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Abstract: The increasing frequency and severity of droughts represent a critical threat to agricultural 

systems worldwide, disrupting food production, and supply chains. Accurate and timely prediction 

of drought conditions is essential for ensuring agricultural sustainability and enabling proactive 

mitigation strategies. This study proposes a novel ensemble model that combines Random Forest 

(RF) and K-Nearest Neighbors (KNN) using soft voting to predict drought conditions based on 

meteorological data. The dataset consists of drought classifications for six levels, ranging from no 

drought to five drought severity levels using meteorological indicators from various U.S. counties. 

The performance of the proposed model was evaluated against several state-of-the-art machine 

learning models, including Logistic Regression, Decision Tree, and Artificial Neural Networks, 

using various evaluation metrics including accuracy, precision, recall, and F1-score. The results 

demonstrate the effectiveness of the proposed ensemble approach, achieving superior accuracy and 

reliability in predicting drought severity. This research highlights the transformative potential of 

machine learning in supporting agricultural systems and addressing climate change challenges 

through data-driven drought monitoring and mitigation strategies. 

Keywords: Drought Prediction; Machine Learning; Ensemble Models; Random Forest; K-Nearest 

Neighbors; Climate Change. 

1. Introduction 

Drought is one of the most significant natural disasters affecting agriculture, with widespread 

impacts on crop production, water availability, and food security [1, 2]. The increasing occurrence of 

droughts, driven by climate change, has put immense pressure on agricultural systems, making it 

critical to predict and mitigate their effects [3]. When crops fail due to water scarcity, it disrupts local 

food supplies, global trade, and livelihoods. Thus, timely and accurate prediction of drought 

conditions is vital for reducing risks and enabling farmers and policymakers to prepare effectively 

[4]. Traditional methods for monitoring drought, such as the Standardized Precipitation Index (SPI) 

or the Palmer Drought Severity Index (PDSI), rely heavily on region-specific climatic data. While 

these indices have been effective in some areas, their limitations include the inability to generalize to 

diverse geographic regions and their limited ability to capture complex relationships among drought-

related factors [5]. This gap necessitates the development of advanced tools that can process vast 

datasets and identify intricate patterns to predict drought with greater accuracy. 

The advancements in artificial intelligence (AI) and machine learning (ML) provide a promising 

avenue to address these challenges. It enables machines to simulate human intelligence, learn from 

data, adapt to new inputs, and perform tasks that traditionally require human expertise [6]. Machine 

learning is a subset of AI, that focuses on developing algorithms that allow computers to identify 

patterns and make decisions without explicit programming. These models excel in handling large, 

complex datasets, making them ideal for analyzing meteorological indicators and predicting drought 

https://doi.org/10.61356/j.iswa.2025.5466
https://sciencesforce.com/
https://sciencesforce.com/index.php/iswa
https://orcid.org/0000-0002-6495-2735
https://orcid.org/0000-0002-2062-924X
https://orcid.org/0000-0002-2353-8853


Information Sciences with Applications, Vol. 5, 2025                                                   2 

An International Journal of Computational Intelligence Methods, and Applications 

 

Walid Abdullah, Nebojsa Bacanin and K Venkatachalam, Ensemble RF-KNN Model for Accurate Prediction of Drought 

Levels 

[7]. Machine learning models, such as Random Forest (RF), K-Nearest Neighbors (KNN), and 

Artificial Neural Networks (ANN), are particularly powerful due to their ability to process high-

dimensional data, uncover nonlinear relationships, and adapt to diverse data distributions. They can 

leverage historical meteorological data to predict future drought conditions, even in the presence of 

missing or noisy data [8]. Furthermore, the integration of advanced techniques like ensemble learning 

enhances their accuracy and robustness, as it combines the strengths of multiple models to mitigate 

individual weaknesses [9]. Unlike traditional approaches, which often rely on predefined equations 

and region-specific assumptions, ML models can generalize well across different regions and climatic 

conditions. This adaptability makes them highly scalable, offering solutions that can be applied to 

diverse agricultural systems worldwide [10, 11]. 

This paper presents a data-driven framework to predict drought conditions, emphasizing its 

critical importance for agriculture. A new ensemble model, which combines Random Forest and K-

Nearest Neighbors using soft voting is proposed to improve predictive performance. This model 

utilized the meteorological data across six drought classification levels to ensure high accuracy and 

adaptability. To validate its effectiveness, the ensemble model is compared against state-of-the-art 

machine learning algorithms, including Logistic Regression, Decision Tree, and Artificial Neural 

Networks. The goal of this study is to provide a practical and robust approach to drought prediction 

that supports agricultural decision-making and enhances resilience to climate-related risks. By 

utilizing meteorological data and advanced ML techniques, this research contributes to the 

development of global drought monitoring systems that prioritize food security and sustainable 

agricultural practices. 

