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1 |Introduction 

1.1 |Soft Graph and Rough Graph Classes 

Graph theory, a fundamental branch of mathematics, models relationships within networks using vertices 

(nodes) and edges to represent connections and interactions among entities such as individuals, locations, or 

organizations. Since its inception in the 1700s, graph theory has evolved significantly, yielding profound 

theoretical advancements and a wide range of applications [31, 32, 47, 153, 162, 236]. In recent years, the 

concept of graphs has also found broad application in artificial intelligence, particularly in areas like Graph 

Neural Networks, further demonstrating its relevance [22, 35, 49, 83, 134, 135, 182, 216, 218, 237]. 

To address real-world uncertainty, mathematical frameworks such as Fuzzy Sets [224 229, 231], Soft Sets 

[141], Rough Sets [158], and Neutrosophic Sets [188-191, 203, 205] provide essential tools for analyzing 

ambiguous or imprecise information. This paper examines several models of uncertain graphs, which hold 

promise in a variety of real-world applications, inspiring diverse graph classes [55-59, 61-71, 73, 73-82]. 

A Soft Set [15, 16, 137, 219], or Soft Graph [7, 9, 110], offers a flexible framework for dealing with uncertainty 

by linking elements to specific parameters, thereby supporting adaptable decision-making processes. 

Extensive research has been conducted on soft graphs, soft sets, and their various extensions [8, 25, 26, 28, 

34, 41, 48, 93, 110, 114, 123, 126, 140, 150, 184-186, 213]. 

Similarly, Rough Sets [101, 157-160] and Rough Graphs [37, 43, 111, 150, 212] manage uncertainty by using 

lower and upper boundaries to approximate imprecise data. 
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  Hypersoft Graphs build on traditional graphs by incorporating multi-attribute nodes, enabling each node to 

represent multiple attribute values and thereby capture more complex, multi-dimensional relationships [171, 

175-178]. Conceptually, this development aligns with Hypersoft Sets [1, 40, 138, 144, 145, 172, 181, 192, 223]. 

The Soft Rough Set and Soft Rough Graph [5, 6, 13, 18, 42, 52, 53, 125, 128, 151, 183, 214, 222, 235] combine 

principles from Soft Sets and Rough Sets, providing nuanced approaches to uncertainty. Similarly, Hypersoft 

Rough Sets integrates concepts from Hypersoft Sets and Rough Sets, extending their applicability to uncertain 

data analysis [124, 169, 208, 209]. 

1.2 |Contributions 

As previously mentioned, while research on Soft Expert Graphs and related fields is advancing, studies on 

Hypersoft Expert Graphs remain scarce. In this paper, we define the Hypersoft Rough Graph and explore 

its relationships with other graph classes. In the Future Tasks section, we discuss concepts related to 

Hypersets, Superhypersets, and N-soft sets. These efforts are anticipated to further the study of Soft Graph 

Theory and Rough Graph Theory. 

2 |Preliminaries and Definitions 

This section offers an overview of the fundamental definitions and notations used throughout the paper. 

Additionally, some foundational concepts from set theory are applied in parts of this work. For further details, 

please consult relevant references as needed [54, 109, 113, 116, 127]. 

2.1 |Basic Graph Concepts 

This section provides a concise overview of essential concepts in graph theory. For a more detailed study and 

additional notational conventions, see [45-47, 102, 215]. 

Definition 1 (Graph). [47] A graph 𝐺 is a mathematical structure used to model pairwise relations between 

objects. It is composed of a set of vertices 𝑉(𝐺) and a set of edges 𝐸(𝐺), where each edge represents a 

connection between two vertices. Formally, a graph is denoted by 𝐺 = (𝑉, 𝐸), with 𝑉 as the set of vertices 

and 𝐸 as the set of edges. 

Definition 2 (Vertex Degree). [47] For a graph 𝐺 = (𝑉, 𝐸), the degree of a vertex 𝑣 ∈ 𝑉, denoted deg (𝑣), 

is defined as the number of edges incident to 𝑣. For an undirected graph, this is expressed as: 

deg(𝑣) = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}| 

This measure reflects the connectivity of 𝑣 within the graph. 

2.2 |Soft Graph 

A soft set over a universe 𝑈 associates subsets of 𝑈 to parameters from a parameter set 𝐴, capturing flexible 

relationships in uncertain data. A soft graph is a soft set over the vertices 𝑉 of a graph 𝐺 where each subset 

forms a connected subgraph, capturing parameter-based connections within 𝐺. The definitions are provided 

as follows. 

Definition 3. [141] Let 𝑈 be a non-empty finite set, called the universe of discourse, and let 𝐸 be a non-

empty set of parameters. A soft set over 𝑈 is defined as follows: 

𝐹 = (𝐹, 𝐴) over 𝑈 is an ordered pair, where 𝐴 ⊆ 𝐸 and 𝐹: 𝐴 → 𝑃(𝑈) 

where 𝐹(𝑎) ⊆ 𝑈 for each 𝑎 ∈ 𝐴 and 𝑃(𝑈) denotes the power set of 𝑈. The set of all soft sets over 𝑈 is 

denoted by 𝑆(𝑈). 

1. Soft Subset: Let 𝐹 = (𝐹, 𝐴) and 𝐺 = (𝐺, 𝐵) be two soft sets over the common universe 𝑈. We say that 

𝐹 is a soft subset of 𝐺, denoted 𝐹 ⊆ 𝐺, if: 
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 𝐴 ⊆ 𝐵 

 𝐹(𝑎) ⊆ 𝐺(𝑎) for all 𝑎 ∈ 𝐴. 

2. Union of Soft Sets: The union of two soft sets 𝐹 = (𝐹, 𝐴) and 𝐺 = (𝐺, 𝐵) over 𝑈 is defined as 𝐻 =

(𝐻, 𝐶) where 𝐶 = 𝐴 ∪ 𝐵 and 

𝐻(𝑒) = {

𝐹(𝑒), 𝑒 ∈ 𝐴 − 𝐵
𝐺(𝑒), 𝑒 ∈ 𝐵 − 𝐴
𝐹(𝑒) ∪ 𝐺(𝑒), 𝑒 ∈ 𝐴 ∩ 𝐵

 

3. The intersection of Soft Sets: The intersection of two soft sets 𝐹 = (𝐹, 𝐴) and 𝐺 = (𝐺, 𝐵) with disjoint 

parameter sets 𝐴 ∩ 𝐵 = ∅ is defined as 𝐻 = (𝐻, 𝐶), where 𝐶 = 𝐴 ∩ 𝐵 and 

𝐻(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒),  ∀𝑒 ∈ 𝐶 

Definition 4. [7, 110] Let 𝐺 = (𝑉, 𝐸) be a simple graph, where 𝑉 is the set of vertices and 𝐸 is the set of 

edges. Let 𝐴 be a non-empty set of parameters and 𝑅 ⊆ 𝐴 × 𝑉 be a relation between elements of 𝐴 and 

elements of 𝑉. Define a set-valued function 𝐹: 𝐴 → 𝑃(𝑉) by 

𝐹(𝑥) = {𝑦 ∈ 𝑉 ∣ 𝑥𝑅𝑦} 

The pair (𝐹, 𝐴) is a soft set over 𝑉. 

A Soft Graph of 𝐺 is defined as follows: 

A soft set (𝐹, 𝐴) over 𝑉 is said to be a soft graph of 𝐺 if the subgraph 𝐹(𝑥) is a connected subgraph of 𝐺 

for all 𝑥 ∈ 𝐴. The set of all soft graphs of 𝐺 is denoted by 𝑆𝐺(𝐺). 

2.3 |Hypersoft Graph 

A HyperSoft Graph represents multi-attribute nodes where each node can hold distinct attribute values, 

enabling complex, multi-dimensional relationships. The definition of a Hypersoft Graph is provided as 

follows [171, 175-178]. 

Definition 5 (Hypersoft Set). [192] Let 𝑋 be a non-empty finite universe, and let 𝑇1, 𝑇2, … , 𝑇𝑛 be 𝑛-distinct 

attributes with corresponding disjoint sets 𝐽1, 𝐽2, … , 𝐽𝑛. A pair (𝐹, 𝐽) is called a hypersoft set over the universal 

set 𝑋, where 𝐹 is a mapping defined by 

𝐹: 𝐽 → 𝒫(𝑋) 

with 𝐽 = 𝐽1 × 𝐽2 × ⋯ × 𝐽𝑛. 

Definition 6 (Hypersoft Graph). Let 𝐺 = (𝑉, 𝐸) be a simple connected graph, where 𝑉 is the set of vertices 

and 𝐸 is the set of edges. Consider 𝐽 = 𝐽1 × 𝐽2 × ⋯ × 𝐽𝑛, where each 𝐽𝑖 ⊆ 𝑉 and 𝐽𝑖 ∩ 𝐽𝑗 = ∅ for 𝑖 ≠ 𝑗. A 

Hypersoft Graph (HS-Graph) of 𝐺 is defined as a hypersoft set (𝐹, 𝐽) over 𝑉 such that for each 𝑥 ∈ 𝐽, 𝐹(𝑥) 

induces a connected subgraph of 𝐺. The set of all HS-Graphs of 𝐺 is denoted by HsG(𝐺). 

