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Abstract

The study of uncertainty has been a significant area of research, with concepts such as fuzzy sets [87], fuzzy
graphs [51], and neutrosophic sets [58] receiving extensive attention. In Neutrosophic Logic, indeterminacy
often arises from real-world complexities.
This paper explores the concept of locality as a key factor in determining indeterminacy, building upon
the framework introduced by F. Smarandache in [73]. Locality refers to processes constrained within
a specific region, where an object or system is directly influenced by its immediate surroundings. In
contrast, nonlocality involves effects that transcend spatial or temporal boundaries, where changes in one
location have direct implications for another.
This paper introduces the concepts of Local-Neutrosophic Logic and Local-Neutrosophic Set by integrating
the notion of locality into Neutrosophic Logic. It provides their mathematical definitions and examines
potential applications.
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1 | Short Introduction

1.1 | Uncertain Logic
Uncertainty is an inherent characteristic of real-world events and is often modeled using mathematical frameworks.
In the realm of logic (cf. [12, 81]), several approaches have been developed to address uncertainty, including Fuzzy
Logic [90, 89, 87], Neutrosophic Logic [62, 68, 58], and Plithogenic Logic [67, 77]. For instance, Neutrosophic
Logic expands upon classical logic by incorporating three dimensions: truth, indeterminacy, and falsity. This
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framework allows for the simultaneous handling of uncertainty and contradictions, making it a versatile tool for
modeling complex systems.

These uncertain logics have been further generalized to other mathematical concepts, such as sets [75, 59] and
graphs [22, 20, 26, 23, 25]. This has led to a proliferation of studies that parallel the development of logical
systems, showcasing their broad applicability across various domains.

1.2 | Locality in Neutrosophic Logic
In Neutrosophic Logic, indeterminacy often emerges from real-world factors. This paper investigates locality as
a key determinant of indeterminacy, building on the framework proposed by F. Smarandache in [73].

Locality describes processes confined to a specific region, where an object is influenced by its immediate
surroundings. It can be Total Locality (100 percent, all interactions are local) or Partial Locality (greater than 0
and less than 100 percent). Conversely, Nonlocality involves effects spanning space or time, with changes in one
location influencing another. Like locality, nonlocality may be Total or Partial.

Indeterminacy arises when a system is neither fully local nor nonlocal, often due to hidden variables or
environmental uncertainty. It too can range from Total to Partial, depending on the extent of ambiguity or
mixed characteristics.

1.3 | Contributions of This Paper
This paper makes several key contributions:

(1) It introduces the novel concepts of Local-Neutrosophic Logic and Local-Neutrosophic Set, incorporating
the notion of locality into the framework of Neutrosophic Logic.

(2) It provides precise mathematical definitions for these concepts, laying a robust theoretical foundation.

(3) It explores potential applications, demonstrating the practicality and relevance of these ideas in addressing
uncertainty and contextual dependencies.

2 | Preliminaries

2.1 | Basic Definition of Formal Language
To explore Upside-Down Logic, several key concepts are introduced below. For further details, readers are
encouraged to consult the respective lecture notes and surveys on these topics (ex.[30, 16, 40, 33, 29]).

Definition 1 (Set). [33] A set is a collection of distinct and clearly defined objects, known as elements, such
that any object can be identified as either a member of the set or not. If 𝐴 is a set and 𝑥 is an element of
𝐴, this membership is denoted by 𝑥 ∈ 𝐴. Sets are commonly represented using curly brackets, for example,
𝐴 = {𝑥1, 𝑥2, … , 𝑥𝑛}.

Definition 2 (Formal Language). [49, 29] A formal language ℒ is defined as a set of strings (or sequences)
formed from a finite alphabet Σ, adhering to specific syntactic rules. Formally:

ℒ ⊆ Σ∗,

where Σ∗ represents the set of all finite strings over the alphabet Σ. The strings in ℒ are referred to as well-formed
formulas (WFFs).

A formal language ℒ is typically characterized by:

• A set of symbols (or alphabet) Σ, which may include logical connectives (e.g., ∧, ∨, ¬), quantifiers (e.g.,
∀, ∃), variables, and parentheses.

• A set of formation rules specifying which strings in Σ∗ qualify as well-formed.
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Definition 3 (Logical System). (cf.[37]) A logical system ℳ is a mathematical structure used to formalize
reasoning. It is defined as:

ℳ = (𝒫, 𝒱, 𝑣),
where:

• 𝒫 is the set of propositions (or statements) expressed in the formal language ℒ.

• 𝒱 is the set of truth values, such as {True, False} in classical logic.

• 𝑣 ∶ 𝒫 → 𝒱 is a valuation function (or interpretation function) that assigns a truth value to each
proposition in 𝒫.

Additionally, a logical system may include:

• A set of axioms 𝒜 ⊆ 𝒫, propositions assumed to be true within the system.

• A set of inference rules ℐ, defining valid methods of deriving new truths from existing propositions.

2.2 | Neutrosophic Logic
In this subsection, we explore the relationship between Neutrosophic Logic and Upside-Down Logic. First, we
present the definition of Neutrosophic Logic below [58, 21]. Note that Neutrosophic Logic is known to generalize
Fuzzy Logic (cf. [58]).

Definition 4 (Neutrosophic Logic). [58] Neutrosophic Logic extends classical logic by assigning to each
proposition a truth value comprising three components:

𝑣(𝐴) = (𝑇 , 𝐼, 𝐹 ),

where 𝑇 , 𝐼, 𝐹 ∈ [0, 1] represent the degrees of truth, indeterminacy, and falsity, respectively.

Example 5 (Student Performance Evaluation). Student performance evaluation assesses academic progress
using metrics like grades, participation, and skills, identifying strengths and areas for improvement (cf.[7, 36]).

In education, Neutrosophic Logic can assess student performance when data is uncertain or incomplete. For
example, consider the proposition ”The student will perform well in the final exam,” represented as:

𝑣(𝐴) = (0.8, 0.1, 0.1),

where:

• 𝑇 = 0.8: An 80% chance of good performance based on past grades and class participation.

• 𝐼 = 0.1: A 10% level of indeterminacy due to unmeasured factors like stress or unforeseen circumstances.

• 𝐹 = 0.1: A 10% chance of poor performance due to lack of preparation or external distractions.

This approach enables educators to provide personalized feedback and prepare targeted interventions to improve
student outcomes(cf.[3, 56, 47]).

