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1 |Introduction 

1.1 |Soft Sets and Hypersoft Sets 

Set theory serves as a foundational area in mathematics, with significant research dedicated to concepts like 

filters and ultrafilters. In set theory, a filter is a collection of sets closed under intersection and containing all 

supersets of its elements [12, 19, 45].  The maximal form of a filter, known as an ultrafilter, is a fundamental 

concept with applications across various disciplines in mathematics [19, 26, 48, 54, 98, 113] and extends even 

into fields like social choice theory [78]. 

A soft set provides a mathematical framework for handling uncertainty, defined as a set with associated 

parameters to enable a flexible representation of information [77]. Filters and ultrafilters for soft sets have 

emerged as extensions of classical filters, particularly within fuzzy set theory [124] and Neutrosophic set 

theory [103], to better manage real-world uncertainties [16] Hypersoft sets further develop soft sets by 

incorporating multi-attribute parameterization, allowing the modeling of complex, multi-dimensional 

relationships across distinct attribute groups [107]. These uncertainty-management concepts have also found 

applications in graph theory and related fields [41-44]. 

1.2 |Contributions 

Despite the importance of research on ultrafilters in Soft Theory, ultrafilters within Hypersoft Theory remain 

largely unexplored. In this paper, we introduce the concept of a hypersoft filter and examine its potential 

implications. Additionally, we define the fuzzy hypersoft filter and Neutrosophic hypersoft filter, both of 

which extend the hypersoft filter by integrating concepts from fuzzy set theory and Neutrosophic set theory. 
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1.3 |The Structure of the Paper 

The structure of this paper is outlined as follows. Section 2 provides an overview of existing definitions, 

Section 3 presents the main results, and Section 4 discusses future tasks and directions. 

2 |Preliminaries and Definitions 

Some foundational concepts from set theory are applied in parts of this work. For further details, please 

consult relevant references as needed [38, 50, 57, 60, 72]. 

2.1 |Crisp Sets and Filter 

The concepts of Fuzzy Sets,[124–129, 131] Soft Sets, Neutrosophic Sets,1[03, 104] Vague Sets, [4, 20, 24, 56, 

130] and Rough Sets [84, 85] are often discussed alongside Crisp Sets, [25, 81, 102, 120] which serve as a 

fundamental basis for these set concepts. The definition of a Universe Set and a Crisp Set is provided below. 

Definition 2.1 (Universe Set). (cf [79]) A universe set, often denoted by 𝑈, is a set that contains all the 

elements under consideration for a particular discussion or problem domain. Formally, 𝑈 is defined as a set 

that encompasses every element within the scope of a given context or framework, so that any subset of 

interest can be regarded as a subset of 𝑈. 

In set theory, the universe set 𝑈 is typically assumed to contain all elements relevant to the discourse, meaning 

that for any set 𝐴, if 𝐴 ⊆ 𝑈, then all elements of 𝐴 are elements of 𝑈. 

Definition 2.2 (Crisp Set). [81] Let 𝑋 be a universe set, and let 𝑃(𝑋) denote the power set of 𝑋, which 

represents all subsets of 𝑋. A crisp set 𝐴 ⊆ 𝑋 is defined by a characteristic function 𝜒𝐴: 𝑋 → {0,1}, where: 

𝜒𝐴(𝑥) = {
1  if 𝑥 ∈ 𝐴

0  if 𝑥 ∉ 𝐴.
 

This function 𝜒𝐴 Assigns a value of 1 to elements within the set 𝐴 and 0 to those outside it, creating a clear 

boundary. Crisp sets are thus bivalent and follow the principle of binary classification, where each element is 

either a member of the set or not. This discrete nature contrasts with the gradual membership levels of fuzzy 

sets, where membership can take any value in the interval [0,1]. 

Crisp sets with operations ∪,∩, and (⋅)𝑐 (complement) on 𝑃(𝑋) form a Boolean algebra. In this context, 

crisp sets can be regarded as a subset of fuzzy sets that exhibit binary discontinuity. 

The definition of an Ultrafilter in Set Theory is described as follows (cf [19, 26, 45]). 

Definition 2.3 (Filter on a Set). Let 𝑋 be a set. A collection ℱ ⊆ 2𝑋 is called a filter on 𝑋 if it satisfies the 

following conditions: 

(1) If 𝐴 and 𝐵 are both in ℱ, then their intersection 𝐴 ∩ 𝐵 is also in ℱ. 

(2) If 𝐴 is in ℱ and 𝐴 ⊆ 𝐵 ⊆ 𝑋, then 𝐵 is also in ℱ. 

(3) The empty set ∅ is not in ℱ. 

Example 2.4 (Filter on a Set). Let 𝑋 = {1,2,3,4}. Define a collection ℱ ⊆ 2𝑋 by 

ℱ = {𝐴 ⊆ 𝑋 ∣ 3 ∈ 𝐴} 

Then ℱ is a filter on 𝑋, as it satisfies the following conditions: 

1. Non-emptiness of the Filter: The collection ℱ is non-empty because {3} ∈ ℱ. 

2. Closed under Intersection: If 𝐴, 𝐵 ∈ ℱ, then both sets 𝐴 and 𝐵 contain the element 3 . Therefore, 

their intersection 𝐴 ∩ 𝐵 also contains 3, so 𝐴 ∩ 𝐵 ∈ ℱ. 
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  3. Upward Closure: If 𝐴 ∈ ℱ and 𝐴 ⊆ 𝐵 ⊆ 𝑋, then 𝐵 must also contain the element 3 (since 𝐴 ⊆ 𝐵 

and 3 ∈ 𝐴 ). Hence, 𝐵 ∈ ℱ. 

4. Exclusion of the Empty Set: The empty set ∅ does not belong to ℱ because ∅ does not contain 3 . 

Thus, ℱ satisfies all the properties of a filter on 𝑋. 

Definition 2.5 (Ultrafilter). A maximal filter, which cannot be extended any further while still being a filter, 

is called an ultrafilter. An ultrafilter satisfies an additional condition: 

(4) For any subset 𝐴 ⊆ 𝑋, either 𝐴 is in ℱ or its complement 𝑋 ∖ 𝐴 is in ℱ, but not both. 

2.2 |Soft Set 

This subsection explains the concept of a Soft Set. A soft set over a universe 𝑈 assigns subsets of 𝑈 to 

parameters from a parameter set 𝐴, allowing for flexible representations of uncertain data. The formal 

definition of a Soft Set is provided below [8, 9, 74, 77, 121]. For readers interested in details on operations 

within Soft Set theory, please refer to as needed [77]. 

Definition 2.6. Let 𝑈 be a non-empty finite set, called the universe of discourse, and let 𝐸 be a non-empty 

set of parameters. A soft set over 𝑈 is defined as follows: 

𝐹 = (𝐹, 𝐴) over 𝑈 is an ordered pair, where 𝐴 ⊆ 𝐸 and 𝐹: 𝐴 → 𝑃(𝑈) 

where 𝐹(𝑎) ⊆ 𝑈 for each 𝑎 ∈ 𝐴 and 𝑃(𝑈) denotes the power set of 𝑈. The set of all soft sets over 𝑈 is 

denoted by 𝑆(𝑈). 

1. Soft Subset: Let 𝐹 = (𝐹, 𝐴) and 𝐺 = (𝐺, 𝐵) be two soft sets over the common universe 𝑈. We say that 

𝐹 is a soft subset of 𝐺, denoted 𝐹 ⊆ 𝐺, if: 

 𝐴 ⊆ 𝐵 

 𝐹(𝑎) ⊆ 𝐺(𝑎) for all 𝑎 ∈ 𝐴. 

2. Union of Soft Sets: The union of two soft sets 𝐹 = (𝐹, 𝐴) and 𝐺 = (𝐺, 𝐵) over 𝑈 is defined as 𝐻 =

(𝐻, 𝐶) where 𝐶 = 𝐴 ∪ 𝐵 and 

𝐻(𝑒) = {

𝐹(𝑒), 𝑒 ∈ 𝐴 − 𝐵
𝐺(𝑒), 𝑒 ∈ 𝐵 − 𝐴
𝐹(𝑒) ∪ 𝐺(𝑒), 𝑒 ∈ 𝐴 ∩ 𝐵

 

3. Intersection of Soft Sets: The intersection of two soft sets 𝐹 = (𝐹, 𝐴) and 𝐺 = (𝐺, 𝐵) with disjoint 

parameter sets 𝐴 ∩ 𝐵 = ∅ is defined as 𝐻 = (𝐻, 𝐶), where 𝐶 = 𝐴 ∩ 𝐵 and 

𝐻(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒),  ∀𝑒 ∈ 𝐶 

In this Soft Theory framework, Soft Filters [16] and Soft Ultrafilters [16] have been actively studied. Since 

filters are defined across various mathematical fields, several definitions exist. Here, we provide the definition 

specific to a universe set. 