Proposition 7. Any Hypersoft Graph can be transformed into a Soft Graph and subsequently into a Classical 

Graph. 

Proof. Let 𝐺 = (𝑉, 𝐸) be a Hypersoft Graph defined with 𝐽 = 𝐽1 × 𝐽2 × ⋯ × 𝐽𝑛 and a hypersoft set 𝐹: 𝐽 →

𝒫(𝑉). For each attribute tuple 𝑥 = (𝑗1, 𝑗2, … , 𝑗𝑛) ∈ 𝐽, the mapping 𝐹(𝑥) ⊆ 𝑉 defines subsets of 𝑉 that 

induce connected subgraphs of 𝐺. To transform this into a Soft Graph, we redefine the parameter set 𝐴 =

𝐽1 ∪ 𝐽2 ∪ ⋯ ∪ 𝐽𝑛 by flattening the multi-attribute parameters into a single layer of parameters. For each 𝑎 ∈

𝐴, define 𝐹′(𝑎) as the union of all 𝐹(𝑥) where 𝑥 ∈ 𝐽 includes𝑎 as one of its components. This mapping 

𝐹′: 𝐴 → 𝒫(𝑉) now defines a Soft Graph, where each subset 𝐹′(𝑎) still induces connected subgraphs of 𝐺 
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  based on parameter 𝑎. Thus, the Hypersoft Graph (𝐹, 𝐽) has been transformed into a Soft Graph (𝐹′, 𝐴) 

over 𝐺. 

And let 𝐺 = (𝑉, 𝐸) be the Soft Graph obtained from the previous transformation with parameter set 𝐴 and 

mapping. 𝐹′: 𝐴 → 𝒫(𝑉). To reduce this to a Classical Graph, we ignore the parameterization by 𝐴 and 

consider only the underlying vertex set 𝑉 and edge set 𝐸. Define a Classical Graph 𝐺′ = (𝑉, 𝐸′), where 𝐸′ ⊆

𝐸 consists of edges connecting vertices within any subset 𝐹′(𝑎), 𝑎 ∈ 𝐴, such that each 𝐹′(𝑎) maintains 

connectivity among its vertices. Since 𝐹′(𝑎) induces connected subgraphs in the Soft Graph, the resultant 

graph 𝐺′ will be a connected graph without parameterization, representing the underlying structure of the 

Soft Graph. 

By this two-step process, a Hypersoft Graph can be systematically reduced to a Soft Graph, which can then 

be further reduced to a Classical Graph by eliminating parameters. 

2.4 |Rough Set and Rough Graph 

Rough Set provides a mathematical tool to handle uncertain information by approximating the set of 

elements. Rough Graph extends Rough Set Theory to graphs, where uncertainty in relationships (edges) is 

represented through lower and upper approximations. Rough Graphs are especially useful in knowledge 

mining, social networks, and systems where connections among entities are partially known or inherently 

uncertain. 

Definition 8 (Partition of Sets). Let 𝑈 be a non-empty set. A partition of 𝑈 is a collection of non-empty, 

pairwise disjoint subsets. {𝑃𝑖}𝑖∈𝐼 Such that: 

 𝑃𝑖 ⊆ 𝑈 for each 𝑖 ∈ 𝐼, 

 𝑃𝑖 ∩ 𝑃𝑗 = ∅ for all 𝑖 ≠ 𝑗, 

 ⋃𝑖∈𝐼  𝑃𝑖 = 𝑈. 

Each subset 𝑃𝑖 is called a block or cell of the partition, and the elements within each block are equivalence-

related under some equivalence relation 𝑅. 

Definition 9 (Rough Set). [101, 157-160] Let 𝑈 be a universe of discourse and 𝑅 a relation on 𝑈 that induces 

a partition of 𝑈 into equivalence classes. For a subset 𝑋 ⊆ 𝑈, the lower approximation of 𝑋nnonreonoc 𝑅 

(denoted 𝑅(𝑋) ) is the set of elements that are certainly in 𝑋 given the information provided by 𝑅 : 

𝑅(𝑋) = {𝑥 ∈ 𝑈 ∣ [𝑥]𝑅 ⊆ 𝑋} 

The upper approximation of 𝑋 (denoted (𝑋) ) is the set of elements that possibly belong to 𝑋 : 

𝑅(𝑋) = {𝑥 ∈ 𝑈 ∣ [𝑥]𝑅 ∩ 𝑋 ≠ ∅}. 

The pair (𝑅(𝑋), 𝑅(𝑋)) is called the Rough Set approximation of 𝑋 with respect to 𝑅. 

Definition 10 (Rough Graph). [37, 43, 111, 150, 212] Let 𝐺 = (𝑉, 𝐸) be a graph where 𝑉 is the set of vertices 

and 𝐸 is the set of edges. Let 𝑅 be an attribute set on 𝐸, inducing an equivalence relation on the edges. For 

any edge set 𝑋 ⊆ 𝐸, the lower approximation of 𝑋 with respect to 𝑅 (denoted 𝑅(𝑋) ) is defined as: 

𝑅(𝑋) = {𝑒 ∈ 𝐸 ∣ [𝑒]𝑅 ⊆ 𝑋} 

where [𝑒]𝑅 Denotes the equivalence class of 𝑒 under 𝑅. The upper approximation of 𝑋( denoted 𝑅(𝑋)) is 

defined as: 

𝑅(𝑋) = {𝑒 ∈ 𝐸 ∣ [𝑒]𝑅 ∩ 𝑋 ≠ ∅}. 
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A graph 𝐺 = (𝑉, 𝐸) is called an 𝑅-rough graph if 𝑋 is not exactly definable under 𝑅, and it is characterized 

by the pair (𝑅(𝑋), 𝑅(𝑋)), where 𝑅(𝑋) is the lower approximation graph and 𝑅(𝑋) is the upper 

approximation graph. 

2.5 |Soft Rough Set and Soft Rough Graph 

A soft rough set extends soft sets by using lower and upper approximations over a universe 𝑈, capturing 

uncertainty within the set [53]. A soft rough graph combines soft rough set concepts over a graph's vertices 

and edges, forming subgraphs to represent uncertain or approximate connections. The definitions are 

provided as follows. 

Definition 11. [53] Consider a soft approximation space 𝑆 = (𝑈, 𝐹), where: 

 𝑈 represents the universe of discourse. 

 𝐹: 𝐴 → 𝑃(𝑈) is a set-valued mapping from a set 𝐴 ⊆ 𝑃, where 𝑃 is the set of all parameters. 

A soft rough set over a subset 𝑋 ⊆ 𝑈 has both lower and upper approximations defined as follows: 

𝐹∗(𝑋) = {𝑢 ∈ 𝑈 ∣ ∃𝑎 ∈ 𝐴 such that 𝑢 ∈ 𝐹(𝑎) ⊆ 𝑋}

𝐹∗(𝑋) = {𝑢 ∈ 𝑈 ∣ ∃𝑎 ∈ 𝐴 such that 𝑢 ∈ 𝐹(𝑎) and 𝐹(𝑎) ∩ 𝑋 ≠ ∅}
 

If 𝐹∗(𝑋) = 𝐹∗(𝑋), then 𝑋 is said to be softly definable; otherwise, 𝑋 is a soft rough set, denoted by 

(𝐹∗(𝑋), 𝐹∗(𝑋), 𝐴). 

Definition 12. [151] Let 𝐺 = (𝑉, 𝐸) be a simple graph where 𝑉 is the set of vertices and 𝐸 is the set of edges. 

Suppose 𝑆 = (𝑈, 𝐹) is a soft approximation space, and 𝐴 ⊆ 𝑃 is a non-empty set of parameters. Define 

(𝐹∗(𝑋), 𝐹∗(𝑋), 𝐴) as a soft rough set over 𝑉, and (𝐾∗(𝑋), 𝐾∗(𝑋), 𝐴) as a soft rough set over 𝐸, with: 

𝐾∗(𝑋) = {𝑒 ∈ 𝐸 ∣ ∃𝑎 ∈ 𝐴 such that 𝑒 ∈ 𝐾(𝑎) ⊆ 𝑋}

𝐾∗(𝑋) = {𝑒 ∈ 𝐸 ∣ ∃𝑎 ∈ 𝐴 such that 𝑒 ∈ 𝐾(𝑎) and 𝐾(𝑎) ∩ 𝑋 ≠ ∅}
 

Here, 𝐾: 𝐴 → 𝑃(𝐸) maps each parameter 𝑎 ∈ 𝐴 to subsets of 𝐸 based on adjacency relations. A graph �̃� =

(𝐺, 𝐹∗, 𝐾∗, 𝐹∗, 𝐾∗, 𝐴, 𝑋) is called a soft rough graph if it satisfies: 

1. 𝐺 = (𝑉, 𝐸) is a simple graph. 

2. 𝐴 is a non-empty set of parameters. 