Example 6 (Medical Diagnosis). In the field of medical diagnosis(cf.[5, 43]), Neutrosophic Logic is employed to
handle uncertain and incomplete information. For instance, consider the proposition ”The patient has Disease
X,” which can be represented as:

𝑣(𝐴) = (0.6, 0.2, 0.2),
where:

• 𝑇 = 0.6: A 60% probability that the patient has the disease.

• 𝐼 = 0.2: A 20% of the data is inconclusive due to uncertainty in test results or conflicting evidence.

• 𝐹 = 0.2: A 20% probability that the patient does not have the disease.
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By integrating test results, symptoms, and expert opinions, this approach enables healthcare professionals to
make more informed diagnostic decisions (cf. [9, 13, 55, 11]).

Example 7 (Project Management). Project management involves planning, organizing, and executing tasks to
achieve specific goals within constraints like time, budget, and resources(cf.[15, 80, 18, 17]).

In project management, Neutrosophic Logic can aid in handling uncertainties and risks associated with project
timelines and outcomes. Consider the proposition ”The project will be completed on time,” represented as:

𝑣(𝐴) = (0.6, 0.25, 0.15),

where:

• 𝑇 = 0.6: A 60% chance that the project will be completed on schedule, based on current progress and
resource availability.

• 𝐼 = 0.25: A 25% level of indeterminacy due to uncertainties like unexpected delays, resource shortages,
or scope changes.

• 𝐹 = 0.15: A 15% chance that the project will not meet the deadline, based on known risks or past
trends in similar projects.

By quantifying these components, project managers can better assess risks and devise strategies such as
resource reallocation or timeline adjustments to mitigate potential delays. This enhances decision-making under
uncertainty and improves project success rates(cf.[50, 6, 45, 34, 2]).

Example 8 (Decision-Making in Business). Neutrosophic Logic also plays a critical role in business decision-
making, particularly under conditions of uncertainty. For example, when evaluating whether to invest in a
project, the proposition ”The project will yield profit” can be represented as:

𝑣(𝐴) = (0.7, 0.1, 0.2),

where:

• 𝑇 = 0.7: A 70% chance that the project will be profitable.

• 𝐼 = 0.1: A 10% level of uncertainty due to incomplete or ambiguous market data.

• 𝐹 = 0.2: A 20% chance that the project will not be profitable.

This representation allows decision-makers to assess risks and rewards quantitatively, facilitating more effective
strategy formulation (cf. [4, 52]).

2.3 | Neutrosophic Set
In this subsection, we explain the concept of the Neutrosophic Set [58]. Intuitively, a Neutrosophic Set can be
understood as the set-theoretic extension of Neutrosophic Logic. It is known as a generalization of several classical
and modern set concepts, including the Crisp Set (Classic Set), Fuzzy Set [93, 88, 92, 91, 87], Intuitionistic
Fuzzy Set [61, 76], Vague Set[96, 10], and Paraconsistent Set[84, 83]. The related definitions are provided below.

Definition 9 (Crisp Set). [48] Let 𝑋 be a universe set, and let 𝑃(𝑋) denote the power set of 𝑋, which represents
all subsets of 𝑋. A crisp set 𝐴 ⊆ 𝑋 is defined by a characteristic function 𝜒𝐴 ∶ 𝑋 → {0, 1}, where:

𝜒𝐴(𝑥) = {1 if 𝑥 ∈ 𝐴,
0 if 𝑥 ∉ 𝐴.

This function 𝜒𝐴 assigns a value of 1 to elements within the set 𝐴 and 0 to those outside it, creating a clear
boundary. Crisp sets are thus bivalent and follow the principle of binary classification, where each element is
either a member of the set or not.
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Definition 10. [58, 78, 60] Let 𝑋 be a given set. A Neutrosophic Set 𝐴 on 𝑋 is characterized by three
membership functions:

𝑇𝐴 ∶ 𝑋 → [0, 1], 𝐼𝐴 ∶ 𝑋 → [0, 1], 𝐹𝐴 ∶ 𝑋 → [0, 1],
where for each 𝑥 ∈ 𝑋, the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degree of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.

3 | Mathematical Framework of Locality, Indeterminacy, and Nonlocality in Neu-
trosophic Logic

This section discusses the Mathematical Framework of Locality, Indeterminacy, and Nonlocality in Neutrosophic
Logic. It redefines these concepts within the context of Neutrosophic Logic, providing basic considerations and
illustrative examples.

3.1 | Notations and Definitions
Below, we present the Notations and Definitions of Locality, Indeterminacy, and Nonlocality in Neutrosophic
Logic.

Notation 11. Let 𝒫 denote the set of propositions, 𝒞 the set of contexts, and 𝑇 ∶ 𝒫 × 𝒞 →
{True, False, Indeterminate} a truth valuation function. Each proposition 𝐴 ∈ 𝒫 is associated with a
neutrosophic truth value 𝑣(𝐴) = (𝑇 , 𝐼, 𝐹 ), where:

represent the degrees of truth (

𝑇 , 𝐼, 𝐹 ∈ [0, 1], 𝑇 + 𝐼 + 𝐹 ≤ 1,

𝑇), indeterminacy (𝐼), and falsity (𝐹), respectively.

Remark 12. The sum 𝑇 + 𝐼 + 𝐹 does not necessarily equal 1, allowing for partial states. This flexibility is a
core feature of neutrosophic logic.

Definition 13 (Context). [74] A context 𝒞 is a set of parameters or conditions under which propositions are
evaluated. This may include spatial, temporal, semantic, or interpretative settings.

Definition 14 (Locality). (cf.[73]) A proposition 𝐴 exhibits locality if its truth value depends solely on a single
context 𝒞 ∈ 𝒞. Formally:

𝑣(𝐴) = 𝑇 (𝐴, 𝒞),
where 𝒞 represents the immediate spatial, temporal, or conceptual domain affecting 𝐴.

Definition 15 (Indeterminacy). (cf.[73]) A proposition 𝐴 exhibits indeterminacy if its truth value includes
a non-zero degree of 𝐼 due to hidden variables, insufficient information, or ambiguity within the context 𝒞.
Formally:

𝑣(𝐴) = (𝑇 , 𝐼, 𝐹 ), with 𝐼 > 0.

Definition 16 (Nonlocality). (cf.[73]) A proposition 𝐴 exhibits nonlocality if its truth value depends on multiple,
spatially or conceptually separate contexts 𝒞1, 𝒞2 ∈ 𝒞. Formally:

𝑣(𝐴) = 𝑇 (𝐴, 𝒞1, 𝒞2), with 𝒞1 ∩ 𝒞2 = ∅.

