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1 |Introduction 

The theory of fuzzy sets possesses so many forms of applications. Of such and of course, without restriction 

is that of fuzzy groups. Part of its applications is to provide formalized tools for dealings with the imprecision 

intrinsic to many problems. Denote the number of chains of subgroups of a finite group G which ends in G 

by h(G). The method of computing h(G) is based on the application of the Inclusion-Exclusion Principle.  In 

this context, h(G) is referred to as the number of distinct fuzzy subgroups for the finite nilpotent p-group. 

This work is therefore designed as part of classifying the nilpotent groups formed from the Cartesian products 

of p-groups through their computations [2-4]. 

2 |Methodology 

At this juncture, we shall introduce the technique which was used in the course of our processes. Hence, are 

going to adopt a method that will be used in counting the chains of fuzzy subgroups of an arbitrary finite 𝑝-

group 𝐺. That is the number of fuzzy subgroups of a finite group 𝐺 which end in 𝐺. This is denoted by ℎ(𝐺), 

and it is the number of distinct fuzzy subgroups for the finite nilpotent group. The expression was derived in 

[6] as follows: (our esteemed readers can also consult [5, 7-9] for more details.  

Suppose that 𝐺 is a finite nilpotent group, in which 𝑁1, 𝑁2, … , 𝑁𝑡 are the maximal subgroups of 𝐺. Let us 

represent these number of chains of subgroups of 𝐺 by the symbol ℎ(𝐺). These chains are known to 

terminate at 𝐺. Now, for the singular purpose of computing somewhat the exact value of ℎ(𝐺), we are going 
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  to base our technique on the proper application of the Inclusion-Exclusion Principle. This particular method 

has been discussed more extensively and in detail in [1] and [6]. Here in particular, given that 𝐴 is the set of 

chains in 𝐺 which are of the type given by: 𝐶1 ⊂ 𝐶2 ⊂ ⋯ ⊂ 𝐶𝑟 = 𝐺, and 𝐴′ represents the set of chains in 

𝐺 of types 𝐶1 ⊂ 𝐶2 ⊂ ⋯ ⊂ 𝐶𝑟 ≠ 𝐺, and let 𝐶𝑟 Be the set of chains of 𝐴′ Which are contained in 𝑁𝑟, 𝑟 =

1,… , 𝑡. Then we have: 

|𝐴| = 1 + |𝐴′| = 1 + |⋃  

𝑡

𝑟=1

 𝐶𝑟|

 = 1 +∑  

𝑡

𝑟=1

  |𝐶𝑟| − ∑  

1≤𝑟1≤𝑟2≤𝑡

  |𝐶𝑟1 ∩ 𝐶𝑟2| + ⋯+ (−1)
𝑡−1 |⋂  

𝑡

𝑟=1

 𝐶𝑟|

 

Here, it should be strictly noted that, for every 1 ≤ 𝑤 ≤ 𝑡 and 1 ≤ 𝑟1 < 𝑟2 < ⋯ < 𝑟𝑤 ≤ 𝑡, the set ⋂𝑖=1
𝑤  𝐶𝑟𝑖 

must consist mainly and in all cases of all chains of 𝐴′. Such chains ought to be included in ⋂𝑖=1
𝑤  𝑁𝑟𝑖 . And so, 

we are going to have that. 

|⋂  

𝑤

𝑖=1

 𝐶𝑟𝑖| = 2ℎ(⋂  

𝑤

𝑖=1

 𝑁𝑟𝑖) − 1

 ∴ |𝐴| = 1 +∑  

𝑡

𝑟=1

  (2ℎ(𝑁𝑟) − 1) − ∑  

1≤𝑟1<𝑟2≤𝑡

  (2ℎ(𝑁𝑟1 ∩ 𝑁𝑟2) − 1)

 +⋯+ (−1)𝑡−1 (2ℎ(⋂  

𝑡

𝑟=1

 𝑁𝑟) − 1)

 = 2(∑  

𝑡

𝑟=1

 ℎ(𝑁𝑟) − ∑  

1≤𝑟1<𝑟2≤𝑡

 ℎ(𝑁𝑟1 ∩ 𝑁𝑟2) + ⋯+ (−1)
𝑡−1ℎ(⋂  

𝑡

𝑟=1

 𝑁𝑟)) + 𝐶

 

