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Abstract: Numerous frameworks have been developed to address uncertainty in various domains. Among the
most prominent are Fuzzy Sets, Rough Sets, Hyperrough Sets, Vague Sets, Intuitionistic Fuzzy Sets, Neutrosophic
Sets, Plithogenic Sets, as well as other emerging theories that continue to be actively explored.

Customer Relationship Management (CRM) is a structured methodology for managing and analyzing interactions
with current and prospective customers, placing strong emphasis on data-driven insights to improve loyalty,
satisfaction, and profitability. Human Resource Management (HRM), on the other hand, focuses on organizing,
developing, and optimizing employee performance, well-being, and interpersonal dynamics within an organization.

In this paper, we introduce rigorous Mathematical Frameworks for Fuzzy Customer Relationship Management
(FCRM), Neutrosophic Customer Relationship Management (NCRM), Fuzzy Human Resource Management
(FHRM), and Neutrosophic Human Resource Management (NHRM), which integrate uncertainty-oriented
paradigms with established CRM and HRM practices to enhance decision-making, adaptability, and overall
organizational efficiency.
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1 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions in
this paper. In addition, all concepts addressed herein are assumed to be finite rather than infinite.

1.1 Fuzzy Set and Neutrosophic Set
A fuzzy set assigns to each element a membership degree in the interval [0, 1], thereby capturing uncertainty
through more granular membership levels rather than a strict binary classification [1, 2, 3, 4, 5, 6, 7]. Below, we
present the relevant definitions, including those for these extended frameworks.

Definition 1 (Set). [8] A set is a well-defined collection of distinct elements or objects. If 𝑎 is an element of a
set 𝐴, we write 𝑎 ∈ 𝐴; otherwise, we write 𝑎 ∉ 𝐴.

Definition 2 (Subset). [8] Let 𝐴 and 𝐵 be sets. 𝐴 is called a subset of 𝐵, denoted 𝐴 ⊆ 𝐵, if every element of
𝐴 is also an element of 𝐵. If 𝐴 ⊆ 𝐵 but 𝐴 ≠ 𝐵, then 𝐴 is called a proper subset of 𝐵, denoted 𝐴 ⊂ 𝐵.

Definition 3 (Empty Set). [8] The empty set, denoted by ∅, is the unique set containing no elements. Formally,
for any set 𝐴, ∅ ⊆ 𝐴.
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Definition 4 (Universal Set). A universal set, denoted by 𝑈, is the set that contains all elements under
consideration in a particular context. Every set discussed is assumed to be a subset of 𝑈.

Definition 5 (Fuzzy Set). [1, 9] A Fuzzy set 𝜏 in a non-empty universe 𝑌 is a mapping 𝜏 ∶ 𝑌 → [0, 1]. A fuzzy
relation on 𝑌 is a fuzzy subset 𝛿 in 𝑌 × 𝑌. If 𝜏 is a fuzzy set in 𝑌 and 𝛿 is a fuzzy relation on 𝑌, then 𝛿 is called a
fuzzy relation on 𝜏 if

𝛿(𝑦, 𝑧) ≤ min{𝜏(𝑦), 𝜏(𝑧)} for all 𝑦, 𝑧 ∈ 𝑌 .

Example 6 (Real‐World Example of a Fuzzy Set). Let 𝑌 be the set of room temperatures (in °C). Define the
fuzzy set “Comfortable” by

𝜇Comfort(𝑡) =

⎧
{{{{
⎨
{{{{
⎩

0, 𝑡 ≤ 16,
𝑡−16

6 , 16 < 𝑡 < 22,

1, 22 ≤ 𝑡 ≤ 26,
32−𝑡

6 , 26 < 𝑡 < 32,

0, 𝑡 ≥ 32.

Then, for example,

𝜇Comfort(18) = 2
6 ≈ 0.33, 𝜇Comfort(24) = 1, 𝜇Comfort(30) = 2

6 ≈ 0.33.

This models the gradual transition between “too cold,” “comfortable,” and “too warm.”

Neutrosophic Sets extend Fuzzy Sets by incorporating the concept of indeterminacy, thereby addressing situations
that are neither entirely true nor entirely false. This framework provides a more flexible representation of
uncertainty and ambiguity [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Their definitions are presented below.

Definition 7 (Neutrosophic Set). [20, 10] Let 𝑋 be a non-empty set. A Neutrosophic Set (NS) 𝐴 on 𝑋 is
characterized by three membership functions:

𝑇𝐴 ∶ 𝑋 → [0, 1], 𝐼𝐴 ∶ 𝑋 → [0, 1], 𝐹𝐴 ∶ 𝑋 → [0, 1],

where for each 𝑥 ∈ 𝑋, the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degrees of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.

Example 8 (Real‐World Example of a Neutrosophic Set). (cf.[21, 22]) Let 𝑋 be a set of patients undergoing a
diagnostic test for disease 𝐷. Define a neutrosophic set 𝐴 of “Likely 𝐷” by assigning for each patient 𝑥 ∈ 𝑋:

𝑇𝐴(𝑥) = degree test indicates 𝐷, 𝐼𝐴(𝑥) = degree of inconclusive result, 𝐹𝐴(𝑥) = degree test indicates no 𝐷.

For instance, for three patients:
𝑥1 ∶ (𝑇𝐴, 𝐼𝐴, 𝐹𝐴) = (0.8, 0.1, 0.1),
𝑥2 ∶ (𝑇𝐴, 𝐼𝐴, 𝐹𝐴) = (0.4, 0.5, 0.1),
𝑥3 ∶ (𝑇𝐴, 𝐼𝐴, 𝐹𝐴) = (0.1, 0.2, 0.7).

Here 𝑥1 is likely diseased, 𝑥2 is largely indeterminate, and 𝑥3 is likely healthy.

2 Result of This Paper

The results of this paper are presented as follows.
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2.1 Mathematical Model of Customer Relationship Management (CRM)
Customer Relationship Management (CRM) is a strategy to manage customer interactions, improve satisfaction,
and drive business growth through data[23, 24, 25, 26]. This can be deliberately defined in mathematical terms
as follows.

Definition 9 (Concrete Mathematical Model of Customer Relationship Management (CRM)). A CRM system
is modeled by the septuple

CRM = (𝐶, 𝑃 , 𝑇 , 𝐼, 𝑄𝑝, 𝑄𝑠, 𝑓𝑤),
where

• 𝐶 is a finite set of customers, e.g. 𝐶 = {Alice, Bob};

• 𝑃 is a finite set of products or services, e.g. 𝑃 = {Basic, Premium};

• 𝑇 is a totally ordered set of discrete time–stamps, e.g. 𝑇 = {2025−04−01, 2025−04−15, 2025−04−20};

• 𝐼 ⊆ 𝐶 × 𝑃 × 𝑇 is the interaction log; each (𝑐, 𝑝, 𝑡) ∈ 𝐼 records that customer 𝑐 interacted with product 𝑝
at time 𝑡;

• 𝑄𝑝 ∶ 𝐼 → ℕ is the purchase quantity function (number of units bought in that interaction);

• 𝑄𝑠 ∶ 𝐼 → [0, 1] is the support‐satisfaction function (customer’s post‐interaction satisfaction rating from
support, normalized to [0, 1]);

• 𝑓𝑤 ∶ 𝐼 → ℝ≥0 is a weighted‐score function defined by
𝑓𝑤(𝑐, 𝑝, 𝑡) = 𝑤𝑝 𝑄𝑝(𝑐, 𝑝, 𝑡) + 𝑤𝑠 𝑄𝑠(𝑐, 𝑝, 𝑡),

where 𝑤𝑝, 𝑤𝑠 ≥ 0 are preassigned weights with 𝑤𝑝 + 𝑤𝑠 = 1.

For each customer 𝑐 ∈ 𝐶, their aggregate satisfaction is

𝑆(𝑐) = 1
∣{(𝑐, 𝑝, 𝑡) ∈ 𝐼}∣

∑
(𝑐,𝑝,𝑡)∈𝐼

𝑓𝑤(𝑐, 𝑝, 𝑡).

Theorem 10 (Weighted‐Average Representation of Aggregate Satisfaction). Let
𝐼𝑐 = {(𝑐, 𝑝, 𝑡) ∈ 𝐼} and 𝑛𝑐 = |𝐼𝑐|.

Define the average purchase quantity and average satisfaction for customer 𝑐 by

𝐴𝑝(𝑐) = 1
𝑛𝑐

∑
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑄𝑝(𝑐, 𝑝, 𝑡), 𝐴𝑠(𝑐) = 1
𝑛𝑐

∑
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑄𝑠(𝑐, 𝑝, 𝑡).

Then the aggregate satisfaction 𝑆(𝑐) = 1
𝑛𝑐

∑
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑓𝑤(𝑐, 𝑝, 𝑡) can be written as

𝑆(𝑐) = 𝑤𝑝 𝐴𝑝(𝑐) + 𝑤𝑠 𝐴𝑠(𝑐).

