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Abstract: Interval graphs represent vertices as intervals on the real line, with edges denoting overlapping 
intervals, while proper interval graphs prevent one interval from being fully contained within another. This 
paper explores interval and proper interval graphs within the frameworks of fuzzy, neutrosophic, and 
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1 Introduction

1.1 Interval graphs and proper interval graphs
Graph theory is a fundamental area of mathematics that examines networks made up of nodes (vertices) 
and connections (edges), essential for analyzing paths, structures, and properties of these networks [28].

A notable example in graph theory is the intersection graph, which represents sets where vertices 
correspond to these sets, and edges exist between vertices if their corresponding sets intersect [82, 53, 
100]. Variants such as intersection digraphs[23, 121], random intersection graphs[56, 122, 88] , Intersection 
hypergraphs [87, 72, 7], and geometric intersection graphs[31, 58] have also been studied. And several 
related graph classes have been extensively studied, including interval graphs [57, 46], proper interval 
graphs [60, 65, 16], Mixed interval hypergraphs[12], interval hypergraphs[94, 22, 85, 54], almost interval 
graphs [13], weighted interval graphs [9, 17, 118], semi-proper interval graphs [97], mixed interval 
graphs[61, 63, 62], Unit mixed interval graphs[99], Rigid interval graphs[77], Minimum proper interval 
graphs[60], circular arc graphs [52, 114, 59], and polygon-circle graphs [73].

In this paper, we focus on interval and proper interval graphs. Interval and proper interval graphs are well-
known types of intersection graphs. In interval graphs, each vertex corresponds to an interval on the 
real line, with edges between vertices whose intervals overlap [57, 46]. Proper interval graphs, a subclass 
of interval graphs, ensure that no interval is fully contained within another, thereby avoiding nested 
intervals [60, 65, 16]. A graph is an interval graph if and only if it is chordal and AT-free [74]. 
Additionally, key graph parameters such as the interval number, pathwidth [70, 27], and boxicity [15] are 
associated with interval graphs. Interval graphs have various applications, including in food webs [21, 78, 
18], scheduling problems [67, 51, 50], and DNA analysis [68, 84, 116, 83].

1.2 Fuzzy Graphs and Neutrosophic Graphs
A fuzzy graph assigns a membership value between 0 and 1 to each vertex and edge, representing the 
degree of uncertainty or imprecision [95, 39, 89]. Essentially, fuzzy graphs are a graphical representation 
of fuzzy sets [76, 120, 119]. They are widely used in fields like social networks, decision-making, and 
transportation systems,
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where relationships are uncertain or not clearly defined [95, 86]. Neutrosophic graphs [1, 33, 44], 
based on neutrosophic set theory [3, 101, 111], extend classical and fuzzy logic by incorporating three 
components: truth, indeterminacy, and falsity, providing greater flexibility in handling uncertainty.

Building on these ideas, Turiyam Neutrosophic graphs were introduced as an extension of neutrosophic and 
fuzzy graphs, where each vertex and edge is assigned four attributes: truth, indeterminacy, falsity, and a 
liberal state [47, 48]. Plithogenic graphs have also emerged as a more generalized form, and are actively 
being researched [112, 38, 43, 36, 103, 110].

While significant progress has been made in studying fuzzy and neutrosophic graphs, including their 
intersection variants (e.g., fuzzy intersection graphs [98, 81, 20, 55] and neutrosophic intersection graphs 
[11]), there has been limited exploration of interval graphs and proper interval graphs within the context of 
fuzzy, neutrosophic, and Turiyam Neutrosophic graphs.

1.3 Our Contribution
Based on the above, this paper defines interval graphs and proper interval graphs within the context of 
fuzzy, neutrosophic, and Turiyam Neutrosophic graphs, and examines their properties as well as the 
relationships between these graph classes.

2 Preliminaries and definitions

In this section, we present a brief overview of the definitions and notations used throughout this paper.

2.1 Basic Graph Concepts
Here are a few basic graph concepts listed below. For more foundational graph concepts and notations, 
please refer to [28].

Definition 1 (Graph). [28] A graph 𝐺 is a mathematical structure consisting of a set of vertices 𝑉 (𝐺)  and a set of 
edges 𝐸( 𝐺)  that connect pairs of vertices, representing relationships or connections between them. Formally, a 
graph is defined as 𝐺 = (𝑉 , 𝐸) , where 𝑉 is the vertex set and 𝐸 is the edge set.

Definition 2 (Degree). [28] Let 𝐺 = (𝑉 , 𝐸)  be a graph. The degree of a vertex 𝑣 ∈ 𝑉,  denoted deg(𝑣) , is the 
number of edges incident to 𝑣.  Formally, for undirected graphs:

deg(𝑣)  = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒} |.

In the case of directed graphs, the in-degree deg−(𝑣)  is the number of edges directed into 𝑣,  and the out-degree 
deg+(𝑣)  is the number of edges directed out of 𝑣.

Definition 3 (Subgraph). [28] A subgraph of 𝐺 is a graph formed by selecting a subset of vertices and edges 
from 𝐺.

Definition 4 (Connected graph). (cf.[115, 64]) A graph 𝐺 = (𝑉 , 𝐸)  is said to be a connected graph if for any 
two distinct vertices 𝑢,  𝑣 ∈ 𝑉,  there exists a path in 𝐺 that connects 𝑢 and 𝑣.  In other words, every pair of 
vertices in the graph is reachable from each other, meaning there is a sequence of edges that allows 
traversal between any two vertices.

Mathematically, for all 𝑢,  𝑣 ∈ 𝑉,  there exists a sequence of vertices 𝑣1 = 𝑢,  𝑣2, … , 𝑣𝑘 = 𝑣 such that (𝑣𝑖,  𝑣𝑖+1) ∈ 𝐸 
for all 1 ≤ 𝑖 < 𝑘.

Definition 5 (Induced subgraph). [75, 66] Let 𝐺 = (𝑉 , 𝐸)  be a graph, where 𝑉 is the set of vertices and 𝐸 is 
the set of edges. For a subset 𝑉 ′ ⊆ 𝑉,  the induced subgraph 𝐺[ 𝑉 ′] is the graph whose vertex set is 𝑉 ′ and 
whose edge set consists of all edges from 𝐸 that have both endpoints in 𝑉 ′. Formally, the induced subgraph 
𝐺[ 𝑉 ′] = (𝑉 ′, 𝐸′ ) is defined as follows:

𝐸′  = {(𝑢,  𝑣)  ∈ 𝐸 ∣ 𝑢 ∈ 𝑉 ′, 𝑣 ∈ 𝑉 ′}.
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In other words, 𝐺[𝑉 ′] is the subgraph of 𝐺 that contains all vertices in 𝑉 ′ and all edges from 𝐺 whose endpoints
are both in 𝑉 ′.

Definition 6 (Complete Graph). (cf.[29, 8]) A complete graph is a graph 𝐺 = (𝑉 , 𝐸) in which every pair of
distinct vertices is connected by a unique edge. Formally, a graph 𝐺 = (𝑉 , 𝐸) is complete if for every pair of
vertices 𝑢, 𝑣 ∈ 𝑉 with 𝑢 ≠ 𝑣, there exists an edge {𝑢, 𝑣} ∈ 𝐸.

The complete graph on 𝑛 vertices is denoted by 𝐾𝑛, and it has the following properties:

• The number of vertices is |𝑉 | = 𝑛.

• The number of edges is |𝐸| = (𝑛
2) = 𝑛(𝑛−1)

2 .

• Each vertex has degree deg(𝑣) = 𝑛 − 1 for all 𝑣 ∈ 𝑉.

2.2 Intersection graph and Interval graphs
In this paper, we focus on Interval graphs, which are known as intersection graphs. Intersection graphs have
been extensively studied[82, 53, 100]. The definition is provided below[82, 53, 100].

Definition 7 (Intersection graph). [82, 53, 100] A intersection graph is a graph that represents the intersection
relationships between sets. Formally, let 𝒮 = {𝑆1, 𝑆2, … , 𝑆𝑛} be a collection of sets. The intersection graph
𝐺 = (𝑉 , 𝐸) associated with 𝒮 is a graph where:

• The vertex set 𝑉 corresponds to the sets in 𝒮, i.e., 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, where each vertex 𝑣𝑖 represents
the set 𝑆𝑖 ∈ 𝒮.

• There is an edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 if and only if the corresponding sets 𝑆𝑖 and 𝑆𝑗 have a non-empty intersection,
i.e., 𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅.

Next, we will consider interval graphs and proper interval graphs. The definitions are provided below[57, 46].

Definition 8. [57, 46] An interval graph is an undirected graph 𝐺 = (𝑉 , 𝐸) that can be represented by a family
of intervals on the real line. For each vertex 𝑣 ∈ 𝑉, there exists a corresponding interval 𝐼𝑣 on the real line.
Two vertices 𝑢, 𝑣 ∈ 𝑉 are adjacent, i.e., (𝑢, 𝑣) ∈ 𝐸, if and only if their corresponding intervals 𝐼𝑢 and 𝐼𝑣 overlap.
Formally, the edge set 𝐸 of the graph 𝐺 is defined as:

𝐸(𝐺) = {(𝑢, 𝑣) ∣ 𝐼𝑢 ∩ 𝐼𝑣 ≠ ∅}.

Definition 9. [60, 65, 16] A proper interval graph is a special case of an interval graph where no interval is
strictly contained within another. That is, for any two intervals 𝐼𝑢 and 𝐼𝑣 corresponding to vertices 𝑢 and 𝑣,
neither 𝐼𝑢 ⊂ 𝐼𝑣 nor 𝐼𝑣 ⊂ 𝐼𝑢. This restriction ensures that no interval is nested within another. A graph is a
proper interval graph if and only if it has a proper interval representation.