Definition 17 (Multilocality). (cf.[73]) A proposition 𝐴 exhibits multilocality if its truth value depends on a set
of interacting local contexts {𝒞𝑖}𝑛

𝑖=1. Formally:

𝑣(𝐴) = 𝑇 (𝐴, {𝒞𝑖}𝑛
𝑖=1),

where each 𝒞𝑖 is confined to a specific local domain.
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Definition 18 (Multiindeterminacy). (cf.[73]) A proposition 𝐴 exhibits multiindeterminacy if its truth value
includes cumulative indeterminacy across multiple contexts:

𝑣(𝐴) = (𝑇 , 𝐼, 𝐹 ), where 𝐼 =
𝑛

∑
𝑖=1

𝐼𝑖 > 0,

and 𝐼𝑖 represents the degree of indeterminacy in each context 𝒞𝑖.

Definition 19 (Multinonlocality). (cf.[73]) A proposition 𝐴 exhibits multinonlocality if its truth value depends
on interactions across multiple nonlocal contexts {𝒞𝑖, 𝒞𝑗}𝑖≠𝑗:

𝑣(𝐴) = 𝑇 (𝐴, {𝒞𝑖, 𝒞𝑗}𝑖≠𝑗),

where 𝒞𝑖 ∩ 𝒞𝑗 = ∅.

3.2 | Some Real-Life Examples of Locality, Indeterminacy, and Nonlocality
This subsection presents some real-life examples of locality, indeterminacy, and nonlocality.

Example 20 (Traffic Flow (Locality)). Let 𝐴: ”The traffic density on road segment 𝑅 is high.”

Context 𝒞: The immediate local parameters affecting 𝑅, such as vehicle count, average speed, and weather
conditions, determine 𝑣(𝐴):

𝑣(𝐴) = (0.8, 0.1, 0.1),

where 𝑇 = 0.8 indicates high traffic density based on local observations. Locality is evident as 𝐴 depends solely
on 𝒞.

Example 21 (Quantum Entanglement (Nonlocality)). Quantum entanglement is a phenomenon where particles
share linked states, such that changing one instantly affects the other, regardless of distance (cf.[85, 31]).

Let 𝐴: ”The spin of particle 𝑃1 is up.”

Contexts 𝒞1, 𝒞2: Measurement of 𝑃1 in 𝒞1 instantly determines the spin of 𝑃2 in 𝒞2:

𝑣(𝐴) = (1, 0, 0), if 𝑃2 spin is down in 𝒞2.

Nonlocality is evident as 𝑣(𝐴) spans 𝒞1 and 𝒞2.

Example 22 (Stock Market Volatility (Indeterminacy)). Stock market volatility measures rapid price fluctuations
in financial markets, influenced by economic events, investor behavior, and uncertainty (cf.[14, 41]).

Let 𝐵: ”The stock price of company 𝑋 will increase tomorrow.”

Context 𝒞: Factors such as market trends, global events, and investor sentiment introduce indeterminacy. The
truth value is:

𝑣(𝐵) = (0.5, 0.4, 0.1),

where 𝐼 = 0.4 reflects uncertainty due to incomplete or ambiguous data. Indeterminacy arises from unpredictable
market influences.

Example 23 (Climate Models (Multiindeterminacy)). Let 𝐵: ”Global temperature will rise by 1∘C in 50 years.”

Contexts {𝒞𝑖}3
𝑖=1: Varying predictions from three models yield:

𝑣(𝐵) = (0.6, 0.3, 0.1), where 𝐼 = 0.3 =
3

∑
𝑖=1

𝐼𝑖.

Multiindeterminacy arises from differing model assumptions.
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Example 24 (Global Communications (Multinonlocality)). Let 𝐸: ”Information is transmitted successfully
across the network.”

Contexts {𝒞𝑖, 𝒞𝑗}𝑖≠𝑗: The reliability of nodes in separate regions 𝒞𝑖 and 𝒞𝑗 determines:

where multinonlocality reflects the interaction between contexts

𝑣(𝐸) = (0.9, 0.05, 0.05),

𝒞𝑖 and 𝒞𝑗 across the global network.

3.3 | Some Basic Theorem of Locality, Indeterminacy, and Nonlocality
In this subsection, we present Some Basic Theorems of Locality, Indeterminacy, and Nonlocality.

Theorem 25 (Consistency of Locality). If a proposition 𝐴 is local, then the truth value 𝑣(𝐴) is unaffected by
nonlocal contexts. Formally:

𝑇 (𝐴, 𝒞1) = 𝑇 (𝐴, 𝒞2) for all 𝒞1, 𝒞2 ≠ 𝒞.

Proof : Locality assumes 𝐴 is influenced only by 𝒞. For 𝒞1, 𝒞2 ≠ 𝒞, the absence of influence implies:

𝑣(𝐴) = 𝑇 (𝐴, 𝒞),

and thus 𝑇 (𝐴, 𝒞1) = 𝑇 (𝐴, 𝒞2) follows trivially. �

Theorem 26 (Additivity of Multiindeterminacy). For a proposition 𝐴 exhibiting multiindeterminacy across 𝑛
contexts {𝒞𝑖}𝑛

𝑖=1, the total indeterminacy satisfies:

𝐼 =
𝑛

∑
𝑖=1

𝐼𝑖, where 𝐼𝑖 > 0 for each 𝒞𝑖.

Proof : By definition, multiindeterminacy aggregates indeterminacy from individual contexts:

𝑣(𝐴) = (𝑇 , 𝐼, 𝐹 ), 𝐼 =
𝑛

∑
𝑖=1

𝐼𝑖.

The constraint 𝐼𝑖 > 0 ensures that each context contributes to the total indeterminacy. �

4 | Mathematical Framework of Partial Locality, Partial Non-Locality, and Partial
Indeterminacy

In this section, we examine the Mathematical Framework of Partial Locality, Partial Non-Locality, and Partial
Indeterminacy.

An overview of Partial Locality, Partial Non-Locality, and Partial Indeterminacy is provided below:

• Partial Locality refers to a situation where an object or system is partially influenced by its immediate
surroundings, with limited external interactions or dependencies.

• Partial Non-Locality describes a condition where an object or system is partially influenced by distant
factors or entities without direct physical contact.

