑗 , 𝑁𝑟𝑗 , 𝑃𝑟𝑗⟩ 

10 |Numerical Example 

Let 𝑋 = {𝑥1, 𝑥2, 𝑥3} be the universe of discourse. 

Set: Center (0.6,0.7,0.8) 

Radius 0.9 

Membership Function 𝜇𝐴(𝑥) 

The complement of set 𝐴 is given by: 

𝜇𝐴‾(𝑥) = 1 − min (1,
∥ 𝑥 − (0.6,0.7,0.8) ∥

0.9
) 

where ∥ 𝑥 − 𝑐 ∥ represents the Euclidean distance between point 𝑥 and the center 𝑐. 

10.1 |Operations on Spherical Fuzzy hypersoft Numbers 

Suppose two SFHSs 

𝐴 = 𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

𝐵 = 𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩
 

and 𝜏 ≥ 0, the operations of SFHSNs can be defined as follows: 
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𝜏𝑟𝑗 = ⟨√1 − (1 − 𝑃𝑟𝑗)
𝜏
, (𝑁𝑟𝑗)

𝜏
, (𝐼𝑟𝑗)

𝜏
⟩              (1) 

𝑟𝑗 + 𝑟𝑘 = ⟨√(𝑃𝑟𝑗)
2

+ (𝑃𝑟𝑘)2 − (𝑃𝑟𝑗)
2

× (𝑃𝑟𝑘)2, 𝑁𝑟𝑗 × 𝑁𝑟𝑘 , 𝐼𝑟𝑗 × 𝐼𝑟𝑘⟩          (2) 

𝑟𝑗 × 𝑟𝑘 = ⟨𝑃𝑟𝑗 × 𝑃𝑟𝑘 , 𝑁𝑟𝑗 × 𝑁𝑟𝑘 , √(𝐼𝑟𝑗)
2

+ (𝐼𝑟𝑘)2 − (𝐼𝑟𝑗)
2

× (𝐼𝑟𝑘)2⟩          (3) 

(𝑟𝑗)
𝜏

= ⟨(𝑃𝑟𝑗)
𝜏
, (𝑁𝑟𝑗)

𝜏
, √1 − (1 − 𝐼𝑟𝑗)

𝜏
⟩             (4) 

Theorem 1. Assuming three SFHSS numbers as 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩

𝑟𝑙 = ⟨𝑃𝑟𝑙 , 𝑁𝑟𝑙 , 𝐼𝑟𝑙⟩

 

and 

𝜏 ≥ 0
𝜏𝑗 ≥ 0

𝜏𝑘 ≥ 0
 

then the enumerated identities are met. 

i). 𝑟𝑗 + 𝑟𝑘 = 𝑟𝑘 + 𝑟𝑗 

Commutative property w.r.t. addition 

ii). 𝑟𝑗 × 𝑟𝑘 = 𝑟𝑘 × 𝑟𝑗 

Commutative property w.r.t. multiplication 

iii). (𝑟𝑗 + 𝑟𝑘) + 𝑟𝑙 = 𝑟𝑗 + (𝑟𝑘 + 𝑟𝑙) 

Associative property w.r.t. addition 

iv). (𝑟𝑗 × 𝑟𝑘) × 𝑟𝑙 = 𝑟𝑗 × (𝑟𝑘 × 𝑟𝑙) 

Associative property w.r.t. multiplication 

v). (𝜏𝑟𝑗 + 𝜏𝑟𝑘) = 𝜏(𝑟𝑗 + 𝑟𝑘) 

Left distributive property 

vi). (𝜏𝑗𝑟𝑗 + 𝜏𝑘𝑟𝑘) = (𝜏𝑗 + 𝜏𝑘)𝑟𝑗 

Right distributive property 

vii). (𝜏𝑗𝑟𝑗 + 𝜏𝑘𝑟𝑘) = (𝜏𝑗 + 𝜏𝑘)𝑟𝑗 

Right distributive property 

viii). ((𝑟𝑗)
𝜏𝑗 + (𝑟𝑗)

𝜏𝑘
) = (𝑟𝑗)

(𝜏𝑗+𝜏𝑘)
 

Left distributive property 

Proof. (i) 
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𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩

𝑟𝑙 = ⟨𝑃𝑟𝑙 , 𝑁𝑟𝑙 , 𝐼𝑟𝑙⟩
𝜏 ≥ 0

 

