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Abstract

Graph theory is a fundamental branch of mathematics that examines networks composed of nodes
(vertices) and connections (edges). This paper explores the concepts of permutation graphs within the
frameworks of fuzzy, intuitionistic fuzzy, neutrosophic, and Turiyam Neutrosophic graphs, all of which
handle uncertainty in graph structures. We define permutation and bipartite permutation graphs in each
context and investigate their properties. While permutation graphs have been studied extensively in
classical graph theory, there has been limited exploration in fuzzy and neutrosophic settings.
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1 | Introduction

1.1 | Permutation graphs
Graph theory is a fundamental branch of mathematics that examines networks composed of nodes (vertices) and
connections (edges), which are essential for analyzing the structure, paths, and properties of these networks
[1]. One important example in graph theory is the intersection graph, where vertices correspond to sets, and
edges are drawn between vertices if their corresponding sets intersect [2]. Many related graph classes have
been extensively researched, such as interval graphs [3], proper interval graphs [4], weighted interval graphs
[5], semi-proper interval graphs [6], mixed interval graphs [7], unit disk graphs [8], circular arc graphs [9], and
polygon-circle graphs [10].

In this paper, we focus on permutation graphs [11], a specific type of intersection graph that has garnered
significant attention due to its practical applications and importance in the study of various graph classes.
Permutation graphs are defined such that vertices represent elements of a permutation, and edges connect pairs
of vertices if their corresponding elements in the permutation are reversed in order.

The following properties and statements hold.
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Theorem 1. The following are known classes of graphs recognized as permutation graphs:

• Comparability graphs[12]: Graphs where the vertices represent elements and edges exist if they are
comparable in a partial order.

• chordal comparability graphs[13]: Chordal graph for comparability graphs.

• Co-comparability graphs[14]: Graphs where the complement is a comparability graph, meaning vertices
are non-adjacent if they are comparable.

• Trapezoid graphs[15]: Intersection graphs of trapezoids between two parallel lines, generalizing interval
graphs.

Theorem 2. The following are known as generalized or related graph classes of permutation graphs:

• Circular permutation graphs[16]: Circular permutation graphs are intersection graphs derived from
circular permutation diagrams, where edges represent intersecting chords between two circles.

• Bipartite permutation graphs [17]: A bipartite permutation graph is both bipartite and a permutation
graph, offering efficient solutions for certain NP-complete problems.

• Random permutation graphs [18]: A random permutation graph is formed by connecting two vertices if
their permutation order and index difference have opposite signs.

• Functi graphs [19]: Functigraphs generalize permutation graphs by connecting two disjoint copies of a
graph with additional edges defined by a function between their vertices.

• Split permutation graphs [20]: Split permutation graphs are graphs that belong to both split and permutation
graph classes, combining properties of both.

• Probe permutation graphs [21]: Probe permutation graphs are permutation graphs where vertices are
partitioned into probes and nonprobes, with additional edges only between certain nonprobes.

• Polar permutation graphs [22]: Polar permutation graphs are permutation graphs where the vertex set can
be partitioned into two: one part forms a complete multipartite graph, the other forms disjoint complete
graphs.

• Connected permutation graphs[23]: Connected graph of permutation graphs.

• Double-threshold permutation graphs[24]: Double-threshold graphs are defined by two thresholds, where
vertex adjacency is based on the sum of their ranks falling in a specific ”YES” region.

• cycle permutation graphs[25]: Cycle permutation graphs represent graphs formed by cyclic permutations,
where vertices correspond to elements, and edges represent a specific cyclic permutation of these elements.

• weighted permutation graphs[26]: Weighted version of permutation graphs.

• 𝜋-Permutation Graphs[27]: A 𝜋-permutation graph is formed by connecting two disjoint copies of a graph
via a matching determined by a permutation 𝜋.

• Balanced Permutation Graphs[28]: A balanced permutation graph is a graph where vertices 𝑖 and 𝑗 are
adjacent if and only if 𝑖 + 𝑗 = 𝜋(𝑖) + 𝜋(𝑗), based on a given permutation 𝜋.

• Permutation hypergraphs[29]: Hypergraph version of Permutation hypergraphs.

1.2 | Fuzzy Graphs and Neutrosophic Graphs
In this paper, we examine Fuzzy Graphs, Intuitionistic Fuzzy Graphs, Neutrosophic Graphs, and Turiyam
Neutrosophic Graphs. These graph concepts were developed to address uncertainty in real-world applications.

A fuzzy graph assigns a membership value between 0 and 1 to each vertex and edge, reflecting the degree of
uncertainty or imprecision [30]. In essence, fuzzy graphs serve as graphical representations of fuzzy sets [31],
and are frequently applied in areas such as social networks, decision-making, and transportation systems, where
relationships are often uncertain or ambiguous [30]. Intuitionistic Fuzzy Graphs expand upon fuzzy graphs
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by introducing both membership and non-membership degrees for vertices and edges, thus further capturing
the uncertainty inherent in relationships [32]. Neutrosophic Graphs [33], derived from neutrosophic set theory
[34, 35], extend classical and fuzzy logic by incorporating three components: truth, indeterminacy, and falsity,
providing a more flexible approach to managing uncertainty. Turiyam Neutrosophic Graphs, introduced as a
further extension of neutrosophic and fuzzy graphs, assign four attributes—truth, indeterminacy, falsity, and
a liberal state—to each vertex and edge [36]. Further extensions, such as Plithogenic Graphs, have also been
studied [37].