• Partial Indeterminacy represents a system exhibiting unclear or mixed characteristics, influenced neither
entirely locally nor entirely non-locally.
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4.1 | Definitions of Partial Locality, Partial Non-Locality, and Partial Indeterminacy
In this subsection, we consider about Definitions of Partial Locality, Partial Non-Locality, and Partial Indetermi-
nacy.

Definition 27 (Partial Locality). (cf.[73]) A proposition 𝐴 ∈ 𝒫 exhibits partial locality if its truth value is
influenced by its immediate surroundings with a fractional dependency denoted by 𝛼 ∈ [0, 1]. Formally:

𝑣(𝐴) = 𝛼 ⋅ 𝑇 (𝐴, 𝒞local) + (1 − 𝛼) ⋅ Residual Effects,

where 𝒞local is the immediate local context and 𝛼 represents the degree of locality.

Definition 28 (Partial Non-Locality). (cf.[73]) A proposition 𝐴 ∈ 𝒫 exhibits partial non-locality if its truth
value is influenced by distant or separate contexts with a fractional dependency 𝛽 ∈ [0, 1]. Formally:

𝑣(𝐴) = 𝛽 ⋅ 𝑇 (𝐴, 𝒞nonlocal) + (1 − 𝛽) ⋅ Residual Effects,

where 𝒞nonlocal refers to nonlocal contexts influencing 𝐴, and 𝛽 represents the degree of non-locality.

Definition 29 (Partial Indeterminacy). (cf.[73]) A proposition 𝐴 ∈ 𝒫 exhibits partial indeterminacy if its truth
value includes an indeterminate component 𝛾 ∈ [0, 1] due to hidden variables or ambiguous influences. Formally:

𝑣(𝐴) = (𝑇 , 𝛾 ⋅ 𝐼, 𝐹 ),

where 𝐼 is the total indeterminacy, and 𝛾 represents the degree of partial indeterminacy.

Remark 30. Partial locality, non-locality, and indeterminacy may coexist for a single proposition, forming a
composite influence model:

𝑣(𝐴) = 𝛼 ⋅ 𝑇 (𝐴, 𝒞local) + 𝛽 ⋅ 𝑇 (𝐴, 𝒞nonlocal) + 𝛾 ⋅ 𝐼,

where 𝛼, 𝛽, 𝛾 ∈ [0, 1] and 𝛼 + 𝛽 + 𝛾 ≤ 1.

4.2 | Theorems and Proofs of Partial Locality, Partial Non-Locality, and Partial Inde-
terminacy

In this subsection, we present Some Basic Theorems of artial Locality, Partial Non-Locality, and Partial
Indeterminacy.

Theorem 31 (Consistency of Partial Locality). If a proposition 𝐴 exhibits partial locality with degree 𝛼, then
the influence from nonlocal contexts diminishes proportionally. Formally:

𝑣(𝐴) = 𝛼 ⋅ 𝑇 (𝐴, 𝒞local) + (1 − 𝛼) ⋅ 𝑇 (𝐴, 𝒞nonlocal),

where 𝛼 → 1 implies pure locality.

Proof : By definition, 𝛼 scales the influence of 𝒞local, and 1 − 𝛼 scales the complementary effect from 𝒞nonlocal.
As 𝛼 → 1, the term (1 − 𝛼) ⋅ 𝑇 (𝐴, 𝒞nonlocal) vanishes, yielding pure locality. �

Theorem 32 (Superposition of Influences). The total influence on a proposition 𝐴 can be represented as a
superposition of partial locality, partial non-locality, and partial indeterminacy:

𝑣(𝐴) = 𝛼 ⋅ 𝑇 (𝐴, 𝒞local) + 𝛽 ⋅ 𝑇 (𝐴, 𝒞nonlocal) + 𝛾 ⋅ 𝐼.

Proof : The influence components are orthogonal by construction: 𝒞local affects 𝐴 directly, 𝒞nonlocal introduces
distant dependencies, and 𝐼 incorporates ambiguity. Thus, the superposition holds. �
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4.3 | Examples of Partial Locality, Partial Non-Locality, and Partial Indeterminacy
In this subsection, we present Examples of Partial Locality, Partial Non-Locality, and Partial Indeterminacy.

Example 33 (Quantum Physics: Aharonov-Bohm Effect). Quantum physics studies the behavior of particles at
atomic and subatomic scales, governed by principles like wave-particle duality and superposition (cf.[8, 27]).

Let 𝐴: ”A charged particle is influenced by an electromagnetic potential.”

Local Context 𝒞local: The particle exists in a region with no magnetic field intensity.

Nonlocal Context 𝒞nonlocal: The electromagnetic potential resides outside the particle’s local region.

𝑣(𝐴) = 𝛼 ⋅ 𝑇 (𝐴, 𝒞local) + 𝛽 ⋅ 𝑇 (𝐴, 𝒞nonlocal),
where 𝛽 > 0 captures the nonlocal influence of the potential.

Example 34 (Ecology: Migratory Birds). Let 𝐵: ”Birds impact the nutrient cycle.”

Local Context 𝒞local: Birds forage and nest locally.

Nonlocal Context 𝒞nonlocal: Migratory behavior spreads nutrients across ecosystems.

𝑣(𝐵) = 𝛼 ⋅ 𝑇 (𝐵, 𝒞local) + 𝛽 ⋅ 𝑇 (𝐵, 𝒞nonlocal),
where 𝛽 > 0 quantifies the nonlocal nutrient transfer.

5 | New Definition of Local-Neutrosophic Logic and Set

In this section, we introduce a new concept called Local-Neutrosophic Logic and Set. This concept extends
Neutrosophic Logic by incorporating the notion of locality. The definition is provided below.

Definition 35 (Local-Neutrosophic Logic). Local-Neutrosophic Logic assigns to each proposition 𝐴 ∈ 𝒫 a truth
value of the form:

𝑣(𝐴) = (𝑇 , 𝐼, 𝐿, 𝐹),

where:

• 𝑇 ∈ [0, 1]: Degree of truth.

• 𝐼 ∈ [0, 1]: Degree of indeterminacy.

• 𝐿 ∈ [0, 1]: Degree of locality, representing the influence of immediate contextual or spatial factors.

• 𝐹 ∈ [0, 1]: Degree of falsity.

These components satisfy the constraint:
𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1.

Remark 36 (Transformation Rules). Transformation Rules of Local-Neutrosophic Logic are following.

