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Abstract: Just as the concept of interior ideal of semigroups is a generalization of ideal in 

semigroups, the notion of soft intersection (soft-𝑖𝑛𝑡) interior ideal is a generalization of soft-𝑖𝑛𝑡 

ideal. In this paper, we propose the concepts of soft- 𝑖𝑛𝑡  (weakly) almost interior ideal of a 

semigroup as a generalization of the nonnull soft-𝑖𝑛𝑡 interior ideals. We explore their algebraic 

properties in detail. We also show that an idempotent soft-𝑖𝑛𝑡 almost interior ideal is a soft-𝑖𝑛𝑡 

almost subsemigroup. We additionally derive several intriguing relations related to semiprimeness, 

minimality, and (strongly) primeness between almost interior ideals and soft-𝑖𝑛𝑡 almost interior 

ideals. 

Keywords: Soft Set; Interior Ideal; Soft Intersection (almost) Interior Ideal. 

1. Introduction 

Semigroups were first studied formally in the early twentieth century. Semigroups are 

significant in many mathematical areas because they give the abstract algebraic foundation for 

"memoryless" systems, which are time-dependent and restart with each iteration. Semigroups are 

essential mathematical models for linear time-invariant systems. In partial differential equations, any 

equation with time-independent spatial evolution has a semigroup associated with it. Finite 

semigroup theory has been particularly relevant in theoretical computer science. 

Ideals are necessary to investigate algebraic structures and their applications. Dedekind initially 

proposed ideals to contribute to the study of algebraic numbers, and Noether developed them further 

to incorporate associative rings. In [1,2], bi-ideals and quasi-ideals were initially proposed for 

semigroups, respectively. Ideals are essential to encourage more study of mathematical structures. 

Some mathematicians offered novel developments of the concept of ideals displaying imperative 

consequences to describe the algebraic structures. While the bi-ideals are a generalization of quasi-

ideals, the interior ideals are a generalization of left and right ideals. 

Furthermore, the authors [3] presented the idea of almost left, right, and two-sided ideals of 

semigroups. In [4], the notion of almost bi-ideals in semigroups is a generalization of bi-ideals was 

presented. The introduction of the concept of almost quasi-ideals of semigroup was made in [5]. 

Using the notion of almost ideals and interior ideals of semigroups, the ideas of almost interior ideals 

and weakly almost interior ideals of semigroups were developed and their properties by investigated 

in [6]. Researchers have given considerable attention to the almost ideals of semigroups. The concept 

of almost subsemigroups, almost bi-quasi-interior ideals, almost bi-interior ideals, and almost bi-

quasi ideals of semigroups was put forth by [7-10], respectively. Additionally, different kinds of 

almost fuzzy ideals of semigroups were studied [5, 7-12]. 

Molodtsov [13] presented the idea of a soft set to model uncertainty. Since then, soft sets have 

attracted the attention of researchers in several fields. The theory's cornerstone, soft set operations, 

was studied by [14-32]. The definition of a soft set and its operations were modified in [33]. The notion 

of soft-int groups was introduced in [34] leading to the analysis of several soft algebraic systems. In 

[35-36], the authors studied semigroups with soft-int left (right/sided) ideals, interior ideals, 
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(generalized) bi-ideals, and quasi-ideals, and in [37], certain types of semigroups in terms of soft-int 

substructures of semigroups are characterized. Many soft algebraic structures were investigated in 

[38-50]. Recently, several new types of semigroup ideals were proposed in [51-55]. 

As a generalization of the soft-𝑖𝑛𝑡 ideal, soft-𝑖𝑛𝑡 interior ideal of semigroups was proposed in 

[33]. In this study, as a further generalization of the nonnull soft-𝑖𝑛𝑡 interior ideal, we present the 

concept of soft-𝑖𝑛𝑡 almost interior ideal, and its generalization, soft-𝑖𝑛𝑡 weakly almost interior ideals. 

Our results show that every soft-𝑖𝑛𝑡 weakly almost interior ideal of a semigroup is a soft-𝑖𝑛𝑡 almost 

interior ideal; however, the converse is not true for the counterexample. Furthermore, we 

demonstrate that an idempotent soft- 𝑖𝑛𝑡  almost interior ideal is a soft-int almost subgroup. In 

addition, we demonstrate the relation between a semigroup's soft-int almost interior ideal and almost 

interior ideal in terms of (strongly) primeness, minimality, and semiprimeness. 

2. Preliminaries 

In this part, we go over some essential concepts related to soft sets and semigroups. 

Definition 2.1. Let U be the universal set,  E be the parameter set, P(U) be the power set of U, and 

Ꝟ ⊆ E. A soft set 𝑓Ꝟ over U is a set-valued function such that 𝑓Ꝟ:  𝐸 → 𝑃(𝑈) such that for all 𝑥 ∉ Ꝟ, 

𝑓Ꝟ(𝑥) = ∅. A soft set over U can be represented by the set of ordered pairs 

𝑓Ꝟ = {(𝑥, 𝑓Ꝟ(𝑥)): 𝑥 ∈ 𝐸, fꝞ(𝑥) ∈ 𝑃(𝑈)} 

[10, 33]. For all undefined basic concepts related to the soft set, we refer to [33]. 

Definition 2.2. The support of 𝑓Ꝟ is defined by  

𝑠𝑢𝑝𝑝(𝑓Ꝟ)={𝑥 ∈ Ꝟ : 𝑓Ꝟ(𝑥) ≠ ∅} [18]. 

A soft set with an empty support is a null soft set, otherwise, it is nonnull. 

Note 2.3. If 𝑓Ꝟ ⊆̃ 𝑓Ӄ, then 𝑠𝑢𝑝𝑝(𝑓Ꝟ) ⊆ 𝑠𝑢𝑝𝑝(𝑓Ӄ) [56]. 

In this paper, S stands for a semigroup. A nonempty subset Ꝟ of S is called a subsemigroup of S if 

ꝞꝞ ⊆ Ꝟ; and is called an interior ideal of S if 𝑆ꝞS ⊆ Ꝟ. A nonempty subset Ꝟ of S is called an almost 

interior ideal of S if 𝑥Ꝟ𝑦 ∩ Ꝟ ≠ Ꝟ, for all x, y ∈ S. 