Proof : By definition,

𝑆(𝑐) = 1
𝑛𝑐

∑
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑓𝑤(𝑐, 𝑝, 𝑡) = 1
𝑛𝑐

∑
(𝑐,𝑝,𝑡)∈𝐼𝑐

(𝑤𝑝 𝑄𝑝(𝑐, 𝑝, 𝑡) + 𝑤𝑠 𝑄𝑠(𝑐, 𝑝, 𝑡)).

Since 𝑤𝑝, 𝑤𝑠 are constants with 𝑤𝑝 + 𝑤𝑠 = 1, we may distribute:

𝑆(𝑐) = 𝑤𝑝
1
𝑛𝑐

∑
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑄𝑝(𝑐, 𝑝, 𝑡) + 𝑤𝑠
1
𝑛𝑐

∑
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑄𝑠(𝑐, 𝑝, 𝑡) = 𝑤𝑝 𝐴𝑝(𝑐) + 𝑤𝑠 𝐴𝑠(𝑐),

as claimed. �

Theorem 11 (Monotonicity). Suppose two CRM interaction‐logs 𝐼1 and 𝐼2 for the same customer 𝑐 satisfy
𝑄1

𝑝(𝑐, 𝑝, 𝑡) ≥ 𝑄2
𝑝(𝑐, 𝑝, 𝑡) and 𝑄1

𝑠(𝑐, 𝑝, 𝑡) ≥ 𝑄2
𝑠(𝑐, 𝑝, 𝑡) ∀ (𝑐, 𝑝, 𝑡) ∈ 𝐼1 ∩ 𝐼2.

Then the corresponding aggregate satisfactions obey 𝑆1(𝑐) ≥ 𝑆2(𝑐).
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Proof : From the weighted‐average form,

𝑆𝑖(𝑐) = 𝑤𝑝 𝐴𝑖
𝑝(𝑐) + 𝑤𝑠 𝐴𝑖

𝑠(𝑐), 𝑖 = 1, 2.

By hypothesis 𝐴1
𝑝(𝑐) ≥ 𝐴2

𝑝(𝑐) and 𝐴1
𝑠(𝑐) ≥ 𝐴2

𝑠(𝑐), and since 𝑤𝑝, 𝑤𝑠 ≥ 0, it follows that

𝑆1(𝑐) − 𝑆2(𝑐) = 𝑤𝑝(𝐴1
𝑝(𝑐) − 𝐴2

𝑝(𝑐)) + 𝑤𝑠(𝐴1
𝑠(𝑐) − 𝐴2

𝑠(𝑐)) ≥ 0,

hence 𝑆1(𝑐) ≥ 𝑆2(𝑐). �

Theorem 12 (Bounds on Aggregate Satisfaction). Let 𝑚𝑐 = min
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑓𝑤(𝑐, 𝑝, 𝑡) and 𝑀𝑐 = max
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑓𝑤(𝑐, 𝑝, 𝑡).

Then the aggregate satisfaction 𝑆(𝑐) satisfies

𝑚𝑐 ≤ 𝑆(𝑐) ≤ 𝑀𝑐.

Proof : Since 𝑆(𝑐) is the arithmetic mean of the real values {𝑓𝑤(𝑐, 𝑝, 𝑡)}(𝑐,𝑝,𝑡)∈𝐼𝑐
, the well‐known inequality for

means gives

min
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑓𝑤(𝑐, 𝑝, 𝑡) ≤ 1
𝑛𝑐

∑
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑓𝑤(𝑐, 𝑝, 𝑡) ≤ max
(𝑐,𝑝,𝑡)∈𝐼𝑐

𝑓𝑤(𝑐, 𝑝, 𝑡),

i.e. 𝑚𝑐 ≤ 𝑆(𝑐) ≤ 𝑀𝑐. �

Example 13. Let

𝐶 = {Alice, Bob}, 𝑃 = {Basic, Premium}, 𝑇 = {2025−04−01, 2025−04−15, 2025−04−20},

and record the following interactions:

𝐼 = {(Alice, Basic, 2025−04−01), (Alice, Basic, 2025−04−15), (Bob, Premium, 2025−04−20)}.

Suppose

𝑄𝑝(Alice, Basic, 2025−04−01) = 2, 𝑄𝑠(Alice, Basic, 2025−04−01) = 0.7,

𝑄𝑝(Alice, Basic, 2025−04−15) = 1, 𝑄𝑠(Alice, Basic, 2025−04−15) = 0.9,

𝑄𝑝(Bob, Premium, 2025−04−20) = 3, 𝑄𝑠(Bob, Premium, 2025−04−20) = 0.6.

Choose weights

𝑤𝑝 = 0.6, 𝑤𝑠 = 0.4.

Then

𝑓𝑤(Alice, Basic, 2025−04−01) = 0.6 ⋅ 2 + 0.4 ⋅ 0.7 = 1.2 + 0.28 = 1.48,

𝑓𝑤(Alice, Basic, 2025−04−15) = 0.6 ⋅ 1 + 0.4 ⋅ 0.9 = 0.6 + 0.36 = 0.96,

𝑓𝑤(Bob, Premium, 2025−04−20) = 0.6 ⋅ 3 + 0.4 ⋅ 0.6 = 1.8 + 0.24 = 2.04.

Therefore

𝑆(Alice) = 1.48 + 0.96
2

= 1.22, 𝑆(Bob) = 2.04
1

= 2.04.

Interpretation: Alice’s average interaction score is $1.22, while Bob’s is $2.04 under this CRM model.
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2.2 Fuzzy Customer Relationship Management (Fuzzy CRM)
The definition of Fuzzy Customer Relationship Management (Fuzzy CRM) is presented as follows. There are
several studies in which Customer Relationship Management and fuzzy logic are investigated together, and based
on these observations, it is considered natural to define Fuzzy CRM in a mathematical manner (e.g., [27, 28, 29]).

Definition 14 (Fuzzy Customer Relationship Management (Fuzzy CRM)). Let

𝐶, 𝑃 , 𝑇

be finite sets of customers, products (or services), and discrete time‐points respectively. A Fuzzy CRM system is
a septuple

FCRM = (𝐶, 𝑃 , 𝑇 , 𝜇𝐼, 𝑄𝑝, 𝑄𝑠, 𝑤𝑝, 𝑤𝑠),
equipped with:

• a fuzzy interaction relation 𝜇𝐼 ∶ 𝐶 × 𝑃 × 𝑇 ⟶ [0, 1], where 𝜇𝐼(𝑐, 𝑝, 𝑡) denotes the degree to which
customer 𝑐’s interaction with product 𝑝 at time 𝑡 is “relevant”;

• a purchase‐quantity function 𝑄𝑝 ∶ 𝐶 × 𝑃 × 𝑇 ⟶ ℕ, giving the number of units purchased in that
interaction;

• a support‐satisfaction function 𝑄𝑠 ∶ 𝐶 × 𝑃 × 𝑇 ⟶ [0, 1], giving the customer’s satisfaction rating
(normalized) after that interaction;

• nonnegative weights 𝑤𝑝, 𝑤𝑠 with 𝑤𝑝 + 𝑤𝑠 = 1.

Define the normalized interaction score

̃𝑓(𝑐, 𝑝, 𝑡) = 𝑤𝑝
𝑄𝑝(𝑐, 𝑝, 𝑡)

𝑄max
+ 𝑤𝑠 𝑄𝑠(𝑐, 𝑝, 𝑡),

where 𝑄max = max
𝑐,𝑝,𝑡

𝑄𝑝(𝑐, 𝑝, 𝑡). Then the fuzzy satisfaction degree of 𝑐 ∈ 𝐶 is the fuzzy average

𝑆FCRM(𝑐) =
∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝐼(𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡)

∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝐼(𝑐, 𝑝, 𝑡)
∈ [0, 1].

Hence 𝑆FCRM is a fuzzy set on 𝐶.

Theorem 15. The classical (crisp) Mathematical Model of CRM is obtained as a special case of Fuzzy CRM by

𝜇𝐼(𝑐, 𝑝, 𝑡) ∈ {0, 1}, 𝑄max = 1,

and identifying ̃𝑓(𝑐, 𝑝, 𝑡) with the original weighted score 𝑓𝑤(𝑐, 𝑝, 𝑡). In particular, when 𝜇𝐼 is the indicator of a
crisp interaction log 𝐼 ⊆ 𝐶 × 𝑃 × 𝑇, then

𝑆FCRM(𝑐) = 1
|{(𝑐, 𝑝, 𝑡) ∈ 𝐼}|

∑
(𝑐,𝑝,𝑡)∈𝐼

𝑓𝑤(𝑐, 𝑝, 𝑡)

coincides with the classical satisfaction average.

