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1 |Introduction 

RL is a learning process where an artificial intelligence (AI) agent interacts with its environment through trial 

and error, acquiring the optimal behavioral strategy from rewards received in previous interactions. RL is the 

broad problem of learning behavior to optimize a long-term performance metric in a sequential setting. RL 

approaches may be used to solve goal-directed or optimization issues that can be converted to sequential 

decision-making problems. As a result, RL is closely related to optimal control and operations research, with 

strong links to optimization, statistics, game theory, causal inference, sequential experimentation, and other 

fields, and is useful to a wide range of challenges in science, engineering, and the arts [1]. 

RL allows computers to learn through real-world interaction. RL, to put it briefly, divides the real world into 

two parts: an environment and a representative. Through certain activities, the agent engages with the 

environment, and the environment provides feedback to the agent. In RL, the feedback is commonly referred 

 Multicriteria Algorithms with Applications 

Journal Homepage: sciencesforce.com/mawa 

             Multicriteria Algo. Appl. Vol. 4 (2024) 79–92 

Paper Type: Review Article 

Reinforcement Learning in Social Sciences: A Survey 

Doaa El-Shahat 1,* , Nourhan Talal 1  and Mohamed Abouhawwash 2,3  

 

1  Department of Computer Science, Faculty of Computer and Informatics, Zagazig University, Zagazig, 44519, Egypt. 

Emails: doaazidan@zu.edu.eg; N.Talal22@fci.zu.edu.eg. 
2  Department of Computational Mathematics, Science, and Engineering (CMSE), Michigan State University, East Lansing, 

United States; abouhaww@msu.edu. 
3  Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. 

 

Received: 07 Mar 2024           Revised: 04 Jul 2024          Accepted: 01 Aug 2024            Published: 05 Aug 2024 

 

Abstract 
Reinforcement Learning (RL) has become one of the most prominent topics in artificial intelligence research. It is 

widely used in various fields, such as recommendation systems, psychology, economics, and natural language dialogue 

systems. Finding the best path of action to maximize cumulative reward is the long-term strategy of RL. Undertaking 

research may yield suboptimal immediate results but optimal long-term consequences. Economists can address 

difficult behavioral problems with knowledge, especially those generated by deep learning algorithms. We provide 

the most recent advancements in RL methods in this study, along with their applications in gaming, finance, and 

economics. The survey's last section discusses RL's present problems and potential future developments. Such open 

problems as sample efficiency, safety, and interpretability are currently being sought after by researchers. Moreover, 

several ambitious prospective applications of RL in a wide variety of domains are discussed. This study gives a 

comprehensive review of the many methods and uses of RL in social science. This study's results will give researchers 

a standard against which to evaluate the utility and efficacy of frequently used RL. Guide future investigations across 

several domains. 

Keywords: Reinforcement Learning; Model-based Reinforcement Learning; Model-free Reinforcement Learning; Markov 
Decision Processes; Artificial Intelligence; Social Sciences. 

https://doi.org/10.61356/j.mawa.2024.4353
https://sciencesforce.com/index.php/mawa
https://orcid.org/0000-0003-1681-5039
https://orcid.org/0009-0005-9581-3358
https://orcid.org/0000-0003-2846-4707
https://sciencesforce.com/
https://sciencesforce.com/index.php/mawa/index


Reinforcement Learning in Social Sciences: A Survey 

 

08

  

to as the "reward." By attempting to obtain more favorable rewards from the surroundings, the agent can 

function "better." Through the use of RL algorithms, this learning process creates a feedback loop between 

the agent and the environment that directs the agent's progress[2]. 

 RL [3, 4] is a machine-learning technique that focuses on how an intelligent agent interacts with its 

surroundings. It is useful for sequential decision-making since it learns the policy through trial and error 

search. As a result, it may offer viable ways to represent how a user and agent interact. Specifically, Deep 

Reinforcement Learning (DRL) [5], which combines deep learning techniques with classical RL, can learn 

from historical data with vast state and action spaces to solve large-scale issues. Its strong representation 

learning and function approximation capabilities may be used in a variety of contexts [6, 7], such as robots [8] 

and gaming [9]. 