3. 𝑋 ⊆ 𝑈 is a non-empty subset. 

4. (𝐹∗(𝑋), 𝐹∗(𝑋), 𝐴) is a soft rough set over 𝑉. 

5. (𝐾∗(𝑋), 𝐾∗(𝑋), 𝐴) is a soft rough set over 𝐸. 

6. 𝐻∗(𝑋) = (𝐹∗(𝑋), 𝐾∗(𝑋)) and 𝐻∗(𝑋) = (𝐹∗(𝑋), 𝐾∗(𝑋)) are subgraphs of 𝐺. 

A soft rough graph can be represented by 

�̃� = ⟨𝐹∗, 𝐾∗, 𝐹∗, 𝐾∗, 𝐴, 𝑋⟩ = {𝐻∗(𝑋), 𝐻∗(𝑋)} 

The collection of all soft rough graphs of 𝐺 is denoted by SRG(G). 

Proposition 13. Any Soft Rough Graph can be transformed into a Rough Graph and a Soft Graph. 

Proof. To prove this theorem, we demonstrate the transformations of a Soft Rough Graph into a Rough 

Graph and then into a Soft Graph. 

To transform a Soft Rough Graph �̃� = ⟨𝐹∗, 𝐾∗, 𝐹∗, 𝐾∗, 𝐴, 𝑋⟩ Into a Rough Graph, we ignore the parameter 

set 𝐴 while retaining the approximation sets 𝐹∗(𝑋) and 𝐹∗(𝑋) over vertices, and 𝐾∗(𝑋) and 𝐾∗(𝑋) over 

edges. The rough graph thus formed retains the inherent approximations in vertex and edge connectivity 
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  without explicit parameter dependence. Specifically, the lower approximation graph 𝐻∗(𝑋) = (𝐹∗(𝑋), 𝐾∗(𝑋)) 

and the upper approximation graph 𝐻∗(𝑋) = (𝐹∗(𝑋), 𝐾∗(𝑋)) Serve as the representations of uncertainty 

through rough approximations, and this transformed graph is a Rough Graph over 𝐺. 

Next, we consider transforming the Soft Rough Graph into a Soft Graph. We redefine the parameterization 

by considering only one approximation level at a time. For instance, we treat either the lower or the upper 

approximation set 𝐹∗(𝑋) or 𝐹∗(𝑋) over vertices, and 𝐾∗(𝑋) or 𝐾∗(𝑋) over edges, as separate soft sets 𝐹: 𝐴 →

𝑃(𝑉) and 𝐾: 𝐴 → 𝑃(𝐸), while associating each approximation level with a distinct parameter. This enables 

the conversion of the uncertainty in connectivity into a parameterized soft graph structure. By this 

construction, the approximations of vertices and edges in the Soft Rough Graph are reinterpreted within a 

flexible parameterized structure, thus forming a Soft Graph over 𝐺 without explicitly relying on rough 

approximations. 

Consequently, we conclude that any Soft Rough Graph �̃� Can be effectively transformed into both a Rough 

Graph and a Soft Graph by reinterpreting its approximation components and parameter dependencies. 

2.6 |Hypersoft Rough Set 

A hypersoft rough set uses lower and upper approximations over an approximation space to represent multi-

attribute uncertainty in sets. Note that an approximation space is a mathematical structure that models 

uncertainty, consisting of a universe of objects and an equivalence relation, enabling the definition of lower 

and upper approximations for subsets. 

Definition 14 (Pawlak Approximation Space). [220, 221] Let 𝑈 be a non-empty set, known as the universe 

of discourse, and let 𝑅 be an equivalence relation on 𝑈. The pair (𝑈, 𝑅) is called a Pawlak approximation 

space. The relation 𝑅 induces a partition of 𝑈 into equivalence classes, where each element in 𝑈 is 

indiscernible from others within its equivalence class. 

Given a subset 𝑋 ⊆ 𝑈, the lower approximation 𝑅(𝑋) and the upper approximation 𝑅‾(𝑋) of 𝑋 with respect 

to 𝑅 are defined as follows: 

 The lower approximation of 𝑋, denoted 𝑅(𝑋), is the set of all elements 𝑢 ∈ 𝑈 such that the 

equivalence class [𝑢]𝑅 ⊆ 𝑋 : 

𝑅(𝑋) = {𝑢 ∈ 𝑈 ∣ [𝑢]𝑅 ⊆ 𝑋} 

This set contains elements that are certainly in 𝑋 based on the information provided by 𝑅. 

 The upper approximation of 𝑋, denoted 𝑅‾(𝑋), is the set of all elements 𝑢 ∈ 𝑈 such that the 

intersection [𝑢]𝑅 ∩ 𝑋 ≠ ∅: 

𝑅‾(𝑋) = {𝑢 ∈ 𝑈 ∣ [𝑢]𝑅 ∩ 𝑋 ≠ ∅} 

This set contains elements that possibly belong to 𝑋 given the information provided by 𝑅. 

The pair (𝑅(𝑋), 𝑅‾(𝑋)) represents the rough set approximation of 𝑋 within the Pawlak approximation space 

(𝑈, 𝑅). 

Definition 15 (Hypersoft Rough Set). [124] Let (𝑋, 𝑅) be a Pawlak approximation space, where 𝑅 is an 

equivalence relation on 𝑋. Given a Hypersoft Set (𝐹, 𝐽) over 𝑋, the Hypersoft Lower Approximation 𝐹∗(j) 

and Hypersoft Upper Approximation 𝐹∗(j) of 𝐹 with respect to 𝑅 are defined for each j ∈ 𝐽 as: 

𝐹∗(j) = {𝑥 ∈ 𝑋 ∣ [𝑥]𝑅 ⊆ 𝐹(j)},

𝐹∗(j) = {𝑥 ∈ 𝑋 ∣ [𝑥]𝑅 ∩ 𝐹(j) ≠ ∅}
 

where [𝑥]𝑅 Denotes the equivalence class of 𝑥 under 𝑅. 

The Hypersoft Rough Set is then the pair. (𝐹∗, 𝐹∗, 𝐽). 
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3 |Results 

The results of this paper are described below. 

3.1 |Hypersoft Rough Graph 

A hypersoft rough graph extends rough graph theory by using multi-attribute approximations over vertices 

and edges to capture complex relationships. 

Definition 16 (Hypersoft Rough Graph). Let 𝐺 = (𝑉, 𝐸) be a simple graph, and let 𝑅 be an equivalence 

relation on 𝑉. Consider 𝑛 distinct attributes with disjoint parameter sets 𝐽1, 𝐽2, … , 𝐽𝑛, and let 𝐽 = 𝐽1 × 𝐽2 ×

⋯ × 𝐽𝑛. 

Define a mapping 𝐹: 𝐽 → 𝒫(𝑉), assigning to each parameter tuple j ∈ 𝐽 a subset of vertices. The Hypersoft 

Lower Approximation 𝐹∗(j) and Hypersoft Upper Approximation 𝐹∗(j) of 𝐹 with respect to 𝑅 are: 

𝐹∗(j) = {𝑣 ∈ 𝑉 ∣ [𝑣]𝑅 ⊆ 𝐹(j)}

𝐹∗(j) = {𝑣 ∈ 𝑉 ∣ [𝑣]𝑅 ∩ 𝐹(j) ≠ ∅}
 

Similarly, define a mapping 𝐾: 𝐽 → 𝒫(𝐸) for edges, and define the edge approximations. 𝐾∗(j) and 𝐾∗(j). 

A Hypersoft Rough Graph �̃� = (𝐺, 𝐹∗, 𝐾∗, 𝐹∗, 𝐾∗, 𝐽) is defined, where for each j ∈ 𝐽 : 

 𝐻∗(j) = (𝐹∗(j), 𝐾∗(j)) is a subgraph of 𝐺. 

 𝐻∗(j) = (𝐹∗(j), 𝐾∗(j)) is a subgraph of 𝐺. 

Theorem 17. Every Hypersoft Rough Graph can be transformed into a Soft Rough Graph, a Rough Graph, 

and a Soft Graph. 

Proof. We will demonstrate a systematic transformation from a Hypersoft Rough Graph to a Soft Rough 

Graph, then to a Rough Graph, and finally to a Soft Graph. 

Let �̃� = (𝐺, 𝐹∗, 𝐾∗, 𝐹∗, 𝐾∗, 𝐽) be a Hypersoft Rough Graph, where 𝐽 = 𝐽1 × 𝐽2 × ⋯ × 𝐽𝑛. 

Select one parameter set, say 𝐽1 = 𝐴, and fix the other parameters. Define a mapping 𝐹′: 𝐴 → 𝒫(𝑉) by: 

𝐹′(𝑎) = ⋃  
j∈𝐽

𝑗1=𝑎

𝐹(j),  ∀𝑎 ∈ 𝐴 

Define the lower and upper approximations: 

𝐹∗
′(𝑎) = ⋃  

j∈𝐽
𝑗1=𝑎

𝐹∗(j),  𝐹′∗(𝑎) = ⋃  
j∈𝐽

𝑗1=𝑎

𝐹∗(j) 

Similarly, define 𝐾′: 𝐴 → 𝒫(𝐸) and 𝐾∗
′(𝑎), 𝐾′∗(𝑎). 

