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Abstract: The potential for lithium-ion batteries to become unstable can lead to operational 

malfunctions within the system and result in safety incidents. Therefore, accurately forecasting the 

remaining useful life (RUL) is beneficial in mitigating the likelihood of battery failure and 

prolonging its operational lifespan. Hence, precise estimation of RUL can help prevent numerous 

safety incidents and minimize resource wastage, presenting a significant and complex issue. This 

paper introduces a Deep Learning (DL) model that utilizes Long Short-Term Memory (LSTM) and 

attention mechanism to improve the accuracy of predicting the RUL of lithium-ion batteries. 

Initially, the battery capacity regeneration phenomenon is captured by applying four LSTM layers, 

followed by implementing an attention mechanism to align input and output sequences based on 

the content or semantics of the input sequence. Finally, the final prediction outcomes are generated 

via a Fully Connected (FC) layer. The efficacy of the proposed model is assessed through the 

utilization of the NASA dataset, and its performance is contrasted with various deep learning 

models to highlight its efficacy. Results from the experiments demonstrate that the suggested At-

LSTM presents a robust option for forecasting the RUL of lithium-ion batteries, as it delivers 

superior results compared to all other models examined. 

Keywords: Lithium-ion Batteries Prognosis; Remaining Useful Life; Long Short-term Memory 

Network; Attention Mechanism. 

  

 

1. Introduction 

Two major issues facing the world community are environmental degradation and the energy 

crisis [1]. Consequently, numerous nations have proactively initiated the growth of the electric vehicle 

sector in recent times [2]. In recent years, there has been a significant increase in the utilization of 

conventional coal-based fossil fuels, leading to energy shortages and significant environmental harm 

[3]. Lithium-ion batteries (LIBs) have gained significant popularity as a substitute for conventional 

energy sources in the realm of new sustainable energy. Their utilization spans a range of sectors 

including Electric Vehicles (EVs), Automated Guided Vehicles (AGVs), and aerospace due to their 

exceptional attributes, such as high energy density, extended lifespan, and minimal self-discharge 

rate [4-8]. Nevertheless, the efficiency of lithium-ion batteries tends to decline over time due to usage, 

resulting in a range of issues such as reduced capacity and shorter driving distances. Once the 

maximum discharging capacity of the battery drops to 70%–80% of its original rating, it is considered 

to have reached the threshold for capacity failure and is deemed unsuitable for electric vehicle (EV) 

use, necessitating retirement[9]. Over time, lithium batteries will deteriorate in capacity due to 

prolonged use, potentially resulting in equipment malfunctions and serious incidents [10]. 

Conversely, premature battery replacement may result in the wastage of valuable battery resources 
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[11]. Hence, accurately forecasting the Remaining Useful Life (RUL) of lithium-ion batteries is crucial. 

Precise predictions can help avoid accidents resulting from battery degradation and reduce 

unnecessary waste from premature battery replacements [12]. Several research methodologies have 

been created by academics in recent years to study battery capacity and predict RUL. These 

approaches can typically be categorized into three groups: model-based methods [13], and data-

driven approaches [14]. 

In model-based approaches involve creating mathematical or physical representations based on 

data collected through measurements to comprehend the degradation process of batteries [9]. These 

techniques frequently demand existing information to delineate the inner workings of the lithium-

ion battery, such as the Electrochemical model (EM), equivalent circuit model (ECM), and empirical 

model, which are commonly employed for forecasting the capacity or RUL of lithium-ion batteries 

within model-based methodologies [15]. Sadabadi et al. [16] formulated an advanced single-particle 

model incorporating improved parameters to forecast the RUL, which has the potential to be applied 

utilizing data from Electric Vehicle (EV) charging. This model offers a foundational explanation for 

the degradation of batteries resulting from electrochemical processes occurring within them. Kim et 

al. [17] formulated a method for predicting RUL by integrating anomaly detection techniques with 

particle filtering (PF) based forecasting using a basic empirical degradation model. Chen et al. [18] 

introduced an enhanced method for predicting RUL using a particle filter. This method was 

developed by merging the linear optimization resampling particle filter (LORPF) with the sliding-

window gray model (SGM). Jiao et al. [19] introduced an innovative PF framework utilizing a 

conditional variational autoencoder (CVAE) and a reweighting technique for the estimation of the 

RUL of batteries. Despite being able to predict the RUL, these methods still have certain drawbacks. 