Definition 2.4. Let 𝑓𝑆, 𝑔𝑆 ∈ 𝑆𝑆(𝑈). Then, soft-𝑖𝑛𝑡 product 𝑓𝑆 °𝑔𝑆 is defined by [36] 

(𝑓𝑆 ° 𝑔𝑆)(𝑥) = {
⋃ {𝑓𝑆(𝑦) ∩ 𝑔𝑆(𝑧)},     𝑖𝑓 ∃𝑦, 𝑧 ∈ 𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 𝑦𝑧

𝑥=𝑦𝑧

∅,                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     

 

Theorem 2.5. Let 𝑝𝑆, 𝜘𝑆, 𝜗𝑆 ∈ 𝑆𝑆(𝑈). Then,  

i. (𝑝𝑆 ° 𝜘𝑆) ° 𝜗𝑆 = 𝑝𝑆 ° (𝜘𝑆 ° 𝜗𝑆). 

ii. 𝑝𝑆 ° 𝜘𝑆 ≠ 𝑝𝑆  ° 𝜘𝑆 

iii. 𝑝𝑆 ° (𝜘𝑆 ∪̃ 𝜗𝑆) = (𝑝𝑆 ° 𝜘𝑆) ∪̃ (𝑝𝑆 ° 𝜗𝑆) and (𝑝𝑆 ∪̃ 𝜘𝑆) ° 𝜗𝑆 = (𝑝𝑆 ° 𝜗𝑆) ∪̃ (𝜘𝑆 ° 𝜗𝑆). 

iv. 𝑝𝑆 ° (𝜘𝑆 ∩̃ 𝜗𝑆) = (𝑝𝑆 ° 𝜘𝑆) ∩̃ (𝑝𝑆 ° 𝜗𝑆) and (𝑝𝑆 ∩̃ 𝜘𝑆) ° 𝜗𝑆 = (𝑝𝑆 ° 𝜗𝑆) ∩̃ (𝜘𝑆 ° 𝜗𝑆). 

v. If 𝑝𝑆 ⊆̃ 𝜘, then 𝑝𝑆  ° 𝑡𝑆 ⊆̃ 𝜘𝑆 ° 𝑡𝑆 and 𝑡𝑆 ° 𝑝𝑆 ⊆̃ 𝑡𝑆 ° 𝜘𝑆. 

vi. If  ℌ𝑆, 𝑦𝑆 ∈ 𝑆𝑆(𝑈) such that ℌ𝑆 ⊆̃ 𝑝𝑆 and 𝑦𝑆 ⊆̃ 𝑞𝑆, then ℌ𝑆  ° 𝑦𝑆 ⊆̃ 𝑝𝑆 ° 𝑞𝑆 [36]. 

Definition 2.6. Let Ꝟ ⊆ S. The soft characteristic function of Ꝟ, denoted by 𝑆Ꝟ, is defined as [36]: 

𝑆Ꝟ(𝑥) = {
𝑈,     𝑖𝑓 𝑥 ∈ Ꝟ              

∅,     𝑖𝑓 𝑥 ∈ 𝑆\Ꝟ          
 

Corollary 2.7. 𝑠𝑢𝑝𝑝(𝑆Ꝟ) = Ꝟ [56]. 
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Theorem 2.8. Let ∅ ≠ Ꝟ, Ӄ ⊆ S. Then, [36,56]: 

i) Ꝟ ⊆ Ӄ if and only if 𝑆Ꝟ ⊆̃ 𝑆Ӄ 

ii) 𝑆Ꝟ ∩̃ 𝑆Ӄ = 𝑆Ꝟ∩Ӄ and 𝑆Ꝟ ∪̃ 𝑆Ӄ = 𝑆Ꝟ∪Ӄ 

iii) 𝑆Ꝟ ° 𝑆Ӄ = 𝑆ꝞӃ 

Definition 2.9. Let  𝑥 ∈ S. The soft characteristic function of 𝑥, denoted by 𝑆𝑥, is defined as [57]: 

𝑆𝑥(𝑦) = {
𝑈,      𝑖𝑓  𝑦 = 𝑥 

∅,      𝑖𝑓  𝑦 ≠ 𝑥 
 

Definition 2.10. 𝑓𝑆 is called a soft-𝑖𝑛𝑡 interior ideal of 𝑆 over U if 𝑓𝑆(xyz)⊇ 𝑓𝑆(y), for all x,y, 𝑧 ∈ 𝑆 

[36]. 

If 𝑓𝑆(x) = U for all x∈ 𝑆, then 𝑓𝑆 is a soft-𝑖𝑛𝑡 interior ideal, and it is denoted by 𝕊. Moreover, 𝕊 = 𝑆𝑆, 

that is, 𝕊(x) = U for all x∈ 𝑆 [36]. 

Theorem 2.11. Let 𝑓𝑆 be a soft set over U. Then, 𝑓𝑆 is a soft-𝑖𝑛𝑡 interior ideal of S over 𝑈 if and only 

 𝕊 ° 𝑓𝑆° 𝕊 ⊆̃ 𝑓𝑆 [36]. 

𝒮ℐ-I-ideal represents the soft-𝑖𝑛𝑡 interior-ideal from now on. 

Definition 2.12. A soft set 𝑓𝑆 is called a soft-𝑖𝑛𝑡 almost subsemigroup of 𝑆 if (𝑓𝑆°𝑓𝑆) ∩̃ 𝑓𝑆 ≠ ∅𝑆 [56]. 

Referring to [58], one may discuss the potential consequences of graph applications and network 

analysis for soft sets, which are characterized by the divisibility of determinants, and we refer to [59] 

for soft int LA-semigroups. 

3. Results on Soft-𝒊𝒏𝒕 Almost Interior Ideals of Semigroups 

Definition 3.1. A soft set 𝑓𝑠 is called a soft-𝑖𝑛𝑡 almost interior ideal of S if  

(𝑆𝑥°𝑓𝑠° 𝑆𝑦) ∩̃ 𝑓𝑠 ≠ ∅𝑠 

For all x,y ∈ S, and is called a soft-𝑖𝑛𝑡 weakly almost interior ideal of S if    

(𝑆𝑥°𝑓𝑠° 𝑆𝑥) ∩̃ 𝑓𝑠 ≠ ∅𝑠 

For all 𝑥, 𝑦 ∈ S. Hereafter, soft-𝑖𝑛𝑡 almost interior-ideal of 𝑆 and soft-𝑖𝑛𝑡 weakly almost interior 

ideal of 𝑆 are denoted by 𝒮ℐ-almost I-ideal and 𝒮ℐ-weakly almost I-ideal, respectively. 

Example 3.2. Consider the following semigroup 𝑆={ɒ, ư}: 

 

Table 1. Cayley table of binary operation. 

 

 

 

 

Let ӻ𝑠, 𝑔𝑠, and ֏𝑠 be soft sets over U={𝑘̅ | k∈  𝑍10
∗ } as follows : 

ӻ𝑠 = {(ɒ, { 1̅, 3̅}), (ư,{1̅, 9̅})} 

𝑔𝑠 = {(ɒ, { 7̅, 9̅}), (ư,{3̅, 7̅})} 

֏𝑠 = {(ɒ, { 1̅, 3̅}), (ư,{9̅, 7̅})} 

Here, ӻ𝑠  ve 𝑔𝑠 are both 𝒮ℐ -almost interior ideals. In fact, ӻ𝑠 is an 𝒮ℐ -almost I-ideal, that 

is, (𝑆𝑥°ӻ𝑠° 𝑆𝑦) ∩̃ ӻ𝑠 ≠ ∅𝑠, for all, 𝑦 ∈ 𝑆. 