Then �̃�′ = (𝐺, 𝐹∗
′, 𝐾∗

′, 𝐹′∗, 𝐾′∗, 𝐴) is a Soft Rough Graph. Justification: 

 The mapping 𝐹′ is from 𝐴 to 𝒫(𝑉), satisfying the definition of a soft set over 𝑉. 

 The lower and upper approximations 𝐹∗
′(𝑎) and 𝐹′∗(𝑎) are well-defined and correspond to those in 

Soft Rough Sets. 

 The subgraphs 𝐻∗
′(𝑎) = (𝐹∗

′(𝑎), 𝐾∗
′(𝑎)) and 𝐻′∗(𝑎) = (𝐹′∗(𝑎), 𝐾′∗(𝑎)) are subgraphs of 𝐺. 

Next, consider the Soft Rough Graph �̃�′ = (𝐺, 𝐹∗
′, 𝐾∗

′, 𝐹′∗, 𝐾′∗, 𝐴). 

Define: 
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𝑉𝑅 = ⋃  

𝑎∈𝐴

𝐹′∗(𝑎),  𝐸𝑅 = ⋃  

𝑎∈𝐴

𝐾′∗(𝑎) 

Then 𝐺𝑅 = (𝑉𝑅 , 𝐸𝑅) is a Rough Graph. 

Justification: 

 The vertex set 𝑉𝑅 and edge set 𝐸𝑅 are formed by the upper approximations over all parameters in 𝐴. 

 This represents the rough approximation of 𝐺 with respect to the equivalence relation 𝑅. 

Step 3: Transforming a Rough Graph into a Soft Graph 

Define a mapping 𝐹′′: 𝐴 → 𝒫(𝑉) by: 

𝐹′′(𝑎) = 𝐹′∗(𝑎),  ∀𝑎 ∈ 𝐴 

Then (𝐹′′, 𝐴) is a Soft Graph over 𝐺. 

Justification: 

 The mapping 𝐹′′ assigns to each parameter 𝑎 ∈ 𝐴 a subset of 𝑉, forming a soft set over 𝑉. 

 If the subgraphs induced by 𝐹′′(𝑎) are connected, (𝐹′′, 𝐴) Satisfies the definition of a Soft Graph. 

Through these transformations, we have shown that any Hypersoft Rough Graph can be systematically 

transformed into a Soft Rough Graph, a Rough Graph, and a Soft Graph. 

4 |Future Tasks and Discussion of this Research 

This section outlines future directions for this research. 

4.1 |Discussion: N-Soft Graphs, N-hypersoft Graphs and N-bipolar hypersoft 

Graphs 

The Soft Set, due to its intriguing mathematical structure and ease of application, has led to the development 

of various derivative concepts, such as the N -Soft Set [3, 4, 14, 50, 51], N-HyperSoft Set [148], bipolar 

hypersoft set [11, 27, 142, 146, 147], and N-bipolar hypersoft set [143, 149]. Visualizing these sets as graphs 

could provide valuable insights and further facilitate their application in future studies. 

Definition 18 (N-Soft Set). [14] Let 𝑈 be a universe of objects under consideration, and let 𝐸 denote a set of 

attributes with  𝐴 ⊆ 𝐸. Let 𝑅 = {0,1,2, … , 𝑁 − 1} represent an ordered set of grades, where 𝑁 ∈ {2,3, … }. 

An 𝑁-soft set on 𝑈 is defined as a triple (𝐹, 𝐴, 𝑁), where 𝐹 is a mapping from 𝐴 to 𝒫(𝑈 × 𝑅) such that for 

each 𝑎 ∈ 𝐴 and 𝑢 ∈ 𝑈, there exists a specific pair (𝑢, 𝑟) ∈ 𝑈 × 𝑅 with (𝑢, 𝑟) ∈ 𝐹(𝑎). 

The interpretation of the pair (𝑢, 𝑟) ∈ 𝐹(𝑎) is that the element 𝑢 belongs to the 𝑎-approximation of 𝑈 with 

grade 𝑟. The tabular representation of an 𝑁-soft set is given as follows: 

(𝐹, 𝐴, 𝑁) 𝑎1 𝑎2 … 𝑎𝑞 

𝑢1 {𝑟11} {𝑟12} … {𝑟1𝑞} 

𝑢2 {𝑟21} {𝑟22} … {𝑟2𝑞} 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑢𝑝 {𝑟𝑝1} {𝑟𝑝2} … {𝑟𝑝𝑞} 
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Definition 19 (N-Soft Graph). Let 𝐺 = (𝑉, 𝐸) be a simple graph, where 𝑉 is the set of vertices and 𝐸 is the 

set of edges. Let 𝐴 be a non-empty set of parameters, and let 𝑅 = {0,1,2, … , 𝑁 − 1} be an ordered set of 

grades, with 𝑁 ≥ 2. 

An 𝑁-Soft Graph over 𝐺 is defined as a triple (𝐹, 𝐴, 𝑁), where: 

 𝐹: 𝐴 → 𝒫(𝑉 × 𝑅) is a mapping such that for each 𝑎 ∈ 𝐴 and each 𝑣 ∈ 𝑉, there exists a unique grade 

𝑟 ∈ 𝑅 with (𝑣, 𝑟) ∈ 𝐹(𝑎) (equivalently, 𝐹(𝑎)(𝑣) = 𝑟 ). 

The interpretation of (𝑣, 𝑟) ∈ 𝐹(𝑎) is that the vertex 𝑣 has a grade 𝑟 with respect to the parameter 

𝑎. The N -Soft Graph (𝐹, 𝐴, 𝑁) represents graded relationships between parameters and vertices in 

𝐺. 

Theorem 20. Every N-Soft Graph can be transformed into a Soft Graph. 

Proof. Let 𝐺 = (𝑉, 𝐸) be a simple graph, 𝐴 be a non-empty set of parameters, and (𝐹, 𝐴, 𝑁) be an 𝑁-Soft 

Graph over 𝐺, where 𝐹: 𝐴 → 𝒫(𝑉 × 𝑅) with 𝑅 = {0,1, … , 𝑁 − 1}. 

We define a Soft Graph(𝐹′, 𝐴) over 𝐺 as follows: 

For each parameter 𝑎 ∈ 𝐴, define the mapping 𝐹′: 𝐴 → 𝒫(𝑉) by: 

𝐹′(𝑎) = {𝑣 ∈ 𝑉 ∣ 𝐹(𝑎)(𝑣) ≥ 𝑇} 

Where 𝑇 is a fixed threshold in 𝑅. 

Explanation: 

 For each parameter 𝑎, 𝐹(𝑎)(𝑣) is the grade assigned to vertex 𝑣. 

 We select a threshold 𝑇 ∈ 𝑅 to determine which vertices are included in 𝐹′(𝑎). 

 The set 𝐹′(𝑎) includes all vertices 𝑣 such that 𝐹(𝑎)(𝑣) meets or exceeds the threshold 𝑇. 

Verification: 

 𝐹′ maps 𝐴 to subsets of 𝑉, i.e., 𝐹′: 𝐴 → 𝒫(𝑉), satisfying the definition of a Soft Graph. 

 Since 𝐹 is defined for all 𝑎 ∈ 𝐴 and 𝑣 ∈ 𝑉, so is 𝐹′. 

By applying the threshold 𝑇, any 𝑁-Soft Graph(𝐹, 𝐴, 𝑁) can be transformed into a 

SoftGraph(𝐹′, 𝐴). 

Definition 21 (N-Hypersoft Set). [148] Let Ω be a universe of objects, and let 𝐸 denote a set of parameters, 

partitioned into disjoint subsets 𝐸1, 𝐸2, … , 𝐸𝑛. Each 𝐸𝑖 represents a distinct category of parameters. Define 

𝑅 = {0,1,2, … , 𝑁 − 1} as an ordered set of grades, where 𝑁 ≥ 2. An 𝑁-hypersoft set over Ω is a triple 

(∇, 𝐽, 𝑁), where: 

 𝐽 = 𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛 is the set of all tuples formed by selecting one parameter from each subset 

𝐸𝑖 , 

 ∇ is a mapping ∇: 𝐽 → 𝒫(Ω × 𝑅), with the property that for each tuple j ∈ 𝐽 and each object 𝜔 ∈ Ω, 

there exists a unique grade 𝑟j ∈ 𝑅 such that (𝜔, 𝑟j) ∈ ∇(j). 