A recent development in recommender system research is the use of RL to address recommendation 

difficulties [10-12]. In particular, RL allows the recommender agent to continuously suggest products to 

consumers to figure out the best recommendation strategies [13, 14]. Several experimental findings have 

shown that supervised learning approaches are inferior to RL-based recommendation systems. 

Markov decision processes (MDP) are commonly used in RL to optimize policies [15]. The goal of the RL 

agent is to maximize the expected long-term return for each state. In MDP, estimating the value function of 

states and actions requires considering their transition probability. To estimate the value function of the states 

and actions, it is crucial to know the transition probability of the states in MDP. However, in many RL 

optimization situations, the model of the transition probability is not precisely measurable. As a result, model-

free reinforcement [16, 17] learning techniques are widely used to find the RL agents' ideal policies. The 

historical trajectories produced by the agent's current policy are used to compute policy assessment and 

improvement in the absence of the transition probability model.  

However, utilizing the learned model, model-based reinforcement [18, 19] learning techniques may replicate 

the state changes. As a result, how the surroundings and the agents interact can be prevented, leading to a 

higher sampling efficiency. However, the transition probability model is frequently computed using 

statistically erroneous historical data from a particular context. Many current practice applications overlook 

model flaws and train the agent's policy using the learned model as the real transition probability, which 

influences the taught policy. Next, the model-learned optimum policy is highly susceptible to changes in the 

transition probability and might potentially cause significant issues with real-world performance. 

The agent and environment are essential components of RL. One domain for agent interaction is the 

environment. The goal of RL algorithms is to teach the agent how to interact with the environment in a way 

that will allow it to score highly on a predetermined criterion. In Pong, for example, the measure might be 

represented by scoring points. The agent receives a reward of one when the ball hits the other wall. On the 

other hand, the opponent receives a reward of one if the agent misses the ball and touches its wall [20]. 

In interactive RL, human input is employed either alone or in conjunction with external rewards. A few of 

the applications for RL are shown in Figure 1. There are several methods to integrate human input with RL, 

including evaluation [21], corrective [22], and guiding feedback [23]. 

Li et al. [24] Talk about different interpretations of human evaluative feedback in interactive RL. They 

distinguish three types of human evaluation input: learning from policy feedback, learning from category 

feedback, and interactive shaping. In interactive shaping, human feedback is interpreted as numerical 

incentives. 

In contrast to other studies, we highlight the link and growth tendency by thoroughly reviewing various RL 

in the social sciences rather than concentrating on a single field. Moreover, we offer viable approaches to 

tackle the problems using RL and methodically classify the sophisticated RL techniques and their uses. 
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1.1 |Related Studies and Contribution of this Work 

Many RL approaches have been masterfully used in many problems, as the literature now in publication 

attests. On RL, several writers have published survey and review works. Table 1 displays a synopsis of review 

papers that have been published so far on RL methodologies. 

Since there are no penalties for bad behavior and data is almost limitless in simulation, the majority of 

developments have occurred in online RL. It was very difficult to apply these methods to the real world 

because many interesting systems are usually too complex to imitate [25]. Being able to learn a policy using 

pre-collected data without risk or expense to engage with the real world [26] is one of the attractions of 

learning offline enhancement [27], self-driving [28], health care [29, 30], dialogue systems [31], and others. 

 

Figure 1. Applications for RL [32]. 

 

Table 1. Related works contribution. 

No Survey 

paper 
Technique Field Contribution 

1 [33] 

Deep 

Reinforcement 

Learning 

Medical 

This study covers the fundamentals of RL and provides 

an overview of the several types of DRL models. 

Researchers have created algorithms for radiation 

therapy planning optimization and medical picture 

interpretation. 

2 [34] 

Inverse 

Reinforcement 

Learning 

Represents 

an area of the 

literature 

This work provides an extensive overview of the IRL 

literature. 

Reinforceme
nt Learning 

Applications

Robotics

(Real time 
control)

Healthcare

(EHRs,EM
Rs,etc)

Games

(Go,Atari 
Games)

Transportati
on

(Optimal 
Traffic 

Control)
Energy

(Adaptive 
decision 
control)

Computer 
Systems

(Resource 
Optimization 
,Network path 

Mgmt)

Finance

(Portfolio,

Optimization,

Trading,etc)

Business 
Mgmt

(Customer 
Mgmt,recom
mendation 
systems)
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that needs 

more 

development 

The survey delineates the distinctions between IRL and 

two analogous techniques, namely inverse optimal 

control and apprenticeship learning. 

