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Abstract

Distribution planning (DP) is a process in which we study the way to get materials and distribute the product from
the delivery point to the consuming point after production planning in the supply chain. The limits of possible
creation in a model are stock holding, deferred buying, and transportation costs while thinking about the time value
of money. Since uncertainty is an undeniable issue in any evident creation framework, fuzzy sets (FS) have been
applied in the proposed mathematical modeling. During the COVID-19 pandemic, to maintain physical distance
among, humans, used & unused equipment, and daily needs, the researchers kept interval-valued fuzzy numbers
(IVENS) in place of crisp numbers that are much more effective to address uncertainty & hesitation in real-world
situations. The cost, consumption, and delivery in distribution planning problems (DPP) are not as effective as crisp
numbers in compression of fuzzy numbers (FNs). A realistic numerical model in the form of fully fuzzy DPP
(FFDPP) has been introduced to show the practical application of the model. The solution procedure and results
show the feasibility and validity of the mathematical model. Here we propose the concept of interval-valued bipolar
trapezoidal fuzzy number (IVBTtFN) and its operations in the FFDPP, where fuzzy variables are required to be
equal to either O or 1. The use of IVBTtEN in place of crisp numbers is more suitable for distributing the necessary
equipment, medicines, food products, and other relevant items from one place to another in situations like COVID-
19. The solution with the conclusion of FFDPP is introduced to better understand and execute our proposed
methodology and results with IVBTtFNss.

Keywords: Interval-Valued Fuzzy Numbers, Interval-Valued Bipolar Trapezoidal Fuzzy Number, Fully Fuzzy Distribution
Planning Problem.

1 | Introduction

Nowadays, manufacturing organizations have been constrained to find methods to plan and work powerful
inventory chains to boost the advantage of the uncertain business environment and to fulfill client needs with
globalization and the advancement of the business community in recent times [7], [27]. To optimize
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production and distribution planning problems simultaneously, extraordinary efforts are needed. In different
manufacturing environments, the advantages of integrated production-distribution planning have been
adopted by researchers [1], [22], [23]. The latest research on the maximum integrated production-distribution
models is deterministic in the area of integrated production and distribution planning, although one of the
real factors of current creation frameworks is that the objectives and other significant data sources, market
demand, and production rates are not deterministic. In such a circumstance, fuzzy and stochastic
mathematical modeling can be applied to adapt to the decision-making under the uncertainties of
manufacturing environments [2], [20], [24]. Most recently, fuzzy programming, as one of the methods that is
able to take into account the uncertainty of manufacturing systems has been applied in integrated production-
distribution planning problems. For more study in this field see [3], [16], [17], [18], [21], [28]. Due to some
vague information, inexact perception, and environmental factors, the parameters of integer linear
programming problems are essential. To handle such type of uncertainty, Zadeh [29] 1965 introduced the
concept of FS, by which the researchers can check the uncertainty in engineering, industrial, distribution, and
management problems [11-15], [30].

Lee in 2000 introduced the concept of bipolar FS, which was the extension of FS [19]. According to Bosc
and Pivert, bipolarity represents the tendency of the human mind to reason and make decisions based on
pessimistic and optimistic outcomes [5]. Optimistic information reflects, what is permitted, desirable,
satisfactory or acceptable, while a pessimistic statement reflects, what is impossible, non-reachable, revertible
ot forbidden. The values or objects that are to be rejected or not satisfy the constraints correspond to negative
preference, while positive preference corresponds to user wishes, which are more acceptable than others. For
more rapid developments in bipolar FS and its operation see ([6], [8], [9] and references therein).

In this FFTP, all parameters such as capital budgeting, fixed cost, distribution system, and product market
share are in the form of IVBTtFNs by using 0-1 variables to maintain indeterminacy. For penetrating the
quality solution of FFTP, there exist truth, indeterminacy, and falsity membership functions. This study aims
to design a fully fuzzy mathematical model of the distribution system that determines only the economical
and best site selection that provides minimum transportation cost for shipping the products to the issuing
nodes in the unsettled domain of the supply chain.