The interpretation of (𝜔, 𝑟j) ∈ ∇(j) is that the object 𝜔 has a grade 𝑟j under the parameter tuple j . The 𝑁-

hypersoft set can be represented in tabular form, where each row corresponds to an object in Ω and each 

column corresponds to a parameter tuple in 𝐽. 
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  Thus, the 𝑁-hypersoft set (∇, 𝐽, 𝑁) can be expressed as: 

(∇, 𝐽, 𝑁) = {(j, {(𝜔, ∇(j)(𝜔)) ∣ 𝜔 ∈ Ω}) ∣ j ∈ 𝐽} 

Definition 22 (N-Hypersoft Graph). Let 𝐺 = (𝑉, 𝐸) be a simple graph. Consider 𝑛 distinct attributes with 

corresponding disjoint parameter sets 𝐸1, 𝐸2, … , 𝐸𝑛, and let 𝐽 = 𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛. Let 𝑅 = {0,1,2, … , 𝑁 −

1} be an ordered set of grades, where 𝑁 ≥ 2. 

An 𝑁-Hypersoft Graph over 𝐺 is defined as a triple (∇, 𝐽, 𝑁), where: 

 ∇: 𝐽 → 𝒫(𝑉 × 𝑅) is a mapping such that for each parameter tuple j ∈ 𝐽 and each 𝑣 ∈ 𝑉, there exists 

a unique grade 𝑟j ∈ 𝑅 with (𝑣, 𝑟j) ∈ ∇(j) (equivalently, ∇(j)(𝑣) = 𝑟j). 

The interpretation of (𝑣, 𝑟j) ∈ ∇(j) is that the vertex 𝑣 has a grade 𝑟j under the parameter tuple j . 

The N -Hypersoft Graph captures multi-parameter graded relationships within 𝐺. 

Theorem 23. The following holds. 

1. Every N-Hypersoft Graph can be transformed into an N-Soft Graph. 

2. Every N-Hypersoft Graph can be transformed into a Hypersoft Graph. 

3. Every N-Hypersoft Graph can be transformed into a Soft Graph. 

Proof. Let 𝐺 = (𝑉, 𝐸) be a simple graph, and (∇, 𝐽, 𝑁) be an 𝑁-Hypersoft Graph over 𝐺, where 𝐽 = 𝐸1 ×

𝐸2 × ⋯ × 𝐸𝑛, and ∇: 𝐽 → 𝒫(𝑉 × 𝑅) with 𝑅 = {0,1, … , 𝑁 − 1}. 

Part 1: Transformation into an N-Soft Graph 

We can transform the 𝑁-Hypersoft Graph into an 𝑁-Soft Graph (𝐹, 𝐴, 𝑁) over 𝐺 as follows: 

 Let 𝐴 = 𝐽 (i.e., the set of parameter tuples in  ). 

 Define 𝐹: 𝐴 → 𝒫(𝑉 × 𝑅) by 𝐹(𝑎) = ∇(𝑎) for all 𝑎 ∈ 𝐴. 

Explanation: 

 Since ∇ maps parameter tuples to graded subsets of 𝑉, we can view each tuple 𝑎 ∈ 𝐴 as a single 

parameter in the 𝑁-Soft Graph. 

 The mapping 𝐹 retains the grading information from ∇. 

Thus, (∇, 𝐽, 𝑁) can be viewed as an 𝑁-Soft Graph (𝐹, 𝐴, 𝑁). 

Part 2: Transformation into a Hypersoft Graph We can transform the 𝑁-Hypersoft Graph into a 

Hypersoft Graph (∇′, 𝐽) Over 𝐺 by selecting a threshold 𝑇 ∈ 𝑅 and defining: 

∇′(j) = {𝑣 ∈ 𝑉 ∣ ∇(j)(𝑣) ≥ 𝑇} 

for all j ∈ 𝐽. 

The mapping ∇′ now assigns to each parameter tuple j a subset of 𝑉, where the grade meets or exceeds the 

threshold 𝑇. Thus, (∇, 𝐽, 𝑁) can be transformed into a Hypersoft Graph. (∇′, 𝐽). 

Part 3: Transformation into a Soft Graph To further transform the Hypersoft Graph into a Soft 

Graph, we can: 

Fix one parameter set 𝐸𝑖 and select a particular value 𝑒𝑖 ∈ 𝐸𝑖 . 

Consider the reduced parameter set 𝐽′ = 𝐸1 × ⋯ × 𝐸𝑖−1 × 𝐸𝑖+1 × ⋯ × 𝐸𝑛. 

Define 𝐹′′: 𝐽′ → 𝒫(𝑉) by: 

𝐹′′(𝑎) = ∇′(𝑎, 𝑒𝑖) 
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for all 𝑎 ∈ 𝐽′. 

Therefore, (∇, 𝐽, 𝑁) can be transformed into a Soft Graph (𝐹′′, 𝐽′). 

Definition 24 (Bipolar Hypersoft Set (BHS Set)). [142] Let Ω be a universe of objects, 𝐸 a set of attributes, 

and 𝑄1 ⊆ 𝐸 a subset of attributes. A bipolar hypersoft set over Ω is defined as a triple ( Δ, 𝑟, 𝑄1), where: 

 Δ: 𝑄1 → 𝒫(Ω) is a mapping assigning each parameter 𝑞 ∈ 𝑄1 a subset of Ω. 

 𝑟: ¬𝑄1 → 𝒫(Ω) is a mapping assigning each parameter ¬𝑞 ∈ ¬𝑄1 (where ¬𝑞 is the complement or 

opposite of 𝑞 ) a subset of Ω. 

 For each 𝑞 ∈ 𝑄1, Δ(𝑞) ∩ 𝑟(¬𝑞) = ∅. 

The BHS set (Δ, 𝑟, 𝑄1) can be represented as: 

(Δ, 𝑟, 𝑄1) = {(𝑞, Δ(𝑞), 𝑟(¬𝑞)) ∣ 𝑞 ∈ 𝑄1, Δ(𝑞), 𝑟(¬𝑞) ⊆ Ω} 

Definition 25 (Bipolar Hypersoft Graph). Let 𝐺 = (𝑉, 𝐸) be a simple graph, and let 𝑄1 ⊆ 𝐸 be a subset of 

parameters. The Bipolar Hypersoft Graph over 𝐺 is defined as a triple (Δ, 𝑟, 𝑄1), where: 

 Δ: 𝑄1 → 𝒫(𝑉) assigns to each parameter 𝑞 ∈ 𝑄1 a subset Δ(𝑞) ⊆ 𝑉. 

 𝑟: ¬𝑄1 → 𝒫(𝑉) assigns to each opposite parameter ¬𝑞 ∈ ¬𝑄1 a subset 𝑟(¬𝑞) ⊆ 𝑉. 

 For each 𝑞 ∈ 𝑄1, it holds that Δ(𝑞) ∩ 𝑟(¬𝑞) = ∅. 

The Bipolar Hypersoft Graph (Δ, 𝑟, 𝑄1) captures both positive and negative relationships between 

parameters and vertices in 𝐺. 

Theorem 26. The following holds. 

1. Every Bipolar Hypersoft Graph can be transformed into a Hypersoft Graph. 

2. Every Bipolar Hypersoft Graph can be transformed into a Soft Graph. 

Proof. Let 𝐺 = (𝑉, 𝐸) be a simple graph, and (Δ, 𝑟, 𝑄1) be a Bipolar Hypersoft Graph over 𝐺. 

Part 1: Transformation into a Hypersoft Graph 

We can construct a Hypersoft Graph (∇, 𝐽) over 𝐺 as follows: 

 Let 𝐽 = 𝑄1. 

 Define ∇(𝑞) = Δ(𝑞) for all 𝑞 ∈ 𝑄1. 

Thus, the Bipolar Hypersoft Graph (Δ, 𝑟, 𝑄1) can be transformed into a Hypersoft Graph (∇, 𝐽). 

Part 2: Transformation into a Soft Graph 

To further transform the Hypersoft Graph into a Soft Graph: 

 If 𝑄1 consists of single parameters (not tuples), then (∇, 𝑄1) is a Soft Graph over 𝐺. 

Therefore, the Bipolar Hypersoft Graph can be transformed into a Soft Graph. 

Definition 27 (N-Bipolar Hypersoft Set (N-BHS Set)). [143] Let Ω be a universe of objects, 𝐸 a set of 

attributes, and 𝑄1 ⊆ 𝐸 a subset of attributes. Consider 𝑅 = {0,1, … , 𝑁 − 1} as an ordered set of grades, 

where 𝑁 ≥ 2. An 𝑁-bipolar hypersoft set over Ω is defined as a quadruple (Δ, 𝑟, 𝑄1, 𝑁), where: 

 Δ: 𝑄1 → 𝒫(Ω × 𝑅) maps each parameter 𝑞 ∈ 𝑄1 to a subset of Ω × 𝑅. 

 𝑟: ¬𝑄1 → 𝒫(Ω × 𝑅) maps each parameter ¬𝑞 ∈ ¬𝑄1 (opposite of 𝑞 ) to a subset of Ω × 𝑅. 
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 For each 𝑞 ∈ 𝑄1 and 𝜔 ∈ Ω, there exist unique values 𝑟𝑞 , 𝑟¬𝑞 ∈ 𝑅 such that (𝜔, 𝑟𝑞) ∈ Δ(𝑞) and 

(𝜔, 𝑟¬𝑞) ∈ 𝑟(¬𝑞) with the condition 𝑟𝑞 + 𝑟¬𝑞 ≤ 𝑁 − 1. 