• Locality-to-Truth Transformation: When locality 𝐿 provides strong supporting evidence for truth:
𝑣(𝑈𝐿𝑇(𝐴)) = (𝑇 + 𝐿, 𝐼, 0, 𝐹 ).

• Locality-to-Falsity Transformation: When locality 𝐿 provides strong evidence against truth:
𝑣(𝑈𝐿𝐹(𝐴)) = (𝑇 , 𝐼, 0, 𝐹 + 𝐿).

• Locality-to-Indeterminacy Transformation: When locality 𝐿 introduces ambiguity or uncertainty:
𝑣(𝑈𝐿𝐼(𝐴)) = (𝑇 , 𝐼 + 𝐿, 0, 𝐹).
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• Indeterminacy-to-Locality Transformation: When indeterminacy 𝐼 is clarified by locality 𝐿:
𝑣(𝑈𝐼𝐿(𝐴)) = (𝑇 , 0, 𝐼 + 𝐿, 𝐹).

The definition of the Local-Neutrosophic Set, which extends Local-Neutrosophic Logic to sets, is as follows. It
is anticipated that future research will explore the specific mathematical structures and applications of this
concept.

Definition 37 (Local-Neutrosophic Set). Let 𝑋 be a given universe of discourse. A Local-Neutrosophic Set 𝐴
on 𝑋 is characterized by four membership functions:

where, for each

𝑇𝐴 ∶ 𝑋 → [0, 1], 𝐼𝐴 ∶ 𝑋 → [0, 1], 𝐿𝐴 ∶ 𝑋 → [0, 1], 𝐹𝐴 ∶ 𝑋 → [0, 1],

𝑥 ∈ 𝑋:

• 𝑇𝐴(𝑥): The degree of truth of 𝑥 in 𝐴.

• 𝐼𝐴(𝑥): The degree of indeterminacy of 𝑥 in 𝐴.

• 𝐿𝐴(𝑥): The degree of locality of 𝑥 in 𝐴, representing the influence of immediate spatial, contextual, or
environmental factors.

• 𝐹𝐴(𝑥): The degree of falsity of 𝑥 in 𝐴.

These membership values satisfy the following constraint:
0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐿𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 4.

Remark 38 (Local-Neutrosophic Set). Compared to other sets:

• A Fuzzy Set has a single membership function, 𝜇𝐴(𝑥), representing truth.

• An Intuitionistic Fuzzy Set adds a falsity component, 𝜈𝐴(𝑥), to truth.

• A Neutrosophic Set further includes indeterminacy, 𝐼𝐴(𝑥).

• The Local-Neutrosophic Set expands these by adding locality (𝐿𝐴(𝑥)) to model systems influenced by
contextual factors.

5.1 | Basic Theorem of Local-Neutrosophic Logic
We outline several basic theorems of Local-Neutrosophic Logic below.

Theorem 39 (Preservation of Total Degree). The total degree of the truth valuation remains invariant under
transformations:

𝑇 + 𝐼 + 𝐿 + 𝐹 = 𝑇 ′ + 𝐼′ + 𝐿′ + 𝐹 ′.

Proof : Each transformation redistributes the components among 𝑇 , 𝐼, 𝐿, and 𝐹, preserving their total sum. �

Theorem 40 (Superposition of Influences). The truth value of a proposition 𝐴 in Local-Neutrosophic Logic can
be expressed as:

𝑣(𝐴) = 𝛼 ⋅ 𝑇 + 𝛽 ⋅ 𝐼 + 𝛾 ⋅ 𝐿 + 𝛿 ⋅ 𝐹 ,
where 𝛼, 𝛽, 𝛾, 𝛿 ∈ [0, 1] represent the relative weights of each component and 𝛼 + 𝛽 + 𝛾 + 𝛿 = 1.

Proof : The superposition follows directly from the normalized representation of truth valuation components. �

Theorem 41. Local-Neutrosophic Logic extends Neutrosophic Logic by introducing an additional degree of
locality 𝐿, which represents the influence of immediate contextual or spatial factors. Specifically, every proposition
in Neutrosophic Logic can be represented as a special case of Local-Neutrosophic Logic where 𝐿 = 0.
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Proof : The truth value in Neutrosophic Logic is defined as:
𝑣NL(𝐴) = (𝑇 , 𝐼, 𝐹 ),

where 𝑇 , 𝐼, 𝐹 ∈ [0, 1] and satisfy the constraint:
𝑇 + 𝐼 + 𝐹 ≤ 1.

In Local-Neutrosophic Logic, the truth value is extended to:
𝑣LNL(𝐴) = (𝑇 , 𝐼, 𝐿, 𝐹),

where 𝑇 , 𝐼, 𝐿, 𝐹 ∈ [0, 1] and satisfy the constraint:
𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1.

If we set 𝐿 = 0 in Local-Neutrosophic Logic, the truth value simplifies to:
𝑣LNL(𝐴) = (𝑇 , 𝐼, 0, 𝐹 ) = (𝑇 , 𝐼, 𝐹 ),

which is identical to the truth value in Neutrosophic Logic. Therefore, every truth value in Neutrosophic Logic
is a valid truth value in Local-Neutrosophic Logic.

The addition of 𝐿 in Local-Neutrosophic Logic allows for the representation of an additional degree of influence
from immediate contextual or spatial factors, which is not captured in Neutrosophic Logic. This makes
Local-Neutrosophic Logic a generalized framework.

The constraint 𝑇 + 𝐼 + 𝐹 ≤ 1 in Neutrosophic Logic is preserved in Local-Neutrosophic Logic because setting
𝐿 = 0 satisfies:

𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1.

Local-Neutrosophic Logic reduces to Neutrosophic Logic when 𝐿 = 0, but it also allows for additional flexibility
when 𝐿 > 0. Hence, Local-Neutrosophic Logic is a strict extension of Neutrosophic Logic. �

Theorem 42. A Local-Neutrosophic Set is an extension of a Neutrosophic Set. Specifically, every Neutrosophic
Set can be represented as a Local-Neutrosophic Set where the degree of locality 𝐿𝐴(𝑥) = 0 for all 𝑥 ∈ 𝑋.

Proof : The membership functions of a Neutrosophic Set 𝐴 on 𝑋 are:

with the constraint:
𝑇𝐴 ∶ 𝑋 → [0, 1], 𝐼𝐴 ∶ 𝑋 → [0, 1], 𝐹𝐴 ∶ 𝑋 → [0, 1],

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3, ∀𝑥 ∈ 𝑋.

