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1 |Introduction    

Nowadays, manufacturing organizations have been constrained to find methods to plan and work powerful 

inventory chains to boost the advantage of the uncertain business environment and to fulfill client needs with 

globalization and the advancement of the business community in recent times [7], [27]. To optimize 

  HyperSoft Set Methods in Engineering   

  Journal Homepage: sciencesforce.com/hsse  

             HyperSoft Set Meth. Eng. Vol. 1 (2024) 95–108 

Paper Type: Original Article 

Fully Fuzzy Distribution Planning Problem by Using Interval-

Valued Bipolar Trapezoidal Fuzzy Number 
 

 

Chhavi Jain 1 , Rajesh Kumar Saini 2,* , Atul Sangal 3 , and Manisha 4  

 

1,3  Department of Management Studies, Sharda University, Greater Noida, Uttar Pradesh, India; Emails: chhavi.jain@sharda.ac.in; 

atul.sangal@sharda.ac.in. 
2,4  Department of Mathematical Sciences and Computer Applications, Bundelkhand University, Jhansi, India; Emails: 

prof.rksaini@bujhansi.ac.in; manisha.jhs23@bujhansi.ac.in. 

 

 

Received: 25 Nov 2023          Revised: 10 Feb 2024           Accepted: 11 Mar 2024           Published: 16 Mar 2024 

 

Abstract 

Distribution planning (DP) is a process in which we study the way to get materials and distribute the product from 

the delivery point to the consuming point after production planning in the supply chain. The limits of possible 

creation in a model are stock holding, deferred buying, and transportation costs while thinking about the time value 

of money. Since uncertainty is an undeniable issue in any evident creation framework, fuzzy sets (FS) have been 

applied in the proposed mathematical modeling. During the COVID-19 pandemic, to maintain physical distance 

among, humans, used & unused equipment, and daily needs, the researchers kept interval-valued fuzzy numbers 

(IVFNs) in place of crisp numbers that are much more effective to address uncertainty & hesitation in real-world 

situations. The cost, consumption, and delivery in distribution planning problems (DPP) are not as effective as crisp 

numbers in compression of fuzzy numbers (FNs). A realistic numerical model in the form of fully fuzzy DPP 

(FFDPP) has been introduced to show the practical application of the model. The solution procedure and results 

show the feasibility and validity of the mathematical model. Here we propose the concept of interval-valued bipolar 

trapezoidal fuzzy number (IVBTrFN) and its operations in the FFDPP, where fuzzy variables are required to be 

equal to either 0 or 1. The use of IVBTrFN in place of crisp numbers is more suitable for distributing the necessary 

equipment, medicines, food products, and other relevant items from one place to another in situations like COVID-

19. The solution with the conclusion of FFDPP is introduced to better understand and execute our proposed 

methodology and results with IVBTrFNs.  
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production and distribution planning problems simultaneously, extraordinary efforts are needed. In different 

manufacturing environments, the advantages of integrated production-distribution planning have been 

adopted by researchers [1], [22], [23]. The latest research on the maximum integrated production-distribution 

models is deterministic in the area of integrated production and distribution planning, although one of the 

real factors of current creation frameworks is that the objectives and other significant data sources, market 

demand, and production rates are not deterministic. In such a circumstance, fuzzy and stochastic 

mathematical modeling can be applied to adapt to the decision-making under the uncertainties of 

manufacturing environments [2], [20], [24]. Most recently, fuzzy programming, as one of the methods that is 

able to take into account the uncertainty of manufacturing systems has been applied in integrated production-

distribution planning problems. For more study in this field see [3], [16], [17], [18], [21], [28]. Due to some 

vague information, inexact perception, and environmental factors, the parameters of integer linear 

programming problems are essential. To handle such type of uncertainty, Zadeh [29] 1965 introduced the 

concept of FS, by which the researchers can check the uncertainty in engineering, industrial, distribution, and 

management problems [11-15], [30].  