The above graphs have been the subject of numerous published papers and studies [80, 96, 61]. An interval
graph is both chordal (i.e., every induced cycle has length 3 [32]) and AT-free (i.e., it contains no asteroidal
triple, a set of three vertices such that any two are connected by a path that avoids the neighborhood of the
third vertex[19]). Below are examples of interval graphs and proper interval graphs.

Example 10 (Interval Graph). Consider a set of intervals on the real line:
𝐼1 = [1, 5], 𝐼2 = [4, 8], 𝐼3 = [6, 9], 𝐼4 = [2, 3]

The vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} correspond to the intervals 𝐼1, 𝐼2, 𝐼3, 𝐼4, and the edges are drawn between
vertices whose intervals overlap:

• 𝐼1 ∩ 𝐼2 ≠ ∅, so (𝑣1, 𝑣2) ∈ 𝐸,

• 𝐼2 ∩ 𝐼3 ≠ ∅, so (𝑣2, 𝑣3) ∈ 𝐸,

• 𝐼1 ∩ 𝐼4 ≠ ∅, so (𝑣1, 𝑣4) ∈ 𝐸,
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• 𝐼1 ∩ 𝐼3 = ∅, so (𝑣1, 𝑣3) ∉ 𝐸,

• 𝐼3 ∩ 𝐼4 = ∅, so (𝑣3, 𝑣4) ∉ 𝐸,

• 𝐼2 ∩ 𝐼4 = ∅, so (𝑣2, 𝑣4) ∉ 𝐸.

The resulting interval graph 𝐺 = (𝑉 , 𝐸) is:
𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸 = {(𝑣1, 𝑣2), (𝑣1, 𝑣4), (𝑣2, 𝑣3)}

Example 11 (Proper Interval Graph). Consider a set of intervals that do not nest:
𝐼1 = [1, 3], 𝐼2 = [4, 6], 𝐼3 = [7, 9], 𝐼4 = [2, 4]

None of these intervals are strictly contained within another. The vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} correspond to the
intervals, and the edges are drawn between overlapping intervals:

• 𝐼1 ∩ 𝐼4 ≠ ∅, so (𝑣1, 𝑣4) ∈ 𝐸,

• 𝐼2 ∩ 𝐼4 ≠ ∅, so (𝑣2, 𝑣4) ∈ 𝐸,

• 𝐼3 ∩ 𝐼2 = ∅, so (𝑣2, 𝑣3) ∉ 𝐸,

• No other intervals overlap.

The proper interval graph 𝐺 is:
𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸 = {(𝑣1, 𝑣4), (𝑣2, 𝑣4)}

Since no interval is strictly contained within another, this forms a proper interval graph.

Let 𝑝 and 𝑞 be integers. The generalized concepts of p-Proper Interval Graphs [91, 24] and q-Improper Interval
Graphs[10] are well known. Like standard interval graphs, they have been the subject of various studies. The
definitions of these graphs are provided below.

Definition 12 (𝑝-Proper Interval Graph). [91] A graph 𝐺 = (𝑉 , 𝐸) is called a 𝑝-proper interval graph if there
exists an interval representation of 𝐺 such that no interval in the representation is properly contained within
more than 𝑝 other intervals. Formally, let ℐ = {𝐼𝑣 ∣ 𝑣 ∈ 𝑉 } be a set of intervals corresponding to the vertices of
𝐺. The graph 𝐺 is 𝑝-proper if for every interval 𝐼𝑢 ∈ ℐ, the number of other intervals 𝐼𝑣 ∈ ℐ such that 𝐼𝑣 ⊂ 𝐼𝑢
is at most 𝑝:

∀𝑢 ∈ 𝑉 , |{𝑣 ∈ 𝑉 ∣ 𝐼𝑣 ⊂ 𝐼𝑢}| ≤ 𝑝.

Definition 13 (𝑞-Improper Interval Graph). [10] A graph 𝐺 = (𝑉 , 𝐸) is called a 𝑞-improper interval graph if
there exists an interval representation of 𝐺 such that no interval in the representation properly contains more
than 𝑞 other intervals. Formally, let ℐ = {𝐼𝑣 ∣ 𝑣 ∈ 𝑉 } be a set of intervals corresponding to the vertices of 𝐺.
The graph 𝐺 is 𝑞-improper if for every interval 𝐼𝑢 ∈ ℐ, the number of other intervals 𝐼𝑣 ∈ ℐ such that 𝐼𝑢 ⊂ 𝐼𝑣 is
at most 𝑞:

∀𝑢 ∈ 𝑉 , |{𝑣 ∈ 𝑉 ∣ 𝐼𝑢 ⊂ 𝐼𝑣}| ≤ 𝑞.

𝑝-Proper Interval Graph generalizes the concept of proper interval graphs, where a 0-proper interval graph is
a proper interval graph (i.e., no interval is properly contained within any other interval). 𝑞-Improper Interval
Graph extends the notion of proper interval graphs, where a 0-improper interval graph is a proper interval graph
(i.e., no interval properly contains any other interval).

2.3 Interval graph in Fuzzy Graphs
Now, we explore interval graphs within the context of fuzzy graphs. Fuzzy graphs extend classical graph theory
by incorporating the principles of fuzzy sets [119, 14, 117, 25]. Extensive research has been conducted on fuzzy
graphs [95]. The definition of a fuzzy graph is given below.

Definition 14. [95] A fuzzy graph 𝜓 = (𝑉 , 𝜎, 𝜇) is defined as follows:

• 𝑉 is a set of vertices.
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• 𝜎 ∶ 𝑉 → [0, 1] is a function that assigns a membership degree to each vertex 𝑣 ∈ 𝑉, indicating the degree
of membership of 𝑣 in the fuzzy graph.

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is a fuzzy relation that represents the strength of the connection between each pair of
vertices (𝑢, 𝑣) ∈ 𝑉 × 𝑉, such that 𝜇(𝑢, 𝑣) ≤ min{𝜎(𝑢), 𝜎(𝑣)}.

In this definition, the following properties hold:

• The fuzzy function 𝜇 is symmetric, meaning 𝜇(𝑢, 𝑣) = 𝜇(𝑣, 𝑢) for all 𝑢, 𝑣 ∈ 𝑉.

• Additionally, 𝜇(𝑣, 𝑣) = 0 for all 𝑣 ∈ 𝑉, meaning that there is no self-loop in the fuzzy graph.

The fuzzy graph 𝜓 allows for the representation of uncertainty in the presence or strength of connections between
vertices, making it a valuable tool for modeling complex systems with ambiguous or imprecise relationships.

Next, we define the fuzzy interval graph, which combines the concepts of a fuzzy graph and an interval graph, as
follows.

Definition 15 (Fuzzy Interval Graph). Let 𝑉 be a finite set of vertices, and let

ℱ = {𝜇1, 𝜇2, … , 𝜇𝑛}

be a finite family of fuzzy intervals on the real line ℝ. Each fuzzy interval 𝜇𝑖 ∶ ℝ → [0, 1] is a normal, convex
fuzzy subset of ℝ, meaning there exists a point 𝑥𝑖 ∈ ℝ such that 𝜇𝑖(𝑥𝑖) = 1, and for any 𝑦, 𝑧 ∈ ℝ with 𝑦 ≤ 𝑧, the
following holds:

𝜇𝑖(𝑤) ≥ min{𝜇𝑖(𝑦), 𝜇𝑖(𝑧)} for all 𝑤 between 𝑦 and 𝑧.

The fuzzy interval graph 𝐺 = (𝑉 , 𝜇𝑉, 𝜌) is defined as follows:

• The vertex membership function 𝜇𝑉 ∶ 𝑉 → [0, 1] is given by:

𝜇𝑉(𝑣𝑖) = ℎ(𝜇𝑖) = sup
𝑥∈ℝ

𝜇𝑖(𝑥) = 1,

where ℎ(𝜇𝑖) denotes the height of the fuzzy interval 𝜇𝑖.

• The fuzzy adjacency relation 𝜌 ∶ 𝑉 × 𝑉 → [0, 1] is defined by:

𝜌(𝑣𝑖, 𝑣𝑗) = {ℎ(𝜇𝑖 ∩ 𝜇𝑗) = sup𝑥∈ℝ min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗.

In this definition, the edge membership function 𝜌(𝑣𝑖, 𝑣𝑗) measures the degree of overlap between the fuzzy
intervals 𝜇𝑖 and 𝜇𝑗. The fuzzy interval graph captures the intersection properties of fuzzy intervals, extending
the concept of interval graphs to the fuzzy context.

Definition 16 (Fuzzy Proper Interval Graph). A fuzzy proper interval graph is a fuzzy interval graph 𝐺 =
(𝑉 , 𝜇𝑉, 𝜌) where the family of fuzzy intervals ℱ = {𝜇1, 𝜇2, … , 𝜇𝑛} satisfies the additional condition that no fuzzy
interval is strictly contained within another.

Formally, for any two distinct fuzzy intervals 𝜇𝑖 and 𝜇𝑗 in ℱ, neither of the following holds:

• 𝜇𝑖(𝑥) ≤ 𝜇𝑗(𝑥) for all 𝑥 ∈ ℝ and there exists 𝑥0 ∈ ℝ such that 𝜇𝑖(𝑥0) < 𝜇𝑗(𝑥0).

• 𝜇𝑗(𝑥) ≤ 𝜇𝑖(𝑥) for all 𝑥 ∈ ℝ and there exists 𝑥0 ∈ ℝ such that 𝜇𝑗(𝑥0) < 𝜇𝑖(𝑥0).