The N-BHS set (Δ, 𝑟, 𝑄1, 𝑁) can be written as: 

(Δ, 𝑟, 𝑄1, 𝑁) = {(𝑞, {(𝜔, Δ(𝑞)(𝜔), 𝑟(¬𝑞)(𝜔))}) ∣ 𝑞 ∈ 𝑄1, 𝜔 ∈ Ω, Δ(𝑞)(𝜔), 𝑟(¬𝑞)(𝜔) ∈ 𝑅} 

Definition 28 (N-Bipolar Hypersoft Graph). Let 𝐺 = (𝑉, 𝐸) be a simple graph, 𝑄1 ⊆ 𝐸 a subset of 

parameters, and 𝑅 = {0,1,2, … , 𝑁 − 1} an ordered set of grades, with 𝑁 ≥ 2. 

An 𝑁-Bipolar Hypersoft Graph over 𝐺 is defined as a quadruple (Δ, 𝑟, 𝑄1, 𝑁), where: 

 Δ: 𝑄1 → 𝒫(𝑉 × 𝑅) assigns to each parameter 𝑞 ∈ 𝑄1 a set of pairs (𝑣, 𝑟𝑞), where 𝑣 ∈ 𝑉 and 𝑟𝑞 ∈

𝑅. 

 𝑟: ¬𝑄1 → 𝒫(𝑉 × 𝑅) assigns to each opposite parameter ¬𝑞 ∈ ¬𝑄1 a set of pairs (𝑣, 𝑟¬𝑞), where 

𝑣 ∈ 𝑉 and 𝑟¬𝑞 ∈ 𝑅. 

 For each 𝑞 ∈ 𝑄1 and 𝑣 ∈ 𝑉, there exist unique grades 𝑟𝑞 , 𝑟¬𝑞 ∈ 𝑅 such that: 

1. (Δ(𝑞))(𝑣) = 𝑟𝑞 and (𝑟(¬𝑞))(𝑣) = 𝑟¬𝑞. 

2. The grades satisfy 𝑟𝑞 + 𝑟¬𝑞 ≤ 𝑁 − 1. 

The N-Bipolar Hypersoft Graph (Δ, 𝑟, 𝑄1, 𝑁) captures graded positive and negative relationships between 

parameters and vertices in 𝐺, with the grading condition ensuring the compatibility between positive and 

negative assessments. 

Theorem 29. The following holds. 

1. Every N-Bipolar Hypersoft Graph can be transformed into a Bipolar Hypersoft Graph. 

2. Every N-Bipolar Hypersoft Graph can be transformed into a Hypersoft Graph. 

3. Every N-Bipolar Hypersoft Graph can be transformed into an N-Soft Graph. 

4. Every N-Bipolar Hypersoft Graph can be transformed into an N-Hypersoft Graph. 

Proof. Let 𝐺 = (𝑉, 𝐸) be a simple graph, and (Δ, 𝑟, 𝑄1, 𝑁) be an 𝑁-Bipolar Hypersoft Graph over 𝐺. 

Part 1: Transformation into a Bipolar Hypersoft Graph 

Define a Bipolar Hypersoft Graph (Δ′, 𝑟′, 𝑄1) over 𝐺 as follows: 

Δ′(𝑞) = {𝑣 ∈ 𝑉 ∣ Δ(𝑞)(𝑣) ≥ 𝑇}

𝑟′(¬𝑞) = {𝑣 ∈ 𝑉 ∣ 𝑟(¬𝑞)(𝑣) ≥ 𝑇′}
 

where 𝑇, 𝑇′ ∈ 𝑅 are thresholds. 

Thus, (Δ, 𝑟, 𝑄1, 𝑁) can be transformed into a Bipolar Hypersoft Graph (Δ′, 𝑟′, 𝑄1). 

Part 2: Transformation into a Hypersoft Graph 

By ignoring the negative mapping 𝑟′, we define a Hypersoft Graph(∇, 𝐽) : 

Let 𝐽 = 𝑄1. 

Define ∇(𝑞) = Δ′(𝑞) for all 𝑞 ∈ 𝑄1. 

(Δ, 𝑟, 𝑄1, 𝑁) can be transformed into a Hypersoft Graph(∇, 𝐽). 

Part 3: Transformation into an 𝑁-Soft Graph 

Define an 𝑁-Soft Graph (𝐹, 𝐴, 𝑁) as follows: 
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𝐴 = 𝑄1,  𝐹(𝑎) = Δ(𝑎)  for all 𝑎 ∈ 𝐴 

(Δ, 𝑟, 𝑄1, 𝑁) can be transformed into an 𝑁-Soft Graph(𝐹, 𝐴, 𝑁). 

Part 4: Transformation into an N-Hypersoft Graph 

If 𝑄1 is a Cartesian product, i.e., 𝑄1 = 𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛, then we define an 𝑁-Hypersoft Graph (∇, 𝐽, 𝑁) 

as follows: 

𝐽 = 𝑄1,  ∇(j) = Δ(j)  for all j ∈ 𝐽 

(Δ, 𝑟, 𝑄1, 𝑁) can be transformed into an 𝑁-Hypersoft Graph(∇, 𝐽, 𝑁). . 

4.2 |Future tasks: Hypersoft Hyperset and SuperHypersoft Superhyperset 

This paper outlines future directions for exploration. In the realm of soft set theory, related concepts such as 

hypersoft sets and super hypersoft sets [96, 139, 197, 201] are recognized for their potential to broaden the 

structure and applications of generalized sets. In graph theory, analogous concepts like hypergraphs [33 98-

100, 161] and super hypergraphs [72, 94, 104-106, 193-196, 200] are well-known, as construct such as 

hyperalgebras [115, 87, 204] serve to generalize traditional graph and algebraic concepts. Additionally, in set 

theory, we find concepts such as hypersets [30, 97, 152] and supersets, which we propose to integrate into a 

unified concept termed the Superhyperset. We aim to investigate the mathematical structures and applications 

of sets, hypersets, and super hypersets, further enriched by the theoretical foundations of soft, hypersoft, and 

superhypersoft frameworks. 

Although still in the conceptual stage, we outline below the definitions of Superhypersets and related 

concepts. 

Definition 30 (Hyperset). [97] A Hyperset is a set that can contain itself as a member, either directly or 

indirectly. This is permitted in Non-Well-Founded Set Theory, where the Axiom of Foundation is replaced 

by the AntiFoundation Axiom ( 𝐴𝐹𝐴 ). In this context, sets are allowed to have membership structures that 

include cycles or infinite descending chains. 

Example 31 (Hyperset). Let 𝐴 be defined as: 

𝐴 = {𝐴} 

Here, 𝐴 contains itself as its sole member, which is permissible in Hyperset Theory under the Anti-Foundation 

Axiom. 

Definition 32 (Superset). In set theory, a Superset is a set whose elements are themselves sets. Formally, a 

set 𝑆 is a Superset if and only if for every element 𝑥 ∈ 𝑆, 𝑥 is a set. That is, 

∀𝑥 ∈ 𝑆,  𝑥 is a set.  

Example 33 (Superset). Let 𝐵 = {1,2,3} and 𝐶 = {1,2}. Since 𝐶 ⊆ 𝐵, we have: 

𝐵 ⊇ 𝐶. 

Every element of 𝐶 is contained in 𝐵, so 𝐵 is a Superset of 𝐶. 

Definition 34 (Superhyperset). Let ℋ be the class of all Hypersets. A Superhyperset 𝑆 is a set such that: 

𝑆 ⊆ 𝒫(ℋ) 

Where 𝒫(ℋ) denotes the power set of ℋ. Elements of 𝑆 are subsets of Hypersets, and 𝑆 may include itself 

as an element, directly or indirectly, thus allowing for non-well-founded and higher-order membership 

structures. 

Example 35 (Superhyperset). Let 𝐴 = {𝐴} (a Hyperset) and 𝐻 = {𝐴}. Define: 

𝑆 = {{𝐴}, {𝐴, 𝐻}} 
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  Here, 𝑆 ⊆ 𝒫(ℋ) with ℋ = {𝐴, 𝐻}, and 𝑆 is a Superhyperset since its elements are subsets of Hypersets. 

Theorem 36. Every Superhyperset can be transformed into a Hyperset and a Superset. 

Proof. Let 𝑆 be a Superhyperset, so 𝑆 ⊆ 𝒫(ℋ), where ℋ is the class of all Hypersets. 

Transformation into a Hyperset: 

Define a function 𝑓: 𝑆 → ℋ by selecting an element from each subset 𝑠 ∈ 𝑆. Since each 𝑠 ⊆ ℋ, we have 

𝑓(𝑠) ∈ ℋ. 

Consider the set: 

𝐻 = {𝑓(𝑠) ∣ 𝑠 ∈ 𝑆} 

Since 𝑓(𝑠) ∈ ℋ for all 𝑠 ∈ 𝑆, 𝐻 is a set of Hypersets. If 𝐻 contains itself as an element (directly or indirectly), 

then 𝐻 is a Hyperset. 