3 [35] 
Reinforcement 

Learning 
Education 

The paper addresses concerns regarding the efficacy 

and prospects of RL in education. 

The paper offers a comprehensive review of the many 

methods and uses of RL in this field. 

4 [36] 
Reinforcement 

Learning 
Exploration 

The survey provides a thorough synopsis of current 

exploration methodologies. 

The survey addresses open issues to offer important 

avenues for further research. 

5 [37] 

Deep 

Reinforcement 

Learning 

Economics 

DRL outperforms traditional algorithms and is more 

efficient when faced with actual economic problems in 

the presence of risk characteristics and ever-increasing 

uncertainties. 

6 [38] 
Reinforcement 

Learning 
Mathematics 

This overview reveals the mathematical foundations to 

help readers comprehend the main ideas and apply 

them to their study. 

7 [5] 

Deep 

Reinforcement 

Learning 

AI 

The study addresses key DRL techniques, such as the 

asynchronous advantage actor-critic, trust region policy 

optimization, and deep Q-network (DQN). 

8 [39] 

Hierarchical 

Reinforcement 

Learning 

Learning 

hierarchical 

policies, 

subtask 

discovery, 

transfer 

learning, and 

multi-agent 

learning 

This paper offers an overview of the various HRL 

methodologies and discusses the difficulties in 

applying HRL to learn hierarchical policies, subtask 

discovery, transfer learning, and multi-agent learning. 

9 [40] 
Reinforcement 

Learning 

Machine 

learning 

This paper demonstrates and elucidates RL 

interpretation techniques, categorizes the metrics used, 

and explains how these metrics are employed to 

understand the inner workings of RL models. 

10 [41] 
Reinforcement 

Learning 

Robotic 

applications 

This survey provides an overview of the use of 

reinforcement algorithms in robotic research. 

 

2 |Background 

2.1 |Convolutional Neural Network 

Three forms of learning technologies exist for RL, and one of the most significant machine learning 

techniques [42]: is non-supervised learning, supervised learning, and RL. Compared to supervised and non-

supervised learning, RL is an online learning method.  

Fundamentally, RL is an interactive machine learning paradigm in which an agent engages with the 

environment, gains experience, and applies that experience. To enhance its guidelines. We see a significant 
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gap in RL's capacity to generalize when compared to other ML paradigms; RL has mostly succeeded in limited 

and very narrow domains [43, 44]. 

2.2 |Markov Decision Processes 

Mathematical models called Markov Decision Processes (MDPs) [45] are used to describe how an agent 

interacts with its surroundings. An MDP is officially represented as a tuple of five items (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where 

S represents the set of potential states or the state space. The action space, or the collection of potential 

actions, is represented by A. 𝑃: 𝑆 × 𝐴 × 𝑆 → [0,1] shows the likelihood of changing from one state to 

another given a specific activity. 𝑅 = 𝑆 × 𝐴 × 𝑆 → 𝑅, the reward function is denoted by R, whereas the 

discount factor γ establishes the significance of upcoming rewards, 𝛾𝜖[0,1]. discrete-time steps are used by 

the agent to interact with its surroundings.𝑡 = 0,1,2, … . ; 

The agent obtains a representation of the environmental state 𝑆𝑡  ∈ 𝑆, at each time step 𝑡. It then acts 𝐴𝑡  ∈

𝐴, advances to the next stage 𝑆𝑡+1, and is rewarded with a scalar value𝑅𝑡+1 ∈ 𝑅. This is the conventional RL 

structure shown in Figure 2. 

 
Figure 2. Interaction between the agent and the environment [46]. 

 

A policy is the behavior of the agent that associates states with actions, where 𝜋: 𝑆 × 𝐴 is the probability of 

doing an action 𝑎 ∈ 𝐴 given a state s is 𝜋(𝑠|𝑎) = Pr (𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠) .The agent's objective is to maximize 

the return, or expected cumulative discounted reward, which is represented by the symbol Gt: 

𝐺𝑡 = ∑ 𝛾𝑘∞
𝑘=0 𝑅𝑡+𝑘+1                                                (1) 

Where:  

𝐺𝑡 : The return at time 𝑡. This is the total discounted reward from time 𝑡 onward. 