Firstly, it can be challenging to fine-tune the model parameters. Secondly, observer techniques like 

the particle filter are prone to issues such as particle impoverishment, resulting in inaccurate RUL 

predictions. Thirdly, the computational requirements of model-based approaches are significant, 

making it challenging to develop a model that accurately captures the aging properties of a battery 

at all stages of its lifespan due to the intricate chemical reactions involved. On the other hand, data-

driven methods do not necessitate considering chemical reactions and aging dynamics within 

batteries. These methods involve extracting aging characteristics from extensive data collected at 

various stages of aging and establishing their correlation with RUL, making them widely utilized for 

RUL estimation. 

The second approach involves data-driven techniques. In contrast to model-based approaches, 

data-driven methods do not require the construction of a sophisticated electrochemical model for 

lithium-ion batteries. Instead, they primarily extract implicit information from capacity degradation 

data of lithium-ion batteries to enable the prediction of RUL. Data-driven techniques encompass 

Machine Learning (ML) and Deep Learning (DL) methodologies. Machine learning techniques have 

become a powerful tool in various aspects of our lives, providing computers with the ability to learn 

from data without explicit programming, continuously improving their performance. The ability of 

machine learning to extract knowledge from data and perform tasks automatically is transforming 

how we live, work, and interact with technology. With further advancements in this field, we can 

expect even more profound impacts on our global society. Machine learning techniques can leverage 

large sets of sensor data, operating parameters, and past maintenance records. This data-driven 

approach allows machine learning models to understand complex relationships among different 

factors that influence the state and deterioration of machinery. Patil et al. [20] identified crucial 

characteristics from voltage and temperature data, combining support vector machine techniques to 

address both classification and regression objectives in order to estimate the gross value and predict 

the RUL. Zhang et al. [21] utilized the relevance vector machine (RVM) enhanced by the differential 

evolution (DE) algorithm to predict the RUL of batteries using denoised data generated by the 

wavelet denoising algorithm. Liu et al. [22] conducted prognostics of RUL by employing an RVM and 
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several Gaussian Process Regression (GPR) models, with the health indicators (HIs) being utilized as 

input for the models. Machine learning algorithms have advanced in the estimation of RUL for 

Lithium-ion batteries; however, many of these approaches necessitate extensive feature engineering 

in order to identify key features. Furthermore, the modest complexity of these models constrains their 

ability to adequately capture information and demonstrate strong generalization performance. 

Deep learning, a prominent subset of machine learning, has led to substantial changes in various 

aspects of our daily lives by utilizing artificial neural networks with multiple layers to process 

information in a way that mimics the cognitive functions of the human brain. The advancement of 

deep learning techniques is primarily attributed to their versatility, as they eliminate the requirement 

for manual feature engineering by autonomously extracting feature representations. Predicting RUL 

involves addressing a time series regression issue, where deep learning models have proven adept at 

capturing temporal patterns from historical data. widely utilized deep learning structures like 

Convolutional Neural Networks (CNNs) [23], Recurrent Neural Networks (RNNs) [24], and 

Transformer [25] are commonly utilized in the prediction of RUL for Lithium-Ion Batteries. Catelani 

et al. [26] combined the RNN with a filtering-based method to predict the RUL. In this approach, the 

optimization of the RNN's performance is guaranteed through the utilization of Genetic Algorithms 

(GA). Zhang et al. [27] crafted a hybrid parallel residual CNN architecture, leveraging the network 

to capture characteristics from charging data by integrating voltage, current, and temperature profiles 

from various cycles. chinomona et al. [28] carried out a forward selection-LSTM method, which 

effectively identifies an optimal subset of features from the original signals by excluding unnecessary 

ones. Ren et al. [8] merged an enhanced CNN with LSTM, with the CNN focusing on capturing 

profound information and the LSTM specializing in extracting temporal information. Park et al. [29] 

introduced a many-to-one architecture of LSTM for precise prediction of the RUL for lithium-ion 

batteries. Particle swarm optimization was utilized to optimize the parameters of the model. A hybrid 

Elman-LSTM model was introduced by [30] for the prediction of RUL. The Elman neural network 

and LSTM were employed for the prediction of both high- and low-frequency components derived 

from the empirical mode decomposition algorithm. Ren et al. [8] utilized an auto-encoder to enhance 

the initial dataset, subsequently extracting in-depth insights through the utilization of CNN and Long 

Short-Term Memory Neural Network (LSTM NN). 