   ɒ ư 

ɒ ɒ ư 

ư ư ɒ 
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Let’s start with 𝑆ɒ, 𝑆ɒ: 

[(𝑆ɒ°ӻ𝑠° 𝑆ɒ) ∩̃ ӻ𝑠](ɒ )= (𝑆ɒ°ӻ𝑠° 𝑆ɒ)(ɒ) ∩ ӻ𝑠 ( ɒ ) = [ (𝑆ɒ°ӻ𝑠 )( ɒ )∩ 𝑆ɒ(ɒ)] ∪ [(𝑆ɒ°ӻ𝑠)(ư) ∩ 𝑆ɒ(ư)] ∩

ӻ𝑠(𝑎)=[[((𝑆ɒ(ɒ) ∩ ӻ𝑠(ɒ))∪((𝑆ɒ(ư) ∩ ӻ𝑠(𝑏))]∩ 𝑆ɒ(ɒ) ∪ [((𝑆ɒ(ư) ∩ ӻ𝑠(ɒ))∪((𝑆ɒ(ɒ) ∩ ӻ𝑠(ư))]∩𝑆ɒ(ư)]∩ӻ𝑠(ɒ) = 

𝑓𝑠(ɒ) = { 1̅, 3̅} 

 

[(𝑆ɒ°ӻ𝑠° 𝑆ɒ) ∩̃ ӻ𝑠](ư) = (𝑆ɒ°ӻ𝑠° ɒ)(ư) ∩ ӻ𝑠 ( ư )  = [ (𝑆ɒ°ӻ𝑠 )( ư )∩ 𝑆ɒ(ɒ)] ∪ [(𝑆ɒ°ӻ𝑠)(ɒ) ∩ 𝑆ɒ(ư)] ∩

ӻ𝑠(ư)=[[((𝑆ɒ(ư) ∩ ӻ𝑠(𝑎))∪((𝑆ɒ(ɒ) ∩ ӻ𝑠(ư))]∩ 𝑆ɒ(ɒ) ∪ [((𝑆ɒ(ɒ) ∩ ӻ(ɒ))∪((𝑆ɒ(ư) ∩ ӻ𝑠(𝑏))]∩𝑆ɒ(ư)]∩ӻ𝑠(ư) = 

ӻ𝑠(ư) = {1̅, 9̅}. Hence, 

(𝑆ɒ°ӻ𝑠° 𝑆ɒ) ∩̃ ӻ𝑠={(ɒ,{ 1̅, 3̅}), (ư, {1̅, 9̅})}≠  ∅𝑠 

Let’s continue with 𝑆ɒ, 𝑆ư: 

[(𝑆ɒ°ӻ𝑠° 𝑆ư) ∩̃ ӻ𝑠](ɒ) = (𝑆ɒ°ӻ𝑠° 𝑆ư)(ɒ) ∩ ӻ𝑠 ( ɒ ) = [ (𝑆ɒ°ӻ𝑠 )( ɒ )∩ 𝑆ư(ɒ)] ∪ [(𝑆ɒ°ӻ𝑠)(ư) ∩ 𝑆ư(ư)] ∩

ӻ𝑠(ɒ)=[[((𝑆ɒ(ɒ) ∩ ӻ𝑠(ɒ))∪((𝑆ɒ(ư) ∩ ӻ𝑠(ư))]∩ 𝑆ư(ɒ) ∪ [((𝑆ɒ(ư) ∩ ӻ𝑠(ɒ))∪((𝑆ɒ(ɒ) ∩ ӻ𝑠(ư))]∩𝑆ư(ư)]∩ӻ𝑠(ɒ) = 

ӻ𝑠(ư)∩ӻ𝑠(ɒ) = {1̅} 

 

[(𝑆ɒ°ӻ𝑠° 𝑆ư) ∩̃ ӻ𝑠](ư) = (𝑆ɒ°ӻ𝑠° 𝑆ư)(ư) ∩ ӻ𝑠 ( ư ) = [ (𝑆ɒ°ӻ𝑠 )( ư )∩ 𝑆ư(ɒ)] ∪ [(𝑆ɒ°ӻ𝑠)(ɒ) ∩ 𝑆ư(ư)] ∩

ӻ𝑠 ( ư )=[ [((𝑆ɒ(ư) ∩ ӻ𝑠 ( ɒ )) ∪ ((𝑆ɒ(ɒ) ∩ ӻ𝑠 ( ư ))] ∩ 𝑆ư(ɒ) ∪ [((𝑆ɒ(ɒ) ∩ ӻ𝑠 ( ɒ )) ∪ ((𝑆ɒ(ư) ∩

ӻ𝑠(ư))]∩𝑆ư(ư)]∩ӻ𝑠(ư) = ӻ𝑠(ɒ)∩ӻ𝑠(ư) = {1̅}. Thus, 

(𝑆ɒ°ӻ𝑠° 𝑆ư) ∩̃ ӻ𝑠={(ɒ,{ 1̅}), (ư, {1̅})}≠  ∅𝑠 

Let’s continue with 𝑆ư , 𝑆ư: 

 

[(𝑆ư°ӻ𝑠° 𝑆ư) ∩̃ ӻ𝑠](ɒ) = (𝑆ư°ӻ𝑠° 𝑆ư)(ɒ) ∩ ӻ𝑠 ( ɒ ) = [ (𝑆ư°ӻ𝑠 )( ɒ )∩ 𝑆ư(𝑎)] ∪ [(𝑆ư°ӻ𝑠)(ư) ∩ 𝑆ư(ư)] ∩

ӻ𝑠(ɒ)=[[((𝑆ư(ɒ) ∩ ӻ𝑠(𝑎))∪((𝑆ư(ư) ∩ ӻ𝑠(ư))]∩ 𝑆ư(ɒ) ∪ [((𝑆ư(ư) ∩ ӻ𝑠(ɒ))∪((𝑆ư(ɒ) ∩ ӻ𝑠(ư))]∩𝑆ư(ư)]∩ӻ𝑠(ɒ) = 

ӻ𝑠(ɒ) = { 1̅, 3̅} 

 

[(𝑆ư°ӻ𝑠° 𝑆ư) ∩̃ ӻ𝑠](ư) = (𝑆ư°ӻ𝑠° 𝑆ư)(ư) ∩ ӻ𝑠 ( 𝑏 ) = [ (𝑆ư°ӻ𝑠 )( ư )∩ 𝑆ư(ɒ)] ∪ [(𝑆ư°ӻ𝑠)(ɒ) ∩ 𝑆ư(ư)] ∩

ӻ𝑠(ư)=[[((𝑆ư(ư) ∩ ӻ𝑠(𝑎))∪((𝑆ư(ɒ) ∩ ӻ𝑠(ư))]∩ 𝑆ư(𝑎) ∪ [((𝑆ư(ɒ) ∩ ӻ𝑠(𝑎))∪((𝑆ư(ư) ∩ ӻ𝑠(ư))]∩𝑆ư(ư)]∩ӻ𝑠(ư) 