To show that 

𝑟𝑗 + 𝑟𝑘 = 𝑟𝑘 + 𝑟𝑗 

L.H.S = 

𝑟𝑗 + 𝑟𝑘 

⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩ + ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩

= ⟨√(𝑃𝑟𝑗)
2

+ (𝑃𝑟𝑘)2 − (𝑃𝑟𝑗)
2

× (𝑃𝑟𝑘)2, 𝑁𝑟𝑗 × 𝑁𝑟𝑘 , 𝐼𝑟𝑗 × 𝐼𝑟𝑘⟩

= ⟨√(𝑃𝑟𝑘)2 + (𝑃𝑟𝑗)
2

− (𝑃𝑟𝑘)2 × (𝑃𝑟𝑗)
2

, 𝑁𝑟𝑘 × 𝑁𝑟𝑗 , 𝐼𝑟𝑘 × 𝐼𝑟𝑗⟩

= ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩ + ⟨𝑃𝑟𝑗, 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

= 𝑟𝑘 + 𝑟𝑗

 

Proof. (ii) 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩

𝑟𝑙 = ⟨𝑃𝑟𝑙 , 𝑁𝑟𝑙 , 𝐼𝑟𝑙⟩
𝜏 ≥ 0

 

To show that 

𝑟𝑗 × 𝑟𝑘 = 𝑟𝑘 × 𝑟𝑗 

L.H.S = 

𝑟𝑗 × 𝑟𝑘

⟨𝑃𝑟𝑗, 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩ × ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩

= ⟨𝑃𝑟𝑗 × 𝑃𝑟𝑘 , 𝑁𝑟𝑗 × 𝑁𝑟𝑘 , √(𝐼𝑟𝑗)
2

+ (𝐼𝑟𝑘)2 − (𝐼𝑟𝑗)
2

× (𝐼𝑟𝑘)2⟩

= ⟨𝑃𝑟𝑘 × 𝑃𝑟𝑗 , 𝑁𝑟𝑘 × 𝑁𝑟𝑗 , √(𝐼𝑟𝑘)2 + (𝐼𝑟𝑗)
2

− (𝐼𝑟𝑘)2 × (𝐼𝑟𝑗)
2

⟩

= ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩ × ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩
= 𝑟𝑘 × 𝑟𝑗

 

The proofs of 3 and 4 are straightforward as of 1 and 2. 

Proof. (5) 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

𝑟𝑘 = ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩

𝑟𝑙 = ⟨𝑃𝑟𝑙 , 𝑁𝑟𝑙 , 𝐼𝑟𝑙⟩

 

𝜏 ≥ 0 

To show that 

𝜏𝑟𝑗 + 𝜏𝑟𝑘 = 𝜏(𝑟𝑗 + 𝑟𝑘) 
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  L.H.S = 

𝜏𝑟𝑗 + 𝜏𝑟𝑘

𝜏⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩ + 𝜏⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩

= ⟨√1 − (1 − 𝑃𝑟𝑗)
𝜏
, (𝑁𝑟𝑗)

𝜏
, (𝐼𝑟𝑗)

𝜏
⟩ + ⟨√1 − (1 − 𝑃𝑟𝑘)𝜏, (𝑁𝑟𝑘)𝜏, (𝐼𝑟𝑘)𝜏⟩

= ⟨√1 − (1 − (𝑃𝑟𝑗
2 + 𝑃𝑟𝑘

2 − (𝑃𝑟𝑗
2 ⋅ 𝑃𝑟𝑘

2 ))
𝜏
) , (𝑁𝑟𝑗 ⋅ 𝑁𝑟𝑘)

𝜏
, (𝐼𝑟𝑗 ⋅ 𝐼𝑟𝑘)

𝜏
⟩

 

R.H.S 

𝜏(𝑟𝑗 + 𝑟𝑘)

= 𝜏 ⟨√(𝑃𝑟𝑗)
2

+ (𝑃𝑟𝑘)2 − (𝑃𝑟𝑗)
2

⋅ (𝑃𝑟𝑘)2, 𝑁𝑟𝑗 ⋅ 𝑁𝑟𝑘 , 𝐼𝑟𝑗 ⋅ 𝐼𝑟𝑘⟩

= ⟨√1 − (1 − (𝑃𝑟𝑗
2 + 𝑃𝑟𝑘

2 − (𝑃𝑟𝑗
2 ⋅ 𝑃𝑟𝑘

2 ))
𝜏
) , (𝑁𝑟𝑗 ⋅ 𝑁𝑟𝑘)