Proof : Assume 𝜇𝐼(𝑐, 𝑝, 𝑡) = 1 exactly when (𝑐, 𝑝, 𝑡) ∈ 𝐼, and 𝑄max = 1. Then by definition
̃𝑓(𝑐, 𝑝, 𝑡) = 𝑤𝑝 𝑄𝑝(𝑐, 𝑝, 𝑡) + 𝑤𝑠 𝑄𝑠(𝑐, 𝑝, 𝑡) = 𝑓𝑤(𝑐, 𝑝, 𝑡)

and the denominator ∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡) = |{(𝑐, 𝑝, 𝑡) ∈ 𝐼}|. Hence

𝑆FCRM(𝑐) =
∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡)

∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡)
= 1

|{(𝑐, 𝑝, 𝑡) ∈ 𝐼}|
∑

(𝑐,𝑝,𝑡)∈𝐼
𝑓𝑤(𝑐, 𝑝, 𝑡),

which is exactly the classical CRM satisfaction score. This shows the crisp model embeds into Fuzzy CRM.
Moreover, since 𝑆FCRM ∶ 𝐶 → [0, 1], it endows 𝐶 with a fuzzy‐set structure. �
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Theorem 16 (Decomposition into Component Averages). Define, for each 𝑐 ∈ 𝐶,

𝐴𝑝(𝑐) =
∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝐼(𝑐, 𝑝, 𝑡)
𝑄𝑝(𝑐, 𝑝, 𝑡)

𝑄max

∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝐼(𝑐, 𝑝, 𝑡)
, 𝐴𝑠(𝑐) =

∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝐼(𝑐, 𝑝, 𝑡) 𝑄𝑠(𝑐, 𝑝, 𝑡)

∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝐼(𝑐, 𝑝, 𝑡)
.

Then the fuzzy satisfaction degree admits the linear decomposition

𝑆FCRM(𝑐) = 𝑤𝑝 𝐴𝑝(𝑐) + 𝑤𝑠 𝐴𝑠(𝑐).

Proof : By definition,

𝑆FCRM(𝑐) =
∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡)

∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡)
=

∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡) (𝑤𝑝
𝑄𝑝(𝑐,𝑝,𝑡)

𝑄max
+ 𝑤𝑠 𝑄𝑠(𝑐, 𝑝, 𝑡))

∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡)
.

Since 𝑤𝑝, 𝑤𝑠 are constants with 𝑤𝑝 + 𝑤𝑠 = 1, split the sum:

𝑆FCRM(𝑐) = 𝑤𝑝

∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡) 𝑄𝑝(𝑐,𝑝,𝑡)
𝑄max

∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡)
+ 𝑤𝑠

∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡) 𝑄𝑠(𝑐, 𝑝, 𝑡)
∑𝑝,𝑡 𝜇𝐼(𝑐, 𝑝, 𝑡)

= 𝑤𝑝 𝐴𝑝(𝑐) + 𝑤𝑠 𝐴𝑠(𝑐),

as claimed. �

Theorem 17 (Bounds on Fuzzy Satisfaction). Let

𝑚(𝑐) = min
𝑝∈𝑃, 𝑡∈𝑇

{ ̃𝑓(𝑐, 𝑝, 𝑡)}, 𝑀(𝑐) = max
𝑝∈𝑃, 𝑡∈𝑇

{ ̃𝑓(𝑐, 𝑝, 𝑡)},

where the minima and maxima are taken over all (𝑝, 𝑡) with 𝜇𝐼(𝑐, 𝑝, 𝑡) > 0. Then

𝑚(𝑐) ≤ 𝑆FCRM(𝑐) ≤ 𝑀(𝑐).

Proof : Set
𝑁(𝑐) = ∑

𝑝,𝑡
𝜇𝐼(𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡), 𝐷(𝑐) = ∑

𝑝,𝑡
𝜇𝐼(𝑐, 𝑝, 𝑡).

Then
𝑆FCRM(𝑐) = 𝑁(𝑐)

𝐷(𝑐)
.

Since 𝜇𝐼(𝑐, 𝑝, 𝑡) ≥ 0, we have for each (𝑝, 𝑡)

𝑚(𝑐) 𝜇𝐼(𝑐, 𝑝, 𝑡) ≤ 𝜇𝐼(𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡) ≤ 𝑀(𝑐) 𝜇𝐼(𝑐, 𝑝, 𝑡).

Summing over all (𝑝, 𝑡) yields
𝑚(𝑐) 𝐷(𝑐) ≤ 𝑁(𝑐) ≤ 𝑀(𝑐) 𝐷(𝑐).

Dividing through by 𝐷(𝑐) > 0 gives

𝑚(𝑐) ≤ 𝑁(𝑐)
𝐷(𝑐)

≤ 𝑀(𝑐),

i.e. 𝑚(𝑐) ≤ 𝑆FCRM(𝑐) ≤ 𝑀(𝑐). �

Theorem 18 (Monotonicity in Interaction Scores). Let two FCRM systems share the same 𝐶, 𝑃 , 𝑇 , 𝜇𝐼, 𝑤𝑝, 𝑤𝑠

but have score functions ̃𝑓1, ̃𝑓2. If
̃𝑓1(𝑐, 𝑝, 𝑡) ≥ ̃𝑓2(𝑐, 𝑝, 𝑡) for all (𝑐, 𝑝, 𝑡),

then their fuzzy satisfaction degrees satisfy

𝑆1
FCRM(𝑐) ≥ 𝑆2

FCRM(𝑐) for every 𝑐 ∈ 𝐶.

T.Fujita, A Unified Mathematical Framework for Fuzzy Customer Relationship Management (FCRM) and Neutrosophic Human
Resource Management (NHRM)
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Proof : Write
𝑁 𝑖(𝑐) = ∑

𝑝,𝑡
𝜇𝐼(𝑐, 𝑝, 𝑡) ̃𝑓 𝑖(𝑐, 𝑝, 𝑡), 𝐷(𝑐) = ∑

𝑝,𝑡
𝜇𝐼(𝑐, 𝑝, 𝑡),

so 𝑆𝑖(𝑐) = 𝑁 𝑖(𝑐)/𝐷(𝑐), 𝑖 = 1, 2. Since 𝜇𝐼 ≥ 0 and ̃𝑓1 ≥ ̃𝑓2, term by term 𝜇𝐼
̃𝑓1 ≥ 𝜇𝐼

̃𝑓2. Summing gives

𝑁1(𝑐) ≥ 𝑁2(𝑐).

Dividing by the common positive denominator 𝐷(𝑐) yields

𝑆1
FCRM(𝑐) = 𝑁1(𝑐)

𝐷(𝑐)
≥ 𝑁2(𝑐)

𝐷(𝑐)
= 𝑆2

FCRM(𝑐),

as required. �

Example 19. Let

𝐶 = {Alice, Bob}, 𝑃 = {Basic, Premium}, 𝑇 = { 2025-04-01, 2025-04-15},

and suppose
𝑄max = 3, 𝑤𝑝 = 0.6, 𝑤𝑠 = 0.4.

Define
𝜇𝐼(Alice, Basic, 2025−04−01) = 0.8, 𝑄𝑝 = 2, 𝑄𝑠 = 0.7;
𝜇𝐼(Alice, Basic, 2025−04−15) = 0.9, 𝑄𝑝 = 1, 𝑄𝑠 = 0.9;

𝜇𝐼(Bob, Premium, 2025−04−15) = 0.6, 𝑄𝑝 = 3, 𝑄𝑠 = 0.6.
Then the normalized scores are

̃𝑓(Alice, Basic, 1) = 0.6 ⋅ 2
3

+ 0.4 ⋅ 0.7 = 0.68, ̃𝑓(Alice, Basic, 2) = 0.6 ⋅ 1
3

+ 0.4 ⋅ 0.9 = 0.56,

̃𝑓(Bob, Premium, 2) = 0.6 ⋅ 1 + 0.4 ⋅ 0.6 = 0.84.
Thus

𝑆FCRM(Alice) = 0.8 ⋅ 0.68 + 0.9 ⋅ 0.56
0.8 + 0.9

= 0.544 + 0.504
1.7

≈ 0.616, 𝑆FCRM(Bob) = 0.6 ⋅ 0.84
0.6

= 0.84.

We obtain fuzzy satisfaction degrees 0.616 for Alice and 0.84 for Bob.

2.3 Neutrosophic Customer Relationship Management (Neutrosophic CRM)
The definition of Neutrosophic Customer Relationship Management (Neutrosophic CRM) is presented as follows.

Definition 20 (Neutrosophic Customer Relationship Management (Neutrosophic CRM)). Let

𝐶, 𝑃 , 𝑇

be finite sets of customers, products (or services), and discrete time‐points respectively. A Neutrosophic CRM
system is a decuple

NCRM = (𝐶, 𝑃 , 𝑇 , 𝜇𝑇
𝐼 , 𝜇𝐼

𝐼, 𝜇𝐹
𝐼 , 𝑄𝑝, 𝑄𝑠, 𝑤𝑝, 𝑤𝑠),

equipped with:

• three neutrosophic interaction relations

𝜇𝑇
𝐼 , 𝜇𝐼

𝐼, 𝜇𝐹
𝐼 ∶ 𝐶 × 𝑃 × 𝑇 ⟶ [0, 1],

where for each interaction (𝑐, 𝑝, 𝑡), 𝜇𝑇
𝐼 (𝑐, 𝑝, 𝑡), 𝜇𝐼

𝐼(𝑐, 𝑝, 𝑡), 𝜇𝐹
𝐼 (𝑐, 𝑝, 𝑡) are the degrees of truth, indeterminacy,

and falsity of that interaction;

• a purchase‐quantity function 𝑄𝑝 ∶ 𝐶 × 𝑃 × 𝑇 ⟶ ℕ, giving the number of units purchased;

• a support‐satisfaction function 𝑄𝑠 ∶ 𝐶 × 𝑃 × 𝑇 ⟶ [0, 1], giving the customer’s normalized satisfaction
after support;

• nonnegative weights 𝑤𝑝, 𝑤𝑠 ∈ [0, 1] with 𝑤𝑝 + 𝑤𝑠 = 1.