The remainder of this paper is structured as follows: Section 2 reviews the literature and 

discusses related work. Section 3 outlines the methodology, including the proposed ensemble model 

and its components. Section 4 presents experimental analysis, covering the dataset, preprocessing 

methods, experimental setup, and evaluation metrics. Section 5 discusses the results, comparing the 

performance of the proposed model with other machine learning approaches. Finally, Section 6 

concludes the paper with key insights and recommendations for future research. 

2. Related Work 

The prediction of drought conditions is a critical aspect of environmental management, 

agricultural planning, and disaster preparedness. Over the years, various machine learning 

techniques have been employed to predict droughts with varying degrees of success. In this section, 

we review the existing literature on drought prediction using machine learning models, highlighting 

the strengths and limitations, and better understanding the effectiveness of the existing methods. 

The use of machine learning for drought prediction in Pakistan was explored in [12], where 

Support Vector Machine (SVM), ANNs, and KNN models were applied to predict drought severity 

levels (moderate, severe, and extreme) during two major cropping seasons. Data from the 

NCEP/NCAR reanalysis database was used, and Recursive Feature Elimination (RFE) enhanced 

predictor accuracy. SVM outperformed other models by effectively capturing temporal and spatial 

drought patterns, identifying key predictors such as relative humidity, temperature, and wind speed. 

Short-term drought forecasting has also been explored. In Ethiopia's Awash River [13], the authors 

focused on short-term drought forecasting using the Standardized Precipitation Index (SPI). They 

compared ANNs, support vector regression (SVR), and coupled wavelet-ANN models. The coupled 

wavelet-ANN model delivered the most accurate SPI 3 and SPI 6 predictions over 1- and 3-month 

lead times, demonstrating the benefits of integrating wavelet transforms with ANN for enhanced 

forecasting.  

In [14], researchers investigated groundwater levels in drought-prone areas of northwestern 

Bangladesh using historical data from 1981 to 2017. Seven machine learning models, including 

Random Tree (RT) and Random Forest (RF), were evaluated with metrics such as RMSE and 
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correlation coefficient (CC). Ensemble methods like Bagging-RT and Bagging-RF achieved the most 

accurate predictions, showcasing their potential for sustainable groundwater resource management. 

Another study [15] applied machine learning models, including Random Forest (RF), Extreme 

Gradient Boost (XGB), Convolutional Neural Network (CNN), and Long Short-Term Memory 

(LSTM), to estimate drought events on the Tibetan Plateau. Using the Standardized Precipitation 

Evapotranspiration Index (SPEI), XGB and RF excelled at SPEI-3 estimation, while LSTM and XGB 

performed best for SPEI-6. These findings highlight the adaptability of these models for decision-

making in water resource management. 

The authors in [8] examined drought indices (SPI and SPEI) at multiple timescales, employing 

Random Forest, Voting Regressor, AdaBoost Regressor, and K-Nearest Neighbors Regressor. 

Random Forest and Voting Regressor achieved high accuracy, with NSE values ranging from 0.74 to 

0.93, while KNN showed weaker performance. This study underscores the need for advanced 

algorithms and improved data collection for precise drought prediction. In addition, Agricultural 

drought vulnerability in Bangladesh’s Barind Tract was analyzed in [16], utilizing Landsat satellite 

imagery and multiple indices like NDVI and VHI. The Cellular Automata-Artificial Neural Network 

(CA-ANN) model forecasted significant increases in extreme drought conditions by 2026 and 2031, 

driven by reduced vegetation and rising temperatures. The study emphasizes the need for proactive 

measures to enhance agricultural resilience. 

Hydrological drought prediction was addressed in [17] by modeling three drought indices (SPI, 

SSI, and SPEI) using SVR, Gene Expression Programming (GEP), and M5 model trees (MT). The MT 

model excelled in SSI predictions with a correlation coefficient (CC) of 0.8195 and RMSE of 0.8186, 

demonstrating its effectiveness for hydrological drought modeling. The effectiveness of hybrid 

approaches, such as wavelet-boosting ANN (WBS-ANN) and wavelet-boosting SVR (WBS-SVR), has 

also been demonstrated in [18], the authors combine wavelet transforms with ensemble techniques 

for drought prediction in Ethiopia. The results showed that hybrid models like wavelet-boosting 

ANN (WBS-ANN) and wavelet-boosting SVR (WBS-SVR) provided the most accurate SPI 

predictions, highlighting the potential of hybrid approaches in enhancing drought forecasting. 