𝜏
, (𝐼𝑟𝑗 ⋅ 𝐼𝑟𝑘)

𝜏
⟩

 

Hence proved.        ■ 

Proof. (6) 

To prove 

(𝜏𝑗𝑟𝑗 + 𝜏𝑘𝑟𝑘) = (𝜏𝑗 + 𝜏𝑘)𝑟𝑗 

𝜏𝑗 ≥ 0 

𝜏𝑘 ≥ 0 

𝜏𝑗 ⋅ ⟨𝑃𝑟𝑗, 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩ + 𝜏𝑘 ⋅ ⟨𝑃𝑟𝑘 , 𝑁𝑟𝑘 , 𝐼𝑟𝑘⟩ 

= ⟨√1 − (1 − 𝑃𝑟𝑗
2 )

𝜏𝑗
, (𝑁𝑟𝑗)

𝜏𝑗
, (𝐼𝑟𝑗)

𝜏𝑗
⟩ + ⟨√1 − (1 − 𝑃𝑟𝑘

2 )𝜏𝑘 , (𝑁𝑟𝑘)𝜏𝑘 , (𝐼𝑟𝑘)𝜏𝑘⟩ 

= ⟨√(1 − (1 − 𝑃𝑟𝑗
2 )

𝜏𝑗 + 1 − (1 − 𝑃𝑟𝑘
2 )𝜏𝑘 − (1 − (1 − 𝑃𝑟𝑗

2 )
𝜏𝑗) ⋅ (1 − (1 − 𝑃𝑟𝑘

2 )𝜏𝑘), (𝑁𝑟𝑗)
𝜏𝑗 ⋅ (𝑁𝑟𝑘)𝜏𝑘 , (𝐼𝑟𝑗)

𝜏𝑗 ⋅ (𝐼𝑟𝑘)𝜏𝑘⟩ 

= ⟨√1 − (1 − 𝑃𝑟𝑗
2 )

𝜏𝑗 ⋅ (1 − 𝑃𝑟𝑘
2 )𝜏𝑘 , (𝑁𝑟𝑗)

𝜏𝑗+𝜏𝑘 , (𝐼𝑟𝑗)
𝜏𝑗+𝜏𝑘

⟩ 

= ⟨√1 − (1 − 𝑃𝑟𝑗
2 )

𝜏𝑗+𝜏𝑘 , (𝑁𝑟𝑗)
𝜏𝑗+𝜏𝑘 , (𝐼𝑟𝑗)

𝜏𝑗+𝜏𝑘
⟩ 

R.H.S 

(𝜏𝑗 + 𝜏𝑘)𝑟𝑗

= (𝜏𝑗 + 𝜏𝑘) ⋅ ⟨𝑃𝑟𝑗, 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

= ⟨√1 − (1 − 𝑃𝑟𝑗
2 )

𝜏𝑗+𝜏𝑘 , (𝑁𝑟𝑗)
𝜏𝑗+𝜏𝑘 , (𝐼𝑟𝑗)

𝜏𝑗+𝜏𝑘
⟩

 

Hence proved.         ■ 

 

Proof. (7) 
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To prove 

(𝑟𝑗 × 𝑟𝑘)
𝜏

= 𝑟𝑗
𝜏 × 𝑟𝑘

𝜏 

L.H.S 

(𝑟𝑗 × 𝑟𝑘)
𝜏

⟨(𝑃𝑟𝑗 ⋅ 𝑃𝑟𝑘)
𝜏
, (𝑁𝑟𝑗 ⋅ 𝑁𝑟𝑘)

𝜏
, √(𝐼𝑟𝑗

2 + 𝐼𝑟𝑘
2 − 𝐼𝑟𝑗

2 ⋅ 𝐼𝑟𝑘
2 )

𝜏
⟩

= ⟨(𝑃𝑟𝑗 ⋅ 𝑃𝑟𝑘)
𝜏
, (𝑁𝑟𝑗 ⋅ 𝑁𝑟𝑘)

𝜏
, √1 − (1 − (𝐼𝑟𝑗

2 + 𝐼𝑟𝑘
2 − 𝐼𝑟𝑗

2 ⋅ 𝐼𝑟𝑘
2 ))

𝜏
⟩

 

Now 

R.H.S 

𝑟𝑗
𝜏 × 𝑟𝑘

𝜏

= ⟨𝑃𝑟𝑗
𝜏 , 𝑁𝑟𝑗

𝜏 , √1 − (1 − 𝐼𝑟𝑗
2 )

