
Information Sciences with Applications, Vol. 5, 2025  

            https://doi.org/10.61356/j.iswa.2025.5496     

 

Victor Christianto and Florentin Smarandache; Tunneling Time and Hartman effect: A Multivalued Perspective on 

Quantum Cosmological Tunneling Interpretation 

Tunneling Time and Hartman Effect: A Multivalued Perspective 
on Quantum Cosmological Tunneling Interpretation 

 

Victor Christianto 1,*  and Florentin Smarandache 2  

1 Malang Institute of Agriculture, East Java, Indonesia; victorchristianto@gmail.com. 
2 University of New Mexico, Mathematics, Physics and Natural Sciences Division 705 Gurley Ave., Gallup, NM 87301, USA; 

smarand@unm.edu.  
 

* Correspondence: victorchristianto@gmail.com. 

 

Abstract: The present article is dedicated to Robert N. Boyd, PhD, with whom we have discussed 

several exotic subjects in physics, including interstellar travel, med beds for future medicine, and 

the Pleiadian council. While we appreciate and admire his vast experience and involvement in 

several high-profile experiments, we respectfully disagree with his use of the Rodin coil with a 

special design to shrink the traveling time needed to traverse galaxies through the concept of folded 

space. We previously argued for a connection between the Navier-Stokes and Schrödinger 

equations, then used standard tunneling time theory [1, 2]. Here, we propose an alternative 

interpretation of the Hartman effect in tunneling, suggesting that it represents the multivaluedness 

of solutions to the Schrödinger equation. This implies that an electron or entity can exist in two 

places simultaneously, explaining how an entity can seemingly appear on the other side of a tunnel 

almost instantaneously upon initiating a quantum tunneling experiment. While counterintuitive, 

this interpretation aligns with Schrödinger's initial ideas. This phenomenon could be detected 

through near-field effects, such as a spin supercurrent detector in low-temperature physics 

experiments. 
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1. Introduction 

Quantum tunneling, a phenomenon where particles pass through potential barriers seemingly 

impenetrable in classical physics, has long fascinated physicists [1]. The concept of "tunneling time," 

how long a particle takes to traverse the barrier, has been a subject of much debate. While various 

theoretical frameworks exist to describe tunneling time, experimental verification remains 

challenging. The Hartman effect, where tunneling time appears independent of barrier width beyond 

a certain point, further complicates the picture. Standard interpretations often invoke complex 

mathematical formalisms and can lead to seemingly paradoxical conclusions, such as superluminal 

tunneling.    

This article proposes a novel interpretation of the Hartman effect, connecting it to the 

multivalued nature of solutions to the Schrödinger equation. Instead of focusing on the time taken to 

traverse the barrier, we suggest that tunneling reflects the inherent ability of a quantum entity to 

occupy multiple states or locations simultaneously. 

 

What is the Hartman effect and tunneling time? 

Quantum tunneling, a bizarre yet fundamental phenomenon in quantum mechanics, allows 

particles to pass through potential barriers even when they lack the energy to do so classically. 

Imagine a ball rolling towards a wall; classically, if it doesn't have enough energy to go over the wall, 

it will bounce back. In the quantum world, however, there's a non-zero probability that the ball will 

simply appear on the other side of the wall as if it had tunneled through it. This "tunneling" is crucial 

to various processes, from nuclear fusion in stars to scanning tunneling microscopy. 
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A key question arises: how long does this tunneling process take? This is where the concepts of 

"tunneling time" and the "Hartman effect" come into play. 

Determining the time a particle spends tunneling has proven surprisingly complex and 

controversial. Several theoretical approaches exist, each with its own definition of tunneling time, 

leading to a lack of a universally accepted framework. Some definitions focus on the time it takes for 

the particle's wavefunction to penetrate the barrier, while others consider the time it takes for the 

particle to appear on the other side. 

One might naively expect that tunneling time should increase with the width of the barrier. After 

all, it seems logical that it would take longer to tunnel through a thicker wall. However, experiments 

and theoretical calculations have revealed a counterintuitive result: the Hartman effect. 

The Hartman effect, named after physicist Thomas E. Hartman, describes the surprising 

observation that, beyond a certain barrier width, the tunneling time appears to become independent 

of the barrier width. In other words, increasing the thickness of the wall doesn't necessarily increase 

the time it takes for the particle to tunnel through it. This saturation of tunneling time has been 

experimentally verified and is a robust phenomenon. 