This study aims to develop a production-distribution mathematical model that not only determines the
production planning of the company but also selects the best location for setting up a new manufacturing
plant from where the products can be distributed to the canters or retailers efficiently. Moreover, since some
data from real-world manufacturing environments are unobtainable or imprecise, to provide a more realistic
mathematical model, FS theory has been applied in this study.

2 | Problem Description

This study assumes that a hardware manufacturing company produces different kinds of hardware items in a
fixed city. The main setup of the company is at city C from where items are dispatched to several distribution
centers located atD;, D, and D,, to satisfy imprecise demand. On the other hand, the company has more
demand for products in different parts of the country, so that the production group of the company plans to
increase the capacity by setting up new branches of the company in new cities say C,, C,, C;and C,. The
company capacity, demand, and price are imprecise and fuzzy due to uncertain or incomplete available
records. An FFDPP mathematical model not only determines the optimal production but also to set up new
plants in different cities to enhance the economic condition that provides the minimum transportation cost

of the new distribution centers in an uncertain environment.
3 | Preliminaries

To handle some uncertainties in FS [1], the extensions of FS, bipolar fuzzy sets [10], and interval-valued
bipolar fuzzy sets with application are introduced.



97 Jain et al.| HyperSoft Set Meth. Eng. 1 (2024) 95-108

Definition 3.1. [30]: A FS A of a non-empty set X is defined as A= {<x, yA(x)>/x € X} where
5 (x) : X —[0,1]is the membership function.

Definition 3.2. A FN (Figure 1)on the universal set R is a convex, normalized fuzzy set A, where the
membership function p;(x) : X — [0,1]is continuous, strictly increasing on [a, b] and strictly decreasing on [c,

d], p;(x)=1, forall xe[bc] where a<b<c<dand p;(x)=0, forall xe(-o0,a]u[d ).

Figure 1. Fuzzy number.

Definition 3.3. [26]: A trapezoidal fuzzy number [TrFN] denoted as A=(a,b,c,d), with its membership

function p;(x)on R, is given by

(x-a)/(b-a), for a<x<b

) 1, for b<x<c

-Xx)=

BV (@-x))(d-c), for c<x<d
0, otherwise

If »=c¢in TrFN A= (a,b,c,d), then it becomes triangular FN A= (a,b,c).

Definition 3.4. [10]: Let X be a non-empty set. Then, a bipolar valued fuzzy set, denoted by A, is defined

as;
Ay 00 ={(x 145, (0), 155 (0)) - x € X}

Where: #;(X): X —[0,1] and ;(x): X —[0,1]. The positive membership degree ;(X) denotes the
satisfaction degree of an element x to the property corresponding to A, and the negative membership degree

5 (X) denotes the satisfaction degree of x to some implicit counter property of A, .

4 | Interval Valued Bipolar Fuzzy Set

Interval valued bipolar fuzzy set IVBES) and its operations ate as follows:

Definition 4.1. An IVBFS is denoted as A" in X and defined as A" = [{x (T3 00, (x)>} X e x} , where

To 00 =] ity 0015 (9], T (0 =] sy (0,225 00 | sty 4y 1 X 1010 and el sy - X —>[0]. 1F X

has only one element then IVBES becomes interval-valued bipolar fuzzy number [IVBFN] and denoted as

A = o[y 00y 00 ][ty 09,5, 0]
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Definition 4.2. An interval-valued bipolar trapezoidal fuzzy number (IVBTtFN) is a special I'S on the set of
real numbers R as shown in Figure 2, defined as:

= {(abied) ([t 094 09 ][ sy sy )

where the left membership function is [,u;;_v (X)’”gi; (X)], the right membership [,u;;v (X),#Zv (X)], are

respectively as follows:

(x—a)yli\;iv/(b—a); a<x<b (x—a)y/f\;iv/(b—a); a<x<b
A b<x<c *,V, b<x<c
T (0= T (¥) =
(d = X) /(d c); c<x<d (d = X) st /(d c); c<x<d
0; otherwise 0; otherwise

If a>0 and at least one d >0, then A" called positive IVBTfFN and denoted as AY > 0. similarly if d <0,
and atleast a <0, then IVBTtFN called negative i.e. AY <O0.
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Figure 2. [IVBSVTYFN.