Most methods for predicting RUL rely on having a sufficient amount of historical data. However, 

the availability of data is limited due to the constraints of charge and discharge cycles in Lithium-ion 

Batteries. Even though the cycle life of the battery is increasing gradually as Lithium-ion battery 

manufacturing technology advances, the existing historical data remains inadequate for developing 

accurate prediction models. Moreover, assessing the battery's lifespan based on long-term historical 

cycle data becomes irrelevant as the battery nears the end of its useful life after prolonged cycle 

sampling. 

Driven by the aforementioned rationale, this study introduces a new methodology that 

integrates the LSTM network and attention mechanism (At-LSTM) to enhance the accuracy of RUL 

prediction for lithium-ion batteries. Initially, a variety of temporal characteristics are chosen and 

employed as inputs for the training and evaluation of the suggested model. Through 

experimentation, these features have been demonstrated to exhibit a significant correlation with 

capacity, which is widely recognized as a key indicator of battery health. An attention mechanism 

has been integrated into the LSTM architecture to allocate weight values to the extracted data, thereby 

emphasizing crucial information and enhancing the RUL prediction of the model. We assess the 

effectiveness of the AT-LSTM model on the commonly used NASA [31] dataset for predicting the 

RUL of Lithium-ion batteries. Our experimental findings demonstrate that the proposed approach 

reduces uncertainty in multi-step prediction tasks and surpasses the performance of alternative 

existing models in terms of accuracy. The major contributions of this paper are listed as follows: 
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1) A new approach for predicting the RUL of Lithium-ion batteries is proposed, involving 

the utilization of LSTM to capture intricate temporal characteristics from aging data, 

followed by the reconstruction of the output state using layers of attention mechanism. 

2) An attention mechanism has been developed with the aim of enhancing the accuracy of 

predicting the RUL by selectively filtering input characteristics and assigning greater 

importance to crucial features. 

3) The model's validation was conducted with the NASA dataset, demonstrating its 

superiority in predicting RUL compared to other models. 

The subsequent sections of this paper are structured as follows. The materials and methods are 

outlined in Section 2. Subsequently, the proposed model will be discussed in Section 3. This will be 

followed by the presentation of experiments and results in Section 4. Followed by applications in 

section 5. Lastly, the conclusions will be presented in Section 6. 

2. Materials and Methods  

2.1. NASA Lithium-ion batteries dataset 

To assess the effectiveness of the suggested model in predicting the Remaining Useful Life (RUL) 

of Lithium-ion batteries, the NASA dataset is utilized. This dataset is made available by the NASA 

Ames Prognostics Center of Excellence [31] and comprises information from four 18650 lithium-ion 

batteries identified as B0005, B0006, B0007, and B0018. The operational cycles of these batteries, each 

possessing a rated capacity of 2Ah, involve both charging and discharging phases. During charging, 

a constant current is applied until the battery voltage reaches 4.2V, followed by a shift to constant 

voltage charging until the current decreases to 20mA. In the discharging phase, the batteries are 

discharged at a 2A current until specific voltage thresholds are reached. The battery capacity and 

state of health (SOH) decay curves of these four batteries are shown in Figure 1. In this paper, the 

Lithium-ion batteries are configured with a capacity threshold of 1.4Ah as shown in Figure 1. Given 

the variations in operational parameters among the four batteries, the failure threshold is 1.4Ah [32], 

The precise specifications of the chosen lithium-ion batteries from NASA are presented in Table 1. 

The status of a battery is closely linked to its capacity, which is widely regarded as the primary 

indicator of battery health [33]. The capacity of a battery diminishes as it undergoes more charging 

and discharging cycles, and this decline in capacity exhibits a consistent pattern over time. As a result, 

the longevity of Lithium-ion batteries can be defined by their actual capacity. Relevant parameters 

were identified based on the timing of when each cycle of voltage, current, and temperature hits their 

respective cutoff points. 

Table 1. The precise specifications of the chosen lithium-ion batteries from NASA. 