Transformation into a Superset: 

Let: 

𝑈 = ⋃  

𝑠∈𝑆

𝑠 

Then 𝑈 is a set containing all elements of the subsets in 𝑆. For any set 𝐴 such that 𝐴 ∈ 𝑠 for some 𝑠 ∈ 𝑆, we 

have 𝐴 ∈ 𝑈, so 𝑈 is a Superset of 𝐴. 

Thus, the Superhyperset 𝑆 can be associated with a Hyperset 𝐻 and a Superset 𝑈, demonstrating that a 

Superhyperset can be transformed into both a Hyperset and a Superset. 

Additionally, We would like to extend the concept of the SuperHyperSoft Graph to Rough Graphs, Expert 

Graphs, Fuzzy Graphs, and Neutrosophic Graphs, and to explore their mathematical structures as well as 

applications in decision-making and related areas. 

Definition 37 (SuperHyperSoft Set). [197] Let 𝑈 be a universe of discourse, and let 𝑃(𝑈) denote the power 

set of 𝑈. Let 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑛 distinct attributes, where 𝑛 ≥ 1. Each attribute 𝑎𝑖 has a corresponding set 

of attribute values 𝐴𝑖 , with the property that 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for all 𝑖 ≠ 𝑗. 

Let 𝑃(𝐴𝑖) denote the power set of 𝐴𝑖 for each 𝑖 = 1,2, … , 𝑛. 

Then, the pair (𝐹, 𝑃(𝐴1) × 𝑃(𝐴2) × ⋯ × 𝑃(𝐴𝑛)), where 

𝐹: 𝑃(𝐴1) × 𝑃(𝐴2) × ⋯ × 𝑃(𝐴𝑛) → 𝑃(𝑈) 

is called a SuperHyperSoft Set over 𝑈. 

Definition 38 (SuperHyperSoft Graph). [60] Let 𝐺 = (𝑉, 𝐸) be a graph, where 𝑉 is the set of vertices and 𝐸 

is the set of edges. Let 𝑈 = 𝑉 ∪ 𝐸, and let 𝑃(𝑈) denote the power set of 𝑈. 

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑛 distinct attributes, each with a corresponding set of attribute values 𝐴𝑖 , such that 𝐴𝑖 ∩

𝐴𝑗 = ∅ for all 𝑖 ≠ 𝑗. 

Let 𝑃(𝐴𝑖) denote the power set of 𝐴𝑖 for each 𝑖 = 1,2, … , 𝑛. 

Define two functions: 

1. Vertex Function: 

𝐹𝑉: 𝑃(𝐴1) × 𝑃(𝐴2) × ⋯ × 𝑃(𝐴𝑛) → 𝑃(𝑉) 

Which maps combinations of attribute value subsets to subsets of vertices. 

2. Edge Function: 
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𝐹𝐸: 𝑃(𝐴1) × 𝑃(𝐴2) × ⋯ × 𝑃(𝐴𝑛) → 𝑃(𝐸) 

Which maps combinations of attribute value subsets to subsets of edges. 

Then, the pair (𝐹𝑉 , 𝐹𝐸) is called a SuperHyperSoft Graph over 𝐺. 

Due to the versatility and ease of application of soft sets, a variety of soft set extensions, beyond the above-

mentioned Superhypersoft, have been developed. The concepts of IndetermSoft Sets [198, 199], 

IndetermHyperSoft Sets [198, 199], Binary soft sets [2, 155, 173], Generalized soft rough sets [17, 18, 23] and 

TreeSoft Sets [44, 154, 198, 199, 202] are recognized as extensions of the Soft Set. In the future, additional 

research into the mathematical structures and applications of these sets in the contexts of Expert Sets, Rough 

Sets, Expert Graphs, and Rough Graphs is anticipated. 

4.3 |Discussion: Hypersoft Digraphs 

We intend to explore the mathematical structures of Hypersoft Digraphs, extending the concepts of Soft 

Directed Graphs as established by [89, 117-120]. A Directed Graph consists of vertices connected by directed 

edges (arcs), where each edge has a direction from one vertex to another. The definitions, along with relevant 

related concepts, will be outlined below. 

Definition 39. A directed graph (or digraph) is a pair 𝐷 = (𝑉, 𝐴) where: 

 𝑉 is a non-empty finite set of elements called vertices or nodes. 

 𝐴 ⊆ 𝑉 × 𝑉 is a set of ordered pairs of distinct vertices called arcs or directed edges. 

Definition 40. [117] Let 𝐷∗ = (𝑉, 𝐴) be a directed graph and 𝑃 be a non-empty set of parameters. A soft-

directed graph over 𝐷∗ is a quadruple 𝐷 = (𝐷∗, 𝐽, 𝐿, 𝑃), where: 

 𝐷∗ = (𝑉, 𝐴) is a directed graph. 

 𝑃 is a non-empty set of parameters. 

 𝐽: 𝑃 → 𝒫(𝑉) is a mapping that assigns to each parameter 𝑝 ∈ 𝑃 a subset 𝐽(𝑝) ⊆ 𝑉. 

 𝐿: 𝑃 → 𝒫(𝐴) is a mapping that assigns to each parameter 𝑝 ∈ 𝑃 a subset 𝐿(𝑝) ⊆ 𝐴. 

These mappings satisfy the condition that for each 𝑝 ∈ 𝑃, the pair 𝑀(𝑝) = (𝐽(𝑝), 𝐿(𝑝)) is a subdigraph of 

𝐷∗, i.e., 𝐿(𝑝) ⊆ 𝐽(𝑝) × 𝐽(𝑝). 

The collection 𝐷 = {𝑀(𝑝) ∣ 𝑝 ∈ 𝑃} represents the soft directed graph over 𝐷∗. 

Definition 41. Let 𝐷∗ = (𝑉, 𝐴) be a directed graph. Consider 𝑛 distinct attributes with corresponding disjoint 

parameter sets 𝐸1, 𝐸2, … , 𝐸𝑛, and let 𝐽 = 𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛. 

A hypersoft directed graph over 𝐷∗ is a triple 𝐷 = (𝐷∗, ∇, 𝐽), where: 

 𝐷∗ = (𝑉, 𝐴) is a directed graph. 

 𝐽 = 𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛 is the set of all parameter tuples formed by selecting one parameter from 

each 𝐸𝑖 . 

 ∇: 𝐽 → 𝒫(𝑉) is a mapping that assigns to each parameter tuple j ∈ 𝐽 a subset ∇(j) ⊆ 𝑉. 

The mapping ∇ must satisfy the condition that for each j ∈ 𝐽, the pair 𝑀(j) = (∇(j), 𝐿(j)) is a subdigraph of 

𝐷∗, where: 

𝐿(j) = {(𝑢, 𝑣) ∈ 𝐴 ∣ 𝑢, 𝑣 ∈ ∇(j)} 

The collection 𝐷 = {𝑀(j) ∣ j ∈ 𝐽} represents the hypersoft directed graph over 𝐷∗. 
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  Theorem 42. Every hypersoft-directed graph can be transformed into a soft-directed graph and a directed 

graph. 

Proof. Let 𝐷 = (𝐷∗, ∇, 𝐽) be a hypersoft directed graph over the directed graph 𝐷∗ = (𝑉, 𝐴), where 𝐽 = 

𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛 and ∇: 𝐽 → 𝒫(𝑉). 

We can construct a soft-directed graph 𝐷′ = (𝐷∗, 𝐽′, 𝐿′, 𝑃) as follows: 

 Let 𝑃 = 𝐽 (i.e., the set of all parameter tuples). 

 Define the mapping 𝐽′: 𝑃 → 𝒫(𝑉) by: 

𝐽′(j) = ∇(j),  ∀j ∈ 𝑃 

 Define the mapping 𝐿′: 𝑃 → 𝒫(𝐴) by: 

𝐿′(j) = {(𝑢, 𝑣) ∈ 𝐴 ∣ 𝑢, 𝑣 ∈ ∇(j)},  ∀j ∈ 𝑃 

Since 𝑀(j) = (𝐽′(j), 𝐿′(j)) is a subdigraph of 𝐷∗ for each j ∈ 𝑃, the quadruple 𝐷′ = (𝐷∗, 𝐽′, 𝐿′, 𝑃) Satisfies 

the definition of a soft-directed graph. 

To transform the hypersoft directed graph 𝐷 into a directed graph 𝐷′′, we can consider the union of all 

subdigraphs 𝑀(j) : 

𝑉′′ = ⋃  

j∈𝐽

 ∇(j) ⊆ 𝑉,

𝐴′′ = ⋃  

j∈𝐽

 𝐿(j) ⊆ 𝐴.
 

Then, 𝐷′′ = (𝑉′′, 𝐴′′) is a subdigraph of 𝐷∗, and thus a directed graph. 

By constructing 𝐷′ and 𝐷′′ as shown, we have demonstrated that a hypersoft-directed graph 𝐷 can be 

transformed into a soft-directed graph 𝐷′ and a directed graph 𝐷′′. 