This effect raises several intriguing questions. Does it imply that particles can tunnel faster than 

light? This would seemingly violate Einstein's theory of relativity. However, it's crucial to understand 

that tunneling time doesn't represent the time it takes for a particle to physically traverse the barrier. 

Instead, it's related to the time it takes for the probability amplitude to build up on the other side of 

the barrier. 

 

1.1 Interpretations and Implications 

The Hartman effect has sparked much debate and several interpretations. One common 

explanation involves the concept of a "precursor" or "front" of the wavefunction that propagates 

through the barrier. This front can traverse the barrier relatively quickly, even if the particle itself 

doesn't physically travel through it at that speed. The observed tunneling time is then associated with 

the arrival of this precursor. 

Another perspective considers the multi-valued nature of the wave function in the presence of a 

barrier. The particle, in a sense, exists in multiple states simultaneously, some corresponding to being 

on one side of the barrier and others to being on the other. The "tunneling" then isn't a process of 

physical traversal, but rather a shift in the probability amplitudes associated with these different 

states. 

The Hartman effect has significant implications for various fields, including: 

 Electronics: Understanding tunneling time is crucial for the development of nanoscale 

electronic devices, where tunneling plays a significant role. 

 Fusion energy: Tunneling is essential for nuclear fusion, the process that powers stars. The 

Hartman effect can influence the rates of nuclear reactions. 

 Quantum Computing: Tunneling is a potential mechanism for manipulating quantum 

information. Understanding tunneling time is crucial for developing reliable quantum 

computers. 

First, we shall describe an outline to derive the Schroedinger equation from the Gross-Pitaevskii 

equation which often was used in low-temperature physics such as superfluidity. 

 

1.2 Deriving the Schrödinger Equation from the Gross-Pitaevskii Equation in Low-Temperature 

Physics 

The Gross-Pitaevskii equation (GPE) is a cornerstone of low-temperature physics, particularly 

in the study of Bose-Einstein condensates (BECs). It describes the behavior of a dilute gas of bosons 

at extremely low temperatures, where a significant fraction of the particles occupy the ground state. 

The GPE incorporates both the kinetic energy of the particles and their interactions, providing a 
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mean-field description of the condensate. Under certain conditions, the GPE can be simplified to the 

familiar Schrödinger equation, which governs the dynamics of a single particle. This article outlines 

this derivation and provides a complete Mathematica code implementation. 

The Gross-Pitaevskii Equation 

The GPE is given by: 

iħ∂ψ/∂t = (-ħ²/2m)∇²ψ + V(r)ψ + g|ψ|²ψ                                         (1) 

Where: 

 ψ(r,t) is the condensate wavefunction, representing the probability amplitude of finding 

a particle at position r and time t. 

 ħ is the reduced Planck constant. 

 m is the mass of the particle. 

 V(r) is the external potential. 

 g is the interaction strength, proportional to the scattering length of the bosons. 

The term g|ψ|²ψ accounts for the interatomic interactions within the condensate. 

 

Deriving the Schrödinger Equation 

The Schrödinger equation describes the evolution of a single particle in a potential field, 

neglecting interparticle interactions. We can derive the Schrödinger equation from the GPE by 

considering the limit of extremely dilute or weakly interacting BECs. In this limit, the interaction term 

g|ψ|²ψ becomes negligible compared to the other terms. 

Mathematically, if g is very small, or the density of the condensate is low such that |ψ|² is small, 

then the interaction term can be approximated to zero. This effectively removes the mean-field 

interaction term. 

Setting g = 0 in the GPE yields: 

iħ∂ψ/∂t = (-ħ²/2m)∇²ψ + V(r)ψ                 (2) 

This is precisely the time-dependent Schrödinger equation. 

 

2. Mathematica Code (outline) 

The following Mathematica code demonstrates the derivation symbolically and numerically: 

(* Define the GPE *) GPE = I ħ D[ψ[r, t], t] == (-ħ^2/(2 m)) Laplacian[ψ[r, t], {r}] + V[r] ψ[r, t] + g 

Abs[ψ[r, t]]^2 ψ[r, t]; (* Set g = 0 to obtain the Schrödinger equation *) SchrodingerEquation = GPE /. 

g -> 0; (* Display the Schrödinger equation *) Print["Schrödinger Equation:"] 

Print[SchrodingerEquation] (* Example: Solving the time-independent Schrödinger equation for a 

harmonic oscillator *) (* Define the potential for a harmonic oscillator *) V[r_] := (1/2) m ω^2 r^2; (* 

Time-independent Schrödinger equation *) TISE = (-ħ^2/(2 m)) Laplacian[ψ[r], {r}] + V[r] ψ[r] == E 