Battery B0005 B0006 B0007 B0018 

Discharge current (A) 2 2 2 2 

Rated capacity (Ah) 2 2 2 2 

Charing/discharge cut-off voltage (V) 4.2/2.7 4.2/2.5 4.2/2.3 4.2/2.5 

Minimal charge current (mA) 20 20 20 20 

Temperature (C) 24 24 24 24 

Failure threshold (Ah) 1.4 1.4 1.4 1.4 

Capacity data (Cycles) 168 168 168 132 

 

These parameters exhibit unique time-series properties, exhibit strong associations with 

capacity, and are closely linked to the overall health of the battery system. The evolving patterns of 

different parameters during charging for B0005, B0006, B0007, and B0018 are depicted in Figure 2, 

Figure 3, and Figure 4, while the evolving patterns during discharging for B0005, B0006, B0007, and 

B0018 are illustrated in Figure 5, Figure 6, and Figure 7. With an increasing number of cycles, the 
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battery's capacity will gradually diminish. In scenarios involving constant current charging and 

discharging, an earlier attainment of the cutoff voltage leads to a quicker approach to the cutoff 

current. 

 

(a) 

 

(b) 

Figure 1. Decay curves. (a) present the capacity degradation curves of the NASA dataset, (b) present 

the SOH degradation curves of the NASA Lithium-ion batteries dataset. 

2.2. Long Short-Term Memory (LSTM) 

LSTM, introduces a novel iteration of the recurrent neural network (RNN) architecture, 

strategically designed to tackle the issue of vanishing gradients encountered in traditional RNNs, 

with a specific focus on addressing the challenges posed by long-term dependencies in predictive 

tasks. This innovative model showcases a sophisticated memory cell structure that sets it apart by its 

ability to effectively retain and utilize information over prolonged sequences, making it particularly 

well-suited for applications requiring the prediction of long-term dependencies, such as RUL 

estimation in Lithium-ion battery systems. The LSTM cell architecture is shown in Figure 8. Within 

the LSTM framework, the forget gate (𝑓𝑡), input gate (𝑖𝑡), and output gate (𝑜𝑡) constitute the three key 

components that collectively govern the flow of information and regulate the interactions within the 

network. The forget gate is responsible for determining which information should be excluded from 

the previous cell state. By considering the current input and the previous hidden state, the forget gate 

generates an output value ranging from 0 (indicating complete forgetfulness) to 1 (indicating full 

retention). The 𝑓𝑡  is mathematically defined using equation 1. The input gate is responsible for 

determining the novel data to be retained in the cell state. By taking the current input and the 

preceding hidden state as inputs, it generates an output ranging from 0 to 1. Furthermore, it generates 

a fresh candidate value intended for incorporation into the cell state. It is mathematically defined 

using equation 2. The output gate regulates the selection of information to be transmitted as the 

hidden state of the current LSTM cell, based on both the current input and the previous hidden state. 

Its output is a numerical value ranging from 0 to 1. The ot is mathematically defined using equation 

3. The candidate value 𝑐′𝑡  denotes fresh data that may be incorporated into the cell state at the present 

step (t). This value is generated by the input gate, taking into account the current input and the 

previous hidden state. The 𝑐′𝑡  mathematically defined using equation 4. Next, determine the 𝑐t value 

representing the unit state at time t that is mathematically defined using equation 5. Subsequently, 

ascertain the ℎ𝑡 value representing the hidden state at time t through mathematical equation 6. 
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𝑓𝑡 = 𝜎(𝑊𝑓 𝑥𝑡 +  𝑈𝑓 ℎ𝑡−1 +  𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑊𝑖  𝑥𝑡 + 𝑈𝑖  ℎ𝑡−1 +  𝑏𝑖)  (2) 

𝑜𝑡 = 𝜎(𝑊𝑜 𝑥𝑡 +  𝑈𝑜 ℎ𝑡−1 + 𝑏𝑜)  (3) 

𝑐′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎 𝑥𝑡 +  𝑈𝑎  ℎ𝑡−1 +  𝑏𝑎)  (4) 

𝑐𝑡 = 𝑓𝑡 ∙  𝑐𝑡−1 +  𝑖𝑡 ∙  𝑐′𝑡   (5) 

ℎ𝑡 = 𝑜𝑡  ∙  tanh(𝑐𝑡)  (6) 

Where the symbol 𝜎 denotes the sigmoid function, t represents the time step, 𝑥𝑡  signifies the 

input feature at time t, ℎ𝑡−1  denotes the output hidden state from the previous time sample, the 

parameters 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜 , 𝑊𝑎, 𝑈𝑓 , 𝑈𝑖 , 𝑈𝑜, 𝑈𝑎 , 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜 , 𝑏𝑎 are optimized during the training process. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Commencing from the 40th cycle, the alterations in voltage during the discharging process 

are recorded at intervals of every 40 cycles. (a) B0005, (b) B0006, (c) B0007, and (d) B0018. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Commencing from the 40th cycle, the alterations in current during the discharging process 