And 

𝐶 = 1 +∑  

𝑡

𝑟=1

  (−1) − ∑  

1≤𝑟1<𝑟2≤𝑡

  (−1) + ⋯+ (−1)𝑡−1(−1)

 = (1 − 1)𝑡 = 0

 

we have that: 

ℎ(𝐺) = 2(∑  

𝑡

𝑟=1

 ℎ(𝑁𝑟) − ∑  

1≤𝑟1<𝑟2≤𝑡

 ℎ(𝑁𝑟1 ∩ 𝑁𝑟2) + ⋯+ (−1)
𝑡−1ℎ(⋂  

𝑡

𝑟=1

 𝑁𝑟))                                     (1) 

Definition: ℎ(𝐺) given in (1) can be defined as the number of fuzzy subgroups. This particular number is 

unique for the finite group 𝐺. It should also be carefully noted and categorically stated here that, they are also 

very distinct (please, see [1, 5-6] for more details on this. In [6], (1) was used to obtain the explicit formulas 

of ℎ(𝐷2𝑛) for some positive integers 𝑛.Here 𝐷2𝑛 denotes the dihedral group of order 2𝑛. Now, if 𝑛 = 𝑝𝑚, 

then, 

ℎ(𝐷2𝑛) =
2𝑚

𝑝 − 1
(𝑝𝑚+1 + 𝑝 − 2)                                                                                                                           (2) 

From here, 2𝑛 = 2𝑝𝑚 ⋅ 𝑝 = 2 ⇒ 2𝑛 = 2.2𝑚 = 2𝑚+1 
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∴ ℎ(𝐷2𝑛) = ℎ(𝐷2𝑚+1) =
2𝑚

2−1
(2𝑚+1 + 2 − 2) = 2𝑚(2𝑚+1). 

Hence, by putting 𝑛 = 𝑚 + 1 ⇒ 𝑚 = 𝑛 − 1 ⇒ ℎ(𝐷2𝑛) = 2
𝑛−1. 2𝑛 = 22𝑛−1 

ℎ(𝐷2𝑛) = 2
2𝑛−1                                                                                                                                                         (3) 

So, if the given subgroup structure of a finite group 𝐺 which has been certified to have possessed as it were, 

in each of the respectful cases the maximality condition, their types are then determined, and their 

intersections computed by using GAP [17], then we are going to have it after some calculations and 

simplifications Eq. (1) given above results in some recurrence relations which allows the value of ℎ(𝐺) to be 

explicitly determined [12, 15]. 

Theorem [1, 6]: Every finite 𝑝-group possessing an order which equals 𝑝𝑛 And having a cyclic maximal 

subgroup must have its number of fuzzy subgroups which are distinct to be given by: 

i). ℎ(𝐶𝑝𝑛) = 2
𝑛, 

ii). ℎ(𝐶𝑝 × 𝐶𝑝𝑛−1) = 2
𝑛−1[2 + (𝑛 − 1)𝑝] We are going to apply this theorem at some point or the 

other in our computational processes. 

Proposition [13]: Given that 𝐺 = 𝐶4 × 𝐶2𝑛 , 𝑛 ≥ 2. Then, ℎ(𝐺) = 2𝑛[𝑛2 + 5𝑛 − 2] 

Corollary: Following the last proposition, ℎ(𝐶4 × 𝐶25), ℎ(𝐶4 × 𝐶26), ℎ(𝐶4 × 𝐶27) and ℎ(𝐶4 × 𝐶28) =

1536, 4096, 10496, and 26112 respectively. 

Theorem [15]: Suppose that 𝐺 = 𝐷2𝑛 × 𝐶2. Here, 𝐺 happens to be the nilpotent group which has been 

formed through the proceeds of getting the Cartesian product for the dihedral group of order 2𝑛 and a cyclic 

group of order 2. Then, the number of fuzzy subgroups for 𝐺 which are distinct can be given by: ℎ(𝐺) =

22𝑛(2𝑛 + 1) − 2𝑛+1, 𝑛 > 3 

Proposition [12]: Let 𝐺 = 𝐷2𝑛 × 𝐶4. Then, the number of fuzzy subgroups for 𝐺 which are distinct can be 

given by : 

22(𝑛−2)(64𝑛 + 173) + 3∑  

𝑛−3

𝑗=1

2(𝑛−1+𝑗)(2𝑛 + 1 − 2𝑗) 