T.Fujita, A Unified Mathematical Framework for Fuzzy Customer Relationship Management (FCRM) and Neutrosophic Human
Resource Management (NHRM)
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Define the normalized interaction score

̃𝑓(𝑐, 𝑝, 𝑡) = 𝑤𝑝
𝑄𝑝(𝑐, 𝑝, 𝑡)

𝑄max
+ 𝑤𝑠 𝑄𝑠(𝑐, 𝑝, 𝑡),

where 𝑄max = max
𝑐,𝑝,𝑡

𝑄𝑝(𝑐, 𝑝, 𝑡). Then for each 𝑐 ∈ 𝐶 the neutrosophic satisfaction degrees are

𝑆𝑇(𝑐) =
∑𝑝,𝑡 𝜇𝑇

𝐼 (𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡)
∑𝑝,𝑡 𝜇𝑇

𝐼 (𝑐, 𝑝, 𝑡)
, 𝑆𝐼(𝑐) =

∑𝑝,𝑡 𝜇𝐼
𝐼(𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡)

∑𝑝,𝑡 𝜇𝐼
𝐼(𝑐, 𝑝, 𝑡)

, 𝑆𝐹(𝑐) =
∑𝑝,𝑡 𝜇𝐹

𝐼 (𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡)
∑𝑝,𝑡 𝜇𝐹

𝐼 (𝑐, 𝑝, 𝑡)
.

These three numbers form the neutrosophic set 𝑆NCRM(𝑐) = (𝑆𝑇(𝑐), 𝑆𝐼(𝑐), 𝑆𝐹(𝑐)) ∈ [0, 1]3.

Theorem 21. The Fuzzy CRM model is recovered from Neutrosophic CRM by setting 𝜇𝐼
𝐼 ≡ 0 and 𝜇𝐹

𝐼 (𝑐, 𝑝, 𝑡) =
1 − 𝜇𝑇

𝐼 (𝑐, 𝑝, 𝑡). In that case
𝑆𝑇(𝑐) = 𝑆FCRM(𝑐), 𝑆𝐼(𝑐) = 0, 𝑆𝐹(𝑐) = 1 − 𝑆FCRM(𝑐).

Proof : If 𝜇𝐼
𝐼 = 0 and 𝜇𝐹

𝐼 = 1 − 𝜇𝑇
𝐼 , then the truth‐component aggregator 𝑆𝑇(𝑐) coincides with the fuzzy‐CRM

satisfaction degree 𝑆FCRM(𝑐) since ∑ 𝜇𝑇
𝐼 = ∑ 𝜇𝐼 and ̃𝑓 is identical. Moreover ∑ 𝜇𝐼

𝐼 = 0 implies 𝑆𝐼(𝑐) is undefined
in numerator and denominator but is naturally taken as 0, and ∑ 𝜇𝐹

𝐼 = ∑(1 − 𝜇𝑇
𝐼 ) yields 𝑆𝐹(𝑐) = 1 − 𝑆𝑇(𝑐).

Hence the classical fuzzy‐CRM embedding holds. �

Theorem 22 (Component‐wise Decomposition). For each 𝑋 ∈ {𝑇 , 𝐼, 𝐹} and 𝑐 ∈ 𝐶, define

𝐴𝑋
𝑝 (𝑐) =

∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡)

𝑄𝑝(𝑐, 𝑝, 𝑡)
𝑄max

∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡)

, 𝐴𝑋
𝑠 (𝑐) =

∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡) 𝑄𝑠(𝑐, 𝑝, 𝑡)

∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡)

.

Then
𝑆𝑋(𝑐) = 𝑤𝑝 𝐴𝑋

𝑝 (𝑐) + 𝑤𝑠 𝐴𝑋
𝑠 (𝑐).

Proof : By definition,

𝑆𝑋(𝑐) =
∑𝑝,𝑡 𝜇𝑋

𝐼 (𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡)
∑𝑝,𝑡 𝜇𝑋

𝐼 (𝑐, 𝑝, 𝑡)
=

∑𝑝,𝑡 𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡) (𝑤𝑝

𝑄𝑝
𝑄max

+ 𝑤𝑠 𝑄𝑠)
∑𝑝,𝑡 𝜇𝑋

𝐼 (𝑐, 𝑝, 𝑡)
.

Since 𝑤𝑝 + 𝑤𝑠 = 1 are constants, split the sum:

𝑆𝑋(𝑐) = 𝑤𝑝
∑ 𝜇𝑋

𝐼
𝑄𝑝

𝑄max

∑ 𝜇𝑋
𝐼

+ 𝑤𝑠
∑ 𝜇𝑋

𝐼 𝑄𝑠
∑ 𝜇𝑋

𝐼

= 𝑤𝑝 𝐴𝑋
𝑝 (𝑐) + 𝑤𝑠 𝐴𝑋

𝑠 (𝑐).
�

Theorem 23 (Bounds on Neutrosophic Satisfaction). For each 𝑋 ∈ {𝑇 , 𝐼, 𝐹} and 𝑐 ∈ 𝐶, let

𝑚𝑋(𝑐) = min
𝑝∈𝑃, 𝑡∈𝑇

𝜇𝑋
𝐼 (𝑐,𝑝,𝑡)>0

̃𝑓(𝑐, 𝑝, 𝑡), 𝑀𝑋(𝑐) = max
𝑝∈𝑃, 𝑡∈𝑇

𝜇𝑋
𝐼 (𝑐,𝑝,𝑡)>0

̃𝑓(𝑐, 𝑝, 𝑡).

Then
𝑚𝑋(𝑐) ≤ 𝑆𝑋(𝑐) ≤ 𝑀𝑋(𝑐).

Proof : Set
𝑁𝑋(𝑐) = ∑

𝑝,𝑡
𝜇𝑋

𝐼 (𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡), 𝐷𝑋(𝑐) = ∑
𝑝,𝑡

𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡),

so 𝑆𝑋(𝑐) = 𝑁𝑋(𝑐)/𝐷𝑋(𝑐). Since 𝜇𝑋
𝐼 ≥ 0 and

𝑚𝑋(𝑐) 𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡) ≤ 𝜇𝑋

𝐼 (𝑐, 𝑝, 𝑡) ̃𝑓(𝑐, 𝑝, 𝑡) ≤ 𝑀𝑋(𝑐) 𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡),

T.Fujita, A Unified Mathematical Framework for Fuzzy Customer Relationship Management (FCRM) and Neutrosophic Human
Resource Management (NHRM)
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summing yields
𝑚𝑋(𝑐) 𝐷𝑋(𝑐) ≤ 𝑁𝑋(𝑐) ≤ 𝑀𝑋(𝑐) 𝐷𝑋(𝑐),

and dividing by 𝐷𝑋(𝑐) > 0 gives the result. �

Theorem 24 (Monotonicity). Let two NCRM systems share the same 𝐶, 𝑃 , 𝑇 , 𝑄𝑝, 𝑄𝑠, 𝑤𝑝, 𝑤𝑠 but have scores
̃𝑓1 and ̃𝑓2. If

̃𝑓1(𝑐, 𝑝, 𝑡) ≥ ̃𝑓2(𝑐, 𝑝, 𝑡) for all (𝑐, 𝑝, 𝑡),
then for each 𝑋 ∈ {𝑇 , 𝐼, 𝐹} and 𝑐 ∈ 𝐶,

𝑆1
𝑋(𝑐) ≥ 𝑆2

𝑋(𝑐).

Proof : For 𝑖 = 1, 2, set

𝑁 𝑖
𝑋(𝑐) = ∑ 𝜇𝑋

𝐼 (𝑐, 𝑝, 𝑡) ̃𝑓 𝑖(𝑐, 𝑝, 𝑡), 𝐷𝑋(𝑐) = ∑ 𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡).