are recorded at intervals of every 40 cycles. (a) B0005, (b) B0006, (c) B0007, and (d) B0018. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Commencing from the 40th cycle, the alterations in temperature during the discharging 

process are recorded at intervals of every 40 cycles. (a) B0005, (b) B0006, (c) B0007, and (d) B0018. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Commencing from the 40th cycle, the alterations in voltage during the charging process are 

recorded at intervals of every 40 cycles. (a) B0005, (b) B0006, (c) B0007, and (d) B0018. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Commencing from the 40th cycle, the alterations in current during the charging process are 

recorded at intervals of every 40 cycles. (a) B0005, (b) B0006, (c) B0007, and (d) B0018. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Commencing from the 40th cycle, the alterations in temperature during the charging process 

are recorded at intervals of every 40 cycles. (a) B0005, (b) B0006, (c) B0007, and (d) B0018. 

2.3. Content-based Attention Mechanism 

Content-based attention, also referred to as content-based addressing or general attention, is a 

form of attention mechanism that is frequently employed in sequence-to-sequence models and neural 

networks. This mechanism is designed to align input and output sequences by considering the 

content or meaning of the input sequence. In contrast to dot-product attention, which depends on a 

learned weight vector, content-based attention directly evaluates the content of each element in the 

input sequence against the current processing step. This process aids in the identification of elements 

within the sequence that exhibit semantic similarity or relevance to the current point of interest. The 

computation of attention weights involves a linear transformation utilizing a Linear layer on the 

attention input, followed by a non-linear activation function (tanh) and a softmax operation to yield 

normalized attention weights. These weights are then utilized to calculate a context vector through a 

weighted sum of the encoder outputs. The energy is calculated by applying a linear transformation 

to the attention inputs as shown in equation 7. Then the attention weights are obtained by applying 

the softmax function to the energy tensor along the sequence length dimension as shown in equation 

8. The context vector is computed by element-wise multiplication of the attention weights with the 

attention inputs followed by summation along the sequence length dimensions shown in equation 9. 

Content-based attention enables the model to selectively concentrate on different segments of the 

input sequence, prioritizing relevant information while disregarding irrelevant or noisy input. Its 

application is prevalent in sequence-to-sequence models. 
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𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑡𝑎𝑛ℎ(𝐿𝑖𝑛𝑒𝑎𝑟(attention_inputs)) (7) 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑛𝑒𝑟𝑔𝑦) (8) 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑣𝑒𝑐𝑡𝑜𝑟 =  ∑ 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖  ×  attention_inputs𝑖

𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ

𝑖=1

 (9) 

 

 

Figure 8. LSTM cell architecture. 

3. The proposed model 

The prediction of the RUL of Lithium-ion batteries is considered a supervised regression 

problem, involving the utilization of data gathered from different sensors for the purpose of training 

and evaluating a range of Deep Learning models. This paper introduces a novel DL model called At-

LSTM, which integrates LSTM and attention mechanism, for the purpose of predicting the RUL of 

Lithium-ion batteries, as shown in Figure 9. The quantity of LSTM layers indicates the network's 

depth, which pertains to how many LSTM layers are arranged on top of each other to create the 

model. Each LSTM layer within the sequence processes the input sequentially, transmitting 

information through memory cells and gates. The output of a single LSTM layer functions as the 

input for the subsequent layer, enabling the model to acquire hierarchical representations of the input 

data. Incorporating multiple LSTM layers can empower the model to grasp intricate temporal 

relationships and develop more abstract representations of the data. In this paper, a network structure 

consisting of four LSTM layers is utilized to analyze the time sequence information extracted multiple 

times, allowing for a deep integration of the input sample data. Subsequent to the final LSTM layer, 

an attention mechanism layer is introduced to compute the neuron weights of the hidden state layer. 

This layer ultimately delivers the output through the LSTM, enabling the allocation of weight 

coefficients and data reconstruction to pinpoint the crucial aspects of the extracted features. The 

processed and hidden layer data are combined and forwarded to the fully connected (FC) layer for 

the ultimate RUL prediction. Lastly, Algorithm 1 outlines the pseudocode of the suggested model. 
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Figure 9. Flowchart of the proposed At-LSTM. 