This restriction ensures that no fuzzy interval is nested within another. The vertex membership function 𝜇𝑉 and
the fuzzy adjacency relation 𝜌 are defined similarly to those in the fuzzy interval graph, but the non-nesting
condition on fuzzy intervals ensures that no interval is entirely contained within another.
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2.4 interval graph in Intuitionistic fuzzy Graphs
Next, we consider Interval graphs in Intuitionistic Fuzzy Graphs. Intuitionistic fuzzy graphs are an extended
version of fuzzy graphs and have been the subject of extensive study for over 15 years [92, 71, 90, 49]. Intuitionistic
fuzzy graphs are related to the concept of intuitionistic fuzzy sets [113, 30, 6, 5]. The definitions of intuitionistic
fuzzy graphs and intuitionistic fuzzy Interval graphs are provided below.

Definition 17 (Intuitionistic Fuzzy Graph (IFG)). [90] Let 𝐺 = (𝑉 , 𝐸) be a classical graph where 𝑉 denotes the
set of vertices and 𝐸 denotes the set of edges. An Intuitionistic Fuzzy Graph (IFG) on 𝐺, denoted 𝐺𝐼𝐹 = (𝐴, 𝐵),
is defined as follows:

(1) (𝜇𝐴, 𝑣𝐴) is an Intuitionistic Fuzzy Set (IFS) on the vertex set 𝑉. For each vertex 𝑥 ∈ 𝑉, the degree of
membership 𝜇𝐴(𝑥) ∈ [0, 1] and the degree of non-membership 𝑣𝐴(𝑥) ∈ [0, 1] satisfy:

𝜇𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 1

The value 1 − 𝜇𝐴(𝑥) − 𝑣𝐴(𝑥) represents the hesitancy or uncertainty regarding the membership of 𝑥 in
the set.

(2) (𝜇𝐵, 𝑣𝐵) is an Intuitionistic Fuzzy Relation (IFR) on the edge set 𝐸. For each edge (𝑥, 𝑦) ∈ 𝐸, the
degree of membership 𝜇𝐵(𝑥, 𝑦) ∈ [0, 1] and the degree of non-membership 𝑣𝐵(𝑥, 𝑦) ∈ [0, 1] satisfy:

𝜇𝐵(𝑥, 𝑦) + 𝑣𝐵(𝑥, 𝑦) ≤ 1

Additionally, the following constraints must hold for all 𝑥, 𝑦 ∈ 𝑉:

𝜇𝐵(𝑥, 𝑦) ≤ 𝜇𝐴(𝑥) ∧ 𝜇𝐴(𝑦)

𝑣𝐵(𝑥, 𝑦) ≤ 𝑣𝐴(𝑥) ∨ 𝑣𝐴(𝑦)

In this definition:

• 𝜇𝐴(𝑥) and 𝑣𝐴(𝑥) represent the degree of membership and non-membership of the vertex 𝑥, respectively.

• 𝜇𝐵(𝑥, 𝑦) and 𝑣𝐵(𝑥, 𝑦) represent the degree of membership and non-membership of the edge (𝑥, 𝑦),
respectively.

• If 𝑣𝐴(𝑥) = 0 and 𝑣𝐵(𝑥, 𝑦) = 0 for all 𝑥 ∈ 𝑉 and (𝑥, 𝑦) ∈ 𝐸, then the Intuitionistic Fuzzy Graph reduces
to a Fuzzy Graph.

We define the Intuitionistic Fuzzy Interval Graph as follows. he Intuitionistic Fuzzy Interval Graph is a concept
that combines the ideas of an Intuitionistic Fuzzy Graph and Interval graphs.

Definition 18 (Intuitionistic Fuzzy Interval Graph). Let 𝑉 be a finite set of vertices, and let

ℐ = {(𝜇1, 𝑣1), (𝜇2, 𝑣2), … , (𝜇𝑛, 𝑣𝑛)}

be a finite family of intuitionistic fuzzy intervals on the real line ℝ. Each pair (𝜇𝑖, 𝑣𝑖) consists of a membership
function 𝜇𝑖 ∶ ℝ → [0, 1] and a non-membership function 𝑣𝑖 ∶ ℝ → [0, 1], such that:

𝜇𝑖(𝑥) + 𝑣𝑖(𝑥) ≤ 1 for all 𝑥 ∈ ℝ,

where 𝜇𝑖 is convex and normal, meaning there exists a point 𝑥𝑖 ∈ ℝ such that 𝜇𝑖(𝑥𝑖) = 1, and for any 𝑦, 𝑧 ∈ ℝ
with 𝑦 ≤ 𝑧, the following holds:

𝜇𝑖(𝑤) ≥ min{𝜇𝑖(𝑦), 𝜇𝑖(𝑧)} for all 𝑤 between 𝑦 and 𝑧.

The Intuitionistic Fuzzy Interval Graph 𝐺 = (𝑉 , 𝜇𝑉, 𝑣𝑉, 𝜌𝜇, 𝜌𝑣) is defined as follows:

• The vertex membership function 𝜇𝑉 ∶ 𝑉 → [0, 1] and non-membership function 𝑣𝑉 ∶ 𝑉 → [0, 1] are given
by:

𝜇𝑉(𝑣𝑖) = sup
𝑥∈ℝ

𝜇𝑖(𝑥), 𝑣𝑉(𝑣𝑖) = inf
𝑥∈ℝ

𝑣𝑖(𝑥).
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• The fuzzy adjacency relations 𝜌𝜇 ∶ 𝑉 × 𝑉 → [0, 1] and 𝜌𝑣 ∶ 𝑉 × 𝑉 → [0, 1] are defined by:

𝜌𝜇(𝑣𝑖, 𝑣𝑗) = {sup𝑥∈ℝ min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗,

𝜌𝑣(𝑣𝑖, 𝑣𝑗) = {inf𝑥∈ℝ max{𝑣𝑖(𝑥), 𝑣𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗.

This definition extends the classical interval graph by incorporating intuitionistic fuzzy intervals, allowing for
both membership and non-membership degrees for vertices and edges.

Definition 19 (Intuitionistic Fuzzy Proper Interval Graph). An Intuitionistic Fuzzy Proper Interval Graph is
an Intuitionistic Fuzzy Interval Graph 𝐺 = (𝑉 , 𝜇𝑉, 𝑣𝑉, 𝜌𝜇, 𝜌𝑣) where the family of intuitionistic fuzzy intervals
ℐ = {(𝜇1, 𝑣1), (𝜇2, 𝑣2), … , (𝜇𝑛, 𝑣𝑛)} satisfies the additional condition that no intuitionistic fuzzy interval is strictly
contained within another.

Formally, for any two distinct intuitionistic fuzzy intervals (𝜇𝑖, 𝑣𝑖) and (𝜇𝑗, 𝑣𝑗) in ℐ, neither of the following
holds:

• 𝜇𝑖(𝑥) ≤ 𝜇𝑗(𝑥) for all 𝑥 ∈ ℝ, and there exists 𝑥0 ∈ ℝ such that 𝜇𝑖(𝑥0) < 𝜇𝑗(𝑥0),

• 𝑣𝑖(𝑥) ≥ 𝑣𝑗(𝑥) for all 𝑥 ∈ ℝ, and there exists 𝑥0 ∈ ℝ such that 𝑣𝑖(𝑥0) > 𝑣𝑗(𝑥0),

ensuring that no interval is nested within another in terms of both membership and non-membership degrees.
The vertex membership function 𝜇𝑉, non-membership function 𝑣𝑉, and fuzzy adjacency relations 𝜌𝜇 and 𝜌𝑣 are
defined similarly to those in the Intuitionistic Fuzzy Interval Graph.

2.5 interval graph in Neutrosophic Graphs
First, the definition of a neutrosophic graph is provided. As mentioned in the introduction, neutrosophic
graphs are an extension of fuzzy graphs and Intuitionistic Fuzzy Graphs. A Neutrosophic Graph assigns truth,
indeterminacy, and falsity membership degrees to each vertex and edge, representing uncertainty. Similar to
fuzzy graphs, neutrosophic graphs have been the subject of extensive research [69, 2, 108, 106]. Neutrosophic
graphs are related to the concept of Neutrosophic sets [4, 26, 109, 79, 105]. The definition is provided below[108].

Definition 20. [108] A neutrosophic graph 𝐺 = (𝑉 , 𝐸, 𝜎 = (𝜎𝑇, 𝜎𝐼, 𝜎𝐹), 𝜇 = (𝜇𝑇, 𝜇𝐼, 𝜇𝐹)) is a graph where:

• 𝜎 ∶ 𝑉 → [0, 1]3 assigns a triple (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)) representing the truth, indeterminacy, and falsity
membership degrees to each vertex 𝑣 ∈ 𝑉.

• 𝜇 ∶ 𝐸 → [0, 1]3 assigns a triple (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)) representing the truth, indeterminacy, and falsity
membership degrees to each edge 𝑒 ∈ 𝐸.

• For every edge 𝑒 = 𝑣𝑖𝑣𝑗 ∈ 𝐸, the following condition holds:
𝜇𝑇(𝑒) ≤ min(𝜎𝑇(𝑣𝑖), 𝜎𝑇(𝑣𝑗)).

(1) 𝜎 is called the neutrosophic vertex set.

(2) 𝜇 is called the neutrosophic edge set.

(3) The number of vertices |𝑉 | is the order of 𝐺, denoted by 𝑂(𝐺).

(4) The sum of the truth values over all vertices, ∑𝑣∈𝑉 𝜎𝑇(𝑣), is the neutrosophic order of 𝐺, denoted by
𝑂𝑛(𝐺).