Lee in 2000 introduced the concept of bipolar FS, which was the extension of FS [19]. According to Bosc 

and Pivert, bipolarity represents the tendency of the human mind to reason and make decisions based on 

pessimistic and optimistic outcomes [5]. Optimistic information reflects, what is permitted, desirable, 

satisfactory or acceptable, while a pessimistic statement reflects, what is impossible, non-reachable, revertible 

or forbidden. The values or objects that are to be rejected or not satisfy the constraints correspond to negative 

preference, while positive preference corresponds to user wishes, which are more acceptable than others. For 

more rapid developments in bipolar FS and its operation see ([6], [8], [9] and references therein).  

In this FFTP, all parameters such as capital budgeting, fixed cost, distribution system, and product market 

share are in the form of IVBTrFNs by using 0-1 variables to maintain indeterminacy. For penetrating the 

quality solution of FFTP, there exist truth, indeterminacy, and falsity membership functions. This study aims 

to design a fully fuzzy mathematical model of the distribution system that determines only the economical 

and best site selection that provides minimum transportation cost for shipping the products to the issuing 

nodes in the unsettled domain of the supply chain. 

This study aims to develop a production-distribution mathematical model that not only determines the 

production planning of the company but also selects the best location for setting up a new manufacturing 

plant from where the products can be distributed to the canters or retailers efficiently. Moreover, since some 

data from real-world manufacturing environments are unobtainable or imprecise, to provide a more realistic 

mathematical model, FS theory has been applied in this study. 

2 | Problem Description    

This study assumes that a hardware manufacturing company produces different kinds of hardware items in a 

fixed city. The main setup of the company is at city C from where items are dispatched to several distribution 

centers located at 1D , 2D  and 3D , to satisfy imprecise demand. On the other hand, the company has more 

demand for products in different parts of the country, so that the production group of the company plans to 

increase the capacity by setting up new branches of the company in new cities say 1,C 2 ,C 3C and 4C . The 

company capacity, demand, and price are imprecise and fuzzy due to uncertain or incomplete available 

records. An FFDPP mathematical model not only determines the optimal production but also to set up new 

plants in different cities to enhance the economic condition that provides the minimum transportation cost 

of the new distribution centers in an uncertain environment. 

3 | Preliminaries    

To handle some uncertainties in FS [1], the extensions of FS, bipolar fuzzy sets [10], and interval-valued 

bipolar fuzzy sets with application are introduced. 
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Definition 3.1. [30]:  A FS A  of a non-empty set X is defined as  ( )
A

A = x,μ x / x X  where 

( ) [0,1]
A

μ x : X is the membership function. 

Definition 3.2.  A FN (Figure 1)on the universal set R is a convex, normalized fuzzy set A , where the 

membership function ( ) [0,1]
A

μ x : X is continuous, strictly increasing on [a, b] and strictly decreasing on [c, 

d] , = 1,( )
A

μ x  for all   x b, c , where   a b c d and = 0,( )
A

μ x  for all        x - ,a d, . 

 

Figure 1. Fuzzy number. 

Definition 3.3. [26]: A trapezoidal fuzzy number [TrFN] denoted as A = (a,b,c,d) , with its membership 

function ( )
A

μ x on R, is given by  
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If  b = c in TrFN = ( )A a,b,c,d , then it becomes triangular FN ( )A = a,b,c . 

Definition 3.4. [10]:  Let X be a non-empty set. Then, a bipolar valued fuzzy set, denoted by
biA  is defined 

as;  

 ( ) , ( ), ( ) :bi bi biA x x x x x X     

Where: ( ) : [0,1]bi x X    and ( ) : [0,1]bi x X   . The positive membership degree ( )bi x   denotes the 

satisfaction degree of an element x to the property corresponding to 
biA and the negative membership degree 

( )bi x   denotes the satisfaction degree of x to some implicit counter property of
biA . 