For a Local-Neutrosophic Set 𝐴 on 𝑋, the membership functions are extended to include 𝐿𝐴:

with the constraint:
𝑇𝐴 ∶ 𝑋 → [0, 1], 𝐼𝐴 ∶ 𝑋 → [0, 1], 𝐿𝐴 ∶ 𝑋 → [0, 1], 𝐹𝐴 ∶ 𝑋 → [0, 1],

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐿𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 4, ∀𝑥 ∈ 𝑋.

If 𝐿𝐴(𝑥) = 0 for all 𝑥 ∈ 𝑋, the membership functions of a Local-Neutrosophic Set reduce to:

with the constraint:
𝑇𝐴 ∶ 𝑋 → [0, 1], 𝐼𝐴 ∶ 𝑋 → [0, 1], 𝐹𝐴 ∶ 𝑋 → [0, 1],

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3, ∀𝑥 ∈ 𝑋,
which is identical to the structure of a Neutrosophic Set.

The additional component 𝐿𝐴(𝑥) in a Local-Neutrosophic Set allows for the representation of an additional
degree of locality, representing the influence of spatial, contextual, or environmental factors. This flexibility
generalizes the concept of Neutrosophic Sets.

For any 𝑥 ∈ 𝑋, the constraint 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 in a Neutrosophic Set is preserved in a
Local-Neutrosophic Set when 𝐿𝐴(𝑥) = 0, satisfying:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐿𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 4.
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A Local-Neutrosophic Set reduces to a Neutrosophic Set when 𝐿𝐴(𝑥) = 0 for all 𝑥 ∈ 𝑋, but it also allows for
additional flexibility when 𝐿𝐴(𝑥) > 0. Hence, the Local-Neutrosophic Set is a strict extension of the Neutrosophic
Set. �

Theorem 43. Local-Neutrosophic Logic can represent locality, non-locality, and indeterminacy through the values
𝑇 , 𝐼, 𝐿, 𝐹 assigned to propositions in the form 𝑣(𝐴) = (𝑇 , 𝐼, 𝐿, 𝐹), satisfying 𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1. Specifically:

• Locality is captured by 𝐿, representing the influence of immediate surroundings.

• Non-locality is represented by the truth or falsity components 𝑇 and 𝐹, influenced by distant contexts.

• Indeterminacy is represented by 𝐼, capturing the uncertainty or ambiguity.

Proof : Let 𝐴 ∈ 𝒫 be a proposition evaluated in Local-Neutrosophic Logic with 𝑣(𝐴) = (𝑇 , 𝐼, 𝐿, 𝐹).

From the definition of locality:
𝑣(𝐴) = (𝑇 , 𝐼, 𝐿, 𝐹), 𝐿 > 0.

Here, 𝐿 explicitly represents the degree to which 𝐴 is influenced by its immediate surroundings (local context).
If 𝐿 = 0, 𝐴 has no local influence. Thus, locality is embedded within the 𝐿 component.

Non-locality is captured when 𝐿 is small (𝐿 → 0) and the remaining truth (𝑇) or falsity (𝐹) values depend on
distant contexts. Specifically:

𝑣(𝐴) = (𝛽 ⋅ 𝑇 (𝐴, 𝒞nonlocal), 𝐼, 𝐿, 𝛽 ⋅ 𝐹(𝐴, 𝒞nonlocal)),
where 𝒞nonlocal represents nonlocal contexts and 𝛽 (0 < 𝛽 ≤ 1) denotes the degree of non-locality. Non-locality
arises when 𝑇 or 𝐹 depends on contexts spatially or conceptually separated from the local context.

Indeterminacy is directly captured by the 𝐼 component in 𝑣(𝐴). If 𝐼 > 0, there exists a degree of uncertainty or
ambiguity in the truth value of 𝐴. Indeterminacy arises from hidden variables, conflicting evidence, or incomplete
information. Formally:

𝑣(𝐴) = (𝑇 , 𝛾 ⋅ 𝐼, 𝐿, 𝐹), where 𝛾 ∈ [0, 1].
Here, 𝛾 controls the contribution of indeterminacy to the overall evaluation.

By definition, Local-Neutrosophic Logic satisfies:
𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1.

This constraint ensures that locality, non-locality, and indeterminacy are mathematically consistent and their
contributions to 𝑣(𝐴) are bounded.

Hence, Local-Neutrosophic Logic effectively represents locality, non-locality, and indeterminacy through the
values 𝑇 , 𝐼, 𝐿, 𝐹, satisfying the stated constraint. �

5.2 | Examples of Local-Neutrosophic Logic in real-life scenarios
In this subsection, we explain examples of Local-Neutrosophic Logic in real-life scenarios.

Example 44 (Quantum Physics: Measurement Locality). Quantum physics studies the behavior of particles at
atomic and subatomic scales, governed by principles like wave-particle duality and superposition (cf.[8, 27]).

Let 𝐴: ”The spin of a particle is up.”

Truth Components:
𝑣(𝐴) = (𝑇 , 𝐼, 𝐿, 𝐹) = (0.6, 0.2, 0.1, 0.1),

where:

• 𝑇 = 0.6: Evidence strongly supports the particle’s spin being up.

• 𝐼 = 0.2: Uncertainty due to measurement limitations.

• 𝐿 = 0.1: Local experimental context influences spin alignment.

• 𝐹 = 0.1: Weak evidence against the proposition.
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Example 45 (Ecology: Pollination Dynamics). Pollination dynamics refers to the interactions between plants
and pollinators, such as bees or birds, facilitating plant reproduction and ecosystem stability (cf.[28]).

Let 𝐵: ”Pollinators improve crop yield in a region.”

Truth Components:
𝑣(𝐵) = (𝑇 , 𝐼, 𝐿, 𝐹) = (0.7, 0.1, 0.15, 0.05),

where:

• 𝑇 = 0.7: Direct observations confirm significant pollination effects.

• 𝐼 = 0.1: Uncertainty due to unmeasured ecological variables.

• 𝐿 = 0.15: Local interactions between pollinators and plants are notable.

• 𝐹 = 0.05: Minimal evidence contradicts the proposition.

Example 46 (Medical Diagnosis(Locality-to-Truth Transformation)). Let 𝐴: ”The patient has a specific viral
infection.”