= ӻ𝑠(ư) = {1̅, 9̅}. Therefore, 

(𝑆ư°ӻ𝑠° 𝑆ư) ∩̃ ӻ𝑠 = {(ɒ,{ 1̅, 3̅}), (ư, {1̅, 9̅})}≠  ∅𝑠 

Let’s continue with 𝑆ư , 𝑆ɒ: 

[(𝑆ư°ӻ𝑠° 𝑆𝑎) ∩̃ ӻ𝑠](ɒ) = (𝑆ư°ӻ𝑠° 𝑆ɒ)(ɒ) ∩ ӻ𝑠 ( 𝑎 )=[ (𝑆ư°ӻ𝑠 )( ɒ )∩ 𝑆ɒ(ɒ)] ∪ [(𝑆ư°ӻ𝑠)(ư) ∩ 𝑆𝑎(ư)] ∩

ӻ𝑠(𝑎)=[[((𝑆ư(ɒ) ∩ ӻ𝑠(ɒ)∪((𝑆ư(ư) ∩ ӻ𝑠(ư))]∩ 𝑆ɒ(ɒ) ∪ [((𝑆ư(ư) ∩ ӻ𝑠(ɒ))∪((𝑆ư(ɒ) ∩ ӻ𝑠(ư))]∩𝑆ɒ(ư)]∩ӻ𝑠(ɒ) = 

ӻ𝑠(ư)∩ӻ𝑠(ɒ) = {1̅}  

 

[(𝑆ư°ӻ𝑠° 𝑆ɒ) ∩̃ ӻ𝑠](ư) = (𝑆ư°ӻ𝑠° 𝑆ɒ)(ư) ∩ ӻ𝑠 ( ư )= [ (𝑆ư°ӻ𝑠 )(b)∩ 𝑆ɒ(ɒ)] ∪ [(𝑆ư°ӻ𝑠)(ɒ) ∩ 𝑆ɒ(ư)] ∩

ӻ𝑠(ư)=[[((𝑆ư(ư) ∩ ӻ𝑠(ɒ))∪((𝑆ư(ɒ) ∩ ӻ𝑠(ư))]∩ 𝑆ɒ(ɒ) ∪ [((𝑆ư(ɒ) ∩ ӻ𝑠(ɒ))∪((𝑆ư(ư) ∩ ӻ𝑠(ư))]∩𝑆ɒ(ư)]∩ӻ𝑠(ư) = 

ӻ𝑠(ɒ)∩ӻ𝑠(ư) = {1̅}. Consequently, 

(𝑆ư°ӻ𝑠° 𝑆ɒ) ∩̃ ӻ𝑠={(ɒ,{ 1̅}), (ư, {1̅})}≠ ∅ 

 

Therefore, (𝑆𝑥°ӻ𝑠° 𝑆𝑦) ∩̃ ӻ𝑠 ≠ ∅𝑠 for all 𝑥, 𝑦 ∈ S, so ӻ𝑠 is an 𝒮ℐ-almost I-ideal. Similarly, 𝑔𝑠 is an 𝒮ℐ-

almost I-ideal. In fact; 

(𝑆ɒ°𝑔𝑠° 𝑆ɒ) ∩̃ 𝑔𝑠={(ɒ,{ 7̅, 9̅}), (ư, {3̅, 7̅})}≠  ∅𝑠 

(𝑆ɒ°𝑔𝑠° 𝑆ư) ∩̃ 𝑔𝑠={(ɒ,{ 7̅}), (ư, {7̅})}≠  ∅𝑠 
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(𝑆ư°𝑔𝑠° 𝑆ư) ∩̃ 𝑔𝑠={(ɒ,{ 7̅, 9̅}), (ư, {3̅, 7̅})}≠  ∅𝑠 

(𝑆ư°𝑔𝑠° 𝑆ɒ) ∩̃ 𝑔𝑠={(ɒ,{ 7̅}), (ư, {7̅})}≠  ∅𝑠 

 

One can also show that ֏𝑠 is a weakly almost I-ideal; but not an 𝒮ℐ-almost I-ideal. In deed; 

 

[(𝑆ɒ°֏𝑠° 𝑆ɒ) ∩̃ ℎ𝑠](ɒ)=(𝑆ɒ°֏𝑠° 𝑆ɒ)(ɒ) ∩ ֏𝑠(𝑎)= ֏𝑠(ɒ) = { 1̅, 3̅}  

[(𝑆ɒ°֏𝑠° 𝑆ɒ) ∩̃ ֏𝑠](ư)=(𝑆ɒ°֏𝑠° 𝑆ɒ)(ư) ∩ ֏𝑠(ư)= ֏𝑠(ư) = {9̅, 7̅}. Thus; 

 

(𝑆ɒ°֏𝑠° 𝑆ɒ) ∩̃ ֏𝑠={(ɒ,{ 1̅, 3̅}), (ư, {9̅, 7̅)}≠  ∅𝑠 

And also 

 

[(𝑆ư°֏𝑠° 𝑆ư) ∩̃ ֏𝑠](ɒ)=(𝑆ư°֏𝑠° 𝑆ư)(ɒ) ∩ ֏𝑠(ɒ) = ֏𝑠(ɒ) = { 1̅, 3̅}  

[(𝑆ư°֏𝑠° 𝑆ư) ∩̃ ֏𝑠](ư)=(𝑆ư°֏𝑠° 𝑆ư)(ư) ∩ ֏𝑠(𝑏)= ֏𝑠(ư) = {9̅, 7̅}. Therefore, 

 

(𝑆ư°֏𝑠° 𝑆ư) ∩̃ ֏𝑠={(ɒ,{ 1̅, 3̅}), (ư, {9̅, 7̅)}≠  ∅𝑠 

 

Hence,  (𝑆𝑥°֏𝑠° 𝑆𝑥) ∩̃ ֏𝑠 ≠ ∅𝑠 for all 𝑥 ∈ 𝑆,  so ֏𝑠 is an 𝒮ℐ-weakly almost I-ideal. However, 

 

[(𝑆ɒ°֏𝑠° 𝑆ư) ∩̃ ֏𝑠](ɒ)=(𝑆ɒ°֏𝑠° 𝑆ư)(ɒ) ∩ ֏𝑠(ɒ) = ֏𝑠(ư)∩֏𝑠(ɒ) = ∅ 

[(𝑆ɒ°֏𝑠° 𝑆ư) ∩̃](ư)=(𝑆ɒ°ℌ𝑠° 𝑆ư)(ư) ∩ ֏(ư) = ֏𝑠(ɒ)∩֏𝑠(ư) = ∅. Thus, 

 

(𝑆ɒ°֏𝑠° 𝑆ư) ∩̃ ֏𝑠={(ɒ,∅), (ư, ∅)}=  ∅𝑠 

 

[(𝑆ư°֏𝑠° 𝑆ɒ) ∩̃ ֏𝑠](ɒ)=(𝑆ư°֏𝑠° 𝑆ɒ)(ɒ) ∩ ֏𝑠(ɒ) = ֏𝑠(ư)∩֏𝑠(ɒ) = ∅ 

[(𝑆ư°֏𝑠° 𝑆ɒ) ∩̃ ֏𝑠](ư)=(𝑆ư°֏𝑠° 𝑆ɒ)(ư) ∩ ֏𝑠(ư)= ֏𝑠(ɒ)∩֏𝑠(ư) = ∅. Hence, 

 

 (𝑆ư°֏𝑠° 𝑆ɒ) ∩̃ ֏𝑠={(ɒ,∅), (ư, ∅)}=  ∅𝑠 

 

Consequently,  (𝑆𝑥°֏𝑠° 𝑆𝑦) ∩̃ ֏𝑠 = ∅𝑠, for ∃𝑥, 𝑦 ∈ S .Thus, ֏𝑠 is not an 𝒮ℐ-almost I-ideal. 