𝛾: This is the discount factor, which is a number between 0 and 1. It determines the present value of future 

rewards. 

𝑅𝑡+𝑘+1: The reward received at time 𝑡 + 𝑘 + 1 . this represents the reward the agent gets at each future time 

step. 

𝛾 ∈ [0,1] The typical value and γ is the discount factor. The optimum policy, denoted by 𝜋∗, is the behavior 

that maximizes reward over time by choosing the best course of action in each stage. 

Additionally, model-based and model-free algorithms are subsets of RL-based recommendation models. 

While the majority of recommendation models now in use employ model-free algorithms, a small number of 

them use model-based methods, as seen in Figure 3.  
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Model-free and model-based RL algorithms may be classified into two primary types based on whether the 

agent uses an environment dynamics model that can be learned or given the reward function, R, and the 

transition function, P, are described by the model. The model-based techniques fall into two categories: those 

that employ a predefined model (the agent may access the reward function and transition models) and those 

that teach the agent the environment model [47]. 

With the latter method, the agent gains knowledge about a model that it utilizes to enhance policies. By acting, 

the agent can gather samples from the surrounding area. From those examples, rewards and state transitions 

may be anticipated using supervised learning. The environment model may be directly utilized with planning 

techniques. Instead of attempting to create a model of the environment, the agent in the model-free method 

interacts with the environment to choose the best course of action via trial and error. Model-free approaches 

are simpler to put into practice than model-based approaches. When creating an accurate enough model 

proves to be challenging, these approaches may prove to be more beneficial than more intricate ones [46]. 

 

Figure 3. Classification of RL algorithms. 

 Model-free RL 

Instead of using the action and observation data to train a transition model, model-free approaches try to 

give a value directly to a state or a state-action combination. The action value function, also known as the 

Q-function, or an ensemble of them, is trained using the offline RL techniques that are examined below. 

Using the Bellman optimality operator, Q-learning techniques maximize the Q-function [48].  

Using two deep neural networks (DNNs), DDQN is an enhanced version of the classic Q-learning 

technique that addresses the problems of dimensional explosion and Q-value overestimation. The agent 

searches each state for the action that produces the highest Q-value. The predicted reward attained for 

doing a certain action at a given state 𝑠 is known as the Q-value, also known as the state-action value [49]. 

 Model-based RL 

The state-of-the-art model-based RL technique, the model-based policy optimization framework 

(MBPO), is used. It was first developed by Janner et al. [50] One framework that integrates learning and 

planning is called MBPO, which is a Dyna-style algorithm. When employing a model-based approach, 

states and behaviors are predicted using an environment model, whereas a policy 

Finding a strategy that maximizes the expected benefit is the goal of the optimization technique. MBPO 

can offer a more effective method of resolving control issues and demonstrates strong control results by 

combining these two techniques [51]. 

 

RL 
Algorithms 

Model-
Based RL 

Learn the 
Model

Model 
Given

Model-Free 
RL

Value-
Based

On-policy

SARSA

Off-policy

Q-learning DQN

Policy-
Based

Gradient-
Free

Gradient-
Based
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3 |Comparison of the Applications of RL in Social Sciences 

In this section, we will discuss RL social sciences. 

3.1 |Economics and Finance 

Charpentier et al. [52] suggested RL techniques in the fields of finance, game theory, operation research, and 

economics. RL algorithms explain how, with repeated experience, an agent may figure out the best course of 

action in a sequential decision-making process. Zheng et al. [53] suggest using AI economists to create DRL 

economic policies that are optimum to solve problems with counterfactual data, behavioral models, policy 

evaluation, and behavioral reactions. Bacoyannis et al. [54] described the peculiarities of machine learning and 

neural information processing in the context of quantitative finance. Boukas et al. [55] suggested a unique 

modeling framework for energy storage's strategic involvement in the European continuous intraday market, 

where transactions take place via a centralized order book. 

3.2 |Gaming 

Castañón et al. [56] Proposed an agent-based model based on the Bush–Mosteller RL algorithm is proposed. 