Definition 2.7 (Soft Filter). [16] Let 𝑈 be an initial universe set, and let PS(𝑈) denote the family of all soft 

sets over 𝑈. A soft filter on 𝑈 is a non-empty subset ℱ ⊆ PS(𝑈) that satisfies the following properties: 

i). For any (𝑓, 𝐴), (𝑔, 𝐵) ∈ ℱ, the intersection (𝑓, 𝐴) ∩ (𝑔, 𝐵) ∈ ℱ. 

ii). If (𝑓, 𝐴) ∈ ℱ and (𝑔, 𝐵) ∈ PS(𝑈) such that (𝑓, 𝐴) ⊆ (𝑔, 𝐵), then (𝑔, 𝐵) ∈ ℱ. 

iii). The null soft set ∅𝐴 ∉ ℱ for any set of parameters 𝐴 ⊆ 𝐸. 

Here: 
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 The intersection of two soft sets (𝑓, 𝐴) and (𝑔, 𝐵), denoted (𝑓, 𝐴) ∩ (𝑔, 𝐵), is defined as the soft 

set (ℎ, 𝐶), where 𝐶 = 𝐴 ∩ 𝐵 and for each 𝑐 ∈ 𝐶, ℎ(𝑐) = 𝑓(𝑐) ∩ 𝑔(𝑐). 

 (𝑓, 𝐴) ⊆ (𝑔, 𝐵) if 𝐴 ⊆ 𝐵 and for all 𝑐 ∈ 𝐴, 𝑓(𝑐) ⊆ 𝑔(𝑐). 

Definition 2.8 (Soft Ultrafilter). [16] A soft ultrafilter over 𝑋 is a soft filter ℱ that is maximal concerning 

inclusion, meaning there is no soft filter strictly containing ℱ. 

The following proposition is valid. 

Proposition 2.9. Every soft filter can be transformed into a filter on an appropriately defined set, thus 

retaining the essential properties of a filter. 

Proof. Let 𝑈 be an initial universe set and let PS(𝑈) denote the family of all soft sets over 𝑈. Let ℱ ⊆ PS(𝑈) 

be a soft filter on 𝑈. We aim to construct a corresponding filter ℱ′ ⊆ 2𝑋, where 𝑋 ⊆ 𝑈, such that ℱ′ Satisfies 

the conditions of a standard filter. 

Define 𝑋 = ⋃(𝑓,𝐴)∈ℱ  𝐴, which is the union of all parameter sets 𝐴 associated with soft sets in ℱ. Now 

construct the collection ℱ′ ⊆ 2𝑋 as follows: 

ℱ′ = { ⋃  

(𝑓,𝐴)∈ℱ

 𝑓(𝑎) ∣ 𝑎 ∈ 𝐴 for some (𝑓, 𝐴) ∈ ℱ} 

Where 𝑓(𝑎) ⊆ 𝑈 denotes the subset of 𝑈 associated with the parameter 𝑎 ∈ 𝐴. Each element of ℱ′ is thus 

a union of subsets of 𝑈 drawn from soft sets in ℱ. We now verify that ℱ′ satisfies the conditions of a filter 

on  : 

1. Non-emptiness: Since ℱ is a soft filter, it is non-empty, and therefore ℱ′ also contains at least one non-

empty set. 

2. Closure under finite intersection: Let 𝑆, 𝑇 ∈ ℱ′. Then, by construction, there exist soft sets 

(𝑓, 𝐴), (𝑔, 𝐵) ∈ ℱ and parameters 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that 𝑆 = 𝑓(𝑎) and 𝑇 = 𝑔(𝑏). Since ℱ is closed 

under intersection, we know (𝑓, 𝐴) ∩ (𝑔, 𝐵) ∈ ℱ, where the intersection of these soft sets is defined as: 

(𝑓, 𝐴) ∩ (𝑔, 𝐵) = (ℎ, 𝐶), 

with 𝐶 = 𝐴 ∩ 𝐵 and ℎ(𝑐) = 𝑓(𝑐) ∩ 𝑔(𝑐) for each 𝑐 ∈ 𝐶. Consequently, 

𝑆 ∩ 𝑇 = 𝑓(𝑎) ∩ 𝑔(𝑏) = ℎ(𝑐)  for some 𝑐 ∈ 𝐶, 

and thus 𝑆 ∩ 𝑇 ∈ ℱ′, showing that ℱ′ is closed under the intersection. 

3. Closure under supersets: Suppose 𝑆 ∈ ℱ′ and 𝑆 ⊆ 𝑇 ⊆ 𝑋 for some 𝑇 ∈ 2𝑋. Then by the definition of 

ℱ′, there exists (𝑓, 𝐴) ∈ ℱ and 𝑎 ∈ 𝐴 such that 𝑆 = 𝑓(𝑎). Since ℱ satisfies the soft superset condition, 

any soft set (𝑔, 𝐵) ∈ PS(𝑈) with (𝑓, 𝐴) ⊆ (𝑔, 𝐵) must also be in ℱ. Therefore, 𝑇 ∈ ℱ′ as required, 

showing that ℱ′ satisfies the superset condition. 

4. Exclusion of the empty set: Since ℱ does not contain any null soft set ∅𝐴, the empty set cannot appear 

in any union forming ℱ′. Thus, ∅ ∉ ℱ′. 

Since ℱ′ satisfies all the filter properties on 𝑋, it is a standard filter on 𝑋. This completes the proof that every 

soft filter can indeed be transformed into a filter on an appropriate set 𝑋. 

2.3 |Fuzzy Filter 

This subsection discusses the concept of a fuzzy filter. The fuzzy filter [27, 28, 55, 73, 114–116] and fuzzy 

ultrafilter [114] are types of filters defined within the framework of fuzzy sets, as detailed in the definitions 
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  below. For further information on operations and related concepts in fuzzy set theory, please refer to [124] 

as needed. 

Definition 2.10 (Fuzzy Set). [124] Let 𝑋 be a non-empty set. A fuzzy set 𝐴 in 𝑋 is defined as a function 

𝐴: 𝑋 → [0,1] 

where 𝐴(𝑥) represents the degree of membership of 𝑥 in 𝐴, with 𝐴(𝑥) = 1 indicating full membership and 

𝐴(𝑥) = 0 indicating no membership. The set of all fuzzy sets on 𝑋 is denoted by ℱ(𝑋). 

Definition 2.11 (Fuzzy Filter). [114] Let 𝑋 be a non-empty set. A fuzzy filter ℱ on 𝑋 is a non-empty collection 

of fuzzy sets in 𝑋 that satisfies the following conditions: 

1. Closure under Minimum: If 𝐴, 𝐵 ∈ ℱ, then 𝐴 ∩ 𝐵 ∈ ℱ, where (𝐴 ∩ 𝐵)(𝑥) = min{𝐴(𝑥), 𝐵(𝑥)} for 

all 𝑥 ∈ 𝑋. 

2. Upward Closure: If 𝐴 ∈ ℱ and 𝐴(𝑥) ≤ 𝐵(𝑥) for all 𝑥 ∈ 𝑋, then 𝐵 ∈ ℱ. 

3. Non-Triviality: The fuzzy set defined by 𝐴(𝑥) = 0 for all 𝑥 ∈ 𝑋 (the null fuzzy set) is not in ℱ. 

Definition 2.12 (Fuzzy Ultrafilter). [114] A fuzzy ultrafilter 𝒰 on 𝑋 is a fuzzy filter on 𝑋 that is maximal 

concerning inclusion, meaning that there is no fuzzy filter ℱ on 𝑋 such that 𝒰 ⊊ ℱ. Equivalently, a fuzzy 

ultrafilter on 𝑋 satisfies the following property: 

1. For every fuzzy set 𝐴 ∈ ℱ(𝑋), either 𝐴 ∈ 𝒰 or 𝐴𝑐 ∈ 𝒰, where 𝐴𝑐 is the complement of 𝐴 

defined by 𝐴𝑐(𝑥) = 1 − 𝐴(𝑥) for all 𝑥 ∈ 𝑋. 

The following proposition is clearly valid. 

Proposition 2.13. Every fuzzy filter can be transformed into a filter on a suitably defined set. 

Proof. Let 𝑋 be a universe set, and let ℱ ⊆ ℱ(𝑋) be a fuzzy filter on 𝑋, where ℱ(𝑋) denotes the set of all 

fuzzy sets on 𝑋. We aim to construct a corresponding filter 𝒢 ⊆ 2𝑋 (the power set of  ) that retains the 

essential properties of a filter, using the concept of level sets. 