These studies highlight the rapid advancements in applying machine learning models to 

drought prediction across diverse regions and contexts. While individual models such as SVM, ANN, 

and RF have shown strong performance, ensemble techniques, and hybrid models provide further 

improvements by leveraging the strengths of multiple approaches. This body of research opens the 

way for developing novel ensemble models, such as the proposed RF-KNN approach, to enhance 

accuracy and scalability in drought prediction tailored to agricultural systems. 

 

3. Methodology 

This section presents the methodological framework employed in this study to predict drought 

using machine learning. Initially, five machine learning models were implemented and evaluated, 

including Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), Logistic Regression 

(LR), and Artificial Neural Networks (ANN). Subsequently, the two best-performing models, RF and 

KNN, were selected to develop an ensemble model using a soft voting mechanism to enhance 

prediction accuracy. The methodology is divided into two subsections: the first provides an overview 

of the individual ML models used, and the second elaborates on the proposed ensemble model. 

 

3.1 Machine Learning Models 

To identify the most effective algorithms for drought prediction, five machine learning models 

were employed. Each model offered unique strengths that addressed specific aspects of the prediction 

task. The first model is the decision tree (DT) [19], this algorithm served as a starting point, creating 

a tree-like structure by splitting the dataset into subsets based on feature values. While its simplicity 
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and interpretability are notable advantages, DT models are prone to overfitting, especially without 

proper pruning. To overcome these limitations, the Random Forest (RF) model, an advanced 

ensemble learning technique, was employed [20]. RF generates multiple decision trees during 

training and combines their predictions, either by averaging (for regression) or by voting (for 

classification). Configured with 50 estimators and a max depth of 80, RF demonstrated robustness in 

handling non-linear relationships and reducing overfitting, making it a strong contender for drought 

prediction. 

Next, the K-Nearest Neighbors (KNN) algorithm which, is a non-parametric technique also 

tested in this study [21]. KNN classifies data points based on the majority class of their k-nearest 

neighbors, with k=5 chosen for this study. Its simplicity and effectiveness in capturing local patterns 

were advantageous, although the model’s performance is sensitive to the choice of k and the distance 

metric used. The Logistic Regression (LR) model, commonly employed for binary classification, was 

adapted for this study to handle multi-class drought prediction. As a statistical model estimating the 

probability of categorical outcomes based on input features, LR provided a solid baseline for 

comparison with more complex approaches. 

Lastly, the Artificial Neural Network (ANN) model, inspired by biological neural structures, 

was evaluated [22]. The ANN configuration consisted of input, hidden, and output layers. Known 

for their ability to model complex, non-linear patterns, ANNs require careful parameter tuning but 

proved valuable in exploring the dataset's intricate relationships. This exploration of machine 

learning techniques provided a foundation for selecting the two most effective models, RF and KNN. 

Their complementary strengths were subsequently combined in a novel ensemble model to enhance 

predictive accuracy. 

 

3.2 Proposed Ensemble Model 

Based on the evaluation of individual models, RF and KNN emerged as the top-performing 

algorithms. To capitalize on their complementary strengths, an ensemble model was developed using 

a Voting Classifier with soft voting. The ensemble approach integrates the predictive capabilities of 

RF and KNN, resulting in a more accurate and generalized model. The concept of soft voting involves 

averaging the predicted probabilities of individual models, giving more weight to confident 

predictions, as opposed to hard voting, which relies on majority decisions. This allows the ensemble 

model to make predictions that reflect the confidence levels of its constituent algorithms. The 

mathematical formulation of the soft voting mechanism is given by: 

 
𝑃(𝑦𝑘) =  

1

𝑛
 ∑ 𝑃𝑖(𝑦𝑘)

𝑛

𝑖=1
 

 
(1) 

where 𝑃𝑖(𝑦𝑘) is the predicted probability of class 𝑦𝑘  By the 𝑖 − 𝑡ℎ model, and 𝑛 is the total 

number of models. This approach ensures a more balanced prediction when dealing with imbalanced 

datasets. Fig 1 illustrates the architecture of the proposed Voting Classifier, showing how the outputs 

of Random Forest and K-Nearest Neighbors are combined to produce the final prediction. 