After playing rounds of the Dictator Game, agents update their aspirations (and, consequently, their future 

cooperative behavior) in response to stimuli derived from empirical and normative expectations. Zhao et al. 

[57] Introducing AlphaHoldem and using end-to-end RL (without CFR) to obtain excellent performance. 

DeepStack, Libratus, and Alpha-Holdem are algorithms designed for two-player zero-sum games with 

incomplete information, which are a challenging class of issues. Wurman et al. [58] created a car racing agency 

and won over the top e-sports drivers globally. 

3.3 |Psychology 

Mnih et al. [43] suggested Leveraging current developments in deep neural network training to create a unique 

artificial agent known as a deep Q-network that uses end-to-end RL to learn effective policies directly from 

high-dimensional sensory inputs. Doroudi et al. [59] explain how RL is used for instructional sequencing and 

demonstrate how concepts and theories from learning sciences and cognitive psychology might enhance 

performance. 

3.4 |Sociology 

Jaques et al. [60] suggested a unified method for Multi-Agent RL (MARL) that rewards actors for their causal 

impact on the behaviors of other agents to achieve coordination and communication. Counterfactual 

reasoning is used to evaluate causal influence. An agent simulates alternative actions it may have done at each 

time step and calculates the impact of those actions on other agents' behavior.  

Weltz et al. [61] in this paper, RL is a perfect model for many difficult decision issues that come up in public 

health, such as allocating resources during a pandemic, testing or monitoring, and adaptive sampling for 

populations that are concealed. 

3.5 |Political Science 

Schulz et al. [62] suggested using RL as a cohesive framework for analyzing political thought. RL explains the 

algorithmic navigation of complicated and unpredictable environments such as politics by agents. Using this 

computational perspective, they delineate three pathways leading to political disparities, which originate from 

variations in agents' perceptions of an issue, the mental processes utilized to address the issue or the context 

of accessible environmental data. A computational perspective on political mental illnesses provides more 

accuracy in determining their origins, effects, and treatments. 
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3.6 |Medical 

Zhu et al. [63] Suggested diagnostic strategy learning in this study, and a novel framework including three 

components is proposed to learn a diagnostic strategy with restricted features. Gottesman et al. [64] examined 

interpretable RL by emphasizing significant transitions and using it with data from intensive care units (ICUs) 

and medical simulations. Capobianco et al. [65] examined how to best implement mitigation strategies while 

taking hospital capacity and the economy into account. Colas et al. [66] suggested using bandits algorithms in 

Greece for COVID-19 testing. 

3.7 |Education 

Fu et al. [67] suggested that teaching and learning quality are negatively impacted by the incorrect identification 

of students' learning skills is addressed by employing digital smart classrooms that support the learning 

features of the students because social factors and the students' behavior have an impact on learning 

efficiency. Oudeyer et al. [68] elucidate how kinds of mechanisms of interest may be modeled within the 

framework of computational RL. Cai et al. [69] provided a proposed instructional conversational agent that 

combines rules and contextual bandits to provide practice questions, explanations of arithmetic topics, and 

personalized feedback. Singla et al. [70] planned a workshop as a means of fostering a sense of community 

among scholars and professionals engaged in the general fields of education (ED) and RL. The purpose of 

this article is to give a summary of the key research directions in the field of RL for ED and to give an 

overview of the workshop events. 

There is a comparison of RLs in different social science applications such as economics, gaming, Political 

Science, and Education are presented in Table 2. 

Table 2. Comparison of the applications of RL in social sciences. 

No Reference Application Methodology Contribution 

1 [52] 
Economics 

and Finance 

Reinforcement 

Learning 

This paper presents RL techniques and their applications 

in economics and finance. 

2 [53] 
Economics 

and Finance 

Reinforcement 

Learning 

They encourage AI economists to create the best possible 

economic policy using deep RL. 

Researchers approach this work as an optimization 

problem, where cutting-edge machine learning 

techniques like DRL are quite beneficial. 

3 [54] 
Economics 

and Finance 

Reinforcement 

Learning 

They discuss the peculiarities and challenges of data-

driven learning in online trading. 

4 [55] 
Economics 

and Finance 

Deep 

Reinforcement 

Learning 

This paper proposes a novel modeling framework for 

examining ongoing intraday market bidding. 