For a fuzzy set 𝐴 ∈ ℱ(𝑋) and any 𝛼 ∈ (0,1], define the 𝛼-cut of 𝐴 as: 

𝐴𝛼 = {𝑥 ∈ 𝑋 ∣ 𝐴(𝑥) ≥ 𝛼}. 

The 𝛼-cut 𝐴𝛼 is a classical subset of 𝑋 and represents the set of elements that belong to 𝐴 with a membership 

degree of at least 𝛼. 

Now define the collection 𝒢 = {𝐴𝛼 ∣ 𝐴 ∈ ℱ, 𝛼 ∈ (0,1]}. We will show that 𝒢 satisfies the conditions of a 

filter on 𝑋. 

1. Non-emptiness and Exclusion of the Empty Set: Since ℱ is a fuzzy filter, it does not contain the null 

fuzzy set (where all memberships are zero). Thus, for every 𝐴 ∈ ℱ and 𝛼 ∈ (0,1], the 𝛼-cut 𝐴𝛼 is non-

empty. Consequently, ∅ ∉ 𝒢. 

2. Closure under Finite Intersection: Let 𝐴, 𝐵 ∈ ℱ and 𝛼, 𝛽 ∈ (0,1]. Consider the 𝛼-cut 𝐴𝛼 and the 𝛽 cut 

𝐵𝛽. Since ℱ is closed under the minimum operation, 𝐴 ∩ 𝐵 ∈ ℱ where (𝐴 ∩ 𝐵)(𝑥) = min{𝐴(𝑥), 𝐵(𝑥)} 

for all 𝑥 ∈ 𝑋. Then, we have: 

(𝐴 ∩ 𝐵)𝛾 = {𝑥 ∈ 𝑋 ∣ (𝐴 ∩ 𝐵)(𝑥) ≥ 𝛾} ⊆ 𝐴𝛼 ∩ 𝐵𝛽 , 

where 𝛾 = min{𝛼, 𝛽}. Since 𝐴 ∩ 𝐵 ∈ ℱ, it follows that (𝐴 ∩ 𝐵)𝛾 ∈ 𝒢, so 𝐴𝛼 ∩ 𝐵𝛽 ∈ 𝒢. Therefore, 

𝒢 is closed under intersection. 

3. Upward Closure: Let 𝐴𝛼 ∈ 𝒢 and suppose 𝐴𝛼 ⊆ 𝐵 ⊆ 𝑋 for some 𝐵 ∈ 2𝑋. We aim to show that 𝐵 ∈ 𝒢. 

Define a fuzzy set 𝐶 ∈ ℱ(𝑋) by 
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𝐶(𝑥) = {

𝐴(𝑥), 𝑥 ∈ 𝐴𝛼 ,
1, 𝑥 ∈ 𝐵 ∖ 𝐴𝛼

0,  otherwise 

 

By the upward closure of ℱ, since 𝐴 ∈ ℱ and 𝐴 ≤ 𝐶, we have 𝐶 ∈ ℱ. Now, for any 𝑥 ∈ 𝐵, 𝐶(𝑥) ≥ 𝛼, so 

𝐵 = 𝐶𝛼 ∈ 𝒢, proving upward closure. 

Since 𝒢 satisfies all the conditions of a filter on 𝑋, it follows that every fuzzy filter can be transformed into a 

filter on an appropriate set of 𝛼-cuts of the fuzzy sets in the fuzzy filter ℱ. 

2.4 |Fuzzy Soft Filters and Ultrafilters 

The definition of a fuzzy soft filter is provided below [89].  Due to its conceptual flexibility, the fuzzy soft set 

has been widely studied for various applications, including decision-making, as well as in mathematical 

structures and derived concepts [3, 10, 11, 21, 22, 37, 64, 65, 119, 121, 122]. For further details on operations 

related to fuzzy soft sets, refer to [89] as needed. 

Definition 2.14 (Fuzzy Soft Set). [89] A fuzzy soft set 𝐹 over 𝑋 is a mapping 𝐹: 𝐸 → 𝐼𝑋. That is, for each 

𝑒 ∈ 𝐸, 𝐹(𝑒) is a fuzzy subset of 𝑋. 

Alternatively, a fuzzy soft set can be represented as a set of ordered pairs: 

𝐹 = {(𝑒, 𝐹𝑒) ∣ 𝑒 ∈ 𝐸, 𝐹𝑒 ∈ 𝐼𝑋} 

Definition 2.15 (Operations on Fuzzy Soft Sets). [89] Let 𝐹, 𝐺 be fuzzy soft sets over 𝑋. 

1. The null fuzzy soft set, denoted by ∅, is defined by ∅(𝑒)(𝑥) = 0 for all 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋. 

2. The absolute fuzzy soft set, denoted by 𝑋, is defined by 𝑋(𝑒)(𝑥) = 1 for all 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋. 

3. The complement of 𝐹, denoted by 𝐹𝑐, is defined by 𝐹𝑐(𝑒)(𝑥) = 1 − 𝐹(𝑒)(𝑥) for all 𝑒 ∈ 𝐸 and 

𝑥 ∈ 𝑋. 

4. The union of 𝐹 and 𝐺, denoted by 𝐹 ∪ 𝐺, is defined by (𝐹 ∪ 𝐺)(𝑒)(𝑥) = max{𝐹(𝑒)(𝑥), 𝐺(𝑒)(𝑥)}. 

5. The intersection of 𝐹 and 𝐺, denoted by 𝐹 ∩ 𝐺, is defined by (𝐹 ∩ 𝐺)(𝑒)(𝑥) =

min{𝐹(𝑒)(𝑥), 𝐺(𝑒)(𝑥)}. 

6. 𝐹 is a fuzzy soft subset of 𝐺, denoted 𝐹 ⊆ 𝐺, if 𝐹(𝑒)(𝑥) ≤ 𝐺(𝑒)(𝑥) for all 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋. 

In this Soft Theory framework, Fuzzy Soft Filters [31, 46, 58] and Fuzzy Soft Ultrafilters [31] have been 

actively studied. 

Definition 2.16 (Fuzzy Soft Filter). [31, 46, 58] A fuzzy soft filter ℱ over 𝑋 is a non-empty collection of fuzzy 

soft sets over 𝑋 satisfying: 

1. Non-emptiness: ∅ ∉ ℱ. 

2. Closure under Intersection: If 𝐹, 𝐺 ∈ ℱ, then 𝐹 ∩ 𝐺 ∈ ℱ. 

3. Upward Closure: If 𝐹 ∈ ℱ and 𝐹 ⊆ 𝐻, then 𝐻 ∈ ℱ. 

Definition 2.17 (Fuzzy Soft Ultrafilter). [31] A fuzzy soft ultrafilter over 𝑋 is a fuzzy soft filter ℱ that is 

maximal with respect to inclusion, meaning there is no fuzzy soft filter strictly containing ℱ. 

Equivalently, ℱ is a fuzzy soft ultrafilter if for every fuzzy soft set 𝐹 over 𝑋, either 𝐹 ∈ ℱ or 𝐹𝑐 ∈ ℱ. 

The following can be seen to hold clearly. 

Proposition 2.18. Every fuzzy soft filter can be transformed into a fuzzy filter. 
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  Proof. Let ℱ be a fuzzy soft filter over a universe 𝑋 with a parameter set 𝐸. By definition, a fuzzy soft filter 

ℱ consists of fuzzy soft sets 𝐹: 𝐸 → 𝐼𝑋, where each 𝐹(𝑒) is a fuzzy subset of 𝑋 (i.e., a mapping 𝐹(𝑒): 𝑋 →

[0,1]). 

To construct a corresponding fuzzy filter, we define a mapping Φ that associates each fuzzy soft set 𝐹 ∈ ℱ 

with a fuzzy set in 𝑋. Specifically, for each fuzzy soft set 𝐹, define the fuzzy set Φ(𝐹) on 𝑋 by: 

Φ(𝐹)(𝑥) = sup
𝑒∈𝐸

 𝐹(𝑒)(𝑥) 

For all 𝑥 ∈ 𝑋. This transformation aggregates the membership values from all parameters in 𝐸, creating a 

single fuzzy set on 𝑋 for each fuzzy soft set in ℱ. 

Let 𝒢 = {Φ(𝐹) ∣ 𝐹 ∈ ℱ}. We will show that 𝒢 is a fuzzy filter on 𝑋. 

1. Non-Triviality: Since ℱ is a fuzzy soft filter, it does not contain the null fuzzy soft set, which would map 

every element of 𝑋 to 0 across all parameters. Consequently, for each 𝐹 ∈ ℱ, there exists some 𝑒 ∈ 𝐸 

and some 𝑥 ∈ 𝑋 such that 𝐹(𝑒)(𝑥) > 0. Therefore, Φ(𝐹)(𝑥) > 0 for some 𝑥 ∈ 𝑋, implying that the 

null fuzzy set (which maps every 𝑥 ∈ 𝑋 to 0 ) is not in 𝒢. 