As outlined in Algorithm 1, the suggested framework processes the input data through a series 

of steps. Initially, the input data is preprocessed and then passed to the input layer, which in turn 

feeds it to a network architecture consisting of four LSTM layers with 512 neurons each, along with a 

Tanh activation function. This architecture is designed to analyze the temporal sequence information 

iteratively, enabling a comprehensive integration of the input data samples. Subsequently, the 

network's output is directed to the Content-based Attention Mechanism to calculate the weights of 

the neurons in the hidden state layer. The resulting attention output is then concatenated with the 

data from the hidden layer and input into a fully connected layer with a single neuron to forecast the 

remaining useful life of lithium-ion batteries. 

 

Algorithm 1 Pseudo-code of At-LSTM 

Input: Input data (D), batch size (Bs),  maximum epoch (T), and learning rate (lr) 

Output: loss (𝑀𝑆𝐸), RMSE 

1: Conducting the preprocessing step 

2: Input: Construct an input layer to receive the input data 

/* Feature extraction based on the LSTM */ 

3: x: Add an LSTM layer with 512 units to x. 

4: x: Add an LSTM layer with 512 units to x. 

5: x: Add an LSTM layer with 512 units to x. 

6: x: Add an LSTM layer with 512 units to x. 

7: attention_output: Add Content-based Attention to x. 

8: x: concatenate the attention_output with x. 

/* Prediction Block */ 

9: x: Add a Linear layer with 1 node to x. 

/* Optimization process */ 

10: N = Size(D)/Bs /* Estimate the number of batches */ 

11: 𝒕 =  𝟎, Current epoch 

12: while 𝑡 < 𝑇 

13:        𝒊 =  𝟎, the current batch size. 

14:        while 𝒊 <  𝑵 

15:   Compute the Score function using the 𝒊𝒕𝒉 batch. 

Update the weights based on the Adam to optimize the score function. 

16:   𝒊 = 𝒊 + 𝟏  

17:        end while. 

18:        𝒕 = 𝒕 + 𝟏  

19: end while 
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4. Experiments and Results  

4.1. Data preprocessing 

In data processing, the NASA dataset presents various features with disparate scales, causing 

detrimental impacts on the efficacy of Deep Learning (DL) models throughout the training phase. 

The dataset encompasses parameters such as voltage, current, temperature, and capacity obtained 

from batteries. Accordingly, normalization of these parameters is imperative to eliminate potential 

distortions and biases, thereby enhancing the accuracy of DL models. Min-max scaling is the 

technique employed to normalize the feature values. This scaling method holds significance in 

machine learning, especially when addressing features with diverse scales or units. It adjusts the data 

to a consistent range, typically from 0 to 1, maintaining the original distribution shape while 

standardizing the range [34]. Mathematically, min-max scaling is defined by equation 10. Where 𝑥𝑖,𝑗 

donates the value of 𝑖𝑡ℎ sample, and 𝑗𝑡ℎ feature, 𝑥𝑗 𝑚𝑖𝑛 , 𝑥𝑗 𝑚𝑎𝑥  donates the minimum, and maximum 

values in 𝑗𝑡ℎ feature, respectively. 

𝑥′
𝑖,𝑗 =  

𝑥𝑖,𝑗 −  𝑥𝑗 𝑚𝑖𝑛

𝑥𝑗 𝑚𝑎𝑥 −  𝑥𝑗 𝑚𝑖𝑛

 (10) 

The utilization of the sliding window technique is a foundational method employed in a variety 

of signal processing and machine learning scenarios, especially in the context of handling sequential 

data such as time series. This method entails dividing a continuous flow of data points into smaller, 

partially overlapping (or non-overlapping) segments for subsequent analysis. In this process, a 

sliding window is applied to partition the input data. if the d is the initial sliding window value, and 

the number of samples in the entire training data is n, then the vector 𝑥(𝑖) within the sliding window 

as follows: 

𝑥(𝑖) =  [𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑑−1], 𝑖 = 1 →  𝑛 − 𝑑 (11) 

Upon determining the optimal embedding dimension d, the train set 𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛  can be 

formulated accordingly. These sets are represented as: 

𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 =  [(𝑥(1), 𝑥𝑑+1), … , (𝑥(𝑖), 𝑥𝑑+𝑖), … , (𝑥(𝑛−𝑑), 𝑥𝑛)], 𝑖 = 1 →  𝑛 − 𝑑 (12) 

Where 𝑥𝑑+𝑖 is the label for input data, and the testing set follows the same technique. 