(5) The number of edges |𝐸| is the size of 𝐺, denoted by 𝑆(𝐺).

(6) The sum of the truth values over all edges, ∑𝑒∈𝐸 𝜇𝑇(𝑒), is the neutrosophic size of 𝐺, denoted by 𝑆𝑛(𝐺).

We define the Neutrosophic Interval Graph as follows. The Neutrosophic Interval Graphis a concept that
combines the ideas of an Neutrosophic Graph and a Interval Graph.
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Definition 21 (Neutrosophic Interval Graph). Let 𝑉 be a finite set of vertices, and let

𝒩 = {(𝜇1, 𝜏1, 𝜁1), (𝜇2, 𝜏2, 𝜁2), … , (𝜇𝑛, 𝜏𝑛, 𝜁𝑛)}

be a finite family of neutrosophic intervals on the real line ℝ. Each triple (𝜇𝑖, 𝜏𝑖, 𝜁𝑖) represents the truth-
membership function 𝜇𝑖 ∶ ℝ → [0, 1], the indeterminacy-membership function 𝜏𝑖 ∶ ℝ → [0, 1], and the falsity-
membership function 𝜁𝑖 ∶ ℝ → [0, 1] such that:

𝜇𝑖(𝑥) + 𝜏𝑖(𝑥) + 𝜁𝑖(𝑥) = 1 for all 𝑥 ∈ ℝ.

The Neutrosophic Interval Graph
𝐺 = (𝑉 , 𝜇𝑉, 𝜏𝑉, 𝜁𝑉, 𝜌𝜇, 𝜌𝜏, 𝜌𝜁)

is defined as follows:

• The vertex membership functions 𝜇𝑉 ∶ 𝑉 → [0, 1], 𝜏𝑉 ∶ 𝑉 → [0, 1], and 𝜁𝑉 ∶ 𝑉 → [0, 1] are given by:

𝜇𝑉(𝑣𝑖) = sup
𝑥∈ℝ

𝜇𝑖(𝑥), 𝜏𝑉(𝑣𝑖) = sup
𝑥∈ℝ

𝜏𝑖(𝑥), 𝜁𝑉(𝑣𝑖) = sup
𝑥∈ℝ

𝜁𝑖(𝑥).

• The neutrosophic adjacency relations 𝜌𝜇 ∶ 𝑉 × 𝑉 → [0, 1], 𝜌𝜏 ∶ 𝑉 × 𝑉 → [0, 1], and 𝜌𝜁 ∶ 𝑉 × 𝑉 → [0, 1]
are defined by:

𝜌𝜇(𝑣𝑖, 𝑣𝑗) = {sup𝑥∈ℝ min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗,

𝜌𝜏(𝑣𝑖, 𝑣𝑗) = {sup𝑥∈ℝ min{𝜏𝑖(𝑥), 𝜏𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗,

𝜌𝜁(𝑣𝑖, 𝑣𝑗) = {sup𝑥∈ℝ min{𝜁𝑖(𝑥), 𝜁𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗,

This definition extends classical interval graphs to the neutrosophic framework, accounting for truth, indetermi-
nacy, and falsity degrees for both vertices and edges.

Definition 22 (Neutrosophic Proper Interval Graph). A Neutrosophic Proper Interval Graph is a Neutrosophic
Interval Graph

𝐺 = (𝑉 , 𝜇𝑉, 𝜏𝑉, 𝜁𝑉, 𝜌𝜇, 𝜌𝜏, 𝜌𝜁)

where the family of neutrosophic intervals

𝒩 = {(𝜇1, 𝜏1, 𝜁1), (𝜇2, 𝜏2, 𝜁2), … , (𝜇𝑛, 𝜏𝑛, 𝜁𝑛)}

satisfies the condition that no neutrosophic interval is strictly contained within another.

Formally, for any two distinct neutrosophic intervals (𝜇𝑖, 𝜏𝑖, 𝜁𝑖) and (𝜇𝑗, 𝜏𝑗, 𝜁𝑗) in 𝒩, neither of the following
holds:

• 𝜇𝑖(𝑥) ≤ 𝜇𝑗(𝑥) for all 𝑥 ∈ ℝ, and there exists 𝑥0 ∈ ℝ such that 𝜇𝑖(𝑥0) < 𝜇𝑗(𝑥0),

• 𝜏𝑖(𝑥) ≤ 𝜏𝑗(𝑥) for all 𝑥 ∈ ℝ, and there exists 𝑥0 ∈ ℝ such that 𝜏𝑖(𝑥0) < 𝜏𝑗(𝑥0),

• 𝜁𝑖(𝑥) ≤ 𝜁𝑗(𝑥) for all 𝑥 ∈ ℝ, and there exists 𝑥0 ∈ ℝ such that 𝜁𝑖(𝑥0) < 𝜁𝑗(𝑥0),

ensuring that no neutrosophic interval is nested within another in terms of truth, indeterminacy, and falsity
degrees. The vertex and edge membership functions 𝜇𝑉, 𝜏𝑉, 𝜁𝑉 and adjacency relations 𝜌𝜇, 𝜌𝜏, 𝜌𝜁 are defined
similarly to those in the Neutrosophic Interval Graph.
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2.6 Interval Graph in Turiyam Neutrosophic Graph
This section explores interval graphs and proper interval graphs within the framework of Turiyam Neutro-
sophic Graphs. A Turiyam Neutrosophic Graph extends classical graph theory by assigning four distinct
parameters—truth, indeterminacy, falsity, and liberal state—to each vertex and edge.

Recent research on Turiyam Neutrosophic Graphs, which build upon and extend Neutrosophic Graphs by
introducing additional parameters, has gained significant attention [47, 45, 40, 34]. It is also known that Turiyam
Neutrosophic Graphs can be generalized to Quadripartitioned Neutrosophic Graphs and related frameworks (cf.
[107]).

The formal definition is presented below.

Definition 23 (Turiyam Neutrosophic Graph). [47, 40, 34] Let 𝐺 = (𝑉 , 𝐸) be a classical graph with a finite set
of vertices 𝑉 = {𝑣𝑖 ∶ 𝑖 = 1, 2, … , 𝑛} and edges 𝐸 = {(𝑣𝑖, 𝑣𝑗) ∶ 𝑖, 𝑗 = 1, 2, … , 𝑛}. A Turiyam Neutrosophic Graph
of 𝐺, denoted 𝐺𝑇 = (𝑉 𝑇, 𝐸𝑇), is defined as follows:

(1) Turiyam Neutrosophic Vertex Set: For each vertex 𝑣𝑖 ∈ 𝑉, the Turiyam Neutrosophic graph assigns the
following mappings:

𝑡(𝑣𝑖), 𝑖𝑣(𝑣𝑖), 𝑓𝑣(𝑣𝑖), 𝑙𝑣(𝑣𝑖) ∶ 𝑉 → [0, 1],
where:

• 𝑡(𝑣𝑖) is the truth value (tv) of the vertex 𝑣𝑖,

• 𝑖𝑣(𝑣𝑖) is the indeterminacy value (iv) of 𝑣𝑖,

• 𝑓𝑣(𝑣𝑖) is the falsity value (fv) of 𝑣𝑖,

• 𝑙𝑣(𝑣𝑖) is the Turiyam Neutrosophic state (or liberal value) (lv) of 𝑣𝑖,

for all 𝑣𝑖 ∈ 𝑉, such that the following condition holds for each vertex:
0 ≤ 𝑡(𝑣𝑖) + 𝑖𝑣(𝑣𝑖) + 𝑓𝑣(𝑣𝑖) + 𝑙𝑣(𝑣𝑖) ≤ 4.

(2) Turiyam Neutrosophic Edge Set: For each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, the Turiyam Neutrosophic graph assigns the
following mappings:

𝑡(𝑣𝑖, 𝑣𝑗), 𝑖𝑣(𝑣𝑖, 𝑣𝑗), 𝑓𝑣(𝑣𝑖, 𝑣𝑗), 𝑙𝑣(𝑣𝑖, 𝑣𝑗) ∶ 𝐸 → [0, 1],
where:

• 𝑡(𝑣𝑖, 𝑣𝑗) is the truth value of the edge (𝑣𝑖, 𝑣𝑗),

• 𝑖𝑣(𝑣𝑖, 𝑣𝑗) is the indeterminacy value of (𝑣𝑖, 𝑣𝑗),

• 𝑓𝑣(𝑣𝑖, 𝑣𝑗) is the falsity value of (𝑣𝑖, 𝑣𝑗),

• 𝑙𝑣(𝑣𝑖, 𝑣𝑗) is the Turiyam Neutrosophic state (or liberal value) of (𝑣𝑖, 𝑣𝑗),

for all (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, such that the following condition holds for each edge:
0 ≤ 𝑡(𝑣𝑖, 𝑣𝑗) + 𝑖𝑣(𝑣𝑖, 𝑣𝑗) + 𝑓𝑣(𝑣𝑖, 𝑣𝑗) + 𝑙𝑣(𝑣𝑖, 𝑣𝑗) ≤ 4.

In this case, 𝑉 𝑇 represents the Turiyam Neutrosophic vertex set of the graph 𝐺𝑇, and 𝐸𝑇 represents the Turiyam
Neutrosophic edge set of 𝐺𝑇.

We define the Turiyam Neutrosophic Interval Graph as follows. The Turiyam Neutrosophic Interval Graph is a
concept that combines the ideas of an Turiyam Neutrosophic Graph and a Interval Graph.