 

This ensemble model combines RF's strength in capturing global patterns and relationships with 

KNN's ability to detect local data structures. By integrating these strengths, the ensemble model 

demonstrated superior predictive performance compared to its components. This approach 

underscores the potential of ensemble learning to enhance the accuracy and reliability of machine 

learning models in drought prediction. 
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Figure 1. The architecture of the proposed RF-KNN ensemble model. 

 

4. Experimental Analysis 

4.1 Dataset 

The dataset used in this study is derived from the U.S. Drought Monitor and incorporates 

meteorological data provided by the NASA POWER Project and the U.S. Drought Monitor [23]. It is 

a classification dataset aimed at predicting six levels of drought severity, ranging from "No Drought" 

(None) to "Exceptional Drought" (D4). It includes 18 meteorological indicators, such as precipitation, 

temperature, humidity, and wind speed, which are essential for capturing the conditions leading to 

drought. Each data entry represents the drought level at a specific point in time for a given U.S. 

County, the drought severity levels are classified as shown in Table 1. The dataset serves as a valuable 

resource for investigating the feasibility of predicting drought conditions using meteorological data. 

Its insights could potentially lead to generalized drought prediction models applicable beyond the 

U.S. 

Table 1. Drought severity levels in the dataset 

Category Description Possible impacts 

(None) No Drought - Short-term dryness slows planting, growth of crops or pastures 

(D0) 
Abnormally 

Dry 

- Some lingering water deficits 

- Pastures or crops not fully recovered 

(D1) 
Moderate 

Drought 

- Some damage to crops, pastures 

- Streams, reservoirs, or wells low, some water shortages developing 

or imminent 

(D2) Severe Drought 

- Crop or pasture losses likely 

- Water shortages are common 

- Water restrictions imposed 

(D3) 
Extreme 

Drought 

- Major crop/pasture losses 

- Widespread water shortages or restrictions 

(D4) 
Exceptional 

Drought 

- Exceptional and widespread crop/pasture losses 

- Shortages of water in reservoirs, streams, and wells create water 

emergencies. 

 

4.2 Experimental Setup 

The meteorological indicator values in the dataset were normalized using standard scaling to 

ensure that all features had a similar scale, improving the performance of distance-based algorithms 
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like K-Nearest Neighbors [24]. Then the dataset is divided into training and testing subsets, with 80% 

of the data used for training and 20% reserved for testing. The experiments were conducted using 

Python (version 3.10.13) with the Scikit-learn library [25]. Each machine-learning model was initially 

trained and evaluated using default hyperparameters. Subsequently, fine-tuning was performed to 

optimize their performance. For the ensemble model, Scikit-learn's Voting Classifier was employed 

to integrate the predictions of the top-performing models. All experiments were executed on the 

Kaggle platform, leveraging an Nvidia Tesla P100 GPU with 30 GB of RAM, ensuring efficient 

computation for both training and testing. 

 

4.3 Evaluation Metrics 

To assess the performance of the machine learning models and the proposed ensemble approach, 

four evaluation metrics were employed: accuracy, precision, recall, and F1-score. These metrics 

provide a comprehensive understanding of the models' capabilities, particularly in addressing the 

challenges posed by imbalanced datasets. 

Accuracy measures the proportion of correctly classified instances to the total number of instances in 

the dataset. It is calculated as: 

 Accuracy =
(TP + TN)

(TP + FP + TN + FN)
 (2) 

Precision evaluates the correctness of positive predictions by determining the ratio of true positive 

predictions to the total number of positive predictions. It is expressed as: 

 Precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (3) 

Recall, also known as sensitivity or true positive rate, measures the ability of the model to correctly 

identify all positive instances. It is defined as: 

 Recall =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (4) 

F1-Score is the harmonic means of precision and recall, providing a balanced evaluation of the 

model's performance, especially when dealing with imbalanced data. It is calculated as: 

 𝐹1 Score = 2 ×
 recall ×  Precision 

 recall +  Precision 
 (5) 

While accuracy offers an overall performance indicator, it can be misleading in cases where one class 

dominates the dataset. So, we need the other metrics. In the context of Precision, high precision 

indicates that the model has a low false-positive rate, making it suitable for tasks where false alarms 

carry significant costs. High recall indicates that the model minimizes false negatives, making it 

valuable in scenarios where missing positive cases is critical. Finally, A higher F1 score reflects a 

better trade-off between precision and recall. These metrics collectively offer a nuanced evaluation of 

the models, highlighting their strengths and limitations in drought prediction tasks. 