 

Proposition 3.3. If ᶂ𝑠 is an 𝒮ℐ-I-ideal such that 𝑆𝑥°ᶂ𝑠° 𝑆𝑦 ≠ ∅𝑠 for all x, 𝑦 ∈ S, then ᶂ𝑠 is an 𝒮ℐ-almost 

I-ideal. 

Proof: Let ᶂ𝑠   be an 𝒮ℐ-I-ideal, thus 𝕊̃°ᶂ𝑠°𝕊̃ ⊆̃ 𝑓𝑠.  We need to show that  

(𝑆𝑥°ᶂ𝑠° 𝑆𝑦) ∩̃ ᶂ𝑠 ≠ ∅𝑠 

for all x, 𝑦 ∈ S. Since (𝑆𝑥°ᶂ𝑠° 𝑆𝑦) ⊆̃ 𝕊̃°ᶂ𝑠°𝕊̃ ⊆̃ ᶂ𝑠, it follows that 𝑆𝑥°ᶂ𝑠° 𝑆𝑦 ⊆̃ ᶂ𝑠. Thus, 

(𝑆𝑥°ᶂ𝑠° 𝑆𝑦) ∩̃ ᶂ𝑠 ⊆̃ 𝑆𝑥°ᶂ𝑠° 𝑆𝑦 ≠ ∅𝑠 

implying that ᶂ𝑠 is an 𝒮ℐ-almost I-ideal. 

 

Here, 𝑆𝑥°ᶂ𝑠° 𝑆𝑦 ≠ ∅𝑠  implies that ᶂ𝑠 ≠ ∅𝑠 . Moreover, ∅𝑠  is an 𝒮ℐ-I-ideal as (𝑆𝑥°∅𝑠° 𝑆𝑦) = ∅𝑠 ⊆̃ ∅𝑠 ; 

but ∅𝑠 is not an 𝒮ℐ-almost I-ideal since (𝑆𝑥°∅𝑠° 𝑆𝑦) ∩̃ ∅𝑠 = ∅𝑠 ∩̃ ∅𝑠 = ∅𝑠. 

 

If 𝑓𝑠 is an 𝒮ℐ-almost I-ideal, then 𝑓𝑠 needs not be an 𝒮ℐ-I-ideal as shown in the following example: 
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Example 3.4. In Example 3.2, it is shown ᶂ𝑠 and 𝑔𝑠 are 𝒮ℐ-almost I-ideal; but ᶂ𝑠 and 𝑔𝑠 are not 𝒮ℐ-I-

ideal. In fact, 

𝕊̃°ᶂ𝑠°𝕊̃(ɒ) = [(𝕊̃ °ᶂ𝑠)(ɒ) ∩ 𝕊̃(ɒ)] ∪ [(𝕊̃°ᶂ𝑠)(ư) ∩ 𝕊̃(ư)] =  [𝕊̃(ɒ) ∩ ᶂ𝑠(ɒ)] ∪ [𝕊̃(ư) ∩ ᶂ𝑠(ư)] ∪ [𝕊̃(ư) ∩

ᶂ𝑠(ɒ)] ∪ [𝕊̃(ɒ) ∩ ᶂ𝑠(ư)] =ᶂ𝑠(ɒ) ∪ ᶂ𝑠(ư) ∪ ᶂ𝑠(ɒ) ∪ ᶂ𝑠(ư) = ᶂ𝑠(ɒ) ∪ ᶂ𝑠(ư) ⊈ ᶂ𝑠(ɒ) 

 

Thus, ᶂ𝑠 is not an 𝒮ℐ-I-ideal. Similarly, 

 

𝕊̃ °𝑔𝑠° 𝕊̃(ɒ) = [(𝕊̃ °𝑔𝑠)(ɒ) ∩ 𝕊̃(ɒ)] ∪ [(𝕊̃ °𝑔𝑠)(ư) ∩ 𝕊̃(ư)] =  [𝕊̃(ɒ) ∩ 𝑔𝑠(ɒ)] ∪ [𝕊̃(ư) ∩ 𝑔𝑠(ư)] ∪ [𝕊̃(ư) ∩

𝑔𝑠(ɒ)] ∪ [𝕊̃(𝑎) ∩ 𝑔𝑠(ư)]=𝑔𝑠(ɒ) ∪ 𝑔𝑠(ư) ∪ 𝑔𝑠(ɒ) ∪ 𝑔𝑠(ư) = 𝑔𝑠(ɒ) ∪ 𝑔𝑠(ư) ⊈ 𝑔𝑠(ɒ) 

Thus, 𝑔𝑠 is not an 𝒮ℐ-I-ideal. 

Proposition 3.5. Every 𝒮ℐ-almost I-ideal is an 𝒮ℐ-weakly almost I-ideal. 

Proof: Let  𝑓𝑠 be an 𝒮ℐ -almost I-ideal, then (𝑆𝑥°𝑓𝑠° 𝑆𝑦) ∩̃ 𝑓𝑠 ≠ ∅𝑠  for all 𝑥, 𝑦 ∈ 𝑆 . 

Hence, (𝑆𝑥°𝑓𝑠° 𝑆𝑥) ∩̃ 𝑓𝑠 ≠ ∅𝑠 for all all 𝑥 ∈ 𝑆. Thereby, 𝑓𝑠 is an 𝒮ℐ-weakly almost I-ideal. Since 𝒮ℐ-

weakly almost I-ideal is a generalization of 𝒮ℐ-almost I-ideal, from now on all the theorems and 

proofs are given for 𝒮ℐ-almost I-ideal instead of 𝒮ℐ-weakly almost I-ideal. 

The converse of Proposition 3.5. does not hold: 

Example 3.6. In Example 3.2, ֏𝑠 is an 𝒮ℐ-weakly almost I-ideal; but ֏𝑠 is not 𝒮ℐ-almost I-ideal. 

Proposition 3.7. Let ᶂ𝑆 be an idempotent 𝒮ℐ-almost I-ideal. Then, ᶂ𝑆 is an 𝒮ℐ-almost subsemigroup. 