4 | Interval Valued Bipolar Fuzzy Set 

Interval valued bipolar fuzzy set (IVBFS) and its operations are as follows: 

Definition 4.1. An IVBFS is denoted as IV

biA   in X and defined as  , ( ), ( ) :IV IV
bi bi

IV

bi A A
A x T x T x x X   

  
 , where 

( ) ( ), ( )IV IV IV
bi bi bi

L R

A A A
T x x x 

   
 

, ( ) ( ), ( )IV IV IV
bi bi bi

L R

A A A
T x x x 

   
 

, , : [0,1]IV IV
bi bi

L R

A A
X 

 

  and , : [0,1]IV IV
bi bi

L R

A A
X 

 

 . If X 

has only one element then IVBFS becomes interval-valued bipolar fuzzy number [IVBFN] and denoted as 

                                                , ( ), ( ) , ( ), ( )IV IV IV IV
bi bi bi bi

IV L R L R

bi A A A A
A x x x x x   
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Definition 4.2.  An interval-valued bipolar trapezoidal fuzzy number (IVBTrFN) is a special FS on the set of 
real numbers R as shown in Figure 2, defined as:    

 ( , , , ), ( ), ( ) , ( ), ( )IV IV IV IV
bi bi bi bi

IV L R L R

bi A A A A
A a b c d x x x x   

   

   
   

         

where the left membership function is ( ), ( )IV IV
bi bi

L R

A A
x x 

 

 
 

, the right membership ( ), ( )IV IV
bi bi

L R

A A
x x 
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If 0a   and at least one 0,d   then IV

biA  called positive IVBTrFN and denoted as 0.IV

biA   similarly if 0,d 

and atleast 0a  , then IVBTrFN called negative i.e. 0.IV

biA     

 

Figure 2. IVBSVTrFN. 

Some important max-min norm operations on IVBTrFN as follows: 

Let  1 1 1 1( , , , ); ( ), ( ) , ( ), ( )IV IV IV IV
bi bi bi bi

IV L R L R

bi A A A A
A a b c d x x x x   

   

   
   

 2 2 2 2( , , , ); ( ), ( ) , ( ), ( )IV IV IV IV
bi bi bi bi

IV L R L R

bi B B B B
B a b c d x x x x   

   

   
   

, then 

I. 
    
    

1 2 1 2 1 2 1 2

max , ,max , ,

( , , , );

min , ,min ,

IV IV IV IV
bi bi bi bi

IV IV IV IV
bi bi bi bi

L L R R

A B A B
IV IV

bi bi
L L R R

A B A B

A B a a b b c c d d

   

   

   

   

 
 

       
 
 

 

II. 
    
    

1 2 1 2 1 2 1 2

min , ,min , ,

( , , , );

max , ,max ,
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IV IV IV IV
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IV IV
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IV. 

   

   

1 1 1 1

1 1 1 1

( , , , ); , , ; 0

( , , , ); , , ; 0

IV IV IV IV
bi bi bi bi

IV IV IV IV
bi bi bi bi

L R L R

A A A A
IV

bi
L R L R

A A A A

a b c d

A

d c b a

        



        

   

   

   
    

  
  
      

V. 
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/ , / ,
/ ( / , / , / , / ); ; 0, 0
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1 1 1 1
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(( , , , ); , , ; 0

IV IV IV IV
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IV IV IV IV
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VII.     
1

1 1 1 1

1 1 1 1( , , , ); ( ), ( ) , ( ), ( )IV IV IV IV
bi bi bi bi

IV L R L R

bi A A A A
A a b c d x x x x   

   
       

   
 

Definition 4.3. Let  1 1 1 1( , , , ); ( ), ( ) , ( ), ( )IV IV IV IV
bi bi bi bi

IV L R L R

bi A A A A
A a b c d x x x x   

   

   
   

 be a IVBTrFN. The primary 

application of score function is to drag the judgment of conversion of IVBTrFN into crisp number. The 

mean of IVBTrFN components is 1 1 1 1

4

a b c d   
 
 

 and the score value of the membership portion is

4

IV IV IV IV
bi bi bi bi

L R L R

A A A A
   

   

    
 
  

 then the score function  IV

bis A  of a IVBTrFN are defined as follows: 

 
   1 1 1 1

16

IV IV IV IV
bi bi bi bi

L R L R

A A A AIV

bi

a b c d
s A

   
   

      
  

Definition 4.4.  Let  1 1 1 1( , , , ); ( ), ( ) , ( ), ( )IV IV IV IV
bi bi bi bi

IV L R L R

bi A A A A
A a b c d x x x x   

   