5 [56] 

Gaming 

(dictator 

game 

experiment) 

Agent-based 

Model and 

Reinforcement 

Learning 

They explain how social standards influence RL agents 

6 [57] Gaming 
Reinforcement 

Learning 

The suggested system uses a pseudo-Siamese 

architecture to compare the learned model with several 

previous iterations to directly learn from the input state 

information to the output actions. 

7 [58] Gaming 

Deep 

Reinforcement 

Learning 

They combine state-of-the-art, model-free, DRL 

algorithms to build an integrated control policy that 

combines remarkable speed and strategies. 
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8 [43] psychology 

Deep 

Reinforcement 

Learning 

They use recent advances in training deep neural 

networks to develop a novel artificial agent that Bridges 

the gap between actions and high-dimensional sensory 

inputs 

9 [59] psychology 
Reinforcement 

Learning 

They discover that situations where RL has been limited 

by concepts and theories from cognitive psychology and 

the learning sciences have had the most success with it. 

10 [61] public health 
Reinforcement 

Learning 

This paper presents important concepts in RL and points 

out potential applications and obstacles in public health 

RL. 

11 [60] Sociology 

Multi-Agent 

Reinforcement 

Learning 

(MARL) 

They suggest a unified method for accomplishing 

cooperation and communication by rewarding actors for 

their causal impact on the behaviors of other agents. 

12 [62] 
Political 

Science 

Reinforcement 

Learning 

They present a Cohesive framework for analyzing 

political thought 

13 [63] Medical 

Deep 

Reinforcement 

Learning 

This method offers individualized diagnostic strategies 

and produces better diagnoses with fewer 

characteristics. 

14 [64] Medical 
Reinforcement 

Learning 

The authors of this work have developed a method that 

might function as a hybrid human-AI system. 

15 [65] Medical 
Reinforcement 

Learning 

This paper studies how to optimize mitigation 

approaches that minimize the impact on the economy 

without overstuffing hospital capacity using Bayesian 

inference and RL. 

16 [66] Medical 

Deep 

Reinforcement 

Learning 

They demonstrate how to apply a Susceptible-Exposed-

Infectious-Removed (SEIR) model for COVID-19 to 

determine the best policies for dynamical on-lockdown 

control while optimizing the death toll and economic 

recession. 

17 [67] Education 
Reinforcement 

Learning 

This work uses RL to generate intelligent and 

comfortable learning. 

18 [68] Education 
Reinforcement 

Learning 

They discuss the learning progress (LP) theory, which 

suggests that learning and curiosity create a positive 

feedback loop. 

They describe robot studies that demonstrate how LP-

driven exploration and attention can self-organize a 

curriculum for developmental learning, effectively 

scaffolding the acquisition of various skills and tasks. 

19 [69] Education 
Reinforcement 

Learning 

This work shows that conversational agents hold great 

potential as a supplement to current web-based 

resources for math instruction. 

20 [70] Education 
Reinforcement 

Learning 

They planned the workshop to foster a sense of 

community among scholars and professionals in the 

fields of education (ED) and reinforcement learning 

(RL). 

This article summarizes key research directions in the 

field of RL for education and provides an overview of 

the workshop events. 
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4 |Future Work and Challenges 

RL's tremendous success in the recent past has been on a wide range of problems, in areas ranging from 

robotics to playing games. However, broad and challenging areas open to further research, exist. This survey 

examines future directions and challenges in the area by describing important areas in which improvements 

must be made if RL applications are to become more general and robust. RL a subfield of machine learning 

dedicated to control problems, is emerging as a potentially revolutionary approach to building controls. 

Because RL is data-driven, users may be able to avoid the laborious process of creating and fine-tuning a 

detailed model, which is necessary for MPC. Moreover, RL may be able to take advantage of the recent and 

swift advancements in the field of machine learning, such as deep learning and feature encoding, to improve 

control decisions [71]. 

In the energy system domain, the state of the art clearly shows that RL can be used effectively for a variety of 

control problems. More importantly, it can be used to solve complex problems, like those in sector coupling, 

which can significantly help with energy transition and climate change mitigation. It would be interesting to 

explore the potential of RL beyond just controlling energy flows. While RL has been successfully applied with 

supervised and unsupervised learning in other sectors, there aren't many examples in the energy system 

domain [72]. Also, one of the challenges is access to high-quality, ethically sourced social data remains crucial 

for training and validating RL models. 