2. Closure under Minimum: Let 𝐹, 𝐺 ∈ ℱ, so Φ(𝐹), Φ(𝐺) ∈ 𝒢. Then, for each 𝑥 ∈ 𝑋, 

(Φ(𝐹) ∩ Φ(𝐺))(𝑥) = min{Φ(𝐹)(𝑥), Φ(𝐺)(𝑥)} 

Since Φ(𝐹)(𝑥) = sup𝑒∈𝐸  𝐹(𝑒)(𝑥) and Φ(𝐺)(𝑥) = sup𝑒∈𝐸  𝐺(𝑒)(𝑥), it follows that 

(Φ(𝐹) ∩ Φ(𝐺))(𝑥) = min {sup
𝑒∈𝐸

 𝐹(𝑒)(𝑥), sup
𝑒∈𝐸

 𝐺(𝑒)(𝑥)} 

Define 𝐻: 𝐸 → 𝐼𝑋 by 𝐻(𝑒)(𝑥) = 𝐹(𝑒)(𝑥) ∩ 𝐺(𝑒)(𝑥) for each 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋. Since ℱ is closed 

under intersections, 𝐻 ∈ ℱ, and we have Φ(𝐻) ∈ 𝒢. Noting that Φ(𝐻)(𝑥) = sup𝑒∈𝐸  𝐻(𝑒)(𝑥) = 

min{Φ(𝐹)(𝑥), Φ(𝐺)(𝑥)}, it follows that Φ(𝐹) ∩ Φ(𝐺) = Φ(𝐻) ∈ 𝒢. 

3. Upward Closure: Let Φ(𝐹) ∈ 𝒢 and suppose Φ(𝐹)(𝑥) ≤ Φ(𝐻)(𝑥) for all 𝑥 ∈ 𝑋 for some fuzzy set 𝐻 

on 𝑋. Define a fuzzy soft set 𝐺: 𝐸 → 𝐼𝑋 by 𝐺(𝑒)(𝑥) = max{𝐹(𝑒)(𝑥), 𝐻(𝑥)} for all 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋. 

Since 𝐺(𝑒)(𝑥) ≥ 𝐹(𝑒)(𝑥) for all 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋, 𝐺 ∈ ℱ by the upward closure of ℱ. Then Φ(𝐺) =

𝐻 ∈ 𝒢, proving that 𝒢 is upward closed. 

Thus, 𝒢 is a fuzzy filter on 𝑋, demonstrating that every fuzzy soft filter can be transformed into a fuzzy filter. 

 

Proposition 2.19. Every fuzzy soft filter can be transformed into a soft filter on an appropriately defined set, 

thereby retaining the essential properties of a soft filter. 

Proof. Let 𝑈 be an initial universe set, and let 𝐼𝑋 represent the set of all fuzzy subsets of 𝑋 (i.e., mappings 

𝜇: 𝑋 → [0,1]). Let PS(𝑈) denote the family of all soft sets over 𝑈, and let ℱ ⊆ PS(𝑈) be a fuzzy soft filter 

over 𝑈. We aim to construct a corresponding soft filter ℱ′ ⊆ PS(𝑈), such that ℱ′ satisfies the properties of 

a soft filter. 

Define a mapping that assigns to each fuzzy soft set 𝐹 = {(𝑒, 𝐹𝑒) ∣ 𝑒 ∈ 𝐸, 𝐹𝑒 ∈ 𝐼𝑋} a soft set 𝑆𝐹 = {(𝑒, 𝑆𝑒) ∣ 

𝑒 ∈ 𝐸, 𝑆𝑒 = {𝑥 ∈ 𝑋 ∣ 𝐹𝑒(𝑥) > 𝛼} for some 𝛼 ∈ (0,1]}, where each 𝑆𝑒 is the support of 𝐹𝑒, corresponding 

to the elements of 𝑋 with non-zero membership in 𝐹𝑒. Let ℱ′ = {𝑆𝐹 ∣ 𝐹 ∈ ℱ}, where each 𝑆𝐹 is the "crisp" 

version of 𝐹 obtained by taking the support of each fuzzy subset in 𝐹. 

We now verify that ℱ′ satisfies the conditions of a soft filter on  : 

1. Non-emptiness: Since ℱ is a fuzzy soft filter, it does not contain the null fuzzy soft set, which implies 

that for any 𝐹 ∈ ℱ, the corresponding support-based soft set 𝑆𝐹 is also non-empty. Hence, ∅ ∉ ℱ′. 
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2. Closure under Intersection: Let 𝐹, 𝐺 ∈ ℱ. Then their intersection 𝐹 ∩ 𝐺 is also in ℱ by the fuzzy soft 

filter properties. For each parameter 𝑒 ∈ 𝐸, the intersection (𝐹 ∩ 𝐺)𝑒 = 𝐹𝑒 ∩ 𝐺𝑒 corresponds to the 

fuzzy subset min{𝐹𝑒(𝑥), 𝐺𝑒(𝑥)}. The support of 𝐹 ∩ 𝐺 under parameter 𝑒 is thus: 

𝑆𝐹∩𝐺(𝑒) = {𝑥 ∈ 𝑋 ∣ min{𝐹𝑒(𝑥), 𝐺𝑒(𝑥)} > 0} = 𝑆𝐹(𝑒) ∩ 𝑆𝐺(𝑒). 

Consequently, 𝑆𝐹∩𝐺 = 𝑆𝐹 ∩ 𝑆𝐺 , and since 𝐹 ∩ 𝐺 ∈ ℱ, it follows that 𝑆𝐹 ∩ 𝑆𝐺 ∈ ℱ′, showing closure 

under the intersection. 

3. Upward Closure: Let 𝐹 ∈ ℱ and 𝑆𝐹 ⊆ 𝑆𝐻 for some 𝐻 ∈ PS(𝑈). By definition, 𝑆𝐹(𝑒) ⊆ 𝑆𝐻(𝑒) for each 

𝑒 ∈ 𝐸, which implies that 𝐹𝑒(𝑥) > 0 for all 𝑥 ∈ 𝑆𝐹(𝑒), and there exists a fuzzy subset 𝐻𝑒 such that 𝐹𝑒 ⊆

𝐻𝑒. Since ℱ is upward closed and 𝐹 ⊆ 𝐻, it follows that 𝐻 ∈ ℱ, thus 𝑆𝐻 ∈ ℱ′. 

Since ℱ′ satisfies all properties of a soft filter on 𝑈, it follows that every fuzzy soft filter can be transformed 

into a soft filter by taking the support of each fuzzy subset. This completes the proof. 

2.5 |Hypersoft Set and Fuzzy Hypersoft Set 

A hypersoft set builds on soft set theory by introducing multiple attributes for each element, enabling the 

representation of complex, multi-dimensional relationships. The formal definition of a hypersoft set is 

provided below [66, 92-95]. For more detailed information and operations, refer to sources such as [107] as 

needed. 

Definition 2.20 (Hypersoft Set). [107] Let 𝑋 be a non-empty finite universe, and let 𝑇1, 𝑇2, … , 𝑇𝑛 be 𝑛-distinct 

attributes with corresponding disjoint sets  𝐽1, 𝐽2, … , 𝐽𝑛. A pair (𝐹, 𝐽) is called a hypersoft set over the universal 

set 𝑋, where 𝐹 is a mapping defined by 

𝐹: 𝐽 → 𝒫(𝑋) 

with 𝐽 = 𝐽1 × 𝐽2 × ⋯ × 𝐽𝑛. 

The concept of a Fuzzy Hypersoft Set, which extends the Hypersoft Set by incorporating fuzzy logic, has 

been defined and widely researched [5, 13, 29, 90, 91, 123]. Below, we present the formal definition of a Fuzzy 

Hypersoft Set. 

Definition 2.21 (Fuzzy Hypersoft Set). [123] Let 𝑈 be a universal set and let 𝐹𝑃(𝑈) denote the family of all 

fuzzy sets over 𝑈. Suppose 𝐸1, 𝐸2, … , 𝐸𝑛 are pairwise disjoint parameter sets with 𝐴𝑖 ⊆ 𝐸𝑖 for each 𝑖 =

1,2, … , 𝑛. A fuzzy hypersoft set is defined as the pair (Θ, 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛), where 

Θ: 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 → 𝐹𝑃(𝑈) 

and 

Θ(𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛) = {⟨𝑢, Θ(𝛼)(𝑢)⟩: 𝑢 ∈ 𝑈, 𝛼 ∈ 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 ⊆ 𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛} 

For convenience, we denote Σ = 𝐸1 × 𝐸2 × ⋯ × 𝐸𝑛, Γ = 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛, and let 𝛼 represent an 

element of the set Γ. The collection of all fuzzy hypersoft sets over 𝑈 is denoted by 𝐹𝐻𝑆(𝑈, Σ), and 

henceforth, 𝐹𝐻𝑆 will refer to fuzzy hypersoft sets. 

