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1 |Introduction 

Fuzzy Logic Control Systems (FLCSs) and Proportional Integrated Derivative (PID) controllers are the two 

main techniques used extensively in control systems. Despite being widely utilized in control applications, 

PID controllers struggle with nonlinear systems because they don't have enough parameter understanding. 

Researchers have concentrated on creating control systems that can manage unpredictable parameters to 

overcome this constraint. It has been determined that FLCSs are a good substitute for PID controllers 

because they provide faster settling times, less overshoot, improved stability, and fewer oscillations. Lotfi 

Zadeh developed fuzzy logic in 1965 as a means of managing uncertainties, and it has since grown to be a 

fundamental component of soft computing. Fuzzy theory offers a way to model linguistic terms like "many," 

"low," "medium," "often," and "few." 

Uncertainty is a fundamental feature of real control systems since their parameters are not constants and can 

change based on external factors. As a result, the uncertain parameters of control systems might affect their 

behavior and performance. The plant's coefficients are usually regarded as determinate or nominal values in 
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Uncertainty is an inherent characteristic of actual control systems since their parameters are not fixed and may 

change based on external factors. The behaviour and performance of control systems can be strongly impacted by 

these unknown characteristics. Variability in the environment, ageing of core components, and manufacturing 

tolerances are some of the factors that contribute to this uncertainty and pose an unknown risk to control systems. 

As a result, real control systems' intrinsic parameter indeterminacy may have an impact on how well they operate. 

Real-life scenarios are often ambiguous and complex, posing challenges for decision-makers to articulate their 

opinions. Neutrosophic sets are employed in such contexts to handle indeterminacy effectively. Neutrosophic 

theory suggests a variable interval based on truth, indeterminacy, and falsity, allowing for the expression of both 

determinate and indeterminate information. Nevertheless, neutrosophic sets have not yet been used in the 

modelling, analysis, and design of uncertain control systems with determinate parameters. To close this gap, a new 

neutrosophic design technique is established in this study by introducing single-valued neutrosophic systems. The 

suggested control design method is illustrated with a numerical example employing neutrosophic parameters. 
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traditional control scenarios. However, a variety of circumstances, including manufacturing tolerances, the 

aging of important components, and changes in the environment, can generate variances or uncertainties in 

the characteristics of the system, offering an undefined risk to the system. Analytical techniques and unique 

modeling are needed to guarantee the strong stability and control performance of systems with unknown 

parameters. Many modeling approaches for uncertain systems have been put forth; for example, testing the 

robust stability of dynamic electrical and mechanical systems can be done using interval linear time-invariant 

systems [1]. Fuzzy logic is extended by neutrophilic numbers (NN), which Smarandache devised to answer 

open problems [2-4]. NN adds an element of uncertainty to the model. This method works especially well 

when combining data from different sources of sensor data. Even though it is still in its infancy, neutrosophy 

has already garnered interest from research teams worldwide. Inference system enhancement models [5], [6]. 

It is currently one of the newest academic subjects with the fastest rate of global expansion, with applications 

in control theory, artificial intelligence, business, marketing, planning, and image processing. Because they 

greatly advance the state of the art in decision support systems and interact effectively with database expert 

systems, neuro philosophic reasoning components are especially well suited for robotic applications [7]. 

Neutrosophic logic is used in the Vladareanu-Smarandache approach for hybrid force-position robot control 

[8], which is well known for identifying angular errors in the actuator drive control loop of robot joints. A 

sort of logic known as neutrosophic logic assigns each proposition a percentage of falsity in subset F, a 

percentage of indeterminacy in subset I, and a percentage of truth in subset T [9]. The sets T, I, and F don't 

have to be intervals. The requirement that the membership and non-membership values in a given class add 

up to 1 [13-14], and [15] further restricts it. Comparable logics like Post's analysis of m values and Lukasiewicz 

logic's examination of three values (1, 1/2, and 0) are similarly crippled by the restriction that values can only 

move between 0 and 1[16]. To distinguish between relative and absolute truth, indeterminacy, or lie, there is 

no provision. It is impossible to definitively classify an element x on the borderline of a rough set as a member 

of a specific class or its complement, but can be very well described by neutrosophic logic, such that x (T, I, 