RL has come a long way, but there are still a lot of problems. Common problems include sample efficiency, 

credit assignment, exploration vs. exploitation, and representation. Problems arise when using value function 

techniques with function approximation. DRL has a reproducibility problem, meaning that many 

hyperparameters such as reward size and network design, random seeds and trials, settings, and codebases 

[73] can affect the outcome of experiments. Problems with reward specifications can arise, and a reward 

function might not accurately reflect the designer's goal. Issues like the expressivity of Markov reward [74] 

and delusional bias [75] are still being recognized and addressed by researchers and practitioners. 

Utilizing massive volumes of unlabeled data with unsupervised RL techniques is a potential future approach 

for the profession [76]. Labeling big datasets with rewards may often be expensive, particularly if human 

oversight is needed. Using different unlabeled data in an easy-to-use but efficient way is still an unsolved issue. 

Yu et al. [77] demonstrate how a limited quantity of high-quality labeled data along with a large number of 

inferior unlabeled data may be used to develop successful strategies. Similar findings are presented by Kumar 

et al. [78] when contrasting offline RL with BC techniques. Yarats et al. [79] demonstrate how to leverage a 

variety of unlabeled datasets with downstream reward relabeling to improve the effectiveness of standard off-

policy RL techniques [80] in offline environments. 

Also, we illustrate a few benefits of using offline RL over online RL for a particular application using current 

instances. Emerson et al. [30] employed offline RL in the healthcare domain to create a policy that determines 

the ideal insulin dosage to sustain blood glucose levels within a healthy range. They contend that online role-

playing is simply too erratic to control blood sugar levels and may push patients beyond their safe threshold. 

Zhan et al. [81]offer a model-based offline RL approach for energy management that maximizes the thermal 

power generating units' (TPGUs') combustion control strategy. Large volumes of historical TPGU data 

combined with low-fidelity simulation data allow them to develop a safety-constrained strategy that 

significantly outperforms BC. Using the available data to create a policy in this instance was significantly less 

costly and time-consuming than doing it interactively. Ultimately, Verma et al. [31] propose training a task-

driven conversation system with offline RL. Agent known as CHatbot AI, or CHAI. 

RL's purpose is to identify an optimal policy - a mapping from world conditions to a set of behaviors - that 

maximizes cumulative reward, which is a long-term strategy. Exploring may be suboptimal in the near term, 

but it may result in excellent outcomes in the long run. Many optimal control problems, which have been 

popular in economics for over four decades, can be expressed in the RL framework, and economists can use 
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recent advances in computational science, particularly deep learning algorithms, to solve complex behavioral 

problems. 

When data scientists are well-versed in RL, they may enhance their models and raise the bar for performance. 

More significantly, RL techniques can frequently outperform human supervisors while offering scientists and 

researchers fresh viewpoints and a greater comprehension of these difficulties. It is our aim that readers will 

be able to draw parallels between these studies, get a deeper understanding of RL concepts, and use RL in 

their future research. 

The future of RL in social sciences lies in developing robust, interpretable, and ethically sound models. This 

will allow us to illuminate complex social phenomena, ultimately informing better policies and interventions. 

This survey provides a starting point for further research, and collaboration between social scientists and RL 

experts is the key to unlocking the true potential of this powerful tool for understanding the social world 

around us. 

5 |Conclusion 

Finally, the primary goal of this study was to give both novice and seasoned researchers in the field a 

comprehensive grasp of the use of RL in the social sciences, hence directing future studies and advancements 

in this subject. RL has been successfully used in several significant real-world contexts. The purpose of this 

survey is to introduce the Markov Decision Process. Additionally, we provide an overview of the literature 

on the use of RL in a range of disciplines, such as political science, psychology, gaming, economics and 

finance, medicine, and education. We present a thorough introduction to RL in this survey. First, we offer a 

categorization of every RL algorithm. Lastly, we offer our thoughts on the unresolved issues in the discipline, 

along with some encouraging research avenues for the future. 
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