2.6 |Neutrosophic Filter and Neutrosophic Soft Filter 

In this subsection, we introduce the concepts of the Neutrosophic Filter and Neutrosophic Soft Filter. 

The Neutrosophic Set extends the Fuzzy Set and Intuitionistic Fuzzy Set by assigning three membership de-

grees-truth, indeterminacy, and falsity-to each element, allowing for the representation of incomplete or 

ambiguous information [103-106]. A Neutrosophic Filter is a filter concept defined specifically for the 

Neutrosophic Set [80, 96]. 
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  The precise definitions for each are provided below. Readers interested in further details or operations of the 

Neutrosophic Set may refer to relevant literature, such as, [103, 104] as needed. 

Definition 2.22. [103] Let 𝑋 be a given set. A Neutrosophic Set 𝐴 on 𝑋 is characterized by three membership 

functions: 

𝑇𝐴: 𝑋 → [0,1],  𝐼𝐴: 𝑋 → [0,1],  𝐹𝐴: 𝑋 → [0,1] 

where for each 𝑥 ∈ 𝑋, the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degree of truth, indeterminacy, and 

falsity, respectively. These values satisfy the following conditions: 

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. 

Definition 2.23. Let 𝑈 be a universe set. A Neutrosophic Filter 𝐹 on the collection of single-valued 

neutrosophic sets, denoted as SVN(𝑈), is defined as a nonempty family 𝐹 ⊆ SVN(𝑈) satisfying the following 

conditions: 

1. Non-emptiness of finite intersections: For any finite subset {𝐴1, 𝐴2, … , 𝐴𝑛} ⊂ 𝐹, there exists 𝐻 ∈ 𝐹 such 

that 𝐻 ⊆ 𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛. 

2. Containment of supersets: If 𝐴 ∈ 𝐹 and 𝐴 ⊆ 𝐵 for some 𝐵 ∈ 𝑆𝑉𝑁(𝑈), then 𝐵 ∈ 𝐹. 

Thus, the neutrosophic filter includes finite intersections and all supersets within the neutrosophic framework. 

Proposition 2.24. Every Neutrosophic Filter ℱ𝑁 on a universe set 𝑋 can be transformed into a Fuzzy Filter 

ℱ𝐹 on 𝑋. 

Proof. Let ℱ𝑁 be a Neutrosophic Filter on 𝑋. We will construct a Fuzzy Filter ℱ𝐹 on 𝑋 using the truth 

membership functions of the Neutrosophic Sets in ℱ𝑁. 

Define a mapping Φ: ℱ𝑁 → 𝐹(𝑋) by: 

Φ(𝐴)(𝑥) = 𝑇𝐴(𝑥),  ∀𝑥 ∈ 𝑋,  ∀𝐴 ∈ ℱ𝑁 . 

Let ℱ𝐹 = Φ(ℱ𝑁) = {Φ(𝐴) ∣ 𝐴 ∈ ℱ𝑁}. 

We will show that ℱ𝐹 is a Fuzzy Filter on 𝑋. 

Non-emptiness: Since ℱ𝑁 is non-empty, ℱ𝐹 is also non-empty. 

Closure under Intersection: Let 𝜇1, 𝜇2 ∈ ℱ𝐹, where 𝜇𝑖 = Φ(𝐴𝑖) for some 𝐴𝑖 ∈ ℱ𝑁. Then, for all ∈ 𝑋 : 

𝜇𝑖(𝑥) = 𝑇𝐴𝑖
(𝑥),  𝑖 = 1,2 

Consider the intersection 𝜇 = 𝜇1 ∩ 𝜇2, defined by 𝜇(𝑥) = min{𝜇1(𝑥), 𝜇2(𝑥)}. 

Since ℱ𝑁 is a Neutrosophic Filter, there exists 𝐵 ∈ ℱ𝑁 such that 𝐵 ⊆ 𝐴1 ∩ 𝐴2. By the properties of 

Neutrosophic Sets and the subset relation: 

𝑇𝐵(𝑥) ≤ min{𝑇𝐴1
(𝑥), 𝑇𝐴2

(𝑥)} = 𝜇(𝑥),  ∀𝑥 ∈ 𝑋 

Therefore, Φ(𝐵)(𝑥) = 𝑇𝐵(𝑥) ≤ 𝜇(𝑥). 

Since Φ(𝐵) ∈ ℱ𝐹 and Φ(𝐵) ≤ 𝜇, it follows that 𝜇 ∈ ℱ𝐹 . 

Upward Closure: Let 𝜇 ∈ ℱ𝐹 and 𝜇 ≤ 𝑣 for some 𝑣 ∈ 𝐹(𝑋). Since 𝜇 = Φ(𝐴) for some 𝐴 ∈ ℱ𝑁, and 𝑣(𝑥) ≥

𝑇𝐴(𝑥), we define a Neutrosophic Set 𝐶 with 𝑇𝐶(𝑥) = 𝑣(𝑥), 𝐼𝐶(𝑥) = 𝐼𝐴(𝑥), and 𝐹𝐶(𝑥) = 𝐹𝐴(𝑥) for all 𝑥 ∈

𝑋. 

Since 𝐴 ⊆ 𝐶 in ℱ𝑁 , 𝐶 ∈ ℱ𝑁, and Φ(𝐶) = 𝑣 ∈ ℱ𝐹 . 

Non-Triviality: Since ∅𝑁 ∉ ℱ𝑁, and for any 𝐴 ∈ ℱ𝑁 , 𝑇𝐴(𝑥) > 0 for some 𝑥 ∈ 𝑋, it follows that Φ(𝐴) ≠ ∅𝐹. 

Thus, ∅𝐹 ∉ ℱ𝐹 . 
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Therefore, ℱ𝐹 is a Fuzzy Filter on 𝑋. 

Building on this, the Neutrosophic Soft Set introduces parameterization into the Neutrosophic Set, allowing 

for more precise categorization and an improved approach to managing uncertainty through a parameter set 

[6, 7, 30, 62, 63]. Furthermore, the Neutrosophic Soft Filter generalizes the classical concept of a filter to 

Neutrosophic Soft Sets, facilitating the creation of a topological structure [32, 33]. 

Definition 2.25. [63] Let 𝑋 be an initial universe set, and 𝐸 a set of parameters. A Neutrosophic 

SoftSet(�̃�, 𝐸) over 𝑋 is defined by a set-valued function 

�̃�: 𝐸 → 𝑃(𝑋) 

where �̃�(𝑒) is a Neutrosophic Set corresponding to each parameter 𝑒 ∈ 𝐸. The Neutrosophic SoftSet(�̃�, 𝐸) 

can be expressed as a collection of ordered pairs: 

(�̃�, 𝐸) = {(𝑒, {(𝑥, 𝑇�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)): 𝑥 ∈ 𝑋}): 𝑒 ∈ 𝐸} 

where 𝑇�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥), and 𝐹�̃�(𝑒)(𝑥) denote the truth, indeterminacy, and falsity degrees for each element 

𝑥 ∈ 𝑋. These degrees satisfy: 

0 ≤ 𝑇�̃�(𝑒)(𝑥) + 𝐼�̃�(𝑒)(𝑥) + 𝐹�̃�(𝑒)(𝑥) ≤ 3. 

Definition 2.26. [32, 33] Let 𝒩 ⊂ 𝑁𝑆𝑆(𝑋, 𝐸) be a family of Neutrosophic Soft Sets over 𝑋. Then, 𝒩 is 

called a Neutrosophic Soft Filter on 𝑋 if it satisfies the following properties: 

(N1) 0(𝑋,𝐸) ∉ 𝒩, where 0(𝑋,𝐸) denotes the null Neutrosophic Soft Set. 

(N2) For any (�̃�, 𝐸), (�̃�, 𝐸) ∈ 𝒩, we have (�̃�, 𝐸) ∩ (�̃�, 𝐸) ∈ 𝒩. 

(N3) If (�̃�, 𝐸) ∈ 𝒩 and (�̃�, 𝐸) ⊆ (�̃�, 𝐸) for some (�̃�, 𝐸), then (�̃�, 𝐸) ∈ 𝒩. 

Proposition 2.27. Every Neutrosophic Soft Filter 𝑁 on a universe set 𝑋 can be transformed into a Fuzzy 

Soft Filter 𝐹 on 𝑋. 