F) where T, I, F are standard or non-standard subsets of the non-standard interval ]0- 1+[. In comparison to 

fuzzy counterparts, the proposed neutrosophic controller would be a unique system that is more generalized 

and indeterminacy-tolerant in its operation. The controllers for the proposed neutrosophic system would 

differ greatly based on the kind of control problems they are intended to solve. Here, we concentrate on 

elucidating relatively simple classifier problems. Neutrosophic systems can make use of information supplied 

by human operators, just like fuzzy systems do. Most real-world neutrosophic controllers are difficult to 

develop an accurate mathematical model to explain system behavior, and it is doubtful that the system will 

collect 100% comprehensive and conclusive data. Due to inherent nonlinearity, the time-varying nature of 

the process being managed, large unforeseen external disruptions, aging sensors, or other difficulties in 

generating precise measurements, the data may be incomplete or unclear. Under these conditions, human 

judgment can be quite helpful. Even though it is difficult to put control mechanisms into exact words, 

operators can frequently express them in vague language. Neutrosophic logic provides the important concept 

of neutrality range, whereas fuzzy logic controllers only consider if an element belongs to a particular class. 

The inherent ambiguity in data resulting from nonlinearity, outside disruptions, and measurement errors is 

ignored by this omission. As a result, fuzzy logic's applicability is restricted as it cannot completely account 

for membership and non-membership values. To tackle the issues of ambiguity and lacking information, a 

neutrosophic controller is suggested. Precise and partial information can be handled more effectively by 

neutrosophic logic, which goes beyond fuzzy logic in its typical applications. While many researchers have 

confirmed that fuzzy logic can provide. Compared to its fuzzy equivalents, the proposed neutrosophic 

controller represents a specialized system that is more generalized and tolerant of indeterminacy. A 

neutrosophic set with values for falsehood, indeterminacy, and truth is represented by the Neutrosophic Set 

Class. 

Membership Functions: Basic functions to determine the truth, indeterminacy, and falsity of membership 

values. 

Convert a measurement into a Neutrosophic Set by creating a The controllers for the proposed neutrosophic 

systems will differ greatly based on the particular control problems they are intended to solve. We address 
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  several relatively simple categorization problems in this topic. Like its fuzzy siblings, neutrosophic systems 

are likewise capable of making good use of human skill. It is difficult to create a mathematical model that 

accurately represents the majority of controllers in the actual world because it is improbable that complete 

and accurate data will be obtained. The existence of intrinsic non-linearity, the regulated process's time-

varying nature, significant and unforeseen outside disruptions, failing sensors, and other problems. It can be 

useful to use human judgment in some circumstances. Operators can typically describe the control mechanism 

in relatively simple words, even when it is challenging to convey this knowledge precisely.  

2 |Algorithms 

Keep a record of all measurements taken for each variable related to the regulated process. 

The measurement's truth, falsity, and indeterminacy. This conversion process is known as 

neutrosophication. 

The inference engine then evaluates the control rules stored in the neutrosophic rule base using 

neutrosophic metrics. This evaluation generates one or more neutrosophic sets defined over the universe 

of possible actions. 

In the final phase of the process, the resulting neutrosophic set is converted into a single (crisp) value in 

a triplet format, such as x(t,I,f)which provides the most precise representation. This conversion process is 

known as de-neutrosophication in Figure 1. 

 
Figure 1. Neutrosophication process. 

 

There are several important steps involved in creating a Python neutrosophic control system algorithm. 

The algorithm must produce control actions, manage neutrosophic sets, and carry out inference using 

neutrosophic logic. An abridged Python algorithm for a fundamental neutrosophic control system can be 
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seen below. This example presumes a rudimentary knowledge of fuzzy logic, control systems, and 

neutrosophic logic. 

A neutrosophic set with values for falsehood, indeterminacy, and truth is represented by the 

neutrosophic set class. 

 Membership Functions: Basic functions to determine the truth, indeterminacy, and falsity of 

membership values. 

 Neutrosophic Set Creation: Using membership functions, this function transforms a 

measurement into a neutrosophic set. 

 Evaluate Rules: Creates an output neutrosophic set by applying a set of rules to the input 

neutrosophic set. 

 De-neutrosophic: Uses the truth component in this instance to reduce the neutrosophic set to a 

single, crisp value. 

 Neutrosophic Control System: Combines the aforementioned features to imitate a fundamental 

control scheme using neutrosophic reasoning. 