Since ̃𝑓1 ≥ ̃𝑓2 and 𝜇𝑋
𝐼 ≥ 0, term‐wise 𝜇𝑋

𝐼
̃𝑓1 ≥ 𝜇𝑋

𝐼
̃𝑓2, so 𝑁1

𝑋(𝑐) ≥ 𝑁2
𝑋(𝑐). Dividing by the common 𝐷𝑋(𝑐) > 0

gives 𝑆1
𝑋(𝑐) ≥ 𝑆2

𝑋(𝑐). �

Theorem 25 (Idempotence). If for some constant 𝑘 ∈ [0, 1] we have ̃𝑓(𝑐, 𝑝, 𝑡) = 𝑘 whenever 𝜇𝑋
𝐼 (𝑐, 𝑝, 𝑡) > 0,

then
𝑆𝑋(𝑐) = 𝑘 for each 𝑋 ∈ {𝑇 , 𝐼, 𝐹}.

Proof : Under the assumption,

𝑁𝑋(𝑐) = ∑
𝑝,𝑡

𝜇𝑋
𝐼 (𝑒, 𝑟, 𝑡) 𝑘 = 𝑘 ∑

𝑝,𝑡
𝜇𝑋

𝐼 (𝑒, 𝑟, 𝑡) = 𝑘 𝐷𝑋(𝑐),

hence 𝑆𝑋(𝑐) = 𝑁𝑋(𝑐)/𝐷𝑋(𝑐) = 𝑘. �

Example 26. Let

𝐶 = {Alice, Bob}, 𝑃 = {Basic, Premium}, 𝑇 = {2025−04−01, 2025−04−15},

with 𝑄max = 3, 𝑤𝑝 = 0.6, 𝑤𝑠 = 0.4. Define for Alice’s Basic interactions:

𝜇𝑇
𝐼 = 0.8, 𝜇𝐼

𝐼 = 0.1, 𝜇𝐹
𝐼 = 0.1, 𝑄𝑝 = 2, 𝑄𝑠 = 0.7

at 2025‑04‑01, and
𝜇𝑇

𝐼 = 0.9, 𝜇𝐼
𝐼 = 0.0, 𝜇𝐹

𝐼 = 0.1, 𝑄𝑝 = 1, 𝑄𝑠 = 0.9
at 2025‑04‑15. For Bob’s Premium at 2025‑04‑15:

𝜇𝑇
𝐼 = 0.6, 𝜇𝐼

𝐼 = 0.1, 𝜇𝐹
𝐼 = 0.3, 𝑄𝑝 = 3, 𝑄𝑠 = 0.6.

Compute normalized scores:

̃𝑓(Alice, Basic, 1) = 0.6⋅ 2
3

+ 0.4⋅ 0.7 = 0.68, ̃𝑓(Alice, Basic, 2) = 0.6⋅ 1
3

+ 0.4⋅ 0.9 = 0.56,

̃𝑓(Bob, Premium, 2) = 0.6⋅ 1 + 0.4⋅ 0.6 = 0.84.
Then

𝑆𝑇(Alice) = 0.8 ⋅ 0.68 + 0.9 ⋅ 0.56
0.8 + 0.9

≈ 0.616, 𝑆𝐼(Alice) = 0.1 ⋅ 0.68 + 0 ⋅ 0.56
0.1

= 0.68,

𝑆𝐹(Alice) = 0.1 ⋅ 0.68 + 0.1 ⋅ 0.56
0.1 + 0.1

= 0.624;

𝑆𝑇(Bob) = 0.6 ⋅ 0.84
0.6

= 0.84, 𝑆𝐼(Bob) = 0.1 ⋅ 0.84
0.1

= 0.84, 𝑆𝐹(Bob) = 0.3 ⋅ 0.84
0.3

= 0.84.

Thus Alice’s neutrosophic satisfaction is (0.616, 0.68, 0.624) and Bob’s is (0.84, 0.84, 0.84).
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2.4 Mathematical Model of Human Resource Management (HRM)
Human Resource Management (HRM) involves recruiting, developing, and managing people within an organi-
zation to optimize performance and employee satisfaction [30, 31, 32, 33]. The definition of Human Resource
Management (HRM) is presented as follows.

Definition 27 (Mathematical Model of Human Resource Management (HRM)). A Human Resource Management
system is formalized as a sextuple

HRM = (𝐸, 𝑅, 𝑇 , 𝐼, 𝑓, 𝑔),
where

• 𝐸 is a finite set of employees, e.g. 𝐸 = {Alice, Bob};

• 𝑅 is a finite set of roles or tasks, e.g. 𝑅 = {Developer, Manager};

• 𝑇 is a totally ordered set of discrete time‐points, e.g. 𝑇 = {2025−04−01, 2025−04−15};

• 𝐼 ⊆ 𝐸 × 𝑅 × 𝑇 is the assignment log, each (𝑒, 𝑟, 𝑡) ∈ 𝐼 indicating that employee 𝑒 performed role 𝑟 at
time 𝑡;

• 𝑓 ∶ 𝐼 → ℝ≥0 is a performance–rating function assigning to each logged assignment a nonnegative score;

• 𝑔 ∶ ⨆𝑒∈𝐸{ 𝑓(𝑒, 𝑟, 𝑡) ∣ (𝑒, 𝑟, 𝑡) ∈ 𝐼} → ℝ≥0 is an aggregate–performance function which for each 𝑒 ∈ 𝐸
computes a summary (e.g. arithmetic mean) of all 𝑓–values corresponding to 𝑒.

The aggregate performance of employee 𝑒 ∈ 𝐸 is then

𝑃(𝑒) = 𝑔({ 𝑓(𝑒, 𝑟, 𝑡) ∣ (𝑒, 𝑟, 𝑡) ∈ 𝐼}).

Theorem 28 (Arithmetic‐Mean Representation). Suppose the aggregate–performance function 𝑔 is the arithmetic
mean; that is, for each 𝑒 ∈ 𝐸,

𝑔({ 𝑓(𝑒, 𝑟, 𝑡) ∣ (𝑒, 𝑟, 𝑡) ∈ 𝐼}) = 1
|𝐼𝑒|

∑
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓(𝑒, 𝑟, 𝑡),

where 𝐼𝑒 = {(𝑒, 𝑟, 𝑡) ∈ 𝐼}. Then

𝑃(𝑒) = 1
|𝐼𝑒|

∑
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓(𝑒, 𝑟, 𝑡).

Proof : By definition of 𝑃 and the assumption on 𝑔,

𝑃(𝑒) = 𝑔({𝑓(𝑒, 𝑟, 𝑡) ∣ (𝑒, 𝑟, 𝑡) ∈ 𝐼}) = 1
|𝐼𝑒|

∑
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓(𝑒, 𝑟, 𝑡),

as required. �

Theorem 29 (Bounds on Aggregate Performance). Let

𝑚𝑒 = min
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓(𝑒, 𝑟, 𝑡), 𝑀𝑒 = max
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓(𝑒, 𝑟, 𝑡).

If 𝑔 is the arithmetic mean as above, then

𝑚𝑒 ≤ 𝑃(𝑒) ≤ 𝑀𝑒.

Proof : Since 𝑃(𝑒) is the average of the finitely many values {𝑓(𝑒, 𝑟, 𝑡)}(𝑒,𝑟,𝑡)∈𝐼𝑒
, the standard inequality for

arithmetic means gives

min
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓(𝑒, 𝑟, 𝑡) ≤ 1
|𝐼𝑒|

∑
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓(𝑒, 𝑟, 𝑡) ≤ max
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓(𝑒, 𝑟, 𝑡),

i.e. 𝑚𝑒 ≤ 𝑃(𝑒) ≤ 𝑀𝑒. �
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Theorem 30 (Monotonicity). Let two HRM models share the same sets 𝐸, 𝑅, 𝑇 and assignment log 𝐼, and let
their performance ratings be 𝑓1 and 𝑓2. If

𝑓1(𝑒, 𝑟, 𝑡) ≥ 𝑓2(𝑒, 𝑟, 𝑡) for all (𝑒, 𝑟, 𝑡) ∈ 𝐼,

then their aggregate performances satisfy

𝑃 1(𝑒) ≥ 𝑃 2(𝑒) for every 𝑒 ∈ 𝐸.

Proof : For each 𝑒, write

𝑃 𝑖(𝑒) = 1
|𝐼𝑒|

∑
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓 𝑖(𝑒, 𝑟, 𝑡), 𝑖 = 1, 2.

Since 𝑓1(𝑒, 𝑟, 𝑡) ≥ 𝑓2(𝑒, 𝑟, 𝑡) for each term and the denominator |𝐼𝑒| > 0 is common, summing yields

∑
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓1(𝑒, 𝑟, 𝑡) ≥ ∑
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓2(𝑒, 𝑟, 𝑡),

and dividing by |𝐼𝑒| gives 𝑃 1(𝑒) ≥ 𝑃 2(𝑒). �

Theorem 31 (Idempotence). If an employee 𝑒 ∈ 𝐸 has a constant performance rating

𝑓(𝑒, 𝑟, 𝑡) = 𝑘 for all (𝑒, 𝑟, 𝑡) ∈ 𝐼𝑒,

then
𝑃(𝑒) = 𝑘.