Proof. Let 𝑁 be a Neutrosophic Soft Filter on 𝑋. For each Neutrosophic Soft Set (�̃�, 𝐸) ∈ 𝑁, define a 

corresponding Fuzzy Soft Set (𝐹, 𝐸) by 

𝐹(𝑒)(𝑥) = 𝑇�̃�(𝑒)(𝑥),  ∀𝑥 ∈ 𝑋, ∀𝑒 ∈ 𝐸. 

Let 𝐹 = {(𝐹, 𝐸) ∣ (�̃�, 𝐸) ∈ 𝑁}. We will show that 𝐹 is a Fuzzy Soft Filter on 𝑋. 

Non-emptiness: Since 𝑁 is non-empty, 𝐹 is also non-empty. 

Closure under Intersection: Let (𝐹, 𝐸), (𝐺, 𝐸) ∈ 𝐹, corresponding to (�̃�, 𝐸), (�̃�, 𝐸) ∈ 𝑁. Then, for each 𝑒 ∈

𝐸 and 𝑥 ∈ 𝑋, 

𝐹(𝑒)(𝑥) = 𝑇�̃�(𝑒)(𝑥),  𝐺(𝑒)(𝑥) = 𝑇�̃�(𝑒)(𝑥) 

Consider the intersection (𝐻, 𝐸) = (𝐹, 𝐸) ∩ (𝐺, 𝐸), where for each 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋, 

𝐻(𝑒)(𝑥) = min{𝐹(𝑒)(𝑥), 𝐺(𝑒)(𝑥)} 

Since (�̃�, 𝐸), (�̃�, 𝐸) ∈ 𝑁, their intersection (�̃�, 𝐸) = (�̃�, 𝐸) ∩ (�̃�, 𝐸) is in 𝑁. For each 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋, 

𝑇�̃�(𝑒)(𝑥) = min{𝑇�̃�(𝑒)(𝑥), 𝑇�̃�(𝑒)(𝑥)} = 𝐻(𝑒)(𝑥). 

Therefore, (𝐻, 𝐸) ∈ 𝐹, and 𝐹 is closed under intersection. 

Upward Closure: Let (𝐹, 𝐸) ∈ 𝐹 and (𝐹, 𝐸) ⊆ (𝐾, 𝐸), where (𝐾, 𝐸) is a Fuzzy Soft Set over 𝑋. Then, for 

each 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋, 
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  𝐹(𝑒)(𝑥) ≤ 𝐾(𝑒)(𝑥) 

Define (�̃�, 𝐸) by 

𝑇�̃�(𝑒)(𝑥) = 𝐾(𝑒)(𝑥),  𝐼�̃�(𝑒)(𝑥) = 𝐼�̃�(𝑒)(𝑥),  𝐹�̃�(𝑒)(𝑥) = 𝐹�̃�(𝑒)(𝑥) 

Since 𝑇�̃�(𝑒)(𝑥) ≤ 𝑇�̃�(𝑒)(𝑥) for all 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋, and (�̃�, 𝐸) ⊆ (�̃�, 𝐸), the upward closure property of 

𝑁 implies (�̃�, 𝐸) ∈ 𝑁. Therefore, (𝐾, 𝐸) ∈ 𝐹. 

Non-Triviality: Since 0 ∉ 𝑁, for each (�̃�, 𝐸) ∈ 𝑁, there exists 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋 such that 𝑇�̃�(𝑒)(𝑥) > 0. 

Hence, 𝐹(𝑒)(𝑥) > 0, and 0 ∉ 𝐹. 

Thus, 𝐹 is a Fuzzy Soft Filter on 𝑋. 

2.7 |Neutrosophic Hypersoft Set 

A Neutrosophic Hypersoft Set is a mathematical structure that employs multiple attributes along with three 

values truth, indeterminacy, and falsity- to effectively capture uncertainty and complex information. Due to 

its versatility in applications, the Neutrosophic Hypersoft Set has been the subject of extensive research [1, 

51, 59, 75, 87, 99-101]. The formal definition is provided below [2]. 

Definition 2.28 (Neutrosophic Hypersoft Set). [2] Let 𝑈 be a universal set, and let 𝑃(𝑈) denote the power 

set of 𝑈. Assume there are 𝑛 distinct attributes, represented as ℓ1, ℓ2, … , ℓ𝑛, each with a corresponding set 

of values 𝐿1, 𝐿2, … , 𝐿𝑛. These attribute sets satisfy the conditions. 𝐿𝑖 ∩ 𝐿𝑗 = ∅ for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈

{1,2, … , 𝑛}. 

The pair (𝜓, Λ) is defined to be a Neutrosophic Hypersoft Set (𝑁𝐻𝑆𝑆) over 𝑈 if there exists a relation Λ = 

𝐿1 × 𝐿2 × ⋯ × 𝐿𝑛. The mapping 𝜓 is a function from Λ to 𝑃(𝑈), such that. 

𝜓Λ(𝐿1 × 𝐿2 × ⋯ × 𝐿𝑛) = {⟨𝑢, 𝑇Λ(𝑢), 𝐼Λ(𝑢), 𝐹Λ(𝑢)⟩: 𝑢 ∈ 𝑈}, 

where 𝑇Λ(𝑢), 𝐼Λ(𝑢), and 𝐹Λ(𝑢) are neutrosophic membership values for truth, indeterminacy, and falsity, 

respectively, for each 𝑢 ∈ 𝑈. 

These membership functions satisfy 

𝑇, 𝐼, 𝐹: 𝑈 → [0,1] 

and 

0 ≤ 𝑇Λ(𝑢) + 𝐼Λ(𝑢) + 𝐹Λ(𝑢) ≤ 3. 

3 |Results 

The results of this paper are described below. 

3.1 |Hypersoft Filter 

We define a Hypersoft Filter by extending the concept of a Soft Filter in the Hypersoft context as follows. 

Definition 3.1 (Hypersoft Filter). A hypersoft filter ℋ over 𝑋 is a non-empty collection of hypersoft sets 

satisfying: 

1. ∅ ∉ ℋ. 

2. If (𝐹, 𝐸), (𝐺, 𝐸) ∈ ℋ, then (𝐹 ∩ 𝐺, 𝐸) ∈ ℋ, where (𝐹 ∩ 𝐺)(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒) for all 𝑒 ∈ 𝐸. 

3. If (𝐹, 𝐸) ∈ ℋ and (𝐹, 𝐸) ⊆ (𝐻, 𝐸), then (𝐻, 𝐸) ∈ ℋ. 

Definition 3.2 (Hypersoft Ultrafilter). A hypersoft ultrafilter over 𝑋 is a hypersoft filter ℋ that is maximal 

concerning inclusion. 
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Theorem 3.3. Every hypersoft filter (ultrafilter) can be transformed into a soft filter (ultrafilter). 

Proof. Let ℋ be a hypersoft filter over 𝑋. Define a mapping Φ from hypersoft sets to soft sets as follows: 

For each hypersoft set (𝐹, 𝐸), define the corresponding soft set (𝑓, 𝐸) by setting 𝑓(𝑒) = 𝐹(𝑒) for all 𝑒 ∈ 𝐸. 

Now, consider the collection ℱ = {(𝑓, 𝐸) ∣ (𝐹, 𝐸) ∈ ℋ}. 

We will show that ℱ is a soft filter over 𝑋. 

1. Non-emptiness: Since ℋ is non-empty and ∅ ∉ ℋ, ℱ is non-empty and ∅ ∉ ℱ. 

2. Closure under Intersection: If (𝑓, 𝐸), (𝑔, 𝐸) ∈ ℱ, corresponding to (𝐹, 𝐸), (𝐺, 𝐸) ∈ ℋ, then (𝐹 ∩ 

𝐺, 𝐸) ∈ ℋ, so (𝑓 ∩ 𝑔, 𝐸) ∈ ℱ. 

3. Upward Closure: If (𝑓, 𝐸) ∈ ℱ and (𝑓, 𝐸) ⊆ (ℎ, 𝐸), then (𝐹, 𝐸) ⊆ (𝐻, 𝐸). Since ℋ is upward closed, 

(𝐻, 𝐸) ∈ ℋ, so (ℎ, 𝐸) ∈ ℱ. 

Therefore, ℱ is a soft filter over 𝑋. If ℋ is a hypersoft ultrafilter, then ℱ is a soft ultrafilter. 

3.2 |Fuzzy Hypersoft Filters and Ultrafilters 

We define a Fuzzy Hypersoft Filter by extending the concept of a Soft Filter in the Fuzzy Hypersoft context 

as follows. 

Definition 3.4 (Fuzzy Hypersoft Filter). A fuzzy hypersoft filter ℋ over 𝑋 is a non-empty collection of fuzzy 

hypersoft sets satisfying: 

1. ∅ ∉ ℋ. 