Proposition [10]: Suppose that 𝐺 is a 𝑝-group having the abelian properties and is also of the type given by: 

𝐶𝑝 × 𝐶𝑝 × 𝐶𝑝𝑛 , such that 𝑝 is a prime number and 𝑛 ≥ 1. The number of fuzzy subgroups for 𝐺 which are 

distinct is given by ℎ(𝐶𝑝 × 𝐶𝑝 × 𝐶𝑝𝑛) = 2
𝑛𝑝(𝑝 + 1)(𝑛 − 1)(3 + 𝑛𝑝 + 2𝑝) + (2𝑛 − 2)𝑝3 − 2𝑛+1(𝑛 −

1)𝑝3 + 2𝑛[𝑝3 + 4(1 + 𝑝 + 𝑝2)]. 

 

Corollary: From (3) above, observe that we are going to have that: 

ℎ(ℤ3 × ℤ3 × ℤ3𝑛) = 2
𝑛+1[18𝑛2 + 9𝑛 + 26] − 54 

Similarly, suppose that we have 𝑝 = 5, and by following the procedure above as well, we are going to have 

that: 

ℎ(𝐶5 × 𝐶5 × 𝐶5𝑛) =2[30ℎ(𝐶5 × 𝐶5𝑛) + ℎ(𝐶5 × 𝐶5 × 𝐶5𝑛−1)

−𝑝3ℎ(𝐶5𝑛) − 30ℎ(𝐶5𝑛−1) + 125]
 

Also, if 𝑝 = 7, ℎ(𝐶7 × 𝐶7 × 𝐶7𝑛) = 2[56ℎ(𝐶7 × 𝐶7𝑛) + ℎ(𝐶7 × 𝐶7 × 𝐶7𝑛−1) − 343ℎ(𝐶7𝑛) −

56ℎ(𝐶7𝑛−1) +343] If this process continues this way, we are definitely going to have it in general that: 

ℎ(𝐶𝑝 × 𝐶𝑝 ×𝐶𝑝𝑛−2) = 2
𝑛−2[4 + (3𝑛 − 5)𝑝 

+(𝑛2 − 5)𝑝2 + (𝑛2 − 5𝑛 + 8)𝑝3] − 2𝑝2. This is definitely true for any given prime 𝑝. 
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  Proposition [14]: If 𝐺 is a group and such that: 𝐺 = (𝐷23 × 𝐶2𝑚) and for 𝑚 ≥ 3. Then, ℎ(𝐺) = 89𝑚 −

23𝑚2 + (85)2𝑚+3 − 124 

Proof: 

ℎ(𝐷23 × 𝐶2𝑚) = (46𝑚 − 3) ⋅ 2
𝑚+1 + 26 + (46𝑚 − 49)2𝑚+1 + 27 + (46𝑚 − 95)2𝑚+1 + 28

+ 23ℎ(𝐷23 × 𝐶2𝑚−3) 

= 2𝑚+1 ⋅ [(46𝑚 − 3) + (46𝑚 − 49) + (46𝑚 − 95)] + 26 + 27 + 28 + 23ℎ(𝐷23 × 𝐶2
𝑚−3)

=
+2𝑚+1 ⋅ [46𝑚𝑘 + 26 + 27 + 28 +⋯+ 25+𝑘⏟                

series (1)

(−3 − 49 − 95⋯(−3 − 46(𝑘 − 1)))⏟                        
series (2)

]

 

+2𝑘ℎ(𝐷23 × 𝐶2𝑚−𝑘), 𝑘 ∈ {1,2.3⋯𝑛 ∈ 𝑁} 

Observe that in the series (1), we have that, 𝑉𝑛 = 2
6. 2𝑛−1 = 25+𝑡, 𝑛 + 5 = 𝑡 + 5,⇒ 𝑛 = 𝑡. So that 𝑆𝑛=𝑡 =

26 [
2𝑡−1

2−1
] = 26(2𝑡 − 1) 

Also, note that in the second series (2), we should have it that, 𝑈𝑛 = −3+ (𝑛 − 1)(−46) = −3 − 46(𝑡 −