Neutrosophic Control System Algorithm in Python program in Appendix 1. 

Output is Control action based on measurement 0.7: 0.2. 

3 |Neutrosophic Control System Stability Algorithm in Python 

This code defines a neutrosophic set class and uses it to simulate a control system's stability analysis. Here's 

a breakdown: 

 NeutrosophicSet class: Represents a neutrosophic set with truth, indeterminacy, and falsity values. 

 Membership functions: Defines truth, indeterminacy, and falsity membership functions for creating 

neutrosophic sets. 

 Create_neutrosophic_set: Creates a neutrosophic set from a measurement value. 

 Evaluate_stability: Evaluates stability based on the neutrosophic set (placeholder logic, assumes 

stability relates to truth and indeterminacy). 

 Check_stability: Checks if the stability index exceeds a threshold. 

 Neutrosophic_control_system_stability: Simulates the control system, creating neutrosophic sets, 

evaluating stability, and checking stability criteria for each measurement. 

 Example usage: Generates 50 measurements, runs the simulation, and plots the stability index against 

measurements, with a stability threshold line. 

The plot shows how the stability index changes with measurements, indicating stable (above threshold) and 

unstable regions. This demonstrates a basic neutrosophic control system stability analysis. 

Please note that this is a simplified example. In real-world applications, the stability evaluation logic and 

membership functions would be more complex and domain-specific in Appendix 2 

The output of the code is a plot showing the stability index of a control system against various measurements. 

The plot has the following features: 

- X-axis: Measurements (ranging from 0 to 1). 

- Y-axis: Stability Index (ranging from 0 to 1). 
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  - Blue line: Stability index values for each measurement. 

- Red dashed line: Stability Threshold (set at 0.1). 

The plot indicates the stability of the control system for each measurement. Measurements with a stability 

index above the threshold (0.1) are considered stable, while those below the threshold are considered unstable 

and the stability results in Table 1. 

Here's a sample output: 

Table 1. Stability results. 

Measurement Stability Index Is Stable 

0.0 0.9 True 

0.1 0.8 True 

0.2 0.7 True 

... ... ... 

0.8 0.2 False 

0.9 0.1 False 

1.0 0.0 False 

 

The plot and stability results demonstrate how the neutrosophic control system stability analysis works, 

showing the transition from stable to unstable regions as the measurements change. 

Graph Description: The graph shows the stability index of a control system against various measurements. 

The x-axis represents the measurements ranging from 0 to 1, and the y-axis represents the stability index 

ranging from 0 to 1. A blue line plots the stability index values for each measurement, and a red dashed line 

indicates the stability threshold set at 0.1. 

ASCII Art Representation: 

 

In this ASCII art representation, the * symbols form a line representing the stability index values, and the 

* symbol on the y-axis indicates the stability threshold. 

The code demonstrates a basic implementation of a neutrosophic control system stability analysis using 

Python. The neutrosophic set theory is used to handle uncertainty and indeterminacy in the system, and 

the stability index is calculated based on the truth, indeterminacy, and falsity values. 
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The graph shows the stability index of the control system against various measurements, indicating stable 

and unstable regions. The stability threshold is set at 0.1, and measurements with a stability index above 

this threshold are considered stable. 

4 |Conclusion 

While intuitionistic fuzzy sets (IFS) and interval-valued intuitionistic fuzzy sets (IVIFS) have been effective 

in capturing the falsity of beliefs, their applications are limited by the constraint of values between 0 and 1. 

This limitation shows that while IFS and IVIFS are well-suited to address incompleteness, they struggle with 

inconsistent and indeterminate information commonly encountered in belief systems. To address this, we 

propose fuzzy models that leverage the strengths of neutrosophic logic. Our research has developed simple 

neutrosophic classifiers for data classification. Neutrosophic logic, with its inherent generality and flexibility 

in extending beyond the [0, 1] range, is poised to benefit various fields where information is vague, uncertain, 

partial, or contradictory. 
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Appendix 1 

import numpy as np 

# Define a Neutrosophic Set class 

class NeutrosophicSet: 

    def __init__(self, truth, indeterminacy, falsity): 

        self.truth = truth 

        self.indeterminacy = indeterminacy 

        self.falsity = falsity 

    def __repr__(self): 

        return f"NeutrosophicSet(truth={self.truth}, indeterminacy={self.indeterminacy}, 

falsity={self.falsity})" 