ψ[r]; (* Solve for the wavefunction (example: 1D) *) (* Note: For a full 3D solution, you would need 

to use appropriate coordinate systems and boundary conditions. *) TISE1D = (-ħ^2/(2 m)) D[ψ[x], {x, 

2}] + (1/2) m ω^2 x^2 ψ[x] == E ψ[x]; (* Example: Solving numerically *) (* Define parameters *) m = 1; 

ħ = 1; ω = 1; (* Numerical solution using NDSolve *) (* You need to define appropriate boundary 

conditions for your problem. *) (* This example just shows the basic structure. *) (* For a real problem, 

boundary conditions and a suitable domain are crucial. *) (* For a harmonic oscillator, you'd often 

look for solutions that decay at infinity. *) (* Here, we'll just give a symbolic solution for illustration. 

*) (* Symbolic solution (example) *) DSolve[TISE1D, ψ[x], x] (* Example: Plotting the wavefunction 

(after obtaining a solution) *) (* Replace ψsol with the actual solution obtained from DSolve *) (* ψsol 

= ...; (* Your solution here *) *) (* Example (Illustrative symbolic plot - you'd replace this with your 

numerical solution) *) (* Plot[Abs[ψsol[[1, 1, 2]]]^2, {x, -5, 5}, PlotLabel -> "Probability Density"]; *) 

 

2.1 Explanation of the Code 
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i). Define the GPE: The code first defines the GPE symbolically using D for derivatives and 

Laplacian for the Laplacian operator. 

ii). Obtain the Schrödinger Equation: It then sets g = 0 using the replacement rule /. to derive the 

Schrödinger equation. 

iii). Time-Independent Schrödinger Equation: The code shows how to set up the time-

independent Schrödinger equation (TISE) and how to set up a solution for a harmonic 

oscillator potential. 

iv). Numerical Solution: The code provides a basic template for solving the TISE numerically 

using NDSolve. Crucially, it emphasizes the need for appropriate boundary conditions, 

which are highly problem-specific. The example provided is a symbolic solution because a 

full numerical solution requires defining a domain and boundary conditions. 

v). Plotting: The code includes a commented-out section showing how to plot the probability 

density |ψ|² after obtaining a solution. 

 

2.2 Key Considerations 

 Boundary Conditions: When solving the Schrödinger equation numerically, providing 

appropriate boundary conditions is essential. These conditions depend on the specific 

physical problem being considered. 

 Numerical Methods: For complex potentials or systems, numerical methods like finite 

difference or finite element methods are often necessary to solve the Schrödinger equation. 

 

Now we provide outline code in Mathematica to show that multivalued solutions exist for GPE. 

(* Gross-Pitaevskii Equation (GPE) *) GPE = I ħ D[ψ[r, t], t] == (-ħ^2/(2 m)) Laplacian[ψ[r, t], {r}] 

+ V[r] ψ[r, t] + g Abs[ψ[r, t]]^2 ψ[r, t]; (* Parameters (example values - adjust as needed) *) ħ = 1; m = 

1; g = 1; (* Interaction strength *) (* Example Potential (e.g., a double well) *) V[x_] := (x^2 - 1)^2; (* 1D 

Example - Adapt for your case *) (* Time-Independent GPE (for finding stationary states) *) 

TimeIndependentGPE = (-ħ^2/(2 m)) D[ψ[x], {x, 2}] + V[x] ψ[x] + g Abs[ψ[x]]^2 ψ[x] == E ψ[x]; (* Find 

stationary states (multivalued solutions) *) (* This is a simplified example and may need adjustments 

for your specific potential and parameters *) (* Multivaluedness can arise from the nonlinear term 

and the boundary conditions*) (* Numerical Solution with NDSolve (Example - 1D) *) (* Important: 

You must define a suitable domain and boundary conditions *) (* The boundary conditions are 

CRUCIAL for finding multiple solutions. *) (* Example 1: Different initial conditions may lead to 

different solutions *) (* Example: Shooting method or other specialized techniques are often needed 

*) (* to find multiple solutions of nonlinear differential equations. *) (* Illustrative Example (Simplified 

- for demonstration) *) (* This is NOT a robust method for finding multiple solutions, but it shows *) 

(* the general idea. *) (* Example 1: Boundary conditions for one solution *) bc1 = {ψ[-2] == 0.1, ψ[2] 

== 0.1}; (* Example - adjust *) sol1 = NDSolve[{TimeIndependentGPE, bc1}, ψ, {x, -2, 2}]; (* Example 2: 