   
   

 

 2 2 2 2( , , , ); ( ), ( ) , ( ), ( )IV IV IV IV
bi bi bi bi

IV L R L R

bi B B B B
B a b c d x x x x   

   

   
   

, are two IVBTrFNs on the set of real numbers, 

then if 

(i). 
   IV IV IV IV

bi bi bi bis A s B A B  
 

(ii). 
   IV IV IV IV

bi bi bi bis A s B A B  
 

(iii). 
   IV IV IV IV

bi bi bi bis A s B A B  
 

Example 4.1.   Let  1 2 3, ,X x x x . The two IVBTrFN in X are 

(2,5,7,9);[0.4,0.6],[ 0.2, 0.1]IV

biA    and (1,3,6,8);[0.5,0.6],[ 0.5, 0.2]IV

biB    then   1.00625IV

bis A  , 

  0.45IV

bis B  . Here    IV IV

bi bis A s B  implies that .IV IV

bi biA B   

5 | Mathematical Formulation 

The mathematical formulation of FFDPP, where delivered units, cost, demands and supplies are in the form 

of IVBTrFN. The FFDPP defined as follows: 

   (FFDPP)  Min  
m n

IV IV IV

bi bi biij ij
i=0 j=0

= x cZ   
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Subject to      shipping sou ,rcea s
n

IV IV

bi biij i
j=0

  i = 1, 2, 3, . . . ,mx ,

     db ,estination
m

IV IV

bi biij j
i=0

  j = 1, 2, 3, . . . ,nx ,   0IV

bi ij
     i = 1, 2, 3, . . . ,m,  j = 1, 2, 3, . . . ,n.x ,   

where    
12 53

,........ ,IV IV

bi bix x  are according to 

     ( , , , ), , , , 1,2,3,4,5 1,2,3.IV IV IV IV IV IV IV IV
bi bi bi bi bi bi bi bi

IV L R L R

bi x x x x x x x xij
x a b c d ;   i = ; j =   

    
  

 

   
1 4
,.......IV IV

bi biy y  are according to        ( , , , ), , , , ; 1,2,3,4.IV IV IV IV IV IV IV IV
bi bi bi bi bi bi bi bi

IV L R L R

bi y y y y y y y yk
y a b c d k   

     
  

 

and   0 1,2,3,4,5 1,2,3.IV

bi ij
x ;i = ; j =  

where      IV

bix    the number of delivered fuzzy units shipped (in thousands) from plant i to distribution 

center j, for each i=1,2,3,4,5  and  j=1,2,3. 

IV

bic    the shipping fuzzy cost data  of one unit transported from ith source to jth destination.  

IV

bi a   available fuzzy supply quantity from ith plant 

IV

bi b   required fuzzy demand quantity from jth distribution centre. 

Also                                     ( , , , ), , , ,IV IV IV IV IV IV IV IV
bi bi bi bi bi bi bi bi

IV L R L R

bi c c c c c c c cij
c a b c d    

    
  

,     

                                             ( , , , ), , , , ,IV IV IV IV IV IV IV IV
bi bi bi bi bi bi bi bi

IV L R L R

bi x x x x x x x xij
x a b c d    

    
  

 

                                             a a a a a a a a
a ( , , , ), , , , ,IV IV IV IV IV IV IV IV

bi bi bi bi bi bi bi bi

IV L R L R

bi ij
a b c d    

    
  

 

                                             b b b b b b b b
b ( , , , ), , , , ,IV IV IV IV IV IV IV IV

bi bi bi bi bi bi bi bi

IV L R L R

bi
ij

a b c d    
    

  
 

The above FFDPP may be written as: 

   

   

,

 Mi

,

n 

( , ), , , , .