Definition 24 (Turiyam Neutrosophic Interval Graph). Let 𝑉 be a finite set of vertices, and let
𝒯 = {(𝜇1, 𝑖𝑣1, 𝑓𝑣1, 𝑙𝑣1), (𝜇2, 𝑖𝑣2, 𝑓𝑣2, 𝑙𝑣2), … , (𝜇𝑛, 𝑖𝑣𝑛, 𝑓𝑣𝑛, 𝑙𝑣𝑛)}

be a family of Turiyam Neutrosophic intervals on the real line ℝ. Each quadruple
(𝜇𝑖, 𝑖𝑣𝑖, 𝑓𝑣𝑖, 𝑙𝑣𝑖)
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consists of four membership functions representing truth 𝜇𝑖 ∶ ℝ → [0, 1], indeterminacy 𝑖𝑣𝑖 ∶ ℝ → [0, 1], falsity
𝑓𝑣𝑖 ∶ ℝ → [0, 1], and liberal 𝑙𝑣𝑖 ∶ ℝ → [0, 1]. These membership functions satisfy:

0 ≤ 𝜇𝑖(𝑥) + 𝑖𝑣𝑖(𝑥) + 𝑓𝑣𝑖(𝑥) + 𝑙𝑣𝑖(𝑥) ≤ 4 for all 𝑥 ∈ ℝ.

The Turiyam Neutrosophic Interval Graph 𝐺𝑇 = (𝑉 , 𝜇𝑉, 𝑖𝑣𝑉, 𝑓𝑣𝑉, 𝑙𝑣𝑉, 𝜌𝜇, 𝜌𝑖𝑣, 𝜌𝑓𝑣, 𝜌𝑙𝑣) is defined as follows:

• The vertex membership functions 𝜇𝑉, 𝑖𝑣𝑉, 𝑓𝑣𝑉, 𝑙𝑣𝑉 ∶ 𝑉 → [0, 1] are defined as:

𝜇𝑉(𝑣𝑖) = sup
𝑥∈ℝ

𝜇𝑖(𝑥), 𝑖𝑣𝑉(𝑣𝑖) = sup
𝑥∈ℝ

𝑖𝑣𝑖(𝑥),

𝑓𝑣𝑉(𝑣𝑖) = sup
𝑥∈ℝ

𝑓𝑣𝑖(𝑥), 𝑙𝑣𝑉(𝑣𝑖) = sup
𝑥∈ℝ

𝑙𝑣𝑖(𝑥).

• The Turiyam Neutrosophic adjacency relations 𝜌𝜇, 𝜌𝑖𝑣, 𝜌𝑓𝑣, 𝜌𝑙𝑣 ∶ 𝑉 × 𝑉 → [0, 1] are defined as:

𝜌𝜇(𝑣𝑖, 𝑣𝑗) = {sup𝑥∈ℝ min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗,

𝜌𝑖𝑣(𝑣𝑖, 𝑣𝑗) = {sup𝑥∈ℝ min{𝑖𝑣𝑖(𝑥), 𝑖𝑣𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗,

𝜌𝑓𝑣(𝑣𝑖, 𝑣𝑗) = {sup𝑥∈ℝ min{𝑓𝑣𝑖(𝑥), 𝑓𝑣𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗,

𝜌𝑙𝑣(𝑣𝑖, 𝑣𝑗) = {sup𝑥∈ℝ min{𝑙𝑣𝑖(𝑥), 𝑙𝑣𝑗(𝑥)}, if 𝑖 ≠ 𝑗,
0, if 𝑖 = 𝑗.

This definition extends the classical interval graph to the Turiyam Neutrosophic framework, allowing for truth,
indeterminacy, falsity, and liberal state values for both vertices and edges.

Definition 25 (Turiyam Neutrosophic Proper Interval Graph). A Turiyam Neutrosophic Proper Interval Graph
is a Turiyam Neutrosophic Interval Graph

𝐺𝑇 = (𝑉 , 𝜇𝑉, 𝑖𝑣𝑉, 𝑓𝑣𝑉, 𝑙𝑣𝑉, 𝜌𝜇, 𝜌𝑖𝑣, 𝜌𝑓𝑣, 𝜌𝑙𝑣)

where the family of Turiyam Neutrosophic intervals

𝒯 = {(𝜇1, 𝑖𝑣1, 𝑓𝑣1, 𝑙𝑣1), (𝜇2, 𝑖𝑣2, 𝑓𝑣2, 𝑙𝑣2), … , (𝜇𝑛, 𝑖𝑣𝑛, 𝑓𝑣𝑛, 𝑙𝑣𝑛)}

satisfies the additional condition that no interval is strictly contained within another.

Formally, for any two distinct Turiyam Neutrosophic intervals (𝜇𝑖, 𝑖𝑣𝑖, 𝑓𝑣𝑖, 𝑙𝑣𝑖) and (𝜇𝑗, 𝑖𝑣𝑗, 𝑓𝑣𝑗, 𝑙𝑣𝑗) in 𝒯, neither
of the following holds:

• 𝜇𝑖(𝑥) ≤ 𝜇𝑗(𝑥) for all 𝑥 ∈ ℝ, and there exists 𝑥0 ∈ ℝ such that 𝜇𝑖(𝑥0) < 𝜇𝑗(𝑥0),

• 𝑖𝑣𝑖(𝑥) ≤ 𝑖𝑣𝑗(𝑥) for all 𝑥 ∈ ℝ, and there exists 𝑥0 ∈ ℝ such that 𝑖𝑣𝑖(𝑥0) < 𝑖𝑣𝑗(𝑥0),

• 𝑓𝑣𝑖(𝑥) ≤ 𝑓𝑣𝑗(𝑥) for all 𝑥 ∈ ℝ, and there exists 𝑥0 ∈ ℝ such that 𝑓𝑣𝑖(𝑥0) < 𝑓𝑣𝑗(𝑥0),

• 𝑙𝑣𝑖(𝑥) ≤ 𝑙𝑣𝑗(𝑥) for all 𝑥 ∈ ℝ, and there exists 𝑥0 ∈ ℝ such that 𝑙𝑣𝑖(𝑥0) < 𝑙𝑣𝑗(𝑥0),

ensuring that no Turiyam Neutrosophic interval is nested within another in terms of truth, indeterminacy,
falsity, and liberal state values. The vertex membership functions 𝜇𝑉, 𝑖𝑣𝑉, 𝑓𝑣𝑉, 𝑙𝑣𝑉 and the adjacency relations
𝜌𝜇, 𝜌𝑖𝑣, 𝜌𝑓𝑣, 𝜌𝑙𝑣 are defined similarly to those in the Turiyam Neutrosophic Interval Graph.

3 Result in this paper

In this section, we present the results of this paper.
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3.1 Property of neutrosophic interval raphs
We consider about neutrosophic interval graph. These properties also hold similarly for fuzzy graphs, intuitionistic
fuzzy graphs and Turiyam Neutrosophic graphs.

Theorem 26. a Neutrosophic Interval Graph can be transformed into a classic Interval Graph.

Proof : To transform a Neutrosophic Interval Graph into a Classic Interval Graph, we can set all membership
functions related to truth, indeterminacy, and falsity to specific values. Specifically, by setting the truth
membership 𝜇𝑉 to 1 and both indeterminacy 𝜏𝑉 and falsity 𝜁𝑉 to 0 for all vertices and edges, we eliminate the
need for representing uncertainty or partial truth in the graph.

1. Set the membership values for vertices:
𝜇𝑉(𝑣) = 1, 𝜏𝑉(𝑣) = 0, 𝜁𝑉(𝑣) = 0 ∀𝑣 ∈ 𝑉 .

This implies that every vertex fully belongs to the graph, with no indeterminacy or falsity.

2. Set the membership values for edges:
𝜌𝜇(𝑣𝑖, 𝑣𝑗) = 1, 𝜌𝜏(𝑣𝑖, 𝑣𝑗) = 0, 𝜌𝜁(𝑣𝑖, 𝑣𝑗) = 0 ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐸.

This implies that if two intervals overlap, the edge between the corresponding vertices is fully included in the
graph, with no indeterminacy or falsity.

After this transformation, all vertices and edges in the Neutrosophic Interval Graph behave exactly as in a classic
Interval Graph. Specifically:

• The adjacency of vertices depends solely on the overlap of their intervals.

• There is no longer any notion of partial membership, uncertainty, or falsity affecting the structure of the
graph.

Thus, the transformed graph is equivalent to a classic Interval Graph.

By setting the truth membership 𝜇𝑉(𝑣) = 1 for all vertices and edges and setting the indeterminacy and falsity
memberships 𝜏𝑉(𝑣) = 0 and 𝜁𝑉(𝑣) = 0, the Neutrosophic Interval Graph is transformed into a classic Interval
Graph. The adjacency structure based on interval overlap remains unchanged, and the resulting graph adheres to
the traditional definition of an Interval Graph in graph theory. This transformation ensures that all uncertainty
and fuzziness are eliminated, leaving a purely classical graph structure.

Therefore, the Neutrosophic Interval Graph can indeed be transformed into a classic Interval Graph by setting
all membership values to specific constants, completing the proof. �

Theorem 27. A Neutrosophic Proper Interval Graph can be transformed into a Classic Proper Interval Graph
by assigning specific values to the truth, indeterminacy, and falsity membership functions.

Proof : To transform a Neutrosophic Proper Interval Graph into a Classic Proper Interval Graph, we assign the
following values to the truth, indeterminacy, and falsity membership functions:

• Set the truth membership 𝜇𝑉(𝑣) = 1 for all vertices 𝑣 ∈ 𝑉, and set the indeterminacy and falsity
memberships to zero:

𝜇𝑉(𝑣) = 1, 𝜏𝑉(𝑣) = 0, 𝜁𝑉(𝑣) = 0, ∀𝑣 ∈ 𝑉 .
This implies that each vertex is fully present in the graph without uncertainty or falsity.