Initial Truth Value:
𝑣(𝐴) = (𝑇 , 𝐼, 𝐿, 𝐹) = (0.5, 0.3, 0.2, 0.0),

where:

• 𝑇 = 0.5: Initial test results partially support the diagnosis.

• 𝐼 = 0.3: Indeterminate due to conflicting symptoms.

• 𝐿 = 0.2: Locality reflects observations by a specialist.

• 𝐹 = 0.0: No evidence against the diagnosis.

Transformation: Given that 𝐿 provides strong supporting evidence (e.g., specialist confirmation), the transfor-
mation 𝑈𝐿𝑇 is applied:

𝑣(𝑈𝐿𝑇(𝐴)) = (𝑇 + 𝐿, 𝐼, 0, 𝐹 ) = (0.7, 0.3, 0.0, 0.0).

Interpretation: The patient’s diagnosis is now more likely to be true, as locality strongly supports the proposition.

Example 47 (Weather Prediction(Locality-to-Falsity Transformation)). Let 𝐵: ”It will rain tomorrow.”

Initial Truth Value:
𝑣(𝐵) = (𝑇 , 𝐼, 𝐿, 𝐹) = (0.4, 0.3, 0.3, 0.0),

where:

• 𝑇 = 0.4: Weak prediction models suggest rain.

• 𝐼 = 0.3: Indeterminacy due to uncertainty in weather models.

• 𝐿 = 0.3: Local observations (e.g., clear skies).

• 𝐹 = 0.0: No significant evidence against rain.

Transformation: Since 𝐿 strongly opposes 𝑇 (e.g., clear skies observed), the transformation 𝑈𝐿𝐹 is applied:
𝑣(𝑈𝐿𝐹(𝐵)) = (𝑇 , 𝐼, 0, 𝐹 + 𝐿) = (0.4, 0.3, 0.0, 0.3).

Interpretation: The proposition becomes less likely, as local observations indicate no rain.

Example 48 (Ecological Impact(Locality-to-Indeterminacy Transformation)). Let 𝐶: ”Reintroducing wolves to
a forest will improve biodiversity.”

Initial Truth Value:
𝑣(𝐶) = (𝑇 , 𝐼, 𝐿, 𝐹) = (0.6, 0.2, 0.2, 0.0),

where:
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• 𝑇 = 0.6: Prior studies support this outcome.

• 𝐼 = 0.2: Some uncertainty due to unknown ecological factors.

• 𝐿 = 0.2: Local reports suggest potential unintended consequences.

• 𝐹 = 0.0: No evidence contradicting the proposition.

Transformation: Local observations introduce ambiguity, applying 𝑈𝐿𝐼:

𝑣(𝑈𝐿𝐼(𝐶)) = (𝑇 , 𝐼 + 𝐿, 0, 𝐹) = (0.6, 0.4, 0.0, 0.0).

Interpretation: The uncertainty in the proposition increases due to conflicting local data.

Example 49 (Supply Chain Disruption (Indeterminacy-to-Locality Transformation)). Let 𝐷: ”A factory
shutdown will disrupt global supply chains.”

Initial Truth Value:
𝑣(𝐷) = (𝑇 , 𝐼, 𝐿, 𝐹) = (0.5, 0.4, 0.1, 0.0),

where:

• 𝑇 = 0.5: Preliminary analysis suggests a significant impact.

• 𝐼 = 0.4: Indeterminacy due to lack of specific data.

• 𝐿 = 0.1: Localized reports provide clarity on immediate effects.

• 𝐹 = 0.0: No evidence against the proposition.

Transformation: Local evidence reduces indeterminacy, applying 𝑈𝐼𝐿:

𝑣(𝑈𝐼𝐿(𝐷)) = (𝑇 , 0, 𝐼 + 𝐿, 𝐹) = (0.5, 0.0, 0.5, 0.0).

Interpretation: The proposition’s reliance on locality increases as specific data becomes available.

6 | Future Tasks of this research

In this section, we consider future tasks of this research.

6.1 | Some Extension of Local-Neutrosophic Logic (Open Question)
There is interest in exploring the possibility of extending the above logic using the following set concepts. Further
research in this direction is anticipated.

Question 50. Can the logic be extended using the following sets? Additionally, what are the mathematical
characteristics of these extensions, their relationships with other uncertain concepts, and their potential
applications?

• Double-Valued Neutrosophic Sets [38, 35]

• Interval-Valued Neutrosophic Sets [86, 94, 95]

• Plithogenic Sets [25, 67, 79, 66]

• Soft Sets[46, 44]

• Hypersoft Sets[53, 19, 24, 1, 65]

• Neutrosophic Offset[64, 57, 72, 63, 70, 69]
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6.2 | Neutrosophic Dynamic Systems
A Neutrosophic Dynamic System (NDS) is a generalized framework for modeling systems characterized by
uncertainty, incompleteness, or contradictions. The definition is provided below[71]. There is particular interest
in exploring how the current Local-Neutrosophic Logic can be extended to Neutrosophic Dynamic Systems.

Definition 51 (Neutrosophic Dynamic Systems). [71] Let 𝒰 be the universe of discourse. A Neutrosophic
Dynamic System is defined as:

𝒟𝑁 = (Ω, ℰ, ℛ),
where:

• Ω ⊆ 𝒰: The neutrosophic space (or state space), representing the elements of the system. It is defined
as:

Ω = {𝑥𝑖(𝑇𝑖, 𝐼𝑖, 𝐹𝑖) ∣ 𝑥𝑖 ∈ Ω, 𝑇𝑖, 𝐼𝑖, 𝐹𝑖 ∈ [0, 1], 𝑖 ∈ {1, 2, … , 𝑛}},
where:

– 𝑇𝑖: The degree of membership (truth) of 𝑥𝑖 in Ω.

– 𝐼𝑖: The degree of indeterminacy (uncertainty) of 𝑥𝑖 in Ω.

– 𝐹𝑖: The degree of non-membership (falsity) of 𝑥𝑖 in Ω.

• ℰ: The set of elements within Ω. Each element 𝑥𝑖 is associated with time-varying neutrosophic degrees
(𝑇𝑖, 𝐼𝑖, 𝐹𝑖), which evolve over time.

• ℛ: The set of neutrosophic hyperrelationships representing interactions within the system. A neutrosophic
hyperrelationship is defined as:

ℛHR ∶ Ω𝑘 × 𝒞(Ω)𝑙 → 𝒫([0, 1]),
where:

– ℛHR(𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑘
, 𝑦𝑗1

, 𝑦𝑗2
, … , 𝑦𝑗𝑙

) = (𝑇ℛ, 𝐼ℛ, 𝐹ℛ),

– 𝑇ℛ, 𝐼ℛ, 𝐹ℛ ∈ [0, 1]: Degrees of truth, indeterminacy, and falsity for the hyperrelationship.