𝜏
⟩ × ⟨𝑃𝑟𝑘

𝜏 , 𝑁𝑟𝑘
𝜏 , √1 − (1 − 𝐼𝑟𝑘

2 )𝜏⟩

= ⟨(𝑃𝑟𝑗 ⋅ 𝑃𝑟𝑘)
𝜏
, (𝑁𝑟𝑗 ⋅ 𝑁𝑟𝑘)

𝜏
, √1 − (1 − (𝐼𝑟𝑗

2 + 𝐼𝑟𝑘
2 − 𝐼𝑟𝑗

2 ⋅ 𝐼𝑟𝑘
2 ))

𝜏
⟩

 

Hence proved.          ■ 

Proof. (8) 

𝑟𝑗 = ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩ 

To prove that 

((𝑟𝑗)
𝜏𝑗 + (𝑟𝑗)

𝜏𝑘
) = (𝑟𝑗)

(𝜏𝑗+𝜏𝑘)
 

L.H.S 

= ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩
𝜏𝑗 × ⟨𝑃𝑟𝑗 , 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩

𝜏𝑘
 

⟨(𝑃𝑟𝑗)
𝜏𝑗 , (𝑁𝑟𝑗)

𝜏𝑗 , √1 − (1 − 𝐼𝑟𝑗
2 )

𝜏𝑗⟩ × ⟨(𝑃𝑟𝑗)
𝜏𝑘

, (𝑁𝑟𝑗)
𝜏𝑘

, √1 − (1 − 𝐼𝑟𝑗
2 )

𝜏𝑘
⟩

⟨(𝑃𝑟𝑗)
𝜏𝑗(𝑃𝑟𝑗)

𝜏𝑘
, (𝑁𝑟𝑗)

𝜏𝑗(𝑁𝑟𝑗)
𝜏𝑘

, √(1 − (1 − 𝐼𝑟𝑗
2 )

𝜏𝑗) + (1 − (1 − 𝐼𝑟𝑗
2 )

𝜏𝑘
) − (1 − (1 − 𝐼𝑟𝑗

2 )
𝜏𝑗)(1 − (1 − 𝐼𝑟𝑗

2 )
𝜏𝑘

)⟩

= ⟨(𝑃𝑟𝑗)
𝜏𝑗+𝜏𝑘

, (𝑁𝑟𝑗)
𝜏𝑗+𝜏𝑘

, √1 − (1 − 𝐼𝑟𝑗
2 )

𝜏𝑗+𝜏𝑘
⟩

 

R.H.S 

= (𝑟𝑗)
(𝜏𝑗+𝜏𝑘)

= ⟨𝑃𝑟𝑗, 𝑁𝑟𝑗 , 𝐼𝑟𝑗⟩
𝜏𝑗+𝜏𝑘

= ⟨(𝑃𝑟𝑗)
𝜏𝑗+𝜏𝑘

, (𝑁𝑟𝑗)
𝜏𝑗+𝜏𝑘

, √1 − (1 − 𝐼𝑟𝑗
2 )

𝜏𝑗+𝜏𝑘
⟩

 

Hence proved. 
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11 |An Innovative Technique for Solving Decision-Making Issues, 

relying on the Spherical Fuzzy Hypersoft Sets 

In this section, we will provide a method for addressing Multiple Criteria Decision Making (MCDM) 

challenges built upon the spherical fuzzy hypersoft set operators. Suppose we have W = {𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛} 

be any limited selection of 𝑛 choices, additionally, we have a limited number of m criteria, for example, M =

{𝑚1, 𝑚2, 𝑚3, … , 𝑚𝑚}. At the bottom of the spherical fuzzy hypersoft set, they will collect details regarding 

the format of 𝜉 = {(𝜚, 𝜍, 𝜑)} the criterion in relation to the quantitative aspect of 𝜉 is 0 ≤ 𝜚2 + 𝜍2 + 𝜑2 ≤

1 

Step 1. Data gathering: Gather the evaluative input from decision-makers organized like a matrix 𝐺 = [𝑇𝑛𝑚] 

as 

G = (

𝑇11 𝑇12 ⋯ 𝑇1𝑚

𝑇21 𝑇22 ⋯ 𝑇2𝑚

⋮ ⋮ ⋯ ⋮
𝑇𝑛1 𝑇𝑛2 ⋯ 𝑇𝑛𝑚

) 