 

4.2. Evaluation metrics 

in this paper, The Adam [35] optimization algorithm and mean square error (MSE) loss 

computed using equation 13 are employed for the optimization of the network parameters. The 

introduction of root mean square error (RMSE) serves as a metric to evaluate the proposed model by 

comparing the RMSE values between actual and predicted labels of all instances in the dataset. The 

RMSE value is derived through mathematical computation as described in equation 14. where 𝑁 

represents the number of samples, and 𝑦𝑖  and 𝑦′𝑖  represents the true and predicted labels of the 𝑖𝑡ℎ 

sample, respectively. Both MSE and RMSE should be minimized to enhance the accuracy of 

predicting the Remaining Useful Life (RUL) of Lithium-ion batteries. 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 −  𝑦′

𝑖
)

2
𝑁

𝑖=1

 (13) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦′

𝑖
)

2
𝑁

𝑖=1

 (14) 
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4.3. Hyperparameter tuning 

The At-LSTM model proposed in this paper involves several hyper-parameters, including 

learning rate and window size, no. of LSTM layers, which must be precisely determined to optimize 

its efficiency and reduce the RMSE. Consequently, a series of experiments are carried out in this 

research, exploring different settings for each parameter to identify the optimal values that lead to a 

considerable enhancement in the model's performance as shown in Table 2. For instance, the model's 

performance is impacted by the quantity of hidden units present in each LSTM layer. Consequently, 

numerous experiments were conducted to determine the optimal number of hidden dimensions for 

the LSTM layer, ranging from 64 to 512. The outcomes of these experiments indicate that the most 

suitable number of hidden dimensions for the LSTM layer is 512. Similarly, a series of experiments 

were carried out using window sizes of 8, 16, 32, and 64 to determine the optimal window size. The 

results of these experiments indicate that a window size of 64 is the most suitable for the given dataset. 

Table 2. Experimental Analysis of the influence of parameters on prediction results. 

 B0005 B0006 B0007 B0018 

H
id

d
en

 d
im

 

o
f 

L
S

T
M

 

64 0.0163 0.0593 0.0165 0.0229 

128 0.0156 0.0314 0.0173 0.0235 

256 0.0188 0.0472 0.0721 0.0221 

512 0.0146 0.0124 0.0121 0.0214 

W
in

d
o

w
 s

iz
e
 8 0.0428 0.0995 0.0204 0.0220 

16 0.0402 0.0315 0.0146 0.0224 

32 0.0154 0.0157 0.0132 0.0219 

64 0.0146 0.0124 0.0121 0.0214 

N
o

. 
o

f 

L
S

T
M

 3 0.0199 0.0385 0.0160 0.0223 

4 0.0146 0.0124 0.0121 0.0214 

5 0.0201 0.0399 0.0187 0.0312 

L
ea

rn
in

g
 r

a
te

 

0.0001 0.0168 0.0480 0.0742 0.0448 

0.001 0.0146 0.0124 0.0121 0.0214 

0.002 0.0176 0.0315 0.0236 0.0215 

0.01 0.0212 0.0310 0.0354 0.0268 

 

The deeper networks pose a risk of overfitting and increased computational complexity, 

necessitating several experiments to determine the optimal number of LSTM layers. experimental 

findings suggest that a network with 4 LSTM layers exhibits the highest performance as shown in 

Table 2. The learning rate is a crucial factor in the training phase and can influence the speed at which 

convergence occurs, the effectiveness of the model, and the overall stability of the training process. 

experiments indicate that a learning rate of 0.001 yields the most optimal performance. The final 

hyperparameters of the proposed model are detailed in Table 3. 

4.4. Ablation Experiments 

In the conducted ablation experiment, an analysis is carried out on the efficacy of a composite 

model structure that incorporates both the LSTM and Content-based Attention Mechanism models. 

The primary aim is to scrutinize the influence of each element on forecasting RUL of Lithium-ion 
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batteries and to gauge the collective enhancement in performance resulting from their amalgamation. 

The assessment will rely on the metrics of Root Mean Squared Error (RMSE). An analysis is conducted 

to determine how the attention mechanism affects the performance of the model. Results are 

presented in a table showing prediction errors for both LSTM and At-LSTM. Notably, the model 

performs worst in terms of prediction errors across all batteries when the attention mechanism is not 

utilized, with RMSEs of 0.0541, 0.0321, 0.0512, and 0.0570, respectively. All results are detailed in 

Table 4 and illustrated in Figure 10. The incorporation of the attention mechanism embedding leads 

to a significant reduction in errors. Experimental findings demonstrate that the inclusion of an 

attention mechanism substantially improves the model's predictive capability. Moreover, the 

performance of the method gradually improves as the attention mechanism is strengthened, 

providing further evidence of its effectiveness. 