5. Results and Discussion 

This section presents and analyzes the performance of the machine learning models employed 

for drought prediction, as well as the proposed ensemble model. The experiments aimed to evaluate 

the models across key metrics including accuracy, precision, recall, and F1-score while highlighting 

the strengths and limitations of each algorithm. The proposed model, combining Random Forest and 

K-Nearest Neighbors, was expected to outperform individual models due to its ability to leverage 

the complementary strengths of its components. The results are summarized in Table 2, which 

provides a comparative overview of the models' performance. 
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Table 2. Performance metrics of machine learning models for drought prediction. 

Model Accuracy Precision Recall F1-Score 

Decision tree (DT) 0.7754 0.7743 0.7754 0.7749 

Random Forest (RF) 0.8126 0.8083 0.8126 0.8104 

K-Nearest Neighbors (KNN) 0.7987 0.7983 0.7987 0.7985 

Logistic Regression (LR) 0.6579 0.5545 0.6579 0.6024 

Artificial Neural Networks 

(ANN) 
0.7180 0.7245 0.6921 0.7079 

Proposed model (RF- KNN) 0.8252 0.8155 0.8221 0.8188 

 

The performance of the machine learning models varied significantly, reflecting their strengths 

and limitations in handling the drought prediction task. The Decision Tree (DT), with an accuracy of 

77.54%, offered simplicity and interpretability but struggled with overfitting, which Random Forest 

(RF) addressed effectively. RF outperformed DT, achieving 81.26% accuracy due to its ensemble 

approach that better handles non-linear relationships and reduces overfitting. Similarly, K-Nearest 

Neighbors (KNN) demonstrated its ability to capture local patterns with an accuracy of 79.87%, 

though its reliance on parameter tuning, such as the choice of k and distance metrics, may limit its 

robustness in higher dimensions. 

Logistic Regression (LR) exhibited the weakest performance, with an accuracy of 65.79%, due to 

its inability to model complex, non-linear patterns in the data. In contrast, Artificial Neural Networks 

(ANN) showed moderate success, achieving 71.80% accuracy, highlighting its potential to handle 

non-linear relationships but revealing the need for further optimization to improve its performance. 

The proposed ensemble model, which combines RF and KNN, delivered the highest accuracy of 

82.52% and the best F1-score of 0.8188, demonstrating its effectiveness in leveraging the 

complementary strengths of its components to provide a balanced and robust solution for drought 

prediction. Figure 2 provides a visual comparison of the accuracy of all models, highlighting the 

superior performance of the proposed ensemble model. 

 

 
Figure 2. Comparison of performance metrics across machine learning models. 

 

The proposed model's performance highlights the potential of ensemble learning to improve the 

accuracy of drought prediction. By integrating two complementary algorithms, the ensemble model 
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provides a more generalized and robust solution. This underscores the importance of leveraging 

diverse machine-learning techniques for complex environmental problems. 

6. Conclusion and Future Work 

This study explored the use of machine learning models to predict drought severity levels using 

meteorological data. Five individual algorithms including Decision Tree, Random Forest, K-Nearest 

Neighbors, Logistic Regression, and Artificial Neural Networks were initially evaluated to identify 

their suitability for this task. Among these, Random Forest and K-Nearest Neighbors emerged as the 

top-performing models, demonstrating robust predictive capabilities and complementing each other 

in terms of capturing both global and local data patterns. To enhance accuracy, an ensemble model 

was developed by integrating Random Forest and K-Nearest Neighbors through a soft voting 

mechanism. The ensemble approach effectively leveraged the strengths of its constituent models, 

achieving superior performance compared to individual models. The experiments, conducted using 

a standardized dataset normalized for consistency, demonstrated the reliability of the proposed 

methodology. The evaluation metrics, including accuracy, precision, recall, and F1-score, provided a 

comprehensive analysis of the model’s predictive abilities and highlighted the advantages of 

ensemble learning in addressing the complexities of drought prediction. This research contributes to 

the growing field of data-driven drought prediction, emphasizing the potential of machine learning 

in mitigating the impacts of drought through early detection. However, the study primarily relied on 

historical meteorological data, and further work is needed to incorporate additional variables such 

as soil moisture and vegetation indices. Future research should also explore the generalizability of 

the proposed ensemble model to other geographical regions and its adaptability to real-time 

prediction systems. 
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