4.4 |Discussion: Hypersoft Semingraphs 

We aim to explore the mathematical structures of Hypersoft Semigraphs, building on the concepts of Soft 

Semigraphs as developed in works such as [84-88, 90, 91]. A Semigraph generalizes graphs by allowing edges 

to connect multiple vertices with specified order but with constraints on shared vertices between edges. 

Below, we will provide the definitions and discuss relevant related concepts. We also plan to extend these 

ideas by incorporating Directed Graphs, Soft Expert Graphs, and Rough Graphs to further analyze their 

mathematical structures and potential applications. 

Definition 43. [180] A semigraph is a pair 𝐺∗ = (𝑉, 𝐸) where: 

 𝑉 is a non-empty finite set whose elements are called vertices. 

 𝐸 is a set of finite sequences (tuples) of distinct vertices called edges, such that: 

1. Any two edges have at most one vertex in common. 

2. Two edges (𝑣1, 𝑣2, … , 𝑣𝑛) and (𝑢1, 𝑢2, … , 𝑢𝑚) are considered equal if and only if: 

- 𝑛 = 𝑚, and 

- Either 𝑣𝑖 = 𝑢𝑖 for all 1 ≤ 𝑖 ≤ 𝑛, or 𝑣𝑖 = 𝑢𝑛−𝑖+1 for all 1 ≤ 𝑖 ≤ 𝑛 (i.e., they are reverses of 

each other). 

An edge 𝑒 = (𝑣1, 𝑣2, … , 𝑣𝑛) is an ordered sequence where: 

 𝑣1 and 𝑣𝑛 are called the end vertices of 𝑒. 
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 The vertices 𝑣2, 𝑣3, … , 𝑣𝑛−1 are called the middle vertices or 𝑚-vertices of 𝑒. 

Definition 44. [92] Let 𝐺∗ = (𝑉, 𝐸) be a semigraph, and let 𝐴 be a non-empty set of parameters. A soft 

semigraph over 𝐺∗ is a quadruple 𝐺 = (𝐺∗, 𝑄, 𝑊, 𝐴), where: 

 𝐺∗ = (𝑉, 𝐸) is a semigraph. 

 𝐴 is a non-empty set of parameters. 

 𝑄: 𝐴 → 𝒫(𝑉) is a mapping that assigns to each parameter 𝑎 ∈ 𝐴 a subset 𝑄(𝑎) ⊆ 𝑉. 

 𝑊: 𝐴 → 𝒫(𝐸𝑝) is a mapping that assigns to each parameter 𝑎 ∈ 𝐴 a set 𝑊(𝑎) of maximal partial 

edges induced by 𝑄(𝑎), where 𝐸𝑝 is the set of all partial edges of 𝐺∗. 

The mappings 𝑄 and 𝑊 must satisfy the condition that for each 𝑎 ∈ 𝐴, the pair 𝐻(𝑎) = (𝑄(𝑎), 𝑊(𝑎)) is a 

partial semigraph of 𝐺∗. 

 Partial Edge: A partial edge of an edge 𝑒 = (𝑣1, 𝑣2, … , 𝑣𝑛) is a subsequence 𝑒′ = (𝑣𝑖1
, 𝑣𝑖2

, … , 𝑣𝑖𝑘
), 

where 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑛 or 𝑛 ≥ 𝑖𝑘 > 𝑖𝑘−1 > ⋯ > 𝑖1 ≥ 1. 

 Maximal Partial Edge: A partial edge that is not a subsequence of any other partial edge induced by 

the same vertex set. 

Definition 45. Let 𝐺∗ = (𝑉, 𝐸) be a semigraph. Consider 𝑛 distinct attributes with corresponding disjoint 

parameter sets 𝐸1, 𝐸2, … , 𝐸𝑛, and let 𝐽 = 𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛. A hypersoft semigraph over 𝐺∗ is a triple 𝐺 =

(𝐺∗, 𝐹, 𝐽), where: 

 𝐺∗ = (𝑉, 𝐸) is a semigraph. 

 𝐽 = 𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛 is the set of all parameter tuples formed by selecting one parameter from 

each 𝐸𝑖 . 

 𝐹: 𝐽 → 𝒫(𝑉) is a mapping that assigns to each parameter tuple j ∈ 𝐽 a subset 𝐹(j) ⊆ 𝑉. 

For each j ∈ 𝐽, define 𝑊(j) as the set of maximal partial edges induced by 𝐹(j). The pair 𝐻(j) = (𝐹(j), 𝑊(j)) 

must be a partial semigraph of 𝐺∗. 

The collection 𝐺 = {𝐻(j) ∣ j ∈ 𝐽} represents the hypersoft semigraph over 𝐺∗. 

Theorem 46. Every hypersoft semigraph can be transformed into a semigraph and a soft semigraph. 

Proof. Let 𝐺 = (𝐺∗, 𝐹, 𝐽) be a hypersoft semigraph over the semigraph 𝐺∗ = (𝑉, 𝐸), where 𝐽 = 𝐸1 × 𝐸2 × 

⋯ × 𝐸𝑛 and 𝐹: 𝐽 → 𝒫(𝑉). 

To transform the hypersoft semigraph 𝐺 into a semigraph 𝐺′ = (𝑉′, 𝐸′), proceed as follows: 

Let 𝑉′ = ⋃j∈𝐽  𝐹(j) ⊆ 𝑉. 

Let 𝐸′ = ⋃j∈𝐽  𝑊(j) ⊆ 𝐸𝑝, where 𝑊(j) is the set of maximal partial edges induced by 𝐹(j). 

Since each 𝐻(j) = (𝐹(j), 𝑊(j)) is a partial semigraph of 𝐺∗, their union 𝐺′ = (𝑉′, 𝐸′) forms a semigraph, 

as it satisfies the conditions of a semigraph: 

Any two edges in 𝐸′ have at most one vertex in common because this property holds in 𝐺∗. 

The edges in 𝐸′ are sequences of distinct vertices, satisfying the edge definition in a semigraph. 

We can construct a soft semigraph 𝐺′′ = (𝐺∗, 𝑄, 𝑊′, 𝐴) as follows: 

Let 𝐴 = 𝐽 (i.e., the set of all parameter tuples). 

Define the mapping 𝑄: 𝐴 → 𝒫(𝑉) by: 
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  𝑄(j) = 𝐹(j),  ∀j ∈ 𝐴 

Define the mapping 𝑊′: 𝐴 → 𝒫(𝐸𝑝) by: 

𝑊′(j) = 𝑊(j),  ∀j ∈ 𝐴, 

where 𝑊(j) is the set of maximal partial edges induced by 𝐹(j). 

Since 𝐻(j) = (𝑄(j), 𝑊′(j)) is a partial semigraph of 𝐺∗ for each j ∈ 𝐴, the quadruple 𝐺′′ = (𝐺∗, 𝑄, 𝑊′, 𝐴) 

satisfies the definition of a soft semigraph. 

By constructing 𝐺′ and 𝐺′′ as shown, we have demonstrated that a hypersoft semigraph 𝐺 can be transformed 

into a semigraph 𝐺′ and a soft semigraph 𝐺′′. 

4.5 |Future Tasks: Extension of Near Set and Decision-theoretic Rough Set 

Future research directions include various extensions of existing concepts. For example, We aim to define 

new sets, such as Soft Near Sets, Soft Expert Near Sets, Hypersoft Near Sets, Soft Decision-Theoretic Rough 

Sets, and Hypersoft Decision-Theoretic Rough Sets by extending Near Sets [108, 112, 165-167] and Decision 

Theoretic Rough Sets [129-133, 170] through Soft Sets, Soft Expert Sets(cf., 10, 12, 20, 21, 168, 179]), and 

Hypersoft Sets. Near sets are collections that are either spatially or descriptively close, often sharing 

characteristics or elements. Decision-Theoretic Rough Sets, meanwhile, utilize rough set approximations for 

classification, leveraging Bayesian decision theory to minimize risk based on observed evidence. Alongside 

these definitions, I intend to explore their graphical representations, mathematical properties, potential 

applications, and construction algorithms. 

4.6 |Future Tasks: Various Hypersoft Set 

In the future, we intend to explore the mathematical structures of Z-hypersoft sets and Z-hypersoft fuzzy 

rough sets as extensions of Z-soft sets and Z-soft fuzzy rough sets [232-234, 238]. This exploration includes 

related concepts, such as Z-numbers [19, 38, 156, 230]. Furthermore, We anticipate progress in future research 

on Z-hypersoft graphs and Z-hypersoft fuzzy rough graphs, which graphically represent these concepts. 

Other types of sets, such as Positive Sets [107, 163], Boffa Sets [29, 36 136], Meta Sets [122, 206, 207], 

Hyperfuzzy Sets [95, 121], and Naive Sets [103, 211], are also recognized. We aim to consider generalized 

concepts of Soft Sets, Hypersoft Sets, Soft Graphs, Hypersoft Graphs, and Rough Graphs by incorporating 

these ideas. For overviews of well-known types of sets, please refer to survey papers as needed [79]. 
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