Some important max-min norm operations on IVBTtEN as follows:
Lt &Y =(@,bu6 6 [ ey 00,4, 09 ][4ty 00,45 09 )
~ (@020 s 0ty (0] [ W0ty (0 ]}, then

!

o maX(u. maX(uf:;v,ﬂBb
L Y +By =( (3 +a,,b +b,,c +c,,d, +d,);

)
)
)
)
]

1L ALV_BILVZ (ai_dZ'bl_CZ’cl_bZ'dl

{mln Hy, ,u) (

{mln(ﬂ wo M v) mln(,u'%vu,uB;v
R* R*

{max(”Al.V g )y )

III AJI BIV = <(a1‘a2’bl'b2'C1'C2’dl'dz);[{ﬂlﬁ_‘;/ lu::ilr:/ 7#2;:/ ﬂg:; }i{ﬂ;;y ﬂé:/ rﬂ'z:;/ :ugRl:;I } i(dl > 07 d2 > O)>
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(G 2t s 20 () (s 1 ) ]2 >0

IR =
(00, 26,2, 2 ( sy ) (s ) 2 <0

IV.

L L R* R*
Vet 1 oty 1y

V. AVIBY =((ala,b /b,c/c,,d/d,); ;(d, >0,d, >0)

Hig | gy sty | gy
et () oy ) ]2

. (AY) =
v ) <((df-0f'bf,af):[(y§iv i )(u,; Hi )D;/1 <0
vi.  (AY) = <(a1‘1,b;1,c;1, d; 1);{[#,@ 0015 00 || 1ty (09,125, (x)}}>

Definition 4.3. Let AY = <(31,b11011d1)?{[#§;y (X),,ugiV (X)},[ygiv (X)'”Z:v (X)J}> be a IVBTtFN. The primary

application of score function is to drag the judgment of conversion of IVBTtEN into crisp number. The
a, +b +¢ +d,

mean of IVBTtFN components is ( 1

J and the score value of the membership portion is

L R L R*
{”Z\:Y Mgy et

1 } then the score function S(AJ'IV ) of a IVBTtEN are defined as follows:

(b sl vy )
(A7) 16

Definition 4.4. et AY =<(a1,bl,cl,dl);{[u§|v 00, 45 00 ][ty 00,5 (x)]}>

BY = <(az,b2,02,d2);{[u;iv (X),,ugg;v (X)]'[ﬂé;v (X),,u;;:v (X)]}>, are two IVBTtFNs on the set of real numbers,

then if

S(AY)<s(8Y )= AY <8y

®-
o, SUA)s(E) =AY -8
SR =s(A) =AY -8

Example 4.1. Let X ={x,%,,%}. The two IVBTtFN in X are

AY =((2,5,7,9);[0.4,06],[-0.2,-0.1]) and By =((L 3,6,8);[0.5,0.6],[-0.5,-0.2]) then's( A} ) =1.00625,
S(éb':/ ) =0.45. Here S(A)'IV ) > S(Igb':/ ) implies that AY > BY.
5 | Mathematical Formulation

The mathematical formulation of FFDPP, where delivered units, cost, demands and supplies are in the form
of IVBTtFN. The FFDPP defined as follows:

(FFDPP) Min Z = ii(xgy ), (&),

i=0 j=0
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Subject to Z()N(l:/ )

£ i
j=0

j ~(ay )i , 1=1,2,3,...,m(shipping sources),

> (% )i,- z(B,')iV)j, j=1,2,3,...,n(destination), (xgiv)ij >0,V i=1,23,...,m j=1,2,3,....,n

Ms

1l
o

where ()?,!Y )12 e ()?,!Y )53 , are according to

(8, =(@g g0t (s sy ) (st )| =123 =128

and(xg,v)i >0;i=1,2,3,4,5;j=1,2,3.

where % = the number of delivered fuzzy units shipped (in thousands) from plant 7 to distribution
center j, for each /=1,2,3,4,5 and j=1,2,3.