1) ⇒ 𝑛 − 1 = 𝑡 − 1, 𝑛 = 𝑡 Whence, 𝑆𝑛 = 𝑡 =
𝑡

2
[2(−3) + (𝑡 − 1)(−46)] =

𝑡

2
(−6 − 46𝑡 + 46) =

𝑡

2
(40 − 46𝑡). Hence, we are going to have that: ℎ(𝐷23 × 𝐶2𝑚) =

𝑡

2
(40 − 46𝑡) + 26(2𝑘 − 1) +

2𝑘ℎ(𝐷3 × 𝐶2𝑚−𝑡. By setting 𝑚 = 𝑡 we have that 𝑡 = 𝑚 − 3. Hence, ℎ(𝐷23 × 𝐶2𝑚) = (𝑚 − 3)(20 −

23𝑚) + 26(2𝑚−3 − 1) + 2𝑚 − 3ℎ(𝐷3 × 𝐶23) ℎ(𝐺) = (𝑚 − 3)(20 − 23𝑚) + 26(2𝑚−3 − 1) +

2𝑚−3(5376) = (𝑚 − 3)(20 − 23𝑚) + 2𝑚−3 − 26 + 2𝑚+5(21) = 20𝑚 − 23𝑚2 − 60 + 69𝑚 +

2𝑚+3 − 26 + (21)2𝑚+5 = (89𝑚 − 23𝑚2 − 60) + 2𝑚+3 − 26 + (21)2𝑚+5 = 𝑚(89 − 23𝑚) − 124 +

(85)2𝑚+3 

Theorem [11]: Let 𝐺 = ℤ2𝑛 × ℤ8, then ℎ(𝐺) =
1

3
(2𝑛+1)(𝑛3 + 12𝑛2 + 17𝑛 − 24)  

Proposition (see [16]: Suppose that 𝐺 = 𝐷2𝑛 × 𝐶8. Then, the number of fuzzy subgroups of 𝐺 which are 

distinct is going to be equal to: 

22(𝑛−1)(6𝑛 + 113) + 2𝑛 [13 − 6𝑛 − 2𝑛2 + 3∑  

𝑛−3

𝑗=1

 2(𝑗−1𝑗)(2𝑛 + 1 − 2𝑗)]

+
1

3
(2𝑛+2) [(𝑛 − 1)3 + (𝑛 − 2)3 + 24𝑛2 − 38𝑛 − 30 +∑  

𝑛−5

𝑘=1

 2𝑘[(𝑛 − 2 − 𝑘)3 + 12(𝑛 − 2 − 𝑘)2 + 17(𝑛 − 𝑘) − 58]]

 

Theorem: Let 𝐺 = 𝐷24 × 𝐶24. Then, ℎ(𝐺) = 61384 

3 |The Number of Fuzzy Subgroups for 𝑮 = 𝑫𝟐𝟒 × 𝑪𝟐𝒏 , 𝒏 ≥ 𝟒 

Which are distinct. Our computation on the algebraic fuzzy structure given actually has an outcome that 

involves multiple sums. 

Proof: 

The maximal subgroups are: 

 

(𝐷24 × 𝐶2𝑛−1), 2(𝐷23 × 𝐶2𝑛), 2(𝐷2𝑛 × 𝐶22), (𝐷2𝑛 × 𝐶23) and (𝐶2𝑛).  
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We have that : 
1

2
ℎ(𝐺) = ℎ(𝐷24 × 𝐶𝑛−1) + 2ℎ(𝐷23 × 𝐶𝑛) + 2ℎ(𝐷2𝑛 × 𝐶22) + ℎ(𝐷2𝑛 × 𝐶23) + ℎ(𝐶2𝑛) −

6ℎ(𝐷23 × ℤ2𝑛−1) − 6ℎ(ℤ2𝑛 × ℤ22) − 3ℎ(ℤ2𝑛−1 × ℤ23) − 6ℎ(ℤ2𝑛) + 2ℎ(𝐷23 × 𝐶2𝑛−1) + 28ℎ(𝐶2𝑛−1 ×

𝐶2𝑛) + ℎ(𝐶2𝑛−1 × 𝐶23) + 2ℎ(𝐶2𝑛 × 𝐶22) + 2ℎ(ℤ2𝑛) − 35ℎ(𝐶2𝑛−1 × 𝐶22) + 21ℎ(𝐶2𝑛−1 × 𝐶22) −