( , , , , ,

 

), ,

IV IV IV IV IV IV IV IV
bi bi bi bi bi bi bi bi

IV IV IV IV IV IV IV IV
bi bi bi bi bi bi bi bi

L R L R

m n c c c c c c c c
IV

bi
L R L Ri=0 j=0

x x x x x x x x

a b c d

=

a b c d

Z

   

   

   

   

  
   
 

      

  

Subject to  
       

 

a a a a a a a a
(

s

,

shipping sourc

, , , ), , , , ( , , , ), , ,

e

IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV
bi bi bi bi bi bi bi bi bi bi bi bi bi bi bi bi

n
L R L R L R L R

x x x x x x x x
j=0

i = 1, 2, 3, m

a b c d a b c d

 . . . ,

       
          

      

,

 

       

 

b b b b b b b b
( , , , ), , , , ( , , , ), , , ,

,destination

IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV
bi bi bi bi bi bi bi bi bi bi bi bi bi bi bi bi

n
L R L R L R L R

x x x x x x x x
j=0

a b c d a b c d

j = 1, 2, 3, . . . ,n

       
          

      
 

and                             ( , , , ), , , , 0IV IV IV IV IV IV IV IV
bi bi bi bi bi bi bi bi

L R L R

x x x x x x x x
     i = 1, 2, 3, . . . ,m,  j = 1, 2, 3, . . . ,n.a b c d ,   
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5.1 | Solution Procedure 

The total distribution cost does not depends on the mode of distribution and distance, also the framework of 

the problem will be denoted by either crisp or fuzzy. For solution of FFDPP, first we convert all IVBTrFNs 

into crisp values by using score function and so the FFDPP converted into simple DPP. After balancing by 

existing method, the following steps are required for solution of FFDPP:  

Step 5.1.1. Formulate the FFDPP form given uncertain data of company setup in new places. 

Step 5.1.2. Convert the FFDPP into crisp TP by using score function. 

Step 5.1.3. Solve the crisp DPP by using Microsoft excel. 

Step 5.1.4. Find the corresponding solution of FFDPP. 

Step 5.1.5. Compare the crisp solution and fuzzy solution.  

5.2 | Steps for Balancing of FFTP 

For solution of FFTP, first we convert all cost, availability and requirement, which are in the form IVBTrFNs 

into crisp values by using score function.  If 
0 0

(a ) (b )
m n

IV IV

bi i bi j

i j 

   or  
0 0

(a ) (b )
m n

IV IV

bi i bi j

i j 

   for all i, j, then for 

balance, make sure as  
0 0

(a ) (b )
m n

IV IV

bi i bi j

i j 

  , for all i, j by adding a row or column with zero IVBTrFNs cost 

entries in cost matrix. The proposed approach is applied in the following example where the author 

considered an examples on FFDPP. 

5.3 | Steps for Balancing of FFTP by Minimum Row-Column Method (MRCM) 

The MRCM for balancing the DPP introduced by Saini [26] as follows: 

Step 5.3.1. Convert IVBTrFN cost IV

ijc  IVBTrFN delivery IV

ia and IVBTrFN requirement IV

jb  of FFDPP in 

cost matrix to crisp values by using score function ( )IV

biS a .  

Step 5.3.2. If FFDPP is unbalance i.e. 
0 0

,     ,
m n

IV IV

i j

i j

i j
 

  a or b  than we find

(( 1) ( 1)

0 0

    and      excess   availability,
m n

IV IV IV IV

ii m i j n j

i j

 

 

   a a b b

 

or     

 ( 1) ( 1

0 1

( ) and       excess   requirement.
n

IV IV IV IV

j n j ii m

j

m

i

i

 

 

  b b a a  

The unit distribution costs are taken as follows: 

( 1) ( 1)
1 1

      min   , 1  ,           min   , 1  ,i n ij m j ij
j m

IV IV IV IV

n i
c c i m c c j n 

   
       

( 1)( 1) , 1  , 1  ,   and      0.IV IV

m

I

j

V

ij i nc c i m j n c         

Step 5.3.3. Obtain optimal solution of FFDPP by excel solver. Let the fuzzy optimal solution obtained as

, 1  1, 1  1.IV

ijx i m j n       

Step 5.3.4. By assuming '

1  0V

m

I    and using the relation  ' ' '  IV IV IV

i j ij     for basic variables, find the values 

of all the dual variables ' , 1 I

i

V i m     and  ' ,  1  1, IV

j j n      

Step 5.3.5. According to MRCM, '

i

IV

i

IV   and '

j

IV

j

IV   for 1  ,1i m j n    , obtain only central rank 

zero duals.  
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Table 1. Estimated requirement. 