€, = the shipping fuzzy cost data of one unit transported from #" source to jth destination.
d, = available fuzzy supply quantity from i plant
bl =  required fuzzy demand quantity from /b distribution centre.
V)
AISO (Cbi )ij _<(a€g}/'b6év’ |vad |v) |:( |vy,u|v ) /—llvx/-llv

(Xl;:/ )ij =<(aig}/’bié}/’cié}/7dxé}/) |:(/J n/v/le 1 |v”u|v

(érng )ij = <(aak|)\|/ ,bak,“v ,Cak,)lv ’déé\./ ),|:(ﬂal_l|’:|/ :,u v ,u v :,u v >
(BL\I/ )ij = <(a5é\l/ ,bﬁl,)\i/ ’CBL\( ’dBfaY )'|:('ub"’ ,/Ibuv y /lblv r,ublv >

The above FFDPP may be written as:

n o <(a.v, .V,C.V,dw)[( .V,ﬂ.v),(ﬂﬁl,ﬂez;)b.

Min Z;' ="

i=0 j=0 iy R~ L R*
<(ax.:¥ by Gy ) [(”xgiv A ) (ko )D

Subject to jio <(a%v by oG (s sy ) (s )D s <(aa:,.v by g 0| (st oy ) (s 1 )]>

i=1,2,3,...,m(shipping sources),
j=0<(ax.;.v By oGy Ay )[(ﬂ; My )(ﬂ; My )D ~ <(as;,v g o ), [(ﬂﬁ Y7 )(ﬂbL | My )D
j=1,2,3,...,n(destination),

and <(a%v, PR N | 7 K O et )]>26’ Vi=123,..,m, j=1,23,..n
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5.1 | Solution Procedure

The total distribution cost does not depends on the mode of distribution and distance, also the framework of
the problem will be denoted by either crisp or fuzzy. For solution of FFDPP, first we convert all IVBTrFNs
into crisp values by using score function and so the FFDPP converted into simple DPP. After balancing by
existing method, the following steps are required for solution of FFDPP:

Step 5.1.1. Formulate the FFDPP form given uncertain data of company setup in new places.
Step 5.1.2. Convert the FFDPP into crisp TP by using score function.

Step 5.1.3. Solve the crisp DPP by using Microsoft excel.

Step 5.1.4. Find the corresponding solution of FFDPP.

Step 5.1.5. Compare the crisp solution and fuzzy solution.

5.2 | Steps for Balancing of FFTP

For solution of FFTP, first we convert all cost, availability and requirement, which are in the form IVBTrFNs

into crisp values by using score function. If Z(a ) < Z(b )j or Z(a ) > Z(bg’) for all , j, then for

balance, make sute as Z(EL\,’ )i = Z(BLY ); > for all 4, j by adding a row or column with zero IVBTrFNs cost

i—0 =0
entries in cost matrix. The proposed approach is applied in the following example where the author
considered an examples on FFDPP.

5.3 | Steps for Balancing of FFTP by Minimum Row-Column Method (MRCM)
The MRCM for balancing the DPP introduced by Saini [26] as follows:

Step 5.3.1. Convert IVBTFN cost &' TVBTtFN delivery a!" and IVBTtFN requirement B'JV of FFDPP in

cost matrix to crisp values by using score function S(@@y).

Step 5.3.2. If FFDPP is wunbalance ie. Zéi'v <or> ZB'-V, Vi, j than we  find
i=0 j=0

3

Ay = 2.4 and bl = Zb'v @ excess availability, or

i=0 j=0

m
bl = b' and &, = 4" @ excess requirement.
j=0 i=1

The unit distribution costs atre taken as follows:

IV ~IV IV
Citnepy = {D}'Q ¢ihl<ism, Cpyi = 1r‘<n||<rrl ¢V 1<ij<n,
&V_ gV . <V
C;=Cj;,1<i<m,1<j<n, and €. 5. =0.