7ℎ(𝐶2𝑛−1 × 𝐶22) + ℎ(𝐶2𝑛−1 × 𝐶22) = ℎ(𝐷24 × 𝐶2𝑛−1) + 2ℎ(𝐷23 × 𝐶2
𝑛) + 2ℎ(𝐷2𝑛 × 𝐶22) + ℎ(𝐷2𝑛 ×

𝐶23) − 4ℎ(𝐷23 × ℤ2𝑛−1) − 4ℎ(ℤ2𝑛 × ℤ22) − 2ℎ(ℤ2𝑛−1 × ℤ23) + 8ℎ(ℤ2𝑛−1 × ℤ22) − 3ℎ(ℤ2𝑛) 

1

2
ℎ(𝐺) = ℎ(𝐷24 × ℤ2𝑛−𝑘) + 2ℎ(𝐷23 × ℤ2𝑛) − 4ℎ(𝐷23 × ℤ2𝑛−𝑘) − 4ℎ(ℤ2𝑛 × ℤ22)

−2ℎ(ℤ2𝑛−𝑘 × ℤ23) + 8ℎ(ℤ2𝑛−𝑘 × ℤ22) +∑  

𝑘

𝑗=1

 ℎ(𝐷2𝑛−1+𝑗 × ℤ23) + 2∑  

𝑘

𝑗=1

 ℎ(𝐷2𝑛−1+𝑗 × ℤ22) − 3∑  

𝑘

𝑗=1

 ℎ(ℤ2𝑛+1−𝑗)

−2∑  

𝑘−1

𝑗=1

 ℎ(𝐷23 × ℤ2𝑛−𝑗) + 4∑  

𝑘−1

𝑗=1

 ℎ(𝐷2𝑛−𝑗 × ℤ22) − 2∑  

𝑘−1

𝑗=1

 ℎ(𝐷2𝑛−𝑗 × ℤ23)

 

whence, 𝑛 − 𝑘 = 4,⇒ 𝑘 = 𝑛 − 4. ∴ ℎ(𝐺) = 2ℎ(𝐷24 × ℤ24) + 4ℎ(𝐷23 × ℤ2𝑛) − 8ℎ(𝐷23 × ℤ24) −

8ℎ(ℤ2𝑛 × ℤ2𝑛) − 4ℎ(ℤ24 × ℤ23) + 16ℎ(ℤ24 × ℤ22) + 

2∑  

𝑛−4

𝑗=1

 ℎ(𝐷2𝑛−1+𝑗 × ℤ23) + 4∑  

𝑛−4

𝑗=1

 ℎ(𝐷2𝑛−1+𝑗 × ℤ22) − 6∑  

𝑛−4

𝑗=1

 ℎ(ℤ2𝑛+1−𝑗)

−4∑  

𝑛−5

𝑗=1

 ℎ(𝐷23 × ℤ2𝑛−𝑗) + 8∑  

𝑛−5

𝑗=1

 ℎ(𝐷2𝑛−𝑗 × ℤ22) − 4∑  

𝑛−5

𝑗=1

 ℎ(𝐷2𝑛−𝑗 × ℤ23)

∴ ℎ(𝐺) = 2𝑛+3(422 − 𝑛2 − 5𝑛) − 9𝑛2 + 356𝑛 − 29160 + 2∑  

𝑛−4

𝑗=1

 ℎ(𝐷2𝑛−1+𝑗 × ℤ23)

+4∑  

𝑛−4

𝑗=1

 ℎ(𝐷2𝑛−1+𝑗 × ℤ22) − 6∑  

𝑛−4

𝑗=1

 ℎ(ℤ2𝑛+1−𝑗) − 4∑  

𝑛−5

𝑗=1

 ℎ(𝐷23 × ℤ2𝑛−𝑗) + 8∑  

𝑛−5

𝑗=1

 ℎ(𝐷2𝑛−𝑗 × ℤ22) − 4∑  

𝑛−5

𝑗=1

 ℎ(𝐷2𝑛−𝑗 × ℤ23)

= 2𝑛+3(422 − 𝑛2 − 5𝑛) − 9𝑛2 + 356𝑛 − 29160 +∑  

𝑛−4

𝑗=1

  [2ℎ(𝐷2𝑛−1+𝑗 × ℤ23) + 4ℎ(𝐷2𝑛−1+𝑗 × ℤ22) − 6ℎ(ℤ2𝑛+1−𝑗)]

−∑  

𝑛−5

𝑗=1

  [4ℎ(𝐷23 × ℤ2𝑛−𝑗) − 8ℎ(𝐷2𝑛−𝑗 × ℤ22) + 4ℎ(𝐷2𝑛−𝑗 × ℤ23)]

 

Hence, proven as required. 