– 𝑘: Number of interacting elements within Ω.

– 𝑙: Number of interacting elements between Ω and 𝒞(Ω), the complement of Ω in 𝒰.

Definition 52 (Open and Closed Neutrosophic Systems). [71]

• A system is closed if 𝑙 = 0, meaning all relationships are confined to Ω.

• A system is open if 𝑙 ≥ 1, allowing interactions between Ω and 𝒞(Ω).

Definition 53 (Time-Dependent Neutrosophic dynamic system). [71] The neutrosophic dynamic system evolves
over time, with changes occurring in its space, elements, and relationships:

𝒟𝑁(𝑡) = (Ω(𝑡), ℰ(𝑡), ℛ(𝑡)).

• Element Dynamics: The degrees of membership, indeterminacy, and non-membership for each element
vary over time:

𝑇𝑖(𝑡), 𝐼𝑖(𝑡), 𝐹𝑖(𝑡),
subject to the constraint:

𝑇𝑖(𝑡) + 𝐼𝑖(𝑡) + 𝐹𝑖(𝑡) ≤ 1, ∀𝑖, ∀𝑡.

• Relationship Dynamics: The hyperrelationships evolve over time, represented as:
ℛHR(𝑡) = (𝑇ℛ(𝑡), 𝐼ℛ(𝑡), 𝐹ℛ(𝑡)).

• Space Dynamics: The neutrosophic space Ω may change due to:

– Addition of new elements to Ω.
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– Removal of existing elements from Ω.

– Changes in the neutrosophic degrees (𝑇𝑖, 𝐼𝑖, 𝐹𝑖) of elements within Ω.

Example 54 (Ecosystem Dynamics). A biological ecosystem is a community of living organisms interacting
with each other and their environment, including air, water, and soil (cf.[54, 82]).

Consider a biological ecosystem modeled as a neutrosophic dynamic system:

• Ω = {𝑥1, 𝑥2, … , 𝑥𝑛}: The set of species in the ecosystem, where each species 𝑥𝑖 is characterized by its
neutrosophic attributes (𝑇𝑖, 𝐼𝑖, 𝐹𝑖).

• 𝑇𝑖(𝑡): Degree to which species 𝑥𝑖 is adapted to the environment at time 𝑡. For example, 𝑇𝑖(𝑡) may
increase if 𝑥𝑖 develops traits that improve survival under current environmental conditions.

: Degree of uncertainty in species• 𝐼𝑖(𝑡) 𝑥𝑖’s role or impact in the ecosystem. This reflects incomplete
knowledge about how 𝑥𝑖 interacts with other species or adapts to environmental changes.

• 𝐹𝑖(𝑡): Degree to which species 𝑥𝑖 is maladapted or detrimental to the ecosystem. For instance, 𝐹𝑖(𝑡)
may increase if 𝑥𝑖 contributes to ecosystem imbalance.

The hyperrelationships ℛHR(𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑘
) = (𝑇ℛ, 𝐼ℛ, 𝐹ℛ) capture the dynamic interactions among species:

• 𝑇ℛ: Degree to which the interaction benefits the ecosystem (e.g., symbiosis).

• 𝐼ℛ: Degree of indeterminacy in the interaction (e.g., uncertain impact of competition).

• 𝐹ℛ: Degree to which the interaction harms the ecosystem (e.g., predation imbalance).

As the ecosystem evolves, the following dynamics may occur:

• Species 𝑥𝑖 may join or leave Ω due to migration, extinction, or introduction.

• The neutrosophic degrees 𝑇𝑖(𝑡), 𝐼𝑖(𝑡), 𝐹𝑖(𝑡) and hyperrelationship values 𝑇ℛ(𝑡), 𝐼ℛ(𝑡), 𝐹ℛ(𝑡) change over
time based on environmental conditions, resource availability, and species interactions.

• External influences, such as human intervention or climate change, may alter the system by introducing
new relationships ℛHR or modifying Ω.

This framework provides a dynamic, nuanced representation of ecosystem behavior, accommodating uncertainty
and variability in species interactions.

Example 55 (Social Networks). Social networks are structures of individuals or groups connected through
relationships like communication, collaboration, or shared interests, often facilitated by technology(cf.[39, 32, 42]).

Consider a social network modeled as a neutrosophic dynamic system:

• Ω = {𝑥1, 𝑥2, … , 𝑥𝑛}: The set of individuals in the network, where each individual 𝑥𝑖 is characterized by
neutrosophic attributes (𝑇𝑖, 𝐼𝑖, 𝐹𝑖).

• 𝑇𝑖(𝑡): Degree to which individual 𝑥𝑖 positively contributes to the network at time 𝑡. For instance, 𝑇𝑖(𝑡)
may increase if 𝑥𝑖 actively collaborates or shares valuable information.

: Degree of neutrality or indifference of• 𝐼𝑖(𝑡) 𝑥𝑖 in the network. This could reflect an individual’s limited
or ambiguous involvement in network activities.

• 𝐹𝑖(𝑡): Degree to which 𝑥𝑖 detracts from the network, such as spreading misinformation or creating
conflicts.

The hyperrelationships ℛHR(𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑘
) = (𝑇ℛ, 𝐼ℛ, 𝐹ℛ) represent interactions within the network:

• 𝑇ℛ: Degree to which the interaction enhances network cohesion (e.g., collaborative projects).

• 𝐼ℛ: Degree of indeterminacy in the interaction (e.g., ambiguous communication).

• 𝐹ℛ: Degree to which the interaction harms the network (e.g., disputes or competitive behavior).
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The dynamic behavior of the network includes:

• Addition or removal of individuals (𝑥𝑖) to/from Ω, reflecting network growth or attrition.

• Changes in the neutrosophic degrees 𝑇𝑖(𝑡), 𝐼𝑖(𝑡), 𝐹𝑖(𝑡) of individuals based on their evolving roles and
contributions.

• Evolution of hyperrelationships ℛHR(𝑡) as collaboration patterns, social dynamics, or external influences
(e.g., new policies or technological changes) reshape the network.

This model captures the complexity and variability of social interactions, accommodating the uncertainty and
contradictions inherent in human networks.
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