Proof : Under the arithmetic‐mean assumption,

𝑃(𝑒) = 1
|𝐼𝑒|

∑
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑓(𝑒, 𝑟, 𝑡) = 1
|𝐼𝑒|

∑
(𝑒,𝑟,𝑡)∈𝐼𝑒

𝑘 = 𝑘 |𝐼𝑒|
|𝐼𝑒|

= 𝑘.

�

Example 32. Let
𝐸 = {Alice, Bob}, 𝑅 = {Developer, Manager},

𝑇 = {2025−04−01, 2025−04−15},

and record these assignments:

𝐼 = {(Alice, Developer, 2025−04−01), (Alice, Developer, 2025−04−15),

(Bob, Manager, 2025−04−15)}.

Define the performance–rating function 𝑓 by

𝑓(Alice, Developer, 2025−04−01) = 85, 𝑓(Alice, Developer, 2025−04−15) = 92,

𝑓(Bob, Manager, 2025−04−15) = 78,

and let 𝑔 compute the arithmetic mean. Then

𝑃(Alice) = 85 + 92
2

= 88.5, 𝑃 (Bob) = 78
1

= 78.

Thus under this HRM model, Alice’s aggregate performance score is 88.5 and Bob’s is 78.
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2.5 Fuzzy Human Resource Management (Fuzzy HRM)
The definition of Fuzzy Human Resource Management (HRM) is presented as follows. There are several studies
in which Human Resource Management (HRM) and fuzzy logic are investigated together, and based on these
observations, it is considered natural to define Fuzzy HRM in a mathematical manner (e.g., [34, 35, 36]).

Definition 33 (Fuzzy Human Resource Management (Fuzzy HRM)). Let
𝐸, 𝑅, 𝑇

be finite sets of employees, roles (or tasks), and discrete time‐points respectively. A Fuzzy HRM system is an
octuple

FHRM = (𝐸, 𝑅, 𝑇 , 𝜇𝐴, 𝑄𝑟, 𝑄𝑝, 𝑤𝑟, 𝑤𝑝),
equipped with:

• a fuzzy assignment relation 𝜇𝐴 ∶ 𝐸 × 𝑅 × 𝑇 ⟶ [0, 1], where 𝜇𝐴(𝑒, 𝑟, 𝑡) denotes the degree to which
employee 𝑒 performs role 𝑟 at time 𝑡;

• a role‐proficiency function 𝑄𝑟 ∶ 𝐸 × 𝑅 × 𝑇 ⟶ [0, 1], measuring normalized proficiency of 𝑒 in role 𝑟 at 𝑡;

• a performance‐rating function 𝑄𝑝 ∶ 𝐸 × 𝑅 × 𝑇 ⟶ [0, 1], giving stakeholder satisfaction rating after
that performance;

• nonnegative weights 𝑤𝑟, 𝑤𝑝 ∈ [0, 1] with 𝑤𝑟 + 𝑤𝑝 = 1.

Define the normalized performance score
̃𝑓(𝑒, 𝑟, 𝑡) = 𝑤𝑟 𝑄𝑟(𝑒, 𝑟, 𝑡) + 𝑤𝑝 𝑄𝑝(𝑒, 𝑟, 𝑡).

Then the fuzzy aggregate performance of 𝑒 ∈ 𝐸 is

𝑃FHRM(𝑒) =
∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡)

∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝐴(𝑒, 𝑟, 𝑡)
∈ [0, 1].

Hence 𝑃FHRM is a fuzzy set on 𝐸.

Theorem 34. The crisp Mathematical Model of HRM is obtained as a special case of Fuzzy HRM by setting
𝜇𝐴(𝑒, 𝑟, 𝑡) ∈ {0, 1} (indicator of a crisp assignment log) and choosing 𝑄𝑟(𝑒, 𝑟, 𝑡) = 1, 𝑄𝑝(𝑒, 𝑟, 𝑡) = 𝑓(𝑒, 𝑟, 𝑡)/𝑓max,
𝑤𝑟 = 1, 𝑤𝑝 = 0. Then

𝑃FHRM(𝑒) = 1
|{(𝑒, 𝑟, 𝑡) ∈ 𝐼}|

∑
(𝑒,𝑟,𝑡)∈𝐼

𝑓(𝑒, 𝑟, 𝑡)

recovers the classical aggregate performance 𝑃(𝑒) up to normalization by 𝑓max.

Proof : If 𝜇𝐴 is the indicator of 𝐼 ⊆ 𝐸 × 𝑅 × 𝑇, then the denominator ∑ 𝜇𝐴 = |𝐼𝑒|, the number of assignments
of 𝑒. With 𝑄𝑟 ≡ 1, 𝑤𝑟 = 1, 𝑤𝑝 = 0, we have ̃𝑓(𝑒, 𝑟, 𝑡) = 1, and choosing 𝑄𝑝(𝑒, 𝑟, 𝑡) = 𝑓(𝑒, 𝑟, 𝑡)/𝑓max with 𝑤𝑝 = 0
makes the numerator ∑(𝑒,𝑟,𝑡)∈𝐼 𝑓(𝑒, 𝑟, 𝑡)/𝑓max. Hence

𝑃FHRM(𝑒) = 1
|𝐼𝑒|

∑
(𝑒,𝑟,𝑡)∈𝐼

𝑓(𝑒, 𝑟, 𝑡)
𝑓max

= 𝑃(𝑒)
𝑓max

,

which coincides with the crisp HRM score up to the constant 1/𝑓max. This completes the embedding. �

Theorem 35 (Decomposition into Role‐Proficiency and Performance Components). Define, for each 𝑒 ∈ 𝐸,

𝐴𝑟(𝑒) =
∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝐴(𝑒, 𝑟, 𝑡) 𝑄𝑟(𝑒, 𝑟, 𝑡)

∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝐴(𝑒, 𝑟, 𝑡)
, 𝐴𝑝(𝑒) =

∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝐴(𝑒, 𝑟, 𝑡) 𝑄𝑝(𝑒, 𝑟, 𝑡)

∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝐴(𝑒, 𝑟, 𝑡)
.

Then the fuzzy aggregate performance decomposes as
𝑃FHRM(𝑒) = 𝑤𝑟 𝐴𝑟(𝑒) + 𝑤𝑝 𝐴𝑝(𝑒).
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Proof : By definition,

𝑃FHRM(𝑒) =
∑𝑟,𝑡 𝜇𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡)

∑𝑟,𝑡 𝜇𝐴(𝑒, 𝑟, 𝑡)
=

∑𝑟,𝑡 𝜇𝐴(𝑒, 𝑟, 𝑡) (𝑤𝑟 𝑄𝑟(𝑒, 𝑟, 𝑡) + 𝑤𝑝 𝑄𝑝(𝑒, 𝑟, 𝑡))
∑𝑟,𝑡 𝜇𝐴(𝑒, 𝑟, 𝑡)

.

Since 𝑤𝑟, 𝑤𝑝 are constants with 𝑤𝑟 + 𝑤𝑝 = 1, split the sum:

𝑃FHRM(𝑒) = 𝑤𝑟

∑𝑟,𝑡 𝜇𝐴(𝑒, 𝑟, 𝑡) 𝑄𝑟(𝑒, 𝑟, 𝑡)
∑𝑟,𝑡 𝜇𝐴(𝑒, 𝑟, 𝑡)

+ 𝑤𝑝

∑𝑟,𝑡 𝜇𝐴(𝑒, 𝑟, 𝑡) 𝑄𝑝(𝑒, 𝑟, 𝑡)
∑𝑟,𝑡 𝜇𝐴(𝑒, 𝑟, 𝑡)

= 𝑤𝑟 𝐴𝑟(𝑒) + 𝑤𝑝 𝐴𝑝(𝑒),

as required. �

Theorem 36 (Bounds on Fuzzy Aggregate Performance). Let

𝑚𝑒 = min
𝑟∈𝑅, 𝑡∈𝑇

𝜇𝐴(𝑒,𝑟,𝑡)>0

̃𝑓(𝑒, 𝑟, 𝑡), 𝑀𝑒 = max
𝑟∈𝑅, 𝑡∈𝑇

𝜇𝐴(𝑒,𝑟,𝑡)>0

̃𝑓(𝑒, 𝑟, 𝑡).

Then
𝑚𝑒 ≤ 𝑃FHRM(𝑒) ≤ 𝑀𝑒.

Proof : Write
𝑁(𝑒) = ∑

𝑟,𝑡
𝜇𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡), 𝐷(𝑒) = ∑

𝑟,𝑡
𝜇𝐴(𝑒, 𝑟, 𝑡),

so 𝑃FHRM(𝑒) = 𝑁(𝑒)/𝐷(𝑒). Since 𝜇𝐴(𝑒, 𝑟, 𝑡) ≥ 0 and

𝑚𝑒 𝜇𝐴(𝑒, 𝑟, 𝑡) ≤ 𝜇𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡) ≤ 𝑀𝑒 𝜇𝐴(𝑒, 𝑟, 𝑡)

for each (𝑟, 𝑡), summing gives
𝑚𝑒 𝐷(𝑒) ≤ 𝑁(𝑒) ≤ 𝑀𝑒 𝐷(𝑒).