Step 5.3.3. Obtain optimal solution of FFDPP by excel solver. Let the fuzzy optimal solution obtained as
U, Y 1<i<m+L1<j<n+1l

Step 5.3.4. By assuming @,, =0 and using the relation &" @V = &," for basic variables, find the values

of all the dual variables @,",1<i<m and viY, 1< j<n+],

Step 5.3.5. According to MRCM, @," =@&" and v}V =v) forl<i<m]1< j<n, obtain only central rank

zero duals.
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Table 1. Estimated requirement.

D1 ((15,25,40,45);[0.5,0.6],[-0.4,-0.1])

Distribution .
entre D2 ((05,15,30,45);{0.5,0.7],[-0.3,-0.2])
D3 ((10,20,30,40);[0.5,0.6],[-0.3,-0.2])

6 | Numerical Problem

A hardware manufacturing company has a setup in a city (C) with annual fuzzy capacities of approximately
<(17, 28,39, 48);[0.4,0.6],[—0.4,—0.2]> units. The company shipped these products to the distribution centers

located at D,, D, and D, with annual fuzzy demand are as follows:

Suppose the company has more requirements for products in different parts of the country, so that the
production group of the company plans to increase the capacity by setting up new branches of the company

in new cities say C,, C,, C,and C,. Since the market fluctuates due to uncertainty, so let's take the estimated
Y L Loy L 4 Y,

tixed fuzzy price and the annual fuzzy capacities in four cities as in Table 2:

Table 2. Annual fuzzy capacities.
Branch at Estimated fixed value in IVBTrFN Estimated Expense in IVBTtFN

C (105,127,191, 288);[0.5,0.8],[-0.4,-0.2]) (07,09,12,14);[0.5,0.7],[-0.6,-0.2])

(205,275,345,305);[0.4,0.7],[-0.4,-0.3])  ((7.5,15,25,40);[0.4,0.6],[-0.5,-0.1]

C2
G (215,335,435,525);[0.4,0.8],[-0.4,-0.3])
c (18,38,49,58);[0.6,0.7],[-0.4,-0.3]

4

o~~~
o~ o~~~

]
(10,25,40,50);[0.5,0.7],[-0.4,-0.1])
(355,455,555, 655);{0.6,0.7],[-0.7,-0.31]) )

If the company plan to setup the branch at the cityC, , then (94 ), = (@111:[1,0],[0,-1]) and the total cost
shipped from city C, to the three cities ie. at D, D, and D; must be less than or equal to
((07,09,12,14);,[05,0.7],[-0.6,-0.2]) units, otherwise, it will be similar (53 ), (95 ),and (%} ), are equal to
(1,1,1,1);[1,0],[0,-1]), if the company plans to set up the branch at city C,, city C; or city C, respectively,
(9), (95 ),and (¥5"), are equal to ((0,0,0,0):[1,0],[0,~1]). To set up new branches of the company, the
annual fuzzy price is as follows:
(105,127,191, 288);[ 0.5,0.8],[-0.4,-0.2]).( 9" ), +((207,275,345,395);[0.4,0.7],[-0.4,-0.3]).(y ), +
+((215,335,435,525);[0.4,0.8],[-0.4,-0.3]).( 53 ), +((355,455,555,655);[0.6,0.7],[-0.7,-0.31]).( %y ),

The above problem is formulated as follows:

Min Z/ = (&), (&), + (& ), (87 )+ (6 )
(Cl:'v )2 (Xbi )23 + (cbl:/ )31 ()?;Y )31 *
(Cbi )42 (Xl:?/ )42 +(Cl:iv ) 3

where

(&), =(24,7,9;[05,07],[-04,-03]), (&), =((1234)[04,06][-05-0.3])
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(&), =((25,3,35,5);[0.5,0.6],[-04,-0.1]), (&), =((3.4,56);[0.4,05],[-05,-03])
(&), =((25,34,45);[0.3,05],[-04,-0.2]), (&), =((314.2,5.1,6.6)[0.2,05],[-04,-0.3])
(&), =((657510,14;[05,07],[-04,-02]), (&), =((456,9115);[05,06],[-03-0.1])
(&), =((2545,6.580),[0.6,0.7],[-0.3-02]), ('), =((6:5,9125,15);[0.6,0.7],[-0.4,-0.3])
(&), =((345,6)[0.6,0.7],[-0.4-02]), (¢), =((2347)[06,07][-05-03])

(&), =(6,7,9.10;[0.6,0.7],[-0.3-0.2]), (¢} ), =((2.7,4.3,6.5,85);[05,06],[-0.5-0.4])
(&), =((25,3555,65)[05,07],[-04,-0.2]) ,

Subject to: (% ), +(% ), +(% ), <((07,09,12,14);[05,0.7],[-0.6,-0.2]) (9 ),
(%), +(R%), +(%), <((75.15,25,40):[04,06],[-0.5,-0.1]) (%) ),
(%), + (%), +(R),, <(@0,25,40,50);[0.,5,0.7],[-0.4,-0.1]) (9 ),
o )42 +(%y )4 ((18,38,49,58);[0.6,0.7],[-0.4,~0.1])( Vi )4

while for city C itis written as (%) ) +(%y ) +(%i"),, <((17,28,39,48);[0.3,0.6],[-0.5,-0.2]).

In the same manner the requirement (demand) at cities D,, D, and D, respectively is as follows:
(%), +(% ), + (%), +(% ), +(%" )., =((15,25,40,45);[0.5,0.6],[-0.4,-0.1])

(%) (), (1), +(R7),
(%), + (%), +(RY ), +(% ), (%), =((20,20,30,40);[0.3,0.5],[-0.5,-0.2])

and (%) )ij >0;i=1,2,3,4,5;j=1,2,3.

+(%),, =((05,15,30,45);[0.2,04],[-0.5,-0.2])

Distribution of FFDPP shown in Figure 3 as follows:

Using score function the, fuzzy cost, fuzzy requirement and fuzzy distribution in form of IVTtBFN converted
into crisp number as shown in the follows distribution matrix Table 3:

Table 3. Distribution matrix of DPP.

D, D, D, Requirement
C 0.6875 0.125 0.525 1.05
C, 0.1125 0.1875 0 2.1875
C, 1.3875 1.35625 1.075 5.46875
C, 1.6125 0.7875 0.5 6.113
C 1.6 0.275 0.675 3.3

Availability 4.6875 4.156 3.75
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Fuzzy Capacities | e— i ———

Lon §

{(07,09,12,14):[0.5,0.7].[-0.6.-0.2]} Fuzzy Demands U

D1
(20 ), ——F {15.25.40.45x[0.5.0.6].[-04.~0.1]}

cz
{[?.5:15:25:44]);[3.4::].5::[—U.i—ﬂ.l:}

D2

N PR P
13,30, 453 [0.5.0.7].[-0.5.-02]%

c3

c4a
(18,38,498,58%;[0.6,0.7].[-0.4,—0.3]}
D3
20,30,40%[0.5,0.6],[-0.3,—0.2]}
C
{(1?:23:39=453;[n_4=n_5]:[—3_4:—9_2]}
Figure 3. FFDPP.
Table 4. Balanced DPP.
D1 D2 D3 Dummy Requirement

C1 0.6875 0.125 0.525 0 1.05

C2 0.1125 0.1875 0 0 2.1875

C3 1.3875 1.35625 1.075 0 5.46875

04 1.6125 0.7875 0.5 0 6.113

C 1.6 0.275 0.675 0 3.3

Availability 4.6875 4.156 3.75 5.52575

With help of Excel Solver, the solution of DPP is shown in Tables 4 and 5 as follows:
Table 5. Solution of DPP.