Distribution 

centre 

D1    (15,25,40,45); 0.5,0.6 , 0.4, 0.1   

D2    (05,15,30,45); 0.5,0.7 , 0.3, 0.2   

D3    (10,20,30,40); 0.5,0.6 , 0.3, 0.2   

6 | Numerical Problem   

A hardware manufacturing company has a setup in a city (C) with annual fuzzy capacities of approximately

   (17,28,39,48); 0.4,0.6 , 0.4, 0.2   units. The company shipped these products to the distribution centers 

located at
1D , 

2D  and 
3D with annual fuzzy demand are as follows:  

Suppose the company has more requirements for products in different parts of the country, so that the 

production group of the company plans to increase the capacity by setting up new branches of the company 

in new cities say 1,C 2 ,C 3C and 4C . Since the market fluctuates due to uncertainty, so let's take the estimated 

fixed fuzzy price and the annual fuzzy capacities in four cities as in Table 2:  

Table 2. Annual fuzzy capacities. 

Branch  at Estimated fixed value in IVBTrFN  Estimated Expense in IVBTrFN  

1C     (105,127,191,288); 0.5,0.8 , 0.4, 0.2      (07,09,12,14); 0.5,0.7 , 0.6, 0.2   

2C     (205,275,345,395); 0.4,0.7 , 0.4, 0.3      (7.5,15,25,40); 0.4,0.6 , 0.5, 0.1   

3C     (215,335,435,525); 0.4,0.8 , 0.4, 0.3      (10,25,40,50); 0.5,0.7 , 0.4, 0.1   

4C     (355,455,555,655); 0.6,0.7 , 0.7, 0.31      (18,38,49,58); 0.6,0.7 , 0.4, 0.3   

 

If the company plan to setup the branch at the city 1C , then      
1

(1,1,1,1); 1,0 , 0, 1IV

biy    and the total cost 

shipped from city 1C  to the three cities i.e. at 1D , 2D  and 3D  must be less than or equal to 

   (07,09,12,14); 0.5,0.7 , 0.6, 0.2   units, otherwise, it will be similar  
2
,IV

biy  
3

IV

biy and  
4

 IV

biy are equal to

   (1,1,1,1); 1,0 , 0, 1 , if the company plans to set up the branch at city 2 ,C city 3C  or city 4C respectively, 

 
2
,IV

biy  
3

IV

biy and  
4

 IV

biy  are equal to    (0,0,0,0); 1,0 , 0, 1 . To set up new branches of the company, the 

annual fuzzy price is as follows: 

  
           

           
1 2

3 4

(105,127,191,288); 0.5,0.8 , 0.4, 0.2 . (207,275,345,395); 0.4,0.7 , 0.4, 0.3 .

(215,335,435,525); 0.4,0.8 , 0.4, 0.3 . (355,455,555,655); 0.6,0.7 , 0.7, 0.31 .

IV IV

bi bi

IV IV

bi bi

y y

y y

     

     
 

The above problem is formulated as follows: 

                   

                   

   

11 11 12 12 13 13 21 21 22 22

23 23 31 31 32 32 33 33 41 41

42 42

Min IV IV IV IV IV IV IV IV IV IV IV

bi bi bi bi bi bi bi bi bi bi bi

IV IV IV IV IV IV IV IV IV IV

bi bi bi bi bi bi bi bi bi bi

IV IV

bi bi

c x c x c x c x c x

c x c x c x c x c x

c x c

Z     

   





                

               
43 43 51 51 52 52 53 53

1 2 3 41 2 3 4

IV IV IV IV IV IV IV IV

bi bi bi bi bi bi bi bi

IV IV IV IV IV IV IV IV

bi bi bi bi bi bi bi bi

x c x c x c x

C y C y C y C y

   

  