Applications 

The computations so far by the use of GAP (General Algorithm Algorithms and Programming) and the 

Inclusion-Exclusion Principle can actually be confirmed here as being very useful in the computations of the 

number of fuzzy subgroups for the finite 𝑝-groups which are district [17]. 

4 |Determining the Fuzzy Subgroups for 𝑮 = 𝑫𝟐𝒏 × 𝑪𝟐𝟒 , 𝒏 ≥ 𝟒 

If 𝐺 = (𝐷2𝑛 × 𝐶24), then, 

1

2
ℎ(𝐺) = ℎ(𝐷2𝑛 × 𝐶23) + 2ℎ(𝐶2𝑛−1 × 𝐶24) + 2ℎ(𝐷24 × 𝐶2𝑛−2) + ℎ(𝐷24 × 𝐶2𝑛−1) −

4ℎ(𝐷2𝑛−1 × 𝐶23) − 4ℎ(𝐶24 × 𝐶2𝑛−2) − 2ℎ(𝐶23) × 𝐶2𝑛−1) + 8ℎ(𝐶23 × 𝐶2𝑛−2) − 3ℎ(𝐶24) 

So, ℎ(𝐺) = 2ℎ(𝐷2𝑛 × 𝐶23) + 4ℎ(𝐷2𝑛−1 × 𝐶24) + 4ℎ(𝐶24 × 𝐶2𝑛−2) + 2ℎ(𝐷24 × 𝐶2𝑛−1) 

−8ℎ(𝐷2𝑛−1 × 𝐶2
3) − 8ℎ(𝐶24 × 𝐶2𝑛−2) − 4ℎ(𝐶23 × 𝐶2𝑛−1) + 16ℎ(𝐶23 × 𝐶25) − 2ℎ(𝐶24) × 𝐶24) +

8ℎ(𝐶23 × 𝐶2𝑛−2) − 6ℎ(𝐶24) 



The Fuzzy Subgroups for the p-groups of an n Power Order of Four for Any Integer n not Less than Three 

 

6

 

  = 22𝑛−8ℎ(𝐷24 × 𝐶24) − 3(10 + 2
6 + 28 +⋯22𝑛−8)ℎ(𝐶24) + 2ℎ(𝐷2𝑛 × 𝐶23) + 12ℎ(𝐷24 × 𝐶2𝑛−2) +

2ℎ(𝐷24 × 𝐶2𝑛−1) − 32ℎ(𝐶24 × 𝐶2𝑛−3) − 8ℎ(𝐶24 × 𝐶2𝑛−2) 

−4ℎ(𝐶23 × 𝐶2
𝑛−1) − 27ℎ(𝐶24 × 𝐶2𝑛−4) + 48ℎ(𝐷24 × 𝐶2𝑛−3) 

+ 3 ∑  

2𝑛−8

𝑗=1

2𝑛−4ℎ(𝐷24 × ℤ2𝑛+1−𝑗) + ∑  

2𝑛−7

𝑗=1

22𝑛+9ℎ(𝐷24 × ℤ2𝑛+1−𝑗) 

As required. 

5 |Finding the Number of Fuzzy Subgroups for the Group 𝑮 = 𝑫𝟐𝒏 ×

𝑪𝟐𝒎 , for 𝟑 ≤ 𝒏 ≤ 𝒎 

Suppose that 𝐺 = (𝐷2𝑛 × 𝐶2𝑚) for 3 ≤ 𝑛 ≤ 𝑚.  