2. If (𝐹, 𝐸), (𝐺, 𝐸) ∈ ℋ, then (𝐹 ∩ 𝐺, 𝐸) ∈ ℋ,where (𝐹 ∩ 𝐺)(𝑒)(𝑥) = min{𝐹(𝑒)(𝑥), 𝐺(𝑒)(𝑥)}. 

3. If (𝐹, 𝐸) ∈ ℋ and (𝐹, 𝐸) ⊆ (𝐻, 𝐸), then (𝐻, 𝐸) ∈ ℋ. 

Definition 3.5 (Fuzzy Hypersoft Ultrafilter). A fuzzy hypersoft ultrafilter over 𝑋 is a fuzzy hypersoft filter 

ℋ that is maximal with respect to inclusion. 

Theorem 3.6. Every fuzzy hypersoft filter (ultrafilter) can be transformed into a fuzzy soft filter (ultrafilter). 

Proof. Let ℋ be a fuzzy hypersoft filter over 𝑋. Define a mapping Φ from fuzzy hypersoft sets to fuzzy soft 

sets as follows: 

For each fuzzy hypersoft set (𝐹, 𝐸), define the corresponding fuzzy soft set 𝑓 over 𝑋 with parameter set 𝐸, 

where 𝑓(𝑒) = 𝐹(𝑒) for all 𝑒 ∈ 𝐸. 

Consider the collection ℱ = {𝑓 ∣ (𝐹, 𝐸) ∈ ℋ}. 

We need to show that ℱ is a fuzzy soft filter over 𝑋. 

1. Non-emptiness: ℱ is non-empty since ℋ is non-empty, and ∅ ∉ ℱ because ∅ ∉ ℋ. 

2. Closure under Intersection: If 𝑓, 𝑔 ∈ ℱ, corresponding to (𝐹, 𝐸), (𝐺, 𝐸) ∈ ℋ, then (𝐹 ∩ 𝐺, 𝐸) ∈ ℋ, so 

𝑓 ∩ 𝑔 ∈ ℱ. 

3. Upward Closure: If 𝑓 ∈ ℱ and 𝑓 ⊆ ℎ, then (𝐹, 𝐸) ⊆ (𝐻, 𝐸). Since ℋ is upward closed, (𝐻, 𝐸) ∈ ℋ, so 

ℎ ∈ ℱ. 

Therefore, ℱ is a fuzzy soft filter over 𝑋. If ℋ is a fuzzy hypersoft ultrafilter, then ℱ is a fuzzy soft ultrafilter. 

Theorem 3.7. Every fuzzy hypersoft filter can be transformed into a hypersoft filter on an appropriately 

defined set, preserving the essential properties of a hypersoft filter. 
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  Proof. Let 𝑈 be an initial universe set, and let 𝐼𝑋 denote the set of all fuzzy subsets of 𝑋 (i.e., mappings: 𝑋 →

[0,1] ). Let ℋ represent a fuzzy hypersoft filter over 𝑈, defined as a non-empty collection of fuzzy hypersoft 

sets satisfying the following properties: 

1. ∅ ∉ ℋ. 

2. If (𝐹, 𝐸), (𝐺, 𝐸) ∈ ℋ, then (𝐹 ∩ 𝐺, 𝐸) ∈ ℋ, where (𝐹 ∩ 𝐺)(𝑒)(𝑥) = min{𝐹(𝑒)(𝑥), 𝐺(𝑒)(𝑥)}. 

3. If (𝐹, 𝐸) ∈ ℋ and (𝐹, 𝐸) ⊆ (𝐻, 𝐸), then (𝐻, 𝐸) ∈ ℋ. 

To transform ℋ into a hypersoft filter, define a mapping that converts each fuzzy hypersoft set (𝐹, 𝐸) in ℋ 

to a hypersoft set (𝑆𝐹 , 𝐸), where 𝑆𝐹(𝑒) = {𝑥 ∈ 𝑋 ∣ 𝐹(𝑒)(𝑥) > 0} for each 𝑒 ∈ 𝐸. Here, 𝑆𝐹(𝑒) represents 

the support of the fuzzy subset 𝐹(𝑒). Define the collection ℋ ′ = {(𝑆𝐹 , 𝐸) ∣ (𝐹, 𝐸) ∈ ℋ}, where each 𝑆𝐹 is 

the "crisp" support-based representation of 𝐹. 

We now verify that ℋ ′ satisfies the properties of a hypersoft filter: 

1. Non-emptiness: Since ℋ does not contain the null fuzzy hypersoft set, each fuzzy hypersoft set (𝐹, 𝐸) ∈ 

ℋ has 𝐹(𝑒)(𝑥) > 0 for some 𝑥 ∈ 𝑋 and 𝑒 ∈ 𝐸. Thus, 𝑆𝐹(𝑒) ≠ ∅ for all (𝑆𝐹 , 𝐸) ∈ ℋ ′, implying ∅ ∉

ℋ ′. 

2. Closure under Intersection: Let (𝑆𝐹 , 𝐸), (𝑆𝐺 , 𝐸) ∈ ℋ′, corresponding to fuzzy hypersoft sets 

(𝐹, 𝐸), (𝐺, 𝐸) ∈ ℋ. Since ℋ is closed under intersections, (𝐹 ∩ 𝐺, 𝐸) ∈ ℋ where (𝐹 ∩ 𝐺)(𝑒)(𝑥) =

min{𝐹(𝑒)(𝑥), 𝐺(𝑒)(𝑥)}. The support of 𝐹 ∩ 𝐺 under each 𝑒 ∈ 𝐸 is given by: 

𝑆𝐹∩𝐺(𝑒) = {𝑥 ∈ 𝑋 ∣ min{𝐹(𝑒)(𝑥), 𝐺(𝑒)(𝑥)} > 0} = 𝑆𝐹(𝑒) ∩ 𝑆𝐺(𝑒). 

Therefore, (𝑆𝐹 ∩ 𝑆𝐺 , 𝐸) = (𝑆𝐹∩𝐺 , 𝐸) ∈ ℋ ′, establishing closure under intersection. 

3. Upward Closure: Let (𝑆𝐹 , 𝐸) ∈ ℋ ′ and suppose (𝑆𝐹 , 𝐸) ⊆ (𝑆𝐻 , 𝐸) for some hypersoft set (𝑆𝐻 , 𝐸). By 

definition of support, this implies that 𝐹(𝑒)(𝑥) > 0 for all 𝑥 ∈ 𝑆𝐹(𝑒) and there exists a fuzzy subset 

𝐻(𝑒) such that 𝐹(𝑒) ⊆ 𝐻(𝑒). Since ℋ is upward closed, (𝐻, 𝐸) ∈ ℋ, so (𝑆𝐻 , 𝐸) ∈ ℋ ′. 

Therefore, ℋ ′ satisfies the conditions of a hypersoft filter over 𝑋. If ℋ is a fuzzy hypersoft ultrafilter, then 

ℋ ′ will also be a hypersoft ultrafilter by construction. 

3.3 |Neutrosophic Hypersoft Filters 

We define the Neutrosophic Hypersoft Filter and demonstrate that it can be transformed into a Fuzzy 

Hypersoft Filter, a Hypersoft Filter, and a Neutrosophic Soft Filter. We provide precise mathematical 

definitions and detailed proofs of these transformations. 

Definition 3.8 (Neutrosophic Hypersoft Filter). Let 𝑈 be a universal set, and Λ = 𝐿1 × 𝐿2 × ⋯ × 𝐿𝑛. A 

neutrosophic hypersoft filter 𝒩 over 𝑈 is a non-empty collection of neutrosophic hypersoft sets (𝜓, Λ) 

satisfying: 

1. Non-Triviality: The null neutrosophic hypersoft set is not in 𝒩. 

2. Closure under Intersection: If (𝜓1, Λ), (𝜓2, Λ) ∈ 𝒩, then (𝜓1 ∩ 𝜓2, Λ) ∈ 𝒩, where for all 𝜆 ∈ Λ and 

𝑢 ∈ 𝑈 : 

𝑇𝜓1∩𝜓2
(𝜆)(𝑢) = min{𝑇𝜓1

(𝜆)(𝑢), 𝑇𝜓2
(𝜆)(𝑢)},

𝐼𝜓1𝜓2
(𝜆)(𝑢) = max{𝐼𝜓1

(𝜆)(𝑢), 𝐼𝜓2
(𝜆)(𝑢)},

𝐹𝜓1∩𝜓2
(𝜆)(𝑢) = max{𝐹𝜓1

(𝜆)(𝑢), 𝐹𝜓2
(𝜆)(𝑢)}.