Step 2. Normalization: The matrix of choices G = [T𝑖𝑗] is converted through a normalized matrix G̅ = [T̅𝑖𝑗] 

at this phase, employing the subsequent formulation: 

T̅𝑖𝑗 = {
T𝑖𝑗,  if it concerns a benefit measure 

(T𝑖𝑗)
𝑐
,  if it concerns a cost measure 

             (3) 

where (T𝑖𝑗)
𝑐
 denotes the complement of T𝑖𝑗. It's crucial to bear in mind that for any SFHSS T = {(𝜚, 𝜍), 𝜑}, 

its complement is determined as 

T𝑐 = {(𝜑, 𝜍, 𝜚)}                 (4) 

Step 3. Aggregation: Aggregate the SFHSS T𝑖𝑗 (for = 1,2,3, … , 𝑚 ) for all alternatives 𝑊𝑖 (for 𝑖 = 1,2,3, … , 𝑛 

) into the preference's total worth T by using the SFHSSAA or SFHSSGA operators that have been 

recommended. It can be stated mathematically as: 

T𝑖 = 𝑆𝐹𝐻𝑆𝑆𝐴𝐴( T𝑖1,  T𝑖2,  T𝑖3, … , T𝑖𝑚)              (5) 

T𝑖 = 𝑆𝐹𝐻𝑆𝑆𝐺𝐴( T𝑖1,  T𝑖2,  T𝑖3, … , T𝑖𝑚)              (6) 

Step 4. Recognize the values of the score: In line with the score's definition function, find out the score values 

Sc (T𝑖) for all SFHSS T𝑖 (for 𝑖 = 1,2,3, … , 𝑚). 

Step 5. Sorting and ordering: Arrange the alternatives 𝑊𝑖 (for = 1,2,3, … , 𝑚 ) to determine the most 

favorable one using the score values Sc (T𝑖). 
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Figure 1. Create a flowchart illustrating the proposed technique. 

 

12 |Explanatory Example 

This paragraph goes into further detail about the ramifications and applicability of the mentioned technique 

using a laptop selection example. The reality that the established strategy could be applied to a range of lively 

scenarios it is not only restricted to the laptop decision problem is very vital. Innovation inside organizations 

produces distinct retail locations. With so many opportunities available to us, online shopping has evolved 

into a necessary way of life for most individuals. Without having to leave our houses, we can have what we 

really want. We won't have to wait in line to get anything again because installment is so convenient. Take out 

a bank loan for shopping money. To facilitate future transactions, a user must ascertain which laptops are 

popular on Tmall, Amazon, eBay, and other websites. He or she makes contact with friends who are experts 

in laptops. They note that the following standards are used to rank most laptops: Execution (ℳ1), shading 

(ℳ2), pixel (ℳ3), cost (ℳ4) and appearance (ℳ5). Then he or she selects one of the four best-rated laptop 

computers. However, she is undecided about which one to purchase: Apple MacBook Air (𝒩1), MacBook 

Pro (𝒩2), HP Spectre (𝒩3), Asus Zenbook Pro Duo (𝒩4). Clearly, the determination interplay between 

laptops is an MCDM problem that consists of five alternatives {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5}, four models 

{𝑛1, 𝑛2, 𝑛3, 𝑛4} and specialist 𝑑. The developed approach can subsequently be utilized to identify the optimal 

layout at that moment. 

Step 1. Compilation of the matrix-formatted data. 

Table 1. Spherical fuzzy hypersoft set the DM that 𝑑 took for 𝑛 = 2. 

 𝓜𝟏
̅̅ ̅̅ ̅ 𝓜𝟐 𝓜𝟑 𝓜𝟒 𝓜𝟓 

𝓝𝟏 ⟨0.3,0.8,1 ⟨0.8,0.5,0.3⟩ ⟨0.5,0.7,0.2⟩ ⟨0.6,0.2,0.3⟩ ⟨0.5,0.8,0.1⟩ 

𝓝𝟐 ⟨0.7,0.4,0.3⟩ ⟨0.7,0.2,0.2⟩ ⟨0.6,0.5,0.1⟩ ⟨0.5,0.7,0.2⟩ ⟨0.5,0.7,0.2⟩ 

𝓝𝟑 ⟨0.2,0.9,0.2⟩ ⟨0.8,0.4,0.1⟩ ⟨0.2,0.9,0.2⟩ ⟨0.5,0.7,0.2⟩ ⟨0.8,0.3,0.3⟩ 

𝓝𝟒 ⟨0.6,0.7,0.3⟩ ⟨0.5,0.8,0.2⟩ ⟨0.6,0.7,0.2⟩ ⟨0.7,0.4,0.2⟩ ⟨0.6,0.5,0.1⟩ 

 

Step 2. Standardize the data based on the suggested method. 