Dividing by 𝐷(𝑒) > 0 yields the desired bounds. �

Theorem 37 (Monotonicity in Score Functions). Let two FHRM systems share the same 𝐸, 𝑅, 𝑇 , 𝜇𝐴, 𝑤𝑟, 𝑤𝑝

but have scores ̃𝑓1 and ̃𝑓2. If
̃𝑓1(𝑒, 𝑟, 𝑡) ≥ ̃𝑓2(𝑒, 𝑟, 𝑡) for all (𝑒, 𝑟, 𝑡),

then
𝑃 1

FHRM(𝑒) ≥ 𝑃 2
FHRM(𝑒) for every 𝑒 ∈ 𝐸.

Proof : For 𝑖 = 1, 2 set
𝑁 𝑖(𝑒) = ∑

𝑟,𝑡
𝜇𝐴(𝑒, 𝑟, 𝑡) ̃𝑓 𝑖(𝑒, 𝑟, 𝑡), 𝐷(𝑒) = ∑

𝑟,𝑡
𝜇𝐴(𝑒, 𝑟, 𝑡).

Since ̃𝑓1 ≥ ̃𝑓2 and 𝜇𝐴 ≥ 0, term‐wise 𝜇𝐴
̃𝑓1 ≥ 𝜇𝐴

̃𝑓2, so 𝑁1(𝑒) ≥ 𝑁2(𝑒). Dividing by the common 𝐷(𝑒) > 0
gives

𝑃 1
FHRM(𝑒) = 𝑁1(𝑒)

𝐷(𝑒)
≥ 𝑁2(𝑒)

𝐷(𝑒)
= 𝑃 2

FHRM(𝑒).

�

Theorem 38 (Idempotence). If for some constant 𝑘 ∈ [0, 1] one has ̃𝑓(𝑒, 𝑟, 𝑡) = 𝑘 whenever 𝜇𝐴(𝑒, 𝑟, 𝑡) > 0, then

𝑃FHRM(𝑒) = 𝑘.
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Proof : Under this assumption,

𝑁(𝑒) = ∑
𝑟,𝑡

𝜇𝐴(𝑒, 𝑟, 𝑡) 𝑘 = 𝑘 ∑
𝑟,𝑡

𝜇𝐴(𝑒, 𝑟, 𝑡) = 𝑘 𝐷(𝑒),

hence

𝑃FHRM(𝑒) = 𝑁(𝑒)
𝐷(𝑒)

= 𝑘 𝐷(𝑒)
𝐷(𝑒)

= 𝑘,

as claimed. �

Example 39. Let

𝐸 = {Alice, Bob}, 𝑅 = {Dev, Mgr}, 𝑇 = { 2025−04−01, 2025−04−15},

and choose weights 𝑤𝑟 = 0.7, 𝑤𝑝 = 0.3. Suppose:

𝜇𝐴(Alice, Dev, 1) = 0.9, 𝑄𝑟 = 0.8, 𝑄𝑝 = 0.6; 𝜇𝐴(Alice, Dev, 2) = 0.7, 𝑄𝑟 = 0.9, 𝑄𝑝 = 0.8;

𝜇𝐴(Bob, Mgr, 2) = 0.8, 𝑄𝑟 = 0.7, 𝑄𝑝 = 0.9.
Compute normalized scores:

̃𝑓(Alice, Dev, 1) = 0.7 ⋅ 0.8 + 0.3 ⋅ 0.6 = 0.74, ̃𝑓(Alice, Dev, 2) = 0.7 ⋅ 0.9 + 0.3 ⋅ 0.8 = 0.87,

̃𝑓(Bob, Mgr, 2) = 0.7 ⋅ 0.7 + 0.3 ⋅ 0.9 = 0.76.
Thus

𝑃FHRM(Alice) = 0.9 ⋅ 0.74 + 0.7 ⋅ 0.87
0.9 + 0.7

= 0.666 + 0.609
1.6

≈ 0.803,

𝑃FHRM(Bob) = 0.8 ⋅ 0.76
0.8

= 0.76.

We obtain fuzzy performance degrees 0.803 for Alice and 0.76 for Bob.

2.6 Neutrosophic Human Resource Management (Neutrosophic HRM)
The definition of Neutrosophic Human Resource Management (HRM) is presented as follows. There are several
studies in which Human Resource Management (HRM) and Neutrosophic logic are investigated together, and
based on these observations, it is considered natural to define Neutrosophic HRM in a mathematical manner
(e.g., [37, 38, 39]).

Definition 40 (Neutrosophic Human Resource Management (Neutrosophic HRM)). Let

𝐸, 𝑅, 𝑇

be finite sets of employees, roles (or tasks), and discrete time‐points respectively. A Neutrosophic HRM system
is a decuple

NHRM = (𝐸, 𝑅, 𝑇 , 𝜇𝑇
𝐴, 𝜇𝐼

𝐴, 𝜇𝐹
𝐴, 𝑄𝑟, 𝑄𝑝, 𝑤𝑟, 𝑤𝑝),

equipped with:

• three neutrosophic assignment relations

𝜇𝑇
𝐴, 𝜇𝐼

𝐴, 𝜇𝐹
𝐴 ∶ 𝐸 × 𝑅 × 𝑇 ⟶ [0, 1],

where for each (𝑒, 𝑟, 𝑡), 𝜇𝑇
𝐴(𝑒, 𝑟, 𝑡), 𝜇𝐼

𝐴(𝑒, 𝑟, 𝑡), 𝜇𝐹
𝐴(𝑒, 𝑟, 𝑡) are the degrees of truth, indeterminacy, and

falsity of employee 𝑒 performing role 𝑟 at time 𝑡;

• a role‐proficiency function 𝑄𝑟 ∶ 𝐸 × 𝑅 × 𝑇 ⟶ [0, 1], measuring normalized proficiency of 𝑒 in 𝑟 at 𝑡;

• a performance‐rating function 𝑄𝑝 ∶ 𝐸 × 𝑅 × 𝑇 ⟶ [0, 1], giving stakeholder satisfaction after that
performance;

• nonnegative weights 𝑤𝑟, 𝑤𝑝 ∈ [0, 1] with 𝑤𝑟 + 𝑤𝑝 = 1.

T.Fujita, A Unified Mathematical Framework for Fuzzy Customer Relationship Management (FCRM) and Neutrosophic Human
Resource Management (NHRM)



Information Sciences with Applications, Vol. 06, 2025

An International Journal of Computational Intelligence Methods, and Applications

15

Define the normalized performance score

̃𝑓(𝑒, 𝑟, 𝑡) = 𝑤𝑟 𝑄𝑟(𝑒, 𝑟, 𝑡) + 𝑤𝑝 𝑄𝑝(𝑒, 𝑟, 𝑡).

Then for each 𝑒 ∈ 𝐸 the neutrosophic aggregate performance is given by

𝑃𝑇(𝑒) =
∑𝑟,𝑡 𝜇𝑇

𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡)
∑𝑟,𝑡 𝜇𝑇

𝐴(𝑒, 𝑟, 𝑡)
, 𝑃𝐼(𝑒) =

∑𝑟,𝑡 𝜇𝐼
𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡)

∑𝑟,𝑡 𝜇𝐼
𝐴(𝑒, 𝑟, 𝑡)

, 𝑃𝐹(𝑒) =
∑𝑟,𝑡 𝜇𝐹

𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡)
∑𝑟,𝑡 𝜇𝐹

𝐴(𝑒, 𝑟, 𝑡)
.

These three components form the neutrosophic satisfaction 𝑆NHRM(𝑒) = (𝑃𝑇(𝑒), 𝑃𝐼(𝑒), 𝑃𝐹(𝑒)) ∈ [0, 1]3.

Theorem 41. By setting 𝜇𝐼
𝐴 ≡ 0 and 𝜇𝐹

𝐴 = 1 − 𝜇𝑇
𝐴, the Neutrosophic HRM reduces to the Fuzzy HRM model,

with 𝜇𝑇
𝐴 = 𝜇𝐴. In particular,

𝑃𝑇(𝑒) = 𝑃FHRM(𝑒), 𝑃𝐼(𝑒) = 0, 𝑃𝐹(𝑒) = 1 − 𝑃FHRM(𝑒).

Proof : If 𝜇𝐼
𝐴(𝑒, 𝑟, 𝑡) = 0 and 𝜇𝐹

𝐴(𝑒, 𝑟, 𝑡) = 1 − 𝜇𝑇
𝐴(𝑒, 𝑟, 𝑡), then

𝑃𝑇(𝑒) =
∑ 𝜇𝑇

𝐴
̃𝑓

∑ 𝜇𝑇
𝐴

≡ ∑ 𝜇𝐴
̃𝑓

∑ 𝜇𝐴
= 𝑃FHRM(𝑒),

while ∑ 𝜇𝐼
𝐴 = 0 gives 𝑃𝐼(𝑒) = 0, and ∑ 𝜇𝐹

𝐴 = ∑(1 − 𝜇𝑇
𝐴) yields 𝑃𝐹(𝑒) = 1 − 𝑃𝑇(𝑒). Thus the claimed

specialization holds. �

Theorem 42 (Component‐wise Decomposition). For each 𝑋 ∈ {𝑇 , 𝐼, 𝐹} and 𝑒 ∈ 𝐸, define

𝐴𝑋
𝑟 (𝑒) =

∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡) 𝑄𝑟(𝑒, 𝑟, 𝑡)

∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡)

, 𝐴𝑋
𝑝 (𝑒) =

∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡) 𝑄𝑝(𝑒, 𝑟, 𝑡)

∑
𝑟∈𝑅

∑
𝑡∈𝑇

𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡)

.