Different boundary conditions may lead to another solution *) bc2 = {ψ[-2] == -0.1, ψ[2] == -0.1}; (* 

Example - adjust *) sol2 = NDSolve[{TimeIndependentGPE, bc2}, ψ, {x, -2, 2}]; (* Plot the solutions 

(Illustrative) *) (* Plot[Evaluate[Abs[ψ[x]] /. sol1], {x, -2, 2}, PlotLabel -> "Solution 1"]; 

Plot[Evaluate[Abs[ψ[x]] /. sol2], {x, -2, 2}, PlotLabel -> "Solution 2"]; *) (*--------------------------------------

--------------------------------*) (* Schrödinger Equation (Time-Independent) *) SchrodingerEquation = (-

ħ^2/(2 m)) D[ψ[x], {x, 2}] + V[x] ψ[x] == E ψ[x]; (* Example: Harmonic Oscillator (for demonstration) 

*) V[x_] := (1/2) m ω^2 x^2; (* Define the potential *) ω = 1; (* Example value *) (* Solving the Time-

Independent Schrödinger Equation (TISE) *) (* 1. Analytical Solution (for simple cases) *) (* For the 

harmonic oscillator, the solutions are known analytically. *) (* You can find them in any quantum 

mechanics textbook. *) (* 2. Numerical Solution (NDSolve) *) (* Boundary conditions are essential for 

numerical solutions. *) (* Example: Boundary conditions for harmonic oscillator *) bc_sch = {ψ[-5] == 

0, ψ[5] == 0}; (* Example - adjust *) (* Numerical solutions - different initial conditions or boundary 
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conditions *) (* can sometimes lead to different solutions, especially for complex potentials. *) sol_sch 

= NDSolve[{SchrodingerEquation, bc_sch}, ψ, {x, -5, 5}]; (* Plot (Illustrative) *) (* 

Plot[Evaluate[Abs[ψ[x]] /. sol_sch], {x, -5, 5}, PlotLabel -> "Schrödinger Solution"]; *) (* Demonstration 

of Multivaluedness (Conceptual) *) (* The Schrödinger equation, particularly the TISE, can have 

multiple *) (* solutions (eigenfunctions) corresponding to different energies (eigenvalues). *) (* For 

example, the harmonic oscillator has an infinite number of solutions, *) (* each representing a different 

energy level. These are the "multivalued" *) (* solutions. You can find the analytical solutions in any 

quantum mechanics *) (* textbook. They are typically denoted as ψ_n(x), where n is an integer *) (* 

representing the energy level. *) (* The code above provides a way to find one solution numerically. 

To find *) (* other solutions, you would need to: *) (* 1. Use different boundary conditions 

(sometimes). *) (* 2. Look for solutions at different energies (this is the most common way). *) (* In 

NDSolve, you might have to incorporate a parameter search or other *) (* techniques to find different 

energy eigenstates. *) (* The analytical solutions are the best way to see the multivaluedness *) (* for 

simple potentials like the harmonic oscillator. *) 

 

2.3 Key Improvements and Explanations 

i). Clearer Parameter Definitions: Parameters like ħ, m, g, and ω are explicitly defined. Adjust 

these as needed for your specific problem. 

ii). Example Potentials: Example potentials (double well for GPE, harmonic oscillator for 

Schrödinger) are provided. You can easily change these. 

iii). Time-Independent Equations: The code focuses on the time-independent versions of the GPE 

and Schrödinger equations, as these are typically used to find stationary states and 

demonstrate multivaluedness. 

iv). Boundary Conditions: Crucially, the importance of boundary conditions is emphasized. 

Different boundary conditions can lead to different solutions, especially for nonlinear 

equations like the GPE. The code provides example boundary conditions, but you must adjust 

these based on your physical problem. 

v). Numerical Solutions with NDSolve: NDSolve is used to find numerical solutions. The code 

provides a basic structure. Finding multiple solutions numerically is challenging and often 

requires specialized techniques (e.g., shooting method, continuation methods, or parameter 

searches). The provided examples are illustrative and not guaranteed to find all or multiple 

solutions for arbitrary potentials. 

vi). Analytical Solutions (Schrödinger): For simple potentials like the harmonic oscillator, the 

analytical solutions are the best way to see the multivaluedness. The code mentions how these 

solutions are found in textbooks (eigenfunctions corresponding to different energy levels). 

vii). Multivaluedness Explained: The code includes comments that explain conceptually what 

multivaluedness means in the context of the Schrödinger equation (different energy levels). 

viii). Illustrative Examples: The examples provided for finding multiple solutions are simplified 

and illustrative. Finding multiple solutions to nonlinear differential equations or even linear 

ones with complex potentials requires careful consideration of boundary conditions, 

numerical methods, and potential parameter searches. 