 ℳ1 ℳ2 ℳ3 ℳ4 ℳ5 

𝒩1
̅̅ ̅̅  ⟨0.3,0.8,0.1⟩ ⟨0.8,0.5,0.3⟩ ⟨0.5,0.7,0.2⟩ ⟨0.3,0.2,0.6⟩ ⟨0.5,0.8,0.1⟩ 

𝒩2 ⟨0.7,0.4,0.3⟩ ⟨0.7,0.2,0.2⟩ ⟨0.6,0.5,0.1⟩ ⟨0.2,0.7,0.5⟩ ⟨0.5,0.7,0.2⟩ 

𝒩3 ⟨0.2,0.9,0.2⟩ ⟨0.8,0.4,0.1⟩ ⟨0.2,0.9,0. ⟨0.2,0.7, ⟨0.8,0.3,0.3⟩ 

𝒩4 ⟨0.6,0.7,0.3⟩ ⟨0.5,0.8,0.2⟩ ⟨0.6,0.7,0.2⟩ ⟨0.2,0.4,0.7⟩ ⟨0.6,0.5,0.1⟩ 
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  Step 3. In this stage, we employed aggregation operators (SFHSSAA and SFHSSGA). We obtained results: 

 SFHSSAA: 

𝒩1 = {0.7205,0.5737,0.2514}, 𝒩2 = {0.2006,0.7079,0.1523}, 

𝒩3 = {0.4126,0.3110,0.1543}, and 𝒩4 = {0.1823,0.6032,0.1532} 

 SFHSSGA: 

𝒩1 = {0.6818,0.6820,0.1234}, 𝒩2 = {0.5759,0.7192,0.1324}, 

𝒩3 = {0.7633,0.4924,0.1565}, and 𝒩4 = {0.6444,0.6749,0.1013} 

Step 4. During this phase, we computed the scores assigned to each option. 

 SFHSSAA: 

𝑆𝑐(𝒩1) = 0.1612, 𝑆𝑐(𝒩2) = −0.2495, 𝑆𝑐(𝒩3) = 0.0197, and 𝑆𝑐(𝒩4) = −0.1313. 

 SFHSSGA: 

𝑆𝑐(𝒩1) = −0.0002, 𝑆𝑐(𝒩2) = −0.1576, 𝑆𝑐(𝒩3) = 0.2807, and 𝑆𝑐(𝒩4) = −0.0350. 

Step 5. Ultimately, we assigned a ranking to each option based on their respective score values. 

 SFHSSAA: 

𝒩1 > 𝒩3 > 𝒩4 > 𝒩2 

 SFHSSGA: 

𝒩3 > 𝒩1 > 𝒩4 > 𝒩2 

As a result, the aggregate operators display the final ranks. The Apple MacBook Air is rated as having the best 

laptop quality out of all of its competitors by SFHSSAA. In contrast, SFHSSGA shows that, in comparison 

to other models, the HP Spectre achieves the best level of laptop quality. Even though both operators produce 

nearly identical results, their output is mediocre. However, it is imperative to emphasize that the deductions 

are purely conjectural in the absence of specific information regarding the laptops associated with these 

classifications. 

13 |Conclusions and Future Work 

In conclusion, creating and utilizing the Spherical Fuzzy Hypersoft Set (SFHS) has demonstrated encouraging 

outcomes in handling uncertainty and difficult decision-making situations. Pattern recognition, image 

processing, medical diagnosis, and expert systems are just a few of the domains where SFHS outperforms 

typical fuzzy sets by giving a strong foundation for handling vague and vague details. 

Refinement of theoretical underpinnings, investigation of hybrid models using machine learning methods, 

and development of scalable algorithms to manage large data are the next goals for SFHS research. Moreover, 

information entropy and probabilistic techniques will enhance SFHS uncertainty modeling. Working with 

domain experts in cutting-edge fields including bioinformatics, environmental studies, Internet of Things 

(IoT), and social sciences will help SFHS applications take new turns. User-friendly software tools and 

libraries will further facilitate its uptake across disciplines. 

All things considered, fuzzy logic and intelligent systems could benefit greatly from SFHS, which offers 

insightful information and practical answers to challenging issues in unpredictable and complicated settings. 
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