• Similarly, set the truth membership 𝜌𝜇(𝑣𝑖, 𝑣𝑗) = 1 for all edges (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, and set the indeterminacy
and falsity memberships for edges to zero:

𝜌𝜇(𝑣𝑖, 𝑣𝑗) = 1, 𝜌𝜏(𝑣𝑖, 𝑣𝑗) = 0, 𝜌𝜁(𝑣𝑖, 𝑣𝑗) = 0, ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐸.
This implies that all edges in the graph represent complete adjacency between vertices without uncertainty
or falsity.
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In both Neutrosophic and Classic Proper Interval Graphs, the property of ”properness” is essential. This property
ensures that no interval is strictly contained within another. In the Neutrosophic context, this condition is
enforced by the membership functions 𝜇𝑉, 𝜏𝑉, and 𝜁𝑉. By setting 𝜇𝑉(𝑣) = 1 and 𝜏𝑉(𝑣) = 𝜁𝑉(𝑣) = 0, we preserve
this condition, as no vertex or edge will exhibit uncertainty or falsity, and the intervals remain distinct and
non-nested.

By setting the truth membership 𝜇𝑉 = 1 and 𝜌𝜇 = 1 for all vertices and edges, and setting the indeterminacy
and falsity memberships 𝜏𝑉 = 0 and 𝜁𝑉 = 0 for all vertices and edges, the Neutrosophic Proper Interval Graph is
transformed into a Classic Proper Interval Graph. The adjacency structure remains based solely on the overlap
of intervals, and the non-nesting condition is preserved. Thus, the transformation is complete. �

Corollary 28. A Fuzzy Interval Graph, Intuitionistic Fuzzy Interval Graph, or Turiyam Neutrosophic Interval
Graph can be transformed into a classic Interval Graph.

Proof : It can be proven in the same way as above. �

Corollary 29. A Fuzzy proper Interval Graph, Intuitionistic Fuzzy proper Interval Graph, or Turiyam Neutro-
sophic proper Interval Graph can be transformed into a classic proper Interval Graph.

Proof : It can be proven in the same way as above. �

Theorem 30. Neutrosophic Graph can be represented as a Neutrosophic Interval Graph.

Proof : We consider about Mapping vertices to intervals. Each vertex 𝑣 ∈ 𝑉 in the Neutrosophic Graph is mapped
to a neutrosophic interval on the real line, where:

𝜇𝑉(𝑣) = 𝜎𝑇(𝑣), 𝜏𝑉(𝑣) = 𝜎𝐼(𝑣), 𝜁𝑉(𝑣) = 𝜎𝐹(𝑣).
This mapping ensures that the neutrosophic interval for each vertex reflects the truth, indeterminacy, and falsity
degrees as defined in the Neutrosophic Graph.

We consider about mapping edges to intervals. For each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, we define the neutrosophic adjacency
relations 𝜌𝜇, 𝜌𝜏, and 𝜌𝜁 in the Neutrosophic Interval Graph. These relations are determined based on the overlap
of the neutrosophic intervals corresponding to 𝑣𝑖 and 𝑣𝑗:

𝜌𝜇(𝑣𝑖, 𝑣𝑗) = min(𝜇𝑉(𝑣𝑖), 𝜇𝑉(𝑣𝑗)) = min(𝜎𝑇(𝑣𝑖), 𝜎𝑇(𝑣𝑗)),

𝜌𝜏(𝑣𝑖, 𝑣𝑗) = min(𝜏𝑉(𝑣𝑖), 𝜏𝑉(𝑣𝑗)) = min(𝜎𝐼(𝑣𝑖), 𝜎𝐼(𝑣𝑗)),
𝜌𝜁(𝑣𝑖, 𝑣𝑗) = min(𝜁𝑉(𝑣𝑖), 𝜁𝑉(𝑣𝑗)) = min(𝜎𝐹(𝑣𝑖), 𝜎𝐹(𝑣𝑗)).

These relations mirror the conditions for the neutrosophic edge membership function 𝜇 in the original Neutrosophic
Graph.

Since we have mapped both the vertices and edges of the Neutrosophic Graph to the corresponding neutrosophic
intervals and relations in the Neutrosophic Interval Graph, we conclude that any Neutrosophic Graph can be
represented as a Neutrosophic Interval Graph by this transformation. �

Corollary 31. A Fuzzy Graph, Intuitionistic Fuzzy Graph, or Turiyam Neutrosophic Graph can be represented as
a Fuzzy Interval Graph, Intuitionistic Fuzzy Interval Graph, or Turiyam Neutrosophic Interval Graph, respectively.

Proof : It can be proven in the same way as above. �

Theorem 32. Neutrosophic Proper Interval Graph is special case of Neutrosophic Interval Graph.

Proof : Obviously holds. �

Theorem 33. A Neutrosophic Interval Graph can be transformed into a Fuzzy Interval Graph, Intuitionistic
Fuzzy Interval Graph, or Turiyam Neutrosophic Interval Graph.
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Proof : An interval graph is an undirected graph 𝐺 = (𝑉 , 𝐸) where each vertex corresponds to an interval on
the real line, and two vertices are adjacent if and only if their intervals overlap. Formally, the edge set 𝐸 of an
interval graph is defined as:

𝐸(𝐺) = {(𝑢, 𝑣) ∣ 𝐼𝑢 ∩ 𝐼𝑣 ≠ ∅},
where 𝐼𝑢 and 𝐼𝑣 represent intervals on the real line associated with vertices 𝑢 and 𝑣, respectively.

A Neutrosophic Interval Graph 𝐺 = (𝑉 , 𝜇𝑉, 𝜏𝑉, 𝜁𝑉, 𝜌𝜇, 𝜌𝜏, 𝜌𝜁) extends the traditional interval graph by associating
truth (𝜇), indeterminacy (𝜏), and falsity (𝜁) membership degrees with each vertex and edge. Two vertices 𝑢 and
𝑣 are adjacent if and only if their intervals overlap:

Adjacency Condition: (𝑢, 𝑣) ∈ 𝐸 if and only if 𝐼𝑢 ∩ 𝐼𝑣 ≠ ∅.

Additionally, the neutrosophic membership functions satisfy:

𝜇𝑉(𝑣) + 𝜏𝑉(𝑣) + 𝜁𝑉(𝑣) = 1, ∀𝑣 ∈ 𝑉 ,

and similarly for edges.

We need to show how a Neutrosophic Interval Graph can be transformed into a Fuzzy Interval Graph, Intuitionistic
Fuzzy Interval Graph, or Turiyam Neutrosophic Interval Graph, while preserving the core interval graph structure
(i.e., adjacency based on overlapping intervals).

Next, we consider about Transformation into Fuzzy Interval Graph. A Fuzzy Interval Graph is a graph where
each vertex and edge has a single membership degree, and two vertices are adjacent if their intervals overlap:

𝐸(𝐺𝑓𝑢𝑧𝑧𝑦) = {(𝑢, 𝑣) ∣ 𝐼𝑢 ∩ 𝐼𝑣 ≠ ∅}.

To transform a Neutrosophic Interval Graph into a Fuzzy Interval Graph, we focus on the truth-membership
function 𝜇𝑉(𝑣) for each vertex and 𝜇𝜌(𝑣𝑖, 𝑣𝑗) for each edge, ignoring the indeterminacy and falsity components.

Define the transformed fuzzy membership functions as:

𝜇𝑓𝑢𝑧𝑧𝑦
𝑉 (𝑣𝑖) = 𝜇𝑉(𝑣𝑖), 𝜇𝑓𝑢𝑧𝑧𝑦

𝜌 (𝑣𝑖, 𝑣𝑗) = 𝜇𝜌(𝑣𝑖, 𝑣𝑗).

The resulting fuzzy interval graph 𝐺𝑓𝑢𝑧𝑧𝑦 = (𝑉 , 𝜇𝑓𝑢𝑧𝑧𝑦
𝑉 , 𝜇𝑓𝑢𝑧𝑧𝑦

𝜌 ) retains the interval graph structure, where
adjacency is determined by interval overlap, and the edge membership function 𝜇𝑓𝑢𝑧𝑧𝑦

𝜌 (𝑣𝑖, 𝑣𝑗) quantifies the fuzzy
strength of the connection.

Thus, this transformation ensures that 𝐺𝑓𝑢𝑧𝑧𝑦 is a valid Fuzzy Interval Graph.

Next, we consider about Transformation into Intuitionistic Fuzzy Interval Graph. An Intuitionistic Fuzzy Interval
Graph uses both membership and non-membership degrees for vertices and edges, subject to the condition:

𝜇𝑉(𝑣𝑖) + 𝑣𝑉(𝑣𝑖) ≤ 1, ∀𝑣𝑖 ∈ 𝑉 .

In the Neutrosophic Interval Graph, the truth-membership 𝜇𝑉(𝑣) and falsity-membership 𝜁𝑉(𝑣) can be mapped
to the intuitionistic fuzzy membership and non-membership degrees, respectively.