Table 3. The At-LSTM hyperparameters. 

Parameter value 

No. of LSTM layer 4 

Hidden dim of LSTM 512 

Window size 64 

Learning rate 0.001 

Max no. of epoch 1000 

Loss MSE 

Optimizer Adam 

 

Table 4. The results of the ablation study. 

 B0005 B0006 B0007 B0018 

LSTM 0.0541 0.0321 0.0512 0.0570 

LSTM+Attention (At-LASTM) 0.0146 0.0124 0.0121 0.0214 

 

 

Figure 10. The representation of RMSE values acquired through ablation experiments. 
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5. Applications 

This section presents the results achieved by the proposed At-LSTM model and various 

competing models for batteries B0005, B0006, B0007, and B0018 sourced from the NASA dataset. 

These results are evaluated using the RMSE metric to demonstrate the models' effectiveness in 

reducing the discrepancy between the predicted and target RUL. The outcomes of At-LSTM for 

batteries B0005, B0006, B0007, and B0018 sourced from the NASA dataset are compared with seven 

competing models to demonstrate their effectiveness and efficiency. A comprehensive comparison is 

conducted between the outcomes of At-LSTM and several rival models, including AUKF-GA-SVR 

[36], MC-LSTM [29], ASW-LSTM [37], Attn-BiLSTM [38], TCN [39], TA-TCN [39], and CAFL-LSTM 

[40], to showcase its superior performance. These results are displayed in the RMSE values as 

indicated in the Table 5.  

 

Table 5. The precise specifications of the chosen lithium-ion batteries from NASA. 

 B0005 B0006 B0007 B0018 

AUKF-GA-SVR 0.0192 0.0483 0.0124 0.0233 

MC-LSTM 0.0208 0.0428 0.0231 0.0449 

ASW-LSTM 0.04 0.036 0.037 0.025 

Attn-BiLSTM 0.0173 0.0559 0.0332 0.0313 

TCN 0.0195 0.0163 0.0183 0.0233 

TA-TCN 0.0165 0.0149 0.0178 0.0221 

CAFL-LSTM 0.0169 0.0125 0.0128 0.0233 

Proposed method 0.0146 0.0124 0.0121 0.0214 

 

 

Figure 11. illustrates the representation of RMSE values acquired from different models. 

The superior outcomes are highlighted in bold. At-LSTM surpasses the other approaches in 

terms of the RMSE metric. The table illustrates that At-LSTM may outperform all the models 

considered in relation to the RMSE for the selected batteries, achieving RMSE values of 0.0146, 0.0124, 
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0.0121, and 0.0214 for B0005, B0006, B0007, and B0018, respectively, which significantly outperforms 

the comparison methods under similar circumstances. Upon juxtaposition of our results with the 

leading outcomes attained by different mentioned models, our suggested model showcases a 

decrease in RMSE by 13.6%, 0.8%, 5.4%, and 3.17% for NASA lithium-ion batteries B0005, B0006, 

B0007, and B0018, respectively. This proposed model is viewed as a robust solution for addressing 

this issue due to its potential to excel in the RMSE metric, which assigns equal importance to both 

early and late predictions. To visually exhibit the superiority of the proposed model, Figure 11 is 

included to display the RMSE values obtained by different algorithms for B0005, B0006, B0007, and 

B0018 batteries. 

6. Conclusions  

Precise prediction of the remaining useful life (RUL) of lithium-ion batteries is essential for 

ensuring the safe and dependable functionality of batteries while also mitigating safety hazards. A 

novel approach called At-LSTM is suggested for predicting the RUL of lithium-ion batteries. The At-

LSTM model is based on LSTM and content-based attention mechanism, LSTMs are utilized to 

capture and retain patterns across extended sequences, rendering them suitable for representing 

intricate temporal connections in time series datasets. After this is the integration of an attention 

mechanism designed to synchronize input and output sequences by considering the content or 

meaning of the input sequence. Ultimately, the final prediction results are produced through a Fully 

Connected (FC) layer. We opted to utilize the NASA lithium battery dataset for our experimental 

investigations. Upon comparison of our findings with the top results achieved by various models 

cited in the references, our proposed model demonstrates a reduction in RMSE of 13.6%, 0.8%, 5.4%, 

and 3.17% for NASA lithium-ion batteries B0005, B0006, B0007, and B0018, correspondingly. 
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