Proof: Assume that ᶂ𝑆 is an idempotent 𝒮ℐ-almost I-ideal. Then, ᶂ𝑆 ° ᶂ𝑆 = ᶂ𝑆 and [(𝑆𝑥°ᶂ𝑠°𝑆𝑦 )] ∩̃ ᶂ𝑆 ≠

∅𝑆, for all 𝑥, 𝑦 ∈ 𝑆. We need to show that 

( ᶂ𝑆 ° ᶂ𝑆 ) ∩̃ ᶂ𝑆 ≠ ∅𝑆 

Since, ∅𝑆 ≠ [(𝑆𝑥°ᶂ𝑠°𝑆𝑦 )] ∩̃ ᶂ = [[(𝑆𝑥°ᶂ𝑠°𝑆𝑦 )] ∩̃ ᶂ𝑆] ∩̃ ᶂ𝑆 

                                                          = [[(𝑆𝑥°ᶂ𝑠°𝑆𝑦 )] ∩̃ (ᶂ𝑆° ᶂ𝑆)]  ∩̃ ᶂ𝑆  

                             ⊆̃ (ᶂ𝑆 ° ᶂ𝑆) ∩̃ ᶂ𝑆  

hence  (ᶂ𝑆 ° ᶂ𝑆) ∩̃ ᶂ𝑆 ≠ ∅𝑆, so ᶂ𝑆 is an 𝒮ℐ-almost subsemigroup. 

 

Theorem 3.8. Let 𝑓𝑠 ⊆̃ ֏𝑠. If 𝑓𝑠 is an 𝒮ℐ-almost I-ideal, then ֏𝑠 is an 𝒮ℐ-almost I-ideal. 

Proof: Let 𝑓𝑠 is an 𝒮ℐ-almost I-ideal. Hence, (𝑆𝑥°𝑓𝑠° 𝑆𝑦) ∩̃ 𝑓𝑠  ≠ ∅𝑠, for all 𝑥, 𝑦 ∈ 𝑆. We need to show 

that  (𝑆𝑥°֏𝑠° 𝑆𝑦) ∩̃ ֏𝑠  ≠ ∅𝑠. In fact, 

(𝑆𝑥°𝑓𝑠° 𝑆𝑦) ∩̃ 𝑓𝑠 ⊆̃ (𝑆𝑥°֏𝑠° 𝑆𝑦) ∩̃ ֏𝑠. 

Since (𝑆𝑥°𝑓𝑠° 𝑆𝑦) ∩̃ 𝑓𝑠  ≠ ∅𝑠, (𝑆𝑥°֏𝑠° 𝑆𝑦) ∩̃ ֏𝑠  ≠ ∅𝑠, completing the proof. 

 

Theorem 3.9. Let 𝑓𝑠 and ֏𝑠 be 𝒮ℐ-almost I-ideals. Then, 𝑓𝑠 ∪̃ ֏𝑠 is an 𝒮ℐ-almost I-ideal. 

Proof: Since 𝑓𝑠 is an 𝒮ℐ-almost I-ideal by assumption and 𝑓𝑠 ⊆̃ 𝑓𝑠 ∪̃ ֏𝑠 , 𝑓𝑠 ∪̃ ֏𝑠  is an 𝒮ℐ-almost I-

ideal by Theorem 3.6. 

Corollary 3.10. The finite union of 𝒮ℐ-almost I-ideals is an 𝒮ℐ-almost I-ideals. 

Corollary 3.11. Let 𝑓𝑠 or ֏𝑠 be 𝒮ℐ-almost I-ideals. Then 𝑓𝑠 ∪̃ ֏𝑠 is an 𝒮ℐ-almost I-ideals. 

Note that if 𝑓𝑠 and ֏𝑠 are 𝒮ℐ-almost I-ideals, then 𝑓𝑠 ∩̃ ֏𝑠 needs not to be an 𝒮ℐ-almost I-ideals. 

 

Example 3.12. Consider the 𝒮ℐ-almost I-ideals ᶂ𝑠 and 𝑔𝑠 in Example 3.2. Since,  

ᶂ𝑠 ∩̃ 𝑔𝑠 = {(ɒ,∅),(ư, ∅)} =∅𝑠 

ᶂ𝑠 ∩̃ 𝑔𝑠 is not 𝒮ℐ-almost I-ideals. 
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Lemma 3.13. Let 𝑥 ∈ 𝑆 and ∅ ≠ 𝑌 ⊆S. Then 𝑆𝑥°𝑆𝑌 = 𝑆𝑥𝑌 . If 𝑋 is a nonempty subset of  S and 𝑦 ∈ 𝑆, 

then 𝑆𝑋°𝑆𝑦 = 𝑆𝑋𝑦  [57]. 

Theorem 3.14. Let ∅ ≠ Ꝟ ⊆ S. Then, Ꝟ is an almost I-ideal if and only if 𝑆Ꝟ, the soft characteristic 

function of Ꝟ, is an 𝒮ℐ-almost I-ideal. 

Proof: Assume that ∅ ≠ Ꝟ is an almost I-ideal. Then, (𝑥Ꝟ𝑦) ∩ Ꝟ ≠ ∅,  for all all 𝑥, 𝑦 ∈ 𝑆, and so 

there exist all 𝑘 ∈ 𝑆 such that 𝑘 ∈ (𝑥Ꝟ𝑦) ∩ Ꝟ ≠ ∅  Since, 

((𝑆𝑥°𝑆Ꝟ° 𝑆𝑦) ∩̃ 𝑆Ꝟ)(𝑘)=(𝑆𝑥Ꝟ𝑦 ∩̃ 𝑆Ꝟ)(𝑘)=(𝑆𝑥Ꝟ𝑦∩Ꝟ)(𝑘)=U≠ ∅ 

It follows that (𝑆𝑥°𝑆Ꝟ° 𝑆𝑦) ∩̃ 𝑆Ꝟ≠∅𝑠. Thus, 𝑆Ꝟ is an 𝒮ℐ-almost I-ideal. 

Conversely, let 𝑆Ꝟ be an 𝒮ℐ-almost I-ideal. Hence, we have (𝑆𝑥°𝑆Ꝟ° 𝑆𝑦) ∩̃ 𝑆Ꝟ≠∅𝑠, for all 𝑥, 𝑦 ∈ 𝑆. In 

order to show that Ꝟ is an almost I-ideal, we should prove that Ꝟ ≠∅ and (𝑥Ꝟ𝑦) ∩ Ꝟ ≠ ∅, for all 

𝑥, 𝑦 ∈ 𝑆.  By assumption, Ꝟ ≠∅ is obvious. Then, 

∅𝑠≠(𝑆𝑥°𝑆Ꝟ° 𝑆𝑦) ∩̃ 𝑆Ꝟ ⇒ ∃𝑘 ∈ 𝑆; ((𝑆𝑥°𝑆Ꝟ° 𝑆𝑦) ∩̃ 𝑆Ꝟ)(k)≠∅ 

              ⇒ ∃𝑘 ∈ 𝑆; ((𝑆𝑥Ꝟ𝑦 ∩̃ 𝑆Ꝟ)(k)≠∅ 

            ⇒ ∃𝑘 ∈ 𝑆; ((𝑆𝑥Ꝟ𝑦∩Ꝟ)(k)≠∅ 

             ⇒ ∃𝑘 ∈ 𝑆; ((𝑆𝑥Ꝟ𝑦∩Ꝟ)(k)=U 

  ⇒ 𝑘 ∈ xꝞy ∩ Ꝟ 

Hence, (𝑥Ꝟ𝑦) ∩ Ꝟ ≠ ∅. Consequently, Ꝟ is almost I-ideal. 