D1 Dz D3 Dummy Requirement
C, 0 0 0 1.05 1.05
C, 0 0 1.01175 1.17575 2.1875
G 0 27305 273825 0 5.46875
C, 4.6875 1.4255 0 0 6.113
C 0 0 0 33 3.3
Availability 4.6875 4.156 3.75 5.52575

Here (%) ) =27305,, (%)), =273825, (%), =4.6875 (%) =14255,andhence MinZ) =1532803

32

The corresponding fuzzy values are (%) ) =((-38,-9,32,72);[0.5,0.6],[-0.3,-0.1])

(%)), =((-62,~7,49,88;[0.5,0.6],[-0.3 -0.1])



105 Jain et al.| HyperSoft Set Meth. Eng. 1 (2024) 95-108

(%)), = ((15,25,40,45);[0.5,0.6],[-0.4,-0.1])

(%),

And Min Z) =((-309.5,131.5,1226.5,2465);[0.6,0.7],[-0.1,-0.1]).

((-27,-2,24,43);[05,0.6],[-0.4,-0.1])

In conclusion the company should be enhance their product by setup new plants at city C, and from where
<(—38, 9,32, 72);[0.5,0.6],[—0.3,—0.1]> units shipped to city D, and <(—62,—7,49,88;[0.5,0.6],[—0.3,—0.1]>
units shipped to city D,respectively. Also company setup plants at city C, from where
((15,25,40,45);[0.5,0.6],[-0.4,-0.1]) units shipped to city D, and ((-27,-2,24,43);[0.5,0.6],[-0.4,-0.1])
units shipped to city D, respectively.

The above unbalanced distribution problem in Table 1 can also be balanced by using MRCM [26] as follows:

Table 6. Distribution Matrix of DPP after balanced by MRCM.

D1 Dz D3 dummy Requirement

C, 0.6875 0.125 0.525 0.125 1.05

C, 0.1125 0.1875 0 0 2.1875

G 1.3875 1.35625 1.075 1.075 5.46875

C, 1.6125 0.7875 0.5 0.5 6.113

C 1.6 0.275 0.675 0.275 3.3
dummy 0.1125 0.125 0 0 7.06775

Availability =~ 4.6875 4.156 3.75 12.5935

With the help of excel solver, the solution of DPP is shown in Table 6 as follows:

Table 7. Solution of CTP.

D, D, D, dummy Requirement
C, 0 0 0 1.05 1.05
C, 0 0 0 2.1875 2.1875
C, 0.659475 0.304233 0.304233 4.200809 5.46875
C, 1.51289 1.433656 1.298323 1.868131 6.113
C 0.763558 0.745767 0.610433 1.180242 3.3
dummy 1.751577 1.672344 1.537011 2.106819 7.06775
Availability 4.6875 4.156 3.75 12.5935

Here MinZ} =14.02306 , which shows that MRCM for balancing unbalance DPP is more suitable method.

For the comparison of objective fuzzy values and crisp values, we find the following Figure 4 and Figure 5 :
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Figure 4. Comparative values of FFDPP.
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Figure 5. Comparative values of DPP.

7 | Conclusions

In today’s competitive and uncertain business environment, design and location selection are crucial for every
company to meet customer demands and maximize profit. The above research article introduces a new
concept to design a fully fuzzy mathematical model of the distribution system that determines the economical
and best site selection that provides the minimum distribution cost for shipping the products to the issuing
nodes in the unsettled domain of the supply chain. We use here IVBTtFN in place of crisp numbers that can
handle the uncertain information more flexibly in the optimization. For example, the crisp distribution cost
is 15.32803438, when we balance the DPP by the existing method, while when we balance the same
unbalanced DPP by MRCM, the value is 14.02305707, which shows that the different unusual things and
materials can affect the final results. This type of study may be very useful in different scenarios to maintain
the physical distance between humans and used & unused equipment during pandemics like COVID-19.
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