Define the transformed intuitionistic fuzzy membership and non-membership functions as:

𝜇𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐
𝑉 (𝑣𝑖) = 𝜇𝑉(𝑣𝑖), 𝑣𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐

𝑉 (𝑣𝑖) = 𝜁𝑉(𝑣𝑖),

𝜇𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐
𝜌 (𝑣𝑖, 𝑣𝑗) = 𝜇𝜌(𝑣𝑖, 𝑣𝑗), 𝑣𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐

𝜌 (𝑣𝑖, 𝑣𝑗) = 𝜁𝜌(𝑣𝑖, 𝑣𝑗).
Thus, the resulting Intuitionistic Fuzzy Interval Graph

𝐺𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐 = (𝑉 , 𝜇𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐
𝑉 , 𝑣𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐

𝑉 , 𝜇𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐
𝜌 , 𝑣𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐

𝜌 )

maintains the interval-based adjacency condition.

Thus, this transformation results in a valid Intuitionistic Fuzzy Interval Graph.

Next, we consider about Transformation into Turiyam Neutrosophic Interval Graph. A Turiyam Neutrosophic
Interval Graph includes four membership functions: truth 𝜇, indeterminacy 𝑖𝑣, falsity 𝑓𝑣, and liberal 𝑙𝑣, satisfying:

0 ≤ 𝜇(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4, ∀𝑣 ∈ 𝑉 .
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In a Neutrosophic Interval Graph, the truth-membership 𝜇𝑉(𝑣), indeterminacy 𝜏𝑉(𝑣), and falsity 𝜁𝑉(𝑣) can be
mapped to the corresponding Turiyam Neutrosophic membership degrees. Define the liberal state 𝑙𝑣 to be 0 or
context-specific.

Define the transformed membership functions as:

𝜇𝑡𝑢𝑟𝑖𝑦𝑎𝑚
𝑉 (𝑣𝑖) = 𝜇𝑉(𝑣𝑖), 𝑖𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚

𝑉 (𝑣𝑖) = 𝜏𝑉(𝑣𝑖)

𝑓𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚
𝑉 (𝑣𝑖) = 𝜁𝑉(𝑣𝑖), 𝑙𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚

𝑉 (𝑣𝑖) = 0.
The edge functions are similarly defined:

𝜇𝑡𝑢𝑟𝑖𝑦𝑎𝑚
𝜌 (𝑣𝑖, 𝑣𝑗) = 𝜇𝜌(𝑣𝑖, 𝑣𝑗), 𝑖𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚

𝜌 (𝑣𝑖, 𝑣𝑗) = 𝜏𝜌(𝑣𝑖, 𝑣𝑗)

𝑓𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚
𝜌 (𝑣𝑖, 𝑣𝑗) = 𝜁𝜌(𝑣𝑖, 𝑣𝑗), 𝑙𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚

𝜌 (𝑣𝑖, 𝑣𝑗) = 0.
The resulting Turiyam Neutrosophic Interval Graph

𝐺𝑡𝑢𝑟𝑖𝑦𝑎𝑚 = (𝑉 , 𝜇𝑡𝑢𝑟𝑖𝑦𝑎𝑚
𝑉 , 𝑖𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚

𝑉 , 𝑓𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚
𝑉 , 𝑙𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚

𝑉 , 𝜇𝑡𝑢𝑟𝑖𝑦𝑎𝑚
𝜌 , 𝑖𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚

𝜌 , 𝑓𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚
𝜌 , 𝑙𝑣𝑡𝑢𝑟𝑖𝑦𝑎𝑚

𝜌 )

preserves the interval adjacency condition.

Thus, this transformation results in a valid Turiyam Neutrosophic Interval Graph. �

Corollary 34. A Neutrosophic Interval Graph can be transformed into a Fuzzy Interval Graph, Intuitionistic
Fuzzy Interval Graph, or Turiyam Neutrosophic Interval Graph.

Proof : Obviously holds. �

Theorem 35. In a Neutrosophic Interval Graph, the neutrosophic adjacency relations 𝜌𝜇, 𝜌𝜏, and 𝜌𝜁 are
symmetric.

Proof : By definition, the neutrosophic adjacency relations are given by:

𝜌𝜇(𝑣𝑖, 𝑣𝑗) = sup
𝑥∈ℝ

min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)},

𝜌𝜏(𝑣𝑖, 𝑣𝑗) = sup
𝑥∈ℝ

min{𝜏𝑖(𝑥), 𝜏𝑗(𝑥)},

𝜌𝜁(𝑣𝑖, 𝑣𝑗) = sup
𝑥∈ℝ

min{𝜁𝑖(𝑥), 𝜁𝑗(𝑥)}.

For any 𝑣𝑖, 𝑣𝑗 ∈ 𝑉, the minimum function is symmetric, i.e.,

min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)} = min{𝜇𝑗(𝑥), 𝜇𝑖(𝑥)}.

Similarly, the supremum over 𝑥 ∈ ℝ preserves this symmetry. Therefore,

𝜌𝜇(𝑣𝑖, 𝑣𝑗) = 𝜌𝜇(𝑣𝑗, 𝑣𝑖).

The same argument applies to 𝜌𝜏 and 𝜌𝜁. Thus, all neutrosophic adjacency relations are symmetric. �

Corollary 36. In a Neutrosophic Proper Interval Graph, the neutrosophic adjacency relations 𝜌𝜇, 𝜌𝜏, and 𝜌𝜁
are symmetric.

Proof : Obviously holds. �

Theorem 37. In a Neutrosophic Proper Interval Graph, no neutrosophic interval is properly contained within
another with respect to the truth-membership function 𝜇𝑖.
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Proof : By definition, a Neutrosophic Proper Interval Graph is a Neutrosophic Interval Graph where, for any
two distinct neutrosophic intervals (𝜇𝑖, 𝜏𝑖, 𝜁𝑖) and (𝜇𝑗, 𝜏𝑗, 𝜁𝑗), the following does not hold:

𝜇𝑖(𝑥) ≤ 𝜇𝑗(𝑥) ∀𝑥 ∈ ℝ, and ∃𝑥0 ∈ ℝ such that 𝜇𝑖(𝑥0) < 𝜇𝑗(𝑥0).
This condition explicitly states that no truth-membership function 𝜇𝑖 is entirely within another 𝜇𝑗 with a strict
inequality at some point 𝑥0. Therefore, no neutrosophic interval 𝜇𝑖 is properly contained within another 𝜇𝑗 in
terms of the truth-membership functions. The same reasoning applies to the indeterminacy 𝜏𝑖 and falsity 𝜁𝑖
functions. �

Theorem 38. The class of Neutrosophic Interval Graphs is closed under taking induced subgraphs.

Proof : Let 𝐺 = (𝑉 , 𝜇𝑉, 𝜏𝑉, 𝜁𝑉, 𝜌𝜇, 𝜌𝜏, 𝜌𝜁) be a Neutrosophic Interval Graph, and let 𝑉 ′ ⊆ 𝑉. Consider the induced
subgraph 𝐺′ = (𝑉 ′, 𝜇𝑉 ′ , 𝜏𝑉 ′ , 𝜁𝑉 ′ , 𝜌′

𝜇, 𝜌′
𝜏, 𝜌′

𝜁) where:

𝜇𝑉 ′(𝑣𝑖) = 𝜇𝑉(𝑣𝑖), 𝜏𝑉 ′(𝑣𝑖) = 𝜏𝑉(𝑣𝑖), 𝜁𝑉 ′(𝑣𝑖) = 𝜁𝑉(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉 ′,

𝜌′
𝜇(𝑣𝑖, 𝑣𝑗) = 𝜌𝜇(𝑣𝑖, 𝑣𝑗), 𝜌′

𝜏(𝑣𝑖, 𝑣𝑗) = 𝜌𝜏(𝑣𝑖, 𝑣𝑗), 𝜌′
𝜁(𝑣𝑖, 𝑣𝑗) = 𝜌𝜁(𝑣𝑖, 𝑣𝑗), ∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ′.

Since 𝐺 is a Neutrosophic Interval Graph, there exists a family of neutrosophic intervals 𝒩 = {(𝜇𝑖, 𝜏𝑖, 𝜁𝑖) ∣ 𝑣𝑖 ∈ 𝑉 }.
The subgraph 𝐺′ corresponds to the subset of intervals 𝒩′ = {(𝜇𝑖, 𝜏𝑖, 𝜁𝑖) ∣ 𝑣𝑖 ∈ 𝑉 ′}. The adjacency relations in
𝐺′ are determined by the overlaps of intervals in 𝒩′ using the same definitions as in 𝐺.

Therefore, 𝐺′ is a Neutrosophic Interval Graph corresponding to 𝒩′. Thus, the class of Neutrosophic Interval
Graphs is closed under taking induced subgraphs. �

3.2 Neutrosophic 𝑝-proper interval graph
Let 𝑝 and 𝑞 be integers. The definitions of a neutrosophic 𝑝-proper interval graph and a neutrosophic 𝑞-improper
interval graph, which extend the concepts of 𝑝-proper interval graphs and 𝑞-improper interval graphs, are provided
below.

Definition 39. A neutrosophic 𝑝-proper interval graph is a neutrosophic graph
𝐺 = (𝑉 , 𝐸, 𝜎𝑇, 𝜎𝐼, 𝜎𝐹)

where the truth-membership intervals 𝐼𝑣, corresponding to the vertices 𝑣 ∈ 𝑉, satisfy the condition that no
interval is properly contained within more than 𝑝 others. Formally, for each vertex 𝑢 ∈ 𝑉, let ℐ𝑇 = {𝐼𝑣 ∣ 𝑣 ∈ 𝑉 }
represent the truth-membership intervals. The graph 𝐺 is 𝑝-proper if for every interval 𝐼𝑢 ∈ ℐ𝑇, the number of
intervals 𝐼𝑣 ⊂ 𝐼𝑢 is at most 𝑝:

∀𝑢 ∈ 𝑉 , |{𝑣 ∈ 𝑉 ∣ 𝐼𝑣 ⊂ 𝐼𝑢}| ≤ 𝑝.
This definition ensures that the intervals corresponding to the truth-membership values in the neutrosophic
framework adhere to the 𝑝-proper constraint.