Lemma 3.15. Let ᶂ𝑆 ∈ 𝑆𝑆(𝑈). Then, ᶂ𝑠 ⊆̃ 𝑆𝑠𝑢𝑝𝑝(ᶂ𝑠) [56]. 

Theorem 3.16. If ᶂ𝑠 is an 𝒮ℐ-almost I-ideal, then 𝑠𝑢𝑝𝑝(ᶂ𝑠) is an almost I-ideal. 

Proof: Let ᶂ𝑠  be an 𝒮ℐ -almost I-ideal. Thus, ᶂ𝑆 ≠ ∅𝑆 , thus 𝑠𝑢𝑝𝑝(ᶂ𝑆) ≠  ∅ . Moreover, 

(𝑆𝑥°ᶂ𝑠° 𝑆𝑦) ∩̃ 𝑓𝑠≠ ∅𝑠, for all 𝑥, 𝑦 ∈ 𝑆. To show that 𝑠𝑢𝑝𝑝(ᶂ𝑠) is an almost I-ideal, by Theorem 3.14, it is 

enough to show that 𝑆𝑠𝑢𝑝𝑝(ᶂ𝑠)is an 𝒮ℐ-almost I-ideal. By Lemma 3.15, 

(𝑆𝑥°ᶂ𝑠° 𝑆𝑦) ∩̃ ᶂ𝑠 ⊆̃ (𝑆𝑥°𝑆𝑠𝑢𝑝𝑝(ᶂ𝑠)° 𝑆𝑦) ∩̃ 𝑆𝑠𝑢𝑝𝑝(ᶂ𝑠) 

And since (𝑆𝑥°ᶂ𝑠° 𝑆𝑦) ∩̃ ᶂ𝑠 ≠  ∅𝑠 , it implies that (𝑆𝑥°𝑆𝑠𝑢𝑝𝑝(ᶂ𝑠)° 𝑆𝑦) ∩̃ 𝑆𝑠𝑢𝑝𝑝(ᶂ𝑠) ≠  ∅𝑠 , for all 𝑥, 𝑦 ∈ 𝑆 . 

Consequently, 𝑆𝑠𝑢𝑝𝑝(ᶂ𝑠) is an 𝒮ℐ-almost I-ideal and by Theorem 3.14, 𝑠𝑢𝑝𝑝(ᶂ𝑠) is an almost I-ideal. 

The converse of Theorem 3.16 is not true in general, as shown in the following example. 

Example 3.17. We know that ֏𝑠 is not an 𝒮ℐ--almost I-ideal in Example 3.2 and it is obvious that 

𝑠𝑢𝑝𝑝(֏𝑠)={ɒ, ư}= 𝑆. Since, 

[{ɒ}𝑠𝑢𝑝𝑝(֏𝑠){ɒ}]∩ 𝑠𝑢𝑝𝑝(֏𝑠)= [{ɒ}𝑠𝑢𝑝𝑝(֏𝑠){ư}]∩ 𝑠𝑢𝑝𝑝(֏𝑠) = [{ư}𝑠𝑢𝑝𝑝(֏𝑠){ư}]∩ 𝑠𝑢𝑝𝑝(֏𝑠)= 

[{ư}𝑠𝑢𝑝𝑝(֏𝑠){ɒ}]∩ 𝑠𝑢𝑝𝑝(֏𝑠)={ɒ, ư}≠ ∅𝑠 

It is seen that [{𝑥}𝑠𝑢𝑝𝑝(֏𝑠}) {𝑦]∩ 𝑠𝑢𝑝𝑝(֏𝑠)≠ ∅𝑠, for all 𝑥, 𝑦 ∈ S. That is to say, 𝑠𝑢𝑝𝑝(֏𝑠) is an almost 

I-ideal; although ֏𝑠 is not an 𝒮ℐ-almost I-ideal. 

Definition 3.18. An 𝒮ℐ -almost I-ideal 𝑓𝑆  is called minimal if any 𝒮ℐ -almost I-ideal ֏𝑆  if whenever 

ℌ𝑆 ⊆̃  𝑓𝑆, then 𝑠𝑢𝑝𝑝(֏) = 𝑠𝑢𝑝𝑝(𝑓𝑆). 

Theorem 3.19. Let ∅ ≠ Ꝟ ⊆ S. Then, Ꝟ is a minimal almost I-ideal if and only if, is a minimal 𝒮ℐ-

almost I-ideal. 

Proof: Assume that Ꝟ is a minimal almost I-ideal. Thus Ꝟ is an almost I-ideal and 𝑆Ꝟ is an 𝒮ℐ-almost 

I-ideal by Theorem 3.14. Let 𝑓𝑠 be an 𝒮ℐ-almost I-ideal such that 𝑓𝑠 ⊆̃ 𝑆Ꝟ. By Theorem 3.16, 𝑠𝑢𝑝𝑝(𝑓𝑠) 

is an almost I-ideal and by Note 2.6, and Corollary 2.11, 

𝑠𝑢𝑝𝑝(𝑓𝑠) ⊆ 𝑠𝑢𝑝𝑝(𝑆Ꝟ) = Ꝟ 
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Since Ꝟ is a minimal almost I-ideal 𝑠𝑢𝑝𝑝(𝑓𝑠)=𝑠𝑢𝑝𝑝(𝑆Ꝟ)= Ꝟ. Thus, 𝑆Ꝟ is a minimal 𝒮ℐ-almost interior 

by Definition 3.18. 

Conversely, let 𝑆Ꝟ be a minimal 𝒮ℐ-almost I-ideal. Thus 𝑆Ꝟ  is an 𝒮ℐ-almost I-ideal and Ꝟ  is an 

almost I-ideal by Theorem 3.14. Let 𝐵 be an almost I-ideal such that Ӄ ⊆ Ꝟ. By Theorem 3.14, 𝑆𝐵 is 

an 𝒮ℐ-almost I-ideal and by Theorem 2.12 (i), 𝑆Ӄ ⊆̃ 𝑆Ꝟ. Since 𝑆Ꝟ is a minimal 𝒮ℐ-almost I-ideal, by 

Corollary 2.11 

𝐵 = supp(𝑆Ӄ) = supp(𝑆Ꝟ)= Ꝟ 

Thus, Ꝟ is a minimal almost I-ideal. 