 

where  

     
11

(2,4,7,9); 0.5,0.7 , 0.4, 0.3IV

bic    ,      
12

(1,2,3,4); 0.4,0.6 , 0.5, 0.3IV

bic     
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13

(2.5,3,3.5,5); 0.5,0.6 , 0.4, 0.1IV

bic    ,       
21

(3,4,5,6); 0.4,0.5 , 0.5, 0.3IV

bic     

     
22

(2.5,3,4,4.5); 0.3,0.5 , 0.4, 0.2IV

bic    ,       
23

(3.1,4.2,5.1,6.6); 0.2,0.5 , 0.4, 0.3IV

bic     

     
31

(5.5,7.5,10,14); 0.5,0.7 , 0.4, 0.2IV

bic    ,       
32

(4.5,6,9,11.5); 0.5,0.6 , 0.3, 0.1IV

bic     

     
33

(2.5,4.5,6.5,8.0); 0.6,0.7 , 0.3, 0.2IV

bic    ,      
41

(6.5,9,12.5,15); 0.6,0.7 , 0.4, 0.3IV

bic     

     
42

(3,4,5,6); 0.6,0.7 , 0.4, 0.2IV

bic    ,       
43

(2,3,4,7); 0.6,0.7 , 0.5, 0.3IV

bic     

     
51

(5,7,9,11); 0.6,0.7 , 0.3, 0.2IV

bic    ,       
52

(2.7,4.3,6.5,8.5); 0.5,0.6 , 0.5, 0.4IV

bic     

     
53

(2.5,3.5,5.5,6.5); 0.5,0.7 , 0.4, 0.2IV

bic    ,  

Subject to:            
11 12 13 1

(07,09,12,14); 0.5,0.7 , 0.6, 0.2IV IV IV IV

bi bi bi bix x x y       

           
21 22 23 2

(7.5,15,25,40); 0.4,0.6 , 0.5, 0.1IV IV IV IV

bi bi bi bix x x y      

           
31 32 33 3

(10,25,40,50); 0.5,0.7 , 0.4, 0.1IV IV IV IV

bi bi bi bix x x y      

           
41 42 43 4

(18,38,49,58); 0.6,0.7 , 0.4, 0.1IV IV IV IV

bi bi bi bix x x y      

while for city C it is written as          
51 52 53

(17,28,39,48); 0.3,0.6 , 0.5, 0.2IV IV IV

bi bi bix x x     .  

In the same manner the requirement (demand) at cities 1D , 2D  and 3D  respectively is as follows:  

             
11 21 31 41 51

(15,25,40,45); 0.5,0.6 , 0.4, 0.1IV IV IV IV IV

bi bi bi bi bix x x x x         

             
12 22 32 42 52

(05,15,30,45); 0.2,0.4 , 0.5, 0.2IV IV IV IV IV

bi bi bi bi bix x x x x        

             
13 23 33 43 53

(10,20,30,40); 0.3,0.5 , 0.5, 0.2IV IV IV IV IV

bi bi bi bi bix x x x x        

and    0 1,2,3,4,5 1,2,3.IV

bi ij
x ;i = ; j =  

Distribution of FFDPP shown in Figure 3 as follows: 

Using score function the, fuzzy cost, fuzzy requirement and fuzzy distribution in form of IVTrBFN converted 

into crisp number as shown in the follows distribution matrix Table 3: 

        Table 3. Distribution matrix of DPP. 

 1D  2D  3D  Requirement 

1C  0.6875 0.125 0.525 1.05 

2C  0.1125 0.1875 0 2.1875 

3C  1.3875 1.35625 1.075 5.46875 

4C  1.6125 0.7875 0.5 6.113 

C  1.6 0.275 0.675 3.3 

Availability 4.6875 4.156 3.75  
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Figure 3. FFDPP. 

Table 4. Balanced DPP. 

 1D  2D  3D  Dummy Requirement 

1C  0.6875 0.125 0.525 0 1.05 

2C  0.1125 0.1875 0 0 2.1875 

3C  1.3875 1.35625 1.075 0 5.46875 

4C  1.6125 0.7875 0.5 0 6.113 

C  1.6 0.275 0.675 0 3.3 

Availability 4.6875 4.156 3.75 5.52575  

 

With help of Excel Solver, the solution of DPP is shown in Tables 4 and 5 as follows: 

Table 5. Solution of DPP. 