Definition 40. A neutrosophic 𝑞-improper interval graph is a neutrosophic graph
𝐺 = (𝑉 , 𝐸, 𝜎𝑇, 𝜎𝐼, 𝜎𝐹)

where the truth-membership intervals 𝐼𝑣, corresponding to the vertices 𝑣 ∈ 𝑉, satisfy the condition that no
interval properly contains more than 𝑞 others. Formally, for each vertex 𝑢 ∈ 𝑉, let ℐ𝑇 = {𝐼𝑣 ∣ 𝑣 ∈ 𝑉 } represent
the truth-membership intervals. The graph 𝐺 is 𝑞-improper if for every interval 𝐼𝑢 ∈ ℐ𝑇, the number of intervals
𝐼𝑢 ⊂ 𝐼𝑣 is at most 𝑞:

∀𝑢 ∈ 𝑉 , |{𝑣 ∈ 𝑉 ∣ 𝐼𝑢 ⊂ 𝐼𝑣}| ≤ 𝑞.
This ensures that the truth-membership intervals in the neutrosophic graph follow the 𝑞-improper constraint.

Theorem 41. Neutrosophic 𝑝-proper Interval Graph is a special type of neutrosophic proper Interval Graph.

Proof : Obviously holds. �

Corollary 42. Neutrosophic 𝑝-proper Interval Graph is a special type of neutrosophic Interval Graph.
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Proof : Obviously holds. �

Corollary 43. Neutrosophic 𝑞-improper Interval Graph is a special type of neutrosophic Interval Graph.

Proof : Obviously holds. �

Theorem 44. A neutrosophic 0-proper interval graph is a neutrosophic proper interval graph.

Proof : By definition, a neutrosophic 𝑝-proper interval graph is a neutrosophic interval graph where no interval
is properly contained within more than 𝑝 other intervals. When 𝑝 = 0, no interval is properly contained within
any other interval. This is precisely the condition for a neutrosophic proper interval graph, where no interval
properly contains any other interval. Hence, a neutrosophic 0-proper interval graph is a neutrosophic proper
interval graph. �

Theorem 45. A neutrosophic 0-improper interval graph is a neutrosophic proper interval graph.

Proof : A neutrosophic 𝑞-improper interval graph is defined as a neutrosophic interval graph where no interval
properly contains more than 𝑞 other intervals. For 𝑞 = 0, no interval properly contains any other interval, which
is exactly the condition for a neutrosophic proper interval graph. Therefore, a neutrosophic 0-improper interval
graph is a neutrosophic proper interval graph. �

Theorem 46. A Fuzzy 𝑝-proper Interval Graph, Intuitionistic Fuzzy 𝑝-proper Interval Graph, Neutrosophic
𝑝-proper Interval Graph or Turiyam Neutrosophic 𝑝-proper Interval Graph can be transformed into a classic
𝑝-proper Interval Graph.

Proof : Obviously holds. �

Corollary 47. A Fuzzy 𝑞-improper Interval Graph, Intuitionistic Fuzzy 𝑞-improper Interval Graph, Neutrosophic
𝑞-improper Interval Graph or Turiyam Neutrosophic 𝑞-improper Interval Graph can be transformed into a classic
𝑞-improper Interval Graph.

Proof : Obviously holds. �

3.3 Fuzzy Intersection Graph and Fuzzy Interval Graph
We will examine the relationship between a Fuzzy Intersection Graph and a Fuzzy Interval Graph. The definition
of a Fuzzy Intersection Graph is provided below [98, 81, 93, 20, 55] .

Definition 48 (Fuzzy Intersection Graph). A Fuzzy Intersection Graph is a graph 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) where:

• 𝑉 is the set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges.

• 𝜎 ∶ 𝑉 → [0, 1] is a membership function that assigns a degree of membership to each vertex 𝑣 ∈ 𝑉.

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is a fuzzy relation representing the strength of the connection (degree of membership)
between each pair of vertices (𝑢, 𝑣) ∈ 𝑉 × 𝑉.

The edge set 𝐸 of the fuzzy intersection graph is defined based on the membership functions of the vertices and
the fuzzy relation. Specifically, for each pair (𝑢, 𝑣) ∈ 𝑉 × 𝑉, the edge (𝑢, 𝑣) exists in the fuzzy intersection graph
with the membership degree:

𝜇(𝑢, 𝑣) = min(𝜎(𝑢), 𝜎(𝑣))
if the Euclidean distance between the corresponding points of 𝑢 and 𝑣 satisfies the condition for intersection,
and 𝜇(𝑢, 𝑣) = 0 otherwise.

In this way, the fuzzy intersection graph generalizes the concept of an intersection graph by incorporating fuzzy
set theory, allowing for partial membership and gradual relationships between vertices and edges.
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The following theorem is well-known in the context of fuzzy intersection graphs.

Theorem 49. [37] Any undirected fuzzy graph 𝐺 = (𝑉 , 𝜎, 𝜇) can be represented as a fuzzy intersection graph.

We will explore the relationship between Fuzzy Interval Graphs and Fuzzy Intersection Graphs. The theorem is
presented as follows.

Theorem 50. A Fuzzy Interval Graph is a Fuzzy Intersection Graph.

Proof : Let 𝐺 = (𝑉 , 𝜇𝑉, 𝜌) be a Fuzzy Interval Graph where:

• 𝑉 is the set of vertices.

• 𝜇𝑉(𝑣𝑖) represents the membership function for each vertex 𝑣𝑖 ∈ 𝑉.

• 𝜌(𝑣𝑖, 𝑣𝑗) represents the fuzzy adjacency relation between vertices 𝑣𝑖 and 𝑣𝑗.

In a Fuzzy Interval Graph, each vertex 𝑣𝑖 is associated with a fuzzy interval 𝜇𝑖 ∶ ℝ → [0, 1] on the real line.
The fuzzy adjacency relation 𝜌(𝑣𝑖, 𝑣𝑗) measures the degree of overlap between the fuzzy intervals 𝜇𝑖 and 𝜇𝑗
corresponding to the vertices 𝑣𝑖 and 𝑣𝑗. Specifically, for any two distinct vertices 𝑣𝑖 and 𝑣𝑗, the adjacency relation
is given by:

𝜌(𝑣𝑖, 𝑣𝑗) = sup
𝑥∈ℝ

min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)},

which calculates the maximum degree of overlap between the intervals 𝜇𝑖 and 𝜇𝑗. The function min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)}
captures the intersection of the two intervals, as it represents the smallest membership value at any point 𝑥 ∈ ℝ
common to both intervals.

Next, consider a Fuzzy Intersection Graph 𝐺′ = (𝑉 , 𝐸, 𝜎, 𝜇), defined as follows:

• 𝑉 is the set of vertices.

• 𝜎 ∶ 𝑉 → [0, 1] is a membership function that assigns a membership degree to each vertex 𝑣 ∈ 𝑉.

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is the fuzzy relation representing the strength of the connection between any two
vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉, defined as:

𝜇(𝑣𝑖, 𝑣𝑗) = min(𝜎(𝑣𝑖), 𝜎(𝑣𝑗)).

To prove that a fuzzy interval graph is a fuzzy intersection graph, we need to show that the fuzzy adjacency
relation 𝜌(𝑣𝑖, 𝑣𝑗) in the fuzzy interval graph is equivalent to the edge membership function 𝜇(𝑣𝑖, 𝑣𝑗) in the fuzzy
intersection graph.

By the construction of a fuzzy interval graph, the adjacency relation 𝜌(𝑣𝑖, 𝑣𝑗) is based on the intersection of the
fuzzy intervals 𝜇𝑖 and 𝜇𝑗, as given by the formula:

𝜌(𝑣𝑖, 𝑣𝑗) = sup
𝑥∈ℝ

min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)}.

This represents the highest degree of intersection between the two fuzzy intervals. On the other hand, in a fuzzy
intersection graph, the relation 𝜇(𝑣𝑖, 𝑣𝑗) = min(𝜎(𝑣𝑖), 𝜎(𝑣𝑗)) directly uses the membership degrees 𝜎(𝑣𝑖) and
𝜎(𝑣𝑗), which can be interpreted as the maximum heights (i.e., supremum values) of the corresponding fuzzy
intervals 𝜇𝑖 and 𝜇𝑗.

Thus, by setting 𝜎(𝑣𝑖) = sup𝑥∈ℝ 𝜇𝑖(𝑥) for each vertex 𝑣𝑖 ∈ 𝑉, we ensure that the fuzzy relation in the fuzzy
intersection graph is exactly the same as the fuzzy adjacency relation in the fuzzy interval graph:

𝜌(𝑣𝑖, 𝑣𝑗) = 𝜇(𝑣𝑖, 𝑣𝑗) = min(𝜎(𝑣𝑖), 𝜎(𝑣𝑗)) = sup
𝑥∈ℝ

min{𝜇𝑖(𝑥), 𝜇𝑗(𝑥)}.

�

Corollary 51. A Fuzzy Proper Interval Graph is a Fuzzy Intersection Graph.

Proof : It can be proven in the same way as above. �
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4 Future Perspectives of This Research

In this section, we briefly outline the future prospects of this study. Potential directions include exploring
the Neutrosophic Interval OffGraph [38, 102], the Neutrosophic Proper Interval OffGraph, and the Interval
SuperHyperGraph (cf. [104, 42, 41, 35, 106]). These avenues offer promising opportunities for further development
and applications of the concepts introduced in this research.
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