Definition 3.20. Let 𝑓𝑠, 𝑔𝑠, and ֏𝑠 be any 𝒮ℐ-almost I-ideal. If ֏𝑠 o𝑔𝑠 ⊆̃ 𝑓𝑠 implies that ֏𝑠 ⊆̃ 𝑓𝑠 or 

𝑔𝑠 ⊆̃ 𝑓𝑠, then 𝑓𝑠 is called an 𝒮ℐ-prime almost I-ideal. 

Definition 3.21. Let 𝑓𝑠 and ֏𝑠 be any 𝒮ℐ-almost I-ideal. If ֏𝑠 o ֏𝑠 ⊆̃ 𝑓𝑠implies that ֏𝑠 ⊆̃ 𝑓𝑠, then 

𝑓𝑠 is called an 𝒮ℐ-semiprime almost I-ideal. 

Definition 3.22. Let 𝑓𝑠, 𝑔𝑠 and ֏𝑠 be any 𝒮ℐ-almost I-ideal. (֏𝑠 o 𝑔𝑠)∩̃(𝑔𝑠 o ֏𝑠)⊆̃ 𝑓𝑠 implies that 

֏𝑠 ⊆̃ 𝑓𝑠 or 𝑔𝑠 ⊆̃ 𝑓𝑠, then 𝑓𝑠 is called an 𝒮ℐ-strongly prime almost I-ideal. 

Theorem 3.23. If 𝑆Ꝕ, is an 𝒮ℐ-prime almost I-ideal, then Ꝕ is a prime almost I-ideal, where ∅≠ Ꝕ ⊆

𝑆. 

Proof: Assume that 𝑆Ꝕ is an 𝒮ℐ-prime almost I-ideal. Thus 𝑆Ꝕ is an 𝒮ℐ-almost I-ideal and thus Ꝕ 

is an almost I-ideal by Theorem 3.14. Let Ꝟ and Ӄ be an almost I-ideal such that ꝞӃ ⊆  Ꝕ. Thus, by 

Theorem 3.14, 𝑆Ꝟ and 𝑆Ӄ are 𝒮ℐ-almost I-ideals, and by Theorem 2.12 (i) and (iii) 𝑆Ꝟ°𝑆Ӄ=𝑆ꝞӃ ⊆̃ 𝑆Ꝕ. 

Since 𝑆Ꝕ is an 𝒮ℐ-prime almost I-ideal and 𝑆Ꝟ°𝑆Ӄ ⊆̃ 𝑆Ꝕ it follows that 𝑆Ꝟ ⊆̃ 𝑆Ꝕ or 𝑆Ӄ ⊆̃ 𝑆Ꝕ. Thereby, 

Ꝟ ⊆ Ꝕ or Ӄ ⊆  Ꝕ.  Consequently, Ꝕ is a prime almost I-ideal. 

Theorem 3.22. If 𝑆Ꝕ is an 𝒮ℐ-semiprime almost I-ideal then Ꝕ is a semiprime almost I-ideal, where 

∅≠ Ꝕ ⊆ 𝑆. 

Proof: Assume that 𝑆Ꝕ is an 𝒮ℐ-semiprime almost I-ideal. Thus 𝑆Ꝕ is an  𝒮ℐ-almost I-ideal and thus 

Ꝕ is an almost interior ideal by Theorem 3.14. Let Ꝟ be an almost interior ideal such that ꝞꝞ ⊆  𝑃. 

Thus, 𝑆Ꝟ is an 𝒮ℐ-almost I-ideals and 𝑆Ꝟ°𝑆Ꝟ=𝑆ꝞꝞ ⊆̃ 𝑆Ꝕ . Since 𝑆Ꝕ is an 𝒮ℐ-semiprime almost I-ideal 

and 𝑆Ꝟ°𝑆Ꝟ ⊆̃ 𝑆Ꝕ, it follows that 𝑆Ꝟ ⊆̃ 𝑆Ꝕ. Thereby, Ꝟ ⊆ Ꝕ. Consequently, Ꝕ is a semiprime almost I-

ideal. 

Theorem 3.23. If 𝑆Ꝕ is an 𝒮ℐ-strongly prime almost I-ideal then Ꝕ is a strongly prime almost I-ideal, 

where ∅≠ Ꝕ ⊆ 𝑆. 

Proof: Assume that 𝑆Ꝕ is an 𝒮ℐ-strongly prime almost I-ideal. Thus 𝑆Ꝕ is an 𝒮ℐ-almost I-ideal and 

thus Ꝕ is an almost I-ideal. Let Ꝟ and Ӄ be an almost I-ideal such that ꝞӃ ∩ ӃꝞ ⊆ Ꝕ. Thus, 𝑆Ꝟ and 

𝑆Ӄ are 𝒮ℐ-almost I-ideals, and  

(𝑆Ꝟ°𝑆Ӄ) ∩̃ (𝑆Ӄ°𝑆Ꝟ)= 𝑆ꝞӃ ∩̃  𝑆ӃꝞ ⊆̃ Ꝕ. 

Since 𝑆Ꝕ is an 𝒮ℐ-strongly prime almost I-ideal and (𝑆Ꝟ°𝑆Ӄ) ∩̃ (𝑆Ӄ°𝑆Ꝟ) ⊆̃ 𝑆𝑃 it follows that 𝑆Ꝟ ⊆̃ 𝑆Ꝕ 

or 𝑆Ӄ ⊆̃ 𝑆Ꝕ Thus, 𝑆Ꝟ and 𝑆Ӄ are 𝒮ℐ-almost I-ideals, and Ꝟ ⊆ Ꝕ or Ӄ ⊆  Ꝕ. Therein, Ꝕ is a strongly 

prime almost I-ideal. 

4. Conclusions 

Soft- 𝑖𝑛𝑡  interior ideal is a generalization of soft- 𝑖𝑛𝑡  ideal [33]. In this study, as a further 

generalization of the nonnull soft-𝑖𝑛𝑡 interior ideal of semigroups, we introduced the concept of soft-

𝑖𝑛𝑡 almost interior ideal and its generalization, soft-𝑖𝑛𝑡 weakly almost interior ideals, and studied 
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their basic properties. We illustrate that every soft-𝑖𝑛𝑡 almost interior ideal of S is a soft intersection 

weakly almost interior ideal of S; nevertheless, the converse does not hold with the counterexample. 

Also, it was shown that idempotent soft- 𝑖𝑛𝑡  almost interior ideal is also soft- 𝑖𝑛𝑡  almost 

subsemigroup. We obtained the relation among soft-𝑖𝑛𝑡 almost interior ideal and almost interior 

ideal of a semigroup according to seemiprimeness, minimality, and (strongly) primeness. Many kinds 

of soft-𝑖𝑛𝑡  almost ideals of semigroups, including quasi-ideal, bi-ideal, bi-interior ideal, bi-quasi 

ideal, and bi-quasi interior ideal, may be studied in future studies. The relationships between these 

soft-𝑖𝑛𝑡 ideals and their generalized ideals are illustrated by the following Figure 1. 

 
Figure 1. Relations of the certain soft intersection ideals. 
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