Then

𝑃𝑋(𝑒) =
∑
𝑟,𝑡

𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡)

∑
𝑟,𝑡

𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡)

= 𝑤𝑟 𝐴𝑋
𝑟 (𝑒) + 𝑤𝑝 𝐴𝑋

𝑝 (𝑒).

Proof : By definition,

𝑃𝑋(𝑒) =
∑𝑟,𝑡 𝜇𝑋

𝐴(𝑒, 𝑟, 𝑡) (𝑤𝑟 𝑄𝑟(𝑒, 𝑟, 𝑡) + 𝑤𝑝 𝑄𝑝(𝑒, 𝑟, 𝑡))
∑𝑟,𝑡 𝜇𝑋

𝐴(𝑒, 𝑟, 𝑡)
.

Since 𝑤𝑟, 𝑤𝑝 are constants with 𝑤𝑟 + 𝑤𝑝 = 1, split the sum:

𝑃𝑋(𝑒) = 𝑤𝑟
∑ 𝜇𝑋

𝐴 𝑄𝑟
∑ 𝜇𝑋

𝐴
+ 𝑤𝑝

∑ 𝜇𝑋
𝐴 𝑄𝑝

∑ 𝜇𝑋
𝐴

= 𝑤𝑟 𝐴𝑋
𝑟 (𝑒) + 𝑤𝑝 𝐴𝑋

𝑝 (𝑒),

as required. �

Theorem 43 (Bounds on Neutrosophic Performance). For each 𝑋 ∈ {𝑇 , 𝐼, 𝐹} and 𝑒 ∈ 𝐸, let

𝑚𝑋(𝑒) = min
𝑟∈𝑅,𝑡∈𝑇

𝜇𝑋
𝐴(𝑒,𝑟,𝑡)>0

̃𝑓(𝑒, 𝑟, 𝑡), 𝑀𝑋(𝑒) = max
𝑟∈𝑅,𝑡∈𝑇

𝜇𝑋
𝐴(𝑒,𝑟,𝑡)>0

̃𝑓(𝑒, 𝑟, 𝑡).

Then
𝑚𝑋(𝑒) ≤ 𝑃𝑋(𝑒) ≤ 𝑀𝑋(𝑒).
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Proof : Set
𝑁𝑋(𝑒) = ∑

𝑟,𝑡
𝜇𝑋

𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡), 𝐷𝑋(𝑒) = ∑
𝑟,𝑡

𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡).

Since 𝜇𝑋
𝐴 ≥ 0 and

𝑚𝑋(𝑒) 𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡) ≤ 𝜇𝑋

𝐴(𝑒, 𝑟, 𝑡) ̃𝑓(𝑒, 𝑟, 𝑡) ≤ 𝑀𝑋(𝑒) 𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡),

summing over 𝑟, 𝑡 yields
𝑚𝑋(𝑒) 𝐷𝑋(𝑒) ≤ 𝑁𝑋(𝑒) ≤ 𝑀𝑋(𝑒) 𝐷𝑋(𝑒),

and dividing by 𝐷𝑋(𝑒) > 0 gives the desired inequality. �

Theorem 44 (Monotonicity). Let two NHRM systems share the same 𝐸, 𝑅, 𝑇 , 𝑄𝑟, 𝑄𝑝, 𝑤𝑟, 𝑤𝑝 but have scores
̃𝑓1 and ̃𝑓2. If

̃𝑓1(𝑒, 𝑟, 𝑡) ≥ ̃𝑓2(𝑒, 𝑟, 𝑡) ∀ (𝑒, 𝑟, 𝑡) ∈ 𝐸 × 𝑅 × 𝑇 ,
then for each 𝑋 ∈ {𝑇 , 𝐼, 𝐹} and 𝑒 ∈ 𝐸,

𝑃 1
𝑋(𝑒) ≥ 𝑃 2

𝑋(𝑒).

Proof : For 𝑖 = 1, 2, let

𝑁 𝑖
𝑋(𝑒) = ∑

𝑟,𝑡
𝜇𝑋

𝐴(𝑒, 𝑟, 𝑡) ̃𝑓 𝑖(𝑒, 𝑟, 𝑡), 𝐷𝑋(𝑒) = ∑
𝑟,𝑡

𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡).

Since ̃𝑓1 ≥ ̃𝑓2 and 𝜇𝑋
𝐴 ≥ 0, term‐wise 𝜇𝑋

𝐴
̃𝑓1 ≥ 𝜇𝑋

𝐴
̃𝑓2, so 𝑁1

𝑋(𝑒) ≥ 𝑁2
𝑋(𝑒). Dividing by the common 𝐷𝑋(𝑒) > 0

gives

𝑃 1
𝑋(𝑒) = 𝑁1

𝑋(𝑒)
𝐷𝑋(𝑒)

≥ 𝑁2
𝑋(𝑒)

𝐷𝑋(𝑒)
= 𝑃 2

𝑋(𝑒).

�

Theorem 45 (Idempotence). If for some constant 𝑘 ∈ [0, 1] one has ̃𝑓(𝑒, 𝑟, 𝑡) = 𝑘 whenever 𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡) > 0, then

for each 𝑋 ∈ {𝑇 , 𝐼, 𝐹},
𝑃𝑋(𝑒) = 𝑘.

Proof : Under this assumption,

𝑁𝑋(𝑒) = ∑
𝑟,𝑡

𝜇𝑋
𝐴(𝑒, 𝑟, 𝑡) 𝑘 = 𝑘 ∑

𝑟,𝑡
𝜇𝑋

𝐴(𝑒, 𝑟, 𝑡) = 𝑘 𝐷𝑋(𝑒),

hence 𝑃𝑋(𝑒) = 𝑁𝑋(𝑒)/𝐷𝑋(𝑒) = 𝑘. �

Example 46. Let
𝐸 = {Alice, Bob}, 𝑅 = {Dev, Mgr}, 𝑇 = {2025−04−01, 2025−04−15},

with weights 𝑤𝑟 = 0.7, 𝑤𝑝 = 0.3. Define:

Interaction (𝜇𝑇, 𝜇𝐼, 𝜇𝐹) (𝑄𝑟, 𝑄𝑝)
(Alice, Dev, 1) (0.9, 0.05, 0.05) (0.8, 0.6)
(Alice, Dev, 2) (0.7, 0.2, 0.1) (0.9, 0.85)
(Bob, Mgr, 2) (0.6, 0.3, 0.1) (0.7, 0.8)

Compute normalized scores:
̃𝑓(Alice, 1) = 0.7 ⋅ 0.8 + 0.3 ⋅ 0.6 = 0.74,
̃𝑓(Alice, 2) = 0.7 ⋅ 0.9 + 0.3 ⋅ 0.85 = 0.885,

̃𝑓(Bob, 2) = 0.7 ⋅ 0.7 + 0.3 ⋅ 0.8 = 0.73.
Then for Alice:

𝑃𝑇 = 0.9 ⋅ 0.74 + 0.7 ⋅ 0.885
0.9 + 0.7

≈ 0.8034, 𝑃𝐼 = 0.05 ⋅ 0.74 + 0.2 ⋅ 0.885
0.05 + 0.2

≈ 0.856,
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𝑃𝐹 = 0.05 ⋅ 0.74 + 0.1 ⋅ 0.885
0.05 + 0.1

≈ 0.8367.

For Bob:
𝑃𝑇 = 0.6 ⋅ 0.73

0.6
= 0.73, 𝑃𝐼 = 0.3 ⋅ 0.73

0.3
= 0.73,

𝑃𝐹 = 0.1 ⋅ 0.73
0.1

= 0.73.

Hence 𝑆NHRM(Alice) = (0.8034, 0.856, 0.8367) and 𝑆NHRM(Bob) = (0.73, 0.73, 0.73).

3 Conclusion

In this paper, we have introduced rigorous mathematical frameworks for Fuzzy Customer Relationship Manage-
ment (FCRM), Neutrosophic Customer Relationship Management (NCRM), Fuzzy Human Resource Manage-
ment (FHRM), and Neutrosophic Human Resource Management (NHRM). By integrating uncertainty-oriented
paradigms with established CRM and HRM practices, these frameworks aim to improve decision-making, enhance
adaptability, and boost overall organizational efficiency. Future work will focus on evaluating the applicability of
these frameworks in real-world business cases.
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