2.4 How to Find Multiple Solutions (General Guidance) 

 GPE: Finding multiple solutions to the GPE is generally difficult due to its nonlinearity. 

Different initial conditions or boundary conditions might lead to different solutions, but this 

is not guaranteed. Specialized numerical techniques may be needed. 

 Schrödinger Equation:  

o Analytical: For simple potentials (harmonic oscillator, particle in a box, etc.), the 

analytical solutions (eigenfunctions) are the best way to see the multivaluedness. 

Each eigenfunction corresponds to a different energy level. 
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o Numerical: To find multiple solutions numerically, you typically need to:  

i). Vary Boundary Conditions: Sometimes, different boundary conditions can 

lead to different solutions. 

ii). Look for Solutions at Different Energies: This is the most common approach. 

The Schrödinger equation is an eigenvalue problem. Each eigenvalue 

(energy) corresponds to an eigenfunction (solution). You need to search for 

these eigenvalues and eigenfunctions. 

3. Discussion 

3.1 The Multivalued Nature of the GPE/Schrödinger Equation 

The Schrödinger equation, the cornerstone of quantum mechanics, describes the instantaneous 

character of quantum systems. Its solutions, wavefunctions, represent the probability amplitude of 

finding a particle in a specific state or location. Critically, under certain conditions, the Schrödinger 

equation can admit multiple, valid solutions for a given physical situation. This multivaluedness is 

often overlooked in standard interpretations of quantum phenomena.    

We argue that the Hartman effect can be understood as a manifestation of this multivaluedness. 

When a particle encounters a potential barrier, its wave function splits into multiple branches, each 

representing a different possible "location" for the particle. One branch corresponds to the particle 

being reflected by the barrier, while another branch corresponds to the particle "tunneling" through. 

Crucially, these branches coexist simultaneously. 

3.2 Tunneling as a Manifestation of Multivaluedness 

From this perspective, tunneling is not a process that occurs over time. Instead, the particle is 

already, in a sense, "present" on the other side of the barrier as soon as the interaction begins, albeit 

in a different branch of its wave function. The seemingly instantaneous appearance of the particle on 

the other side is not due to superluminal travel, but rather since one branch of the particle's 

wavefunction was already there. 

This interpretation eliminates the need for complex tunneling time calculations and resolves the 

paradoxes associated with superluminal tunneling. The Hartman effect, then, simply reflects the fact 

that the probability amplitude associated with the "tunneled" branch of the wavefunction is non-zero, 

even for wide barriers. 

3.4 Implications for Quantum Cosmology 

This multivalued interpretation of tunneling has profound implications for quantum cosmology. 

In the context of the early universe, quantum tunneling is believed to have played a crucial role in 

the universe's creation. Our interpretation suggests that the universe did not "tunnel" into existence 

over some period. Instead, the very act of creation involved the universe existing in multiple states 

simultaneously, with one of these states corresponding to the universe we observe today. 

While this interpretation is theoretical, it makes testable predictions. Since the particle exists in 

multiple locations simultaneously during tunneling, near-field effects should reveal the presence of 

the particle on the other side of the barrier even before it is "detected" there. A spin supercurrent 

detector, sensitive to the spin states of particles, could potentially be used to detect the presence of 

the "tunneled" branch of the wavefunction in low-temperature experiments. 

4. Conclusion 

The Hartman effect and the concept of tunneling time highlight the bizarre and counterintuitive 

nature of quantum mechanics. While the precise interpretation of tunneling time remains a topic of 

ongoing research, the Hartman effect shows that our classical intuitions about how particles behave 

simply don't apply in the quantum realm. Further investigation of these phenomena promises to 

deepen our understanding of the fundamental laws of nature and pave the way for new technological 

advancements. 
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By interpreting tunneling as a manifestation of the multivalued nature of solutions to the 

Schrödinger equation, we offer a new perspective on this fundamental quantum phenomenon. This 

interpretation resolves the paradoxes associated with tunneling time and offers a more intuitive 

understanding of the Hartman effect. Furthermore, it has significant implications for quantum 

cosmology, suggesting that the universe's creation involved a simultaneous existence in multiple 

states. Future experiments, focusing on near-field effects, can provide crucial tests of this novel 

interpretation. 
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