 1D  2D  3D  Dummy Requirement 

1C  0 0 0 1.05 1.05 

2C  0 0 1.01175 1.17575 2.1875 

3C  0 2.7305 2.73825 0 5.46875 

4C  4.6875 1.4255 0 0 6.113 

C  0 0 0 3.3 3.3 

Availability 4.6875 4.156 3.75 5.52575  

 

Here  
32

2.7305,IV

bix  ,   
33

2.73825,IV

bix   
41

4.6875,IV

bix    
42

1.4255IV

bix  , and hence  Min 15.32803IV

biZ 

The corresponding fuzzy values are      
32

( 38, 9,32,72); 0.5,0.6 , 0.3, 0.1IV

bix       

      
33

( 62, 7,49,88; 0.5,0.6 , 0.3, 0.1IV

bix       
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41

(15,25,40,45); 0.5,0.6 , 0.4, 0.1IV

bix     

      
42

( 27, 2,24,43); 0.5,0.6 , 0.4, 0.1IV

bix       

And    ( 309.5,131.5,1226.5,2465); 0.6,0.7 , 0.1, 0.1Min IV

biZ    . 

In conclusion the company should be enhance their product by setup new plants at city 
3C  and from where 

   ( 38, 9,32,72); 0.5,0.6 , 0.3, 0.1     units shipped to city 
2D  and    ( 62, 7,49,88; 0.5,0.6 , 0.3, 0.1     

units shipped to city 
3D respectively. Also company setup plants at city 

4C  from where 

   (15,25,40,45); 0.5,0.6 , 0.4, 0.1   units shipped to city 
1D  and    ( 27, 2,24,43); 0.5,0.6 , 0.4, 0.1     

units shipped to city 
2D respectively. 

The above unbalanced distribution problem in Table 1 can also be balanced by using MRCM [26] as follows: 

Table 6. Distribution Matrix of DPP after balanced by MRCM. 

 1D  
2D  

3D  dummy Requirement 

1C  0.6875 0.125 0.525 0.125 1.05 

2C  0.1125 0.1875 0 0 2.1875 

3C  1.3875 1.35625 1.075 1.075 5.46875 

4C  1.6125 0.7875 0.5 0.5 6.113 

C  1.6 0.275 0.675 0.275 3.3 

dummy 0.1125 0.125 0 0 7.06775 

Availability 4.6875 4.156 3.75 12.5935  

 

With the help of excel solver, the solution of DPP is shown in Table 6 as follows: 

Table 7. Solution of CTP. 

 
1D  2D  3D  dummy Requirement 

1C  0 0 0 1.05 1.05 

2C  0 0 0 2.1875 2.1875 

3C  0.659475 0.304233 0.304233 4.200809 5.46875 

4C  1.51289 1.433656 1.298323 1.868131 6.113 

C  0.763558 0.745767 0.610433 1.180242 3.3 

dummy 1.751577 1.672344 1.537011 2.106819 7.06775 

Availability  4.6875 4.156 3.75 12.5935   

 

Here  Min 14.02306IV

biZ  , which shows that MRCM for balancing unbalance DPP is more suitable method.   

For the comparison of objective fuzzy values and crisp values, we find the following Figure 4 and Figure 5 : 
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Figure 4. Comparative values of FFDPP. 

 

Figure 5. Comparative values of DPP. 

7 |Conclusions    

In today’s competitive and uncertain business environment, design and location selection are crucial for every 

company to meet customer demands and maximize profit. The above research article introduces a new 

concept to design a fully fuzzy mathematical model of the distribution system that determines the economical 

and best site selection that provides the minimum distribution cost for shipping the products to the issuing 

nodes in the unsettled domain of the supply chain. We use here IVBTrFN in place of crisp numbers that can 

handle the uncertain information more flexibly in the optimization. For example, the crisp distribution cost 

is 15.32803438, when we balance the DPP by the existing method, while when we balance the same 

unbalanced DPP by MRCM, the value is 14.02305707, which shows that the different unusual things and 

materials can affect the final results. This type of study may be very useful in different scenarios to maintain 

the physical distance between humans and used & unused equipment during pandemics like COVID-19. 
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