 

3. Upward Closure: If (𝜓, Λ) ∈ 𝒩 and (𝜓, Λ) ⊆ (𝜑, Λ), then (𝜑, Λ) ∈ 𝒩. The subset relation ⊆ is defined 

component-wise: 
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𝜓(𝜆)(𝑢) ⊆ 𝜑(𝜆)(𝑢) ⟺ {

𝑇𝜓(𝜆)(𝑢) ≤ 𝑇𝜑(𝜆)(𝑢)

𝐼𝜓(𝜆)(𝑢) ≥ 𝐼𝜑(𝜆)(𝑢)

𝐹𝜓(𝜆)(𝑢) ≥ 𝐹𝜑(𝜆)(𝑢)

 

Theorem 3.9. Every neutrosophic hypersoft filter 𝒩 on a universe 𝑈 can be transformed into a fuzzy 

hypersoft filter ℱ on 𝑈. 

Proof. Let 𝒩 be a neutrosophic hypersoft filter over 𝑈. For each (𝜓, Λ) ∈ 𝒩, define a fuzzy hypersoft set 

(𝜃, Λ) by: 

𝜃(𝜆)(𝑢) = 𝑇𝜓(𝜆)(𝑢),  ∀𝜆 ∈ Λ, ∀𝑢 ∈ 𝑈. 

Let ℱ = {(𝜃, Λ) ∣ (𝜓, Λ) ∈ 𝒩}. We will show that ℱ satisfies the properties of a fuzzy hypersoft filter. 

1. Non-Triviality: Since 𝒩 does not contain the null set, there exists 𝜆 ∈ Λ and 𝑢 ∈ 𝑈 such that 

𝑇𝜓(𝜆)(𝑢) > 0 for each (𝜓, Λ) ∈ 𝒩. Therefore, 𝜃(𝜆)(𝑢) > 0, and ℱ does not contain the null fuzzy 

hypersoft set. 

2. Closure under Intersection: For (𝜃1, Λ), (𝜃2, Λ) ∈ ℱ, corresponding to (𝜓1, Λ), (𝜓2, Λ) ∈ 𝒩, define 

(𝜃, Λ) by: 

𝜃(𝜆)(𝑢) = min{𝜃1(𝜆)(𝑢), 𝜃2(𝜆)(𝑢)} 

Since (𝜓1 ∩ 𝜓2, Λ) ∈ 𝒩 and 

𝑇𝜓1∩𝜓2
(𝜆)(𝑢) = min{𝑇𝜓1

(𝜆)(𝑢), 𝑇𝜓2
(𝜆)(𝑢)} = 𝜃(𝜆)(𝑢), 

it follows that (𝜃, Λ) ∈ ℱ. Thus, ℱ is closed under the intersection. 

3. Upward Closure: Let (𝜃, Λ) ∈ ℱ and (𝜃, Λ) ⊆ (𝜑, Λ), where (𝜑, Λ) is a fuzzy hypersoft set. Define 

(𝜓′, Λ) by: 

𝑇𝜓′(𝜆)(𝑢) = 𝜑(𝜆)(𝑢),  𝐼𝜓′(𝜆)(𝑢) = 𝐼𝜓(𝜆)(𝑢),  𝐹𝜓′(𝜆)(𝑢) = 𝐹𝜓(𝜆)(𝑢). 

Since (𝜓, Λ) ⊆ (𝜓′, Λ) and (𝜓, Λ) ∈ 𝒩, by upward closure, (𝜓′, Λ) ∈ 𝒩. Therefore, (𝜑, Λ) ∈ ℱ. 

Hence, ℱ is a fuzzy hypersoft filter over 𝑈. 

Theorem 3.10. Every neutrosophic hypersoft filter 𝒩 on a universe 𝑈 can be transformed into a hypersoft 

filter ℋ on 𝑈. 

Proof. For each (𝜓, Λ) ∈ 𝒩, define a hypersoft set (𝐹, Λ) by: 

𝐹(𝜆) = {𝑢 ∈ 𝑈 ∣ 𝑇𝜓(𝜆)(𝑢) > 0},  ∀𝜆 ∈ Λ. 

Let ℋ = {(𝐹, Λ) ∣ (𝜓, Λ) ∈ 𝒩}. 

Non-Triviality: Since 𝑇𝜓(𝜆)(𝑢) > 0 for some 𝑢 ∈ 𝑈, 𝐹(𝜆) ≠ ∅, ensuring ℋ does not contain the null 

hypersoft set. 

Closure under Intersection: For(𝐹1, Λ), (𝐹2, Λ) ∈ ℋ, define (𝐹, Λ) by: 

𝐹(𝜆) = 𝐹1(𝜆) ∩ 𝐹2(𝜆) 

Since (𝜓1 ∩ 𝜓2, Λ) ∈ 𝒩, it follows that (𝐹, Λ) ∈ ℋ. 

3. Upward Closure: If (𝐹, Λ) ⊆ (𝐺, Λ), define (𝜓′, Λ) by: 

𝑇𝜓′(𝜆)(𝑢) = {
1, 𝑢 ∈ 𝐺(𝜆)

0,  otherwise 
 

As (𝜓, Λ) ⊆ (𝜓′, Λ) and (𝜓, Λ) ∈ 𝒩, we have (𝜓′, Λ) ∈ 𝒩, so (𝐺, Λ) ∈ ℋ. 
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  Therefore, ℋ is a hypersoft filter over 𝑈. 

Theorem 3.11. Every neutrosophic hypersoft filter 𝒩 on a universe 𝑈 can be transformed into a 

neutrosophic soft filter 𝑆 on 𝑈. 

Proof. Let 𝐸 = Λ. For each (𝜓, Λ) ∈ 𝒩, define a neutrosophic soft set (�̃�, 𝐸) by: 

�̃�(𝑒) = 𝜓(𝑒),  ∀𝑒 ∈ 𝐸. 

Let 𝒮 = {(�̃�, 𝐸) ∣ (𝜓, Λ) ∈ 𝒩}. 

1. Non-Triviality: Since 𝑇�̃�(𝑒)(𝑢) = 𝑇𝜓(𝑒)(𝑢) > 0 for some 𝑢 ∈ 𝑈, 𝒮 does not contain the null 

neutrosophic soft set. 

2. Closure under Intersection: For(�̃�, 𝐸), (�̃�, 𝐸) ∈ 𝒮, define (�̃�, 𝐸) by: 

�̃�(𝑒) = �̃�(𝑒) ∩ �̃�(𝑒) 

Since (𝜓1 ∩ 𝜓2, Λ) ∈ 𝒩, (�̃�, 𝐸) ∈ 𝒮. 

3. Upward Closure: If (�̃�, 𝐸) ⊆ (�̃�, 𝐸), define (𝜑, Λ) by 𝜑(𝑒) = �̃�(𝑒). Since (𝜓, Λ) ⊆ (𝜑, Λ) and (𝜓, Λ) ∈

𝒩, (𝜑, Λ) ∈ 𝒩, so (�̃�, 𝐸) ∈ 𝒮. 

Hence, 𝒮 is a neutrosophic soft filter over 𝑈. 

4 |Future Tasks: Weak Filter, Quasi-Filter, and Tangle 

The following are future research directions. 

First, filters and ultrafilters on general sets possess notable properties, such as the Axiom of Choice Property 

[26, 52, 53, 61, 69] and the Finite Intersection Property [26]. It is of interest to determine whether these 

properties apply to Neutrosophic Hypersoft Filters and other core filter definitions. 

Next, we aim to explore extensions of Weak Filters [15, 66-68] and Quasi Filters, [23] including Soft Weak 

Filters, Soft Quasi Filters, HyperSoft Weak Filters, and HyperSoft Quasi Filters. Additionally, we plan to 

conduct research on grills and primals within the framework of soft theory [39]. 

Additionally, we will investigate how established concepts, such as Tangles and Brambles from graph theory 

[17, 34-36, 47, 49, 82, 83, 88] as well as the complementary concept of an ideal to filters, might be extended 

to Fuzzy Sets and Neutrosophic Sets. Notably, ultrafilters and tangles exhibit a profound relationship, 

specifically as complements of one another [45]. For instance, exploring the extension of matroid tangles [47] 

to Fuzzy Sets and Neutrosophic Sets may reveal novel mathematical properties. 

Moreover, we intend to expand the concepts of filters and ultrafilters to super hypersoft sets,  [40, 76, 109) 

hesitant fuzzy sets,  [117, 118] ]spherical fuzzy sets,  [14, 7, 71]) Vague Sets,  [4, 18, 20, 24, 56, 97, 130]) 

Neutrosophic SuperHypersoft sets,  [109, 110, 112] and plithogenic sets, [108, 111]) with a particular focus 

on their mathematical structures and properties. 
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