Then, 
1

2
ℎ(𝐺) = ℎ(𝐷2𝑛 × 𝐶2𝑚−1) + 2ℎ(𝐷2𝑛−1 × 𝐶2𝑚) + 2ℎ(𝐷2𝑚 × 𝐶2𝑛−2) + ℎ(𝐷2𝑚 × 𝐶2𝑛−1) − 4ℎ(𝐷2𝑛−1 × 

𝐶2𝑚−1) − 4ℎ(𝐶2𝑛−2 × 𝐶2𝑚) − 2ℎ(𝐶2𝑛−1) × 𝐶2𝑚−1) + 8ℎ(𝐶2𝑛−2 × 𝐶2𝑚−2) − 3ℎ(𝐶2𝑚) 

So, ℎ(𝐺) = 2ℎ(𝐷2𝑛 × 𝐶2𝑚−1) + 4ℎ(𝐷2𝑛−1 × 𝐶2𝑚) + 4ℎ(𝐷2𝑚 × 𝐶2𝑛−2) + 2ℎ(𝐷2𝑚 × 𝐶2𝑛−1) −

8ℎ(𝐷2𝑛−1 × 𝐶2𝑚−1) − 8ℎ(𝐶2𝑛−2 × 𝐶2𝑚) − 4ℎ(𝐶2𝑛−1) × 𝐶2𝑚−1) + 16ℎ(𝐶2𝑛−2 × 𝐶2𝑚−1) − 6ℎ(𝐶2𝑚) 

Now, suppose for instance, that 𝑚 = 𝑛 = 5. Then, we have that: ℎ(𝐺) = 2ℎ(𝐷25 × 𝐶24) +

4ℎ(𝐷24 × 𝐶5) + 4ℎ(𝐷5 × 𝐶24) + 2ℎ(𝐷25 × 𝐶24) − 8ℎ(𝐷24 × 𝐶24) − 8ℎ(𝐶23 × 𝐶25) − 4ℎ(𝐶24) ×

𝐶24) + 16ℎ(𝐶23 × 𝐶24) − 3.2
6. 

Instances: We have the following examples as parts surfacing from our computations so far. We urge our 

esteemed readers to consider the examples given below in tabular format. 

Example: Now, since the given stated condition that 𝑚 ≥ 3 must be fulfilled then the readers may consider 

the examples below in for simple illustration. 

Table 1. Summarizing some Number of Distinct Fuzzy Subgroups of (𝐷24 × 𝐶2𝑛) FOR 𝑛 ≥ 4. 

S/N for the Number of 𝒏 4 5 6 

𝒉(𝑮) = (𝑫𝟐𝟒 × 𝑪𝟐𝒏), 𝒏 ≥ 𝟒 20,200 375,648 3,893,800 

 

6 |The Number of Fuzzy Subgroups which are Distinct for the Group 

𝑮 = 𝑫𝟐𝒏 × 𝑪𝟐𝒏 , for 𝒏 ≥ 𝟒 

 

Example: If we set {𝑔𝑖}{𝑖=1,2} = ℎ(𝐷24 × 𝐶24−𝑖){𝑔𝑗}{𝑗=3,4} = ℎ(𝐷2
3 × 𝐶27−𝑗)  

{𝑔𝑘}{𝑘=5} = ℎ(𝐶29−𝑘 × 𝐶27−𝑘){𝑔𝑙}{𝑙=6,7} = ℎ(𝐶23 × 𝐶29−𝑙){𝑔ℎ}{ℎ=8} = ℎ(𝐶212−𝑖), 

Then, the following table emerges 
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Table 2. Summarizing some Number of Distinct Fuzzy Subgroups of (𝐷2𝑛 × 𝐶2𝑛) FOR ≥ 3. 

𝒈𝒊 𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔 𝒈𝟕 𝒈𝟖 

𝒉(𝒈𝒊) 14848 7200 10744 5376 544 864 176 16 

𝜶𝒉(𝒈𝒊) +4ℎ(𝑔1) +4ℎ(𝑔2) +4ℎ(𝑔3) −8ℎ(𝑔4) −8ℎ(𝑔5) −4ℎ(𝑔6) +16ℎ(𝑔7 −6ℎ(𝑔8) 

value +59392 +28800 +42976 -43008 -4352 -3456 +2816 -96 

Total = 𝟖𝟑, 𝟎𝟕𝟐  

 

7 |Conclusion 

The discoveries from our studies so far have helped to observe that any given product of the nilpotent group 

also gives a nilpotent result. Furthermore, the problem of classifying the fuzzy subgroups for groups that are 

known to be finite has experienced very rapid progress. Tables 1 and 2 summarize some details concerning 

this. Finally, this particular method can also be applied in further and subsequent computations up to the 

generalizations of both similar as well as the s other given structures. 
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