# Example membership functions for truth, indeterminacy, and falsity 

def truth_membership(value): 

    return max(0, min(1, 1 - value)) 

def indeterminacy_membership(value): 

    return max(0, min(1, value)) 

def falsity_membership(value): 

    return max(0, min(1, 1 - value)) 

# Define a function to create a neutrosophic set from measurements 

def create_neutrosophic_set(measurement, scale=1.0): 

    truth = truth_membership(measurement / scale) 

    indeterminacy = indeterminacy_membership(measurement / scale) 

    falsity = falsity_membership(measurement / scale) 
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    return NeutrosophicSet(truth, indeterminacy, falsity) 

# Example rule base (simple rules for demonstration) 

def evaluate_rules(input_set): 

    # Example rules, modify based on your actual rules 

    if input_set.truth > 0.5: 

        return NeutrosophicSet(truth=0.8, indeterminacy=0.1, falsity=0.1) 

    else: 

        return NeutrosophicSet(truth=0.2, indeterminacy=0.6, falsity=0.2) 

# Defuzzification function 

def de_neutrosophicate(neutrosophic_set): 

    # Example defuzzification, return the truth component 

    return neutrosophic_set.truth 

# Main control system function 

def neutrosophic_control_system(measurement): 

    # Create neutrosophic set from measurement 

    input_set = create_neutrosophic_set(measurement) 

    # Evaluate rules to generate control action 

    output_set = evaluate_rules(input_set) 

    # Defuzzify to get a single control value 

    control_value = de_neutrosophicate(output_set) 

    return control_value 

# Example usage 

measurement = 0.7 

control_action = neutrosophic_control_system(measurement) 

print(f"Control action based on measurement {measurement}: {control_action}") 

 

Appendix 2 

import numpy as np 

import matplotlib.pyplot as plt 

# Define the NeutrosophicSet class 

class NeutrosophicSet: 

    def _init_(self, truth, indeterminacy, falsity): 

        self.truth = truth 
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          self.indeterminacy = indeterminacy 

        self.falsity = falsity 

    def _repr_(self): 

        return f"NeutrosophicSet(truth={self.truth}, indeterminacy={self.indeterminacy}, 

falsity={self.falsity})" 

# Define membership functions 

def truth_membership(value): 

    return max(0, min(1, 1 - value)) 

def indeterminacy_membership(value): 

    return max(0, min(1, value)) 

def falsity_membership(value): 

    return max(0, min(1, 1 - value)) 

# Function to create a neutrosophic set from measurements 

def create_neutrosophic_set(measurement, scale=1.0): 

    truth = truth_membership(measurement / scale) 

    indeterminacy = indeterminacy_membership(measurement / scale) 

    falsity = falsity_membership(measurement / scale) 

    return NeutrosophicSet(truth, indeterminacy, falsity) 

# Evaluate stability based on neutrosophic sets 

def evaluate_stability(input_set): 

    # Placeholder for stability evaluation logic 

    # For demonstration, assume stability is related to the truth and indeterminacy values 

    stability_index = input_set.truth - input_set.indeterminacy 

    return stability_index 

# Check stability criteria 

def check_stability(stability_index, threshold=0.1): 

    return stability_index > threshold 

# Main function to simulate the control system and stability 

def neutrosophic_control_system_stability(measurements): 

    stability_results = [] 

    for measurement in measurements: 

        input_set = create_neutrosophic_set(measurement) 

        stability_index = evaluate_stability(input_set) 

        is_stable = check_stability(stability_index) 
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        stability_results.append((measurement, stability_index, is_stable)) 

    return stability_results 

# Example usage 

measurements = np.linspace(0, 1, 50)  # Create 50 measurements from 0 to 1 

results = neutrosophic_control_system_stability(measurements) 

# Extracting data for plotting 

measurements, indices, stabilities = zip(*results) 

# Plotting the results 

plt.figure(figsize=(10, 6)) 

plt.plot(measurements, indices, 'o-', label='Stability Index', color='b') 

plt.axhline(y=0.1, color='r', linestyle='--', label='Stability Threshold') 

plt.xlabel('Measurement') 

plt.ylabel('Stability Index') 

plt.title('Neutrosophic Control System Stability Analysis') 

plt.legend() 

plt.grid(True) 

plt.show() 
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