Despite substantial advancements in the study of fuzzy and neutrosophic graphs, including their intersection
variants (e.g., fuzzy intersection graphs [38] and neutrosophic intersection graphs [39]), there has been relatively
little exploration of permutation graphs within the frameworks of fuzzy, neutrosophic, and Turiyam Neutrosophic
graphs.

1.3 | Our Contribution
As mentioned above, extensive research has been conducted on Fuzzy Graphs, Intuitionistic Fuzzy Graphs,
Neutrosophic Graphs, and Turiyam Neutrosophic Graphs. Similarly, there has been considerable work on
permutation graphs in the context of classic graph theory. In this paper, we define permutation graphs and
bipartite permutation graphs within the frameworks of Fuzzy Graphs (cf. [40]), Intuitionistic Fuzzy Graphs,
Neutrosophic Graphs, and Turiyam Neutrosophic Graphs, and examine their properties and relationships.

2 | Preliminaries and definitions

In this section, we present a brief overview of the definitions and notations used throughout this paper. We will
specifically cover fundamental concepts related to graphs, including fuzzy graphs, intuitionistic fuzzy graphs,
Turiyam Neutrosophic graphs, neutrosophic graphs.

2.1 | Basic Graph Concepts
Here are a few basic graph concepts listed below. For more foundational graph concepts and notations, please
refer to [1].

Definition 3 (Graph). [1] A graph 𝐺 is a mathematical structure consisting of a set of vertices 𝑉 (𝐺) and a set
of edges 𝐸(𝐺) that connect pairs of vertices, representing relationships or connections between them. Formally,
a graph is defined as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the vertex set and 𝐸 is the edge set.

Definition 4 (Degree). [1] Let 𝐺 = (𝑉 , 𝐸) be a graph. The degree of a vertex 𝑣 ∈ 𝑉, denoted deg(𝑣), is the
number of edges incident to 𝑣. Formally, for undirected graphs:

deg(𝑣) = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}|.

In the case of directed graphs, the in-degree deg−(𝑣) is the number of edges directed into 𝑣, and the out-degree
deg+(𝑣) is the number of edges directed out of 𝑣.

Definition 5 (Subgraph). [1] A subgraph of 𝐺 is a graph formed by selecting a subset of vertices and edges
from 𝐺.

Definition 6 (Induced subgraph). [41, 42] Let 𝐺 = (𝑉 , 𝐸) be a graph, where 𝑉 is the set of vertices and 𝐸
is the set of edges. For a subset 𝑉 ′ ⊆ 𝑉, the induced subgraph 𝐺[𝑉 ′] is the graph whose vertex set is 𝑉 ′ and
whose edge set consists of all edges from 𝐸 that have both endpoints in 𝑉 ′. Formally, the induced subgraph
𝐺[𝑉 ′] = (𝑉 ′, 𝐸′) is defined as follows:

𝐸′ = {(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 ∈ 𝑉 ′, 𝑣 ∈ 𝑉 ′}.

In other words, 𝐺[𝑉 ′] is the subgraph of 𝐺 that contains all vertices in 𝑉 ′ and all edges from 𝐺 whose endpoints
are both in 𝑉 ′.
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Definition 7 (Complete Graph). (cf.[43, 44]) A complete graph is a graph 𝐺 = (𝑉 , 𝐸) in which every pair of
distinct vertices is connected by a unique edge. Formally, a graph 𝐺 = (𝑉 , 𝐸) is complete if for every pair of
vertices 𝑢, 𝑣 ∈ 𝑉 with 𝑢 ≠ 𝑣, there exists an edge {𝑢, 𝑣} ∈ 𝐸.

The complete graph on 𝑛 vertices is denoted by 𝐾𝑛, and it has the following properties:

• The number of vertices is |𝑉 | = 𝑛.

• The number of edges is |𝐸| = (𝑛
2) = 𝑛(𝑛−1)

2 .

• Each vertex has degree deg(𝑣) = 𝑛 − 1 for all 𝑣 ∈ 𝑉.

Definition 8 (Bipartite Graph). (cf.[45]) A bipartite graph is a graph 𝐺 = (𝑉 , 𝐸) whose vertex set 𝑉 can be
partitioned into two disjoint subsets 𝑉1 and 𝑉2 such that:

• 𝑉 = 𝑉1 ∪ 𝑉2 and 𝑉1 ∩ 𝑉2 = ∅.

• Every edge in 𝐸 connects a vertex from 𝑉1 to a vertex from 𝑉2. In other words, there are no edges
connecting two vertices within the same subset 𝑉1 or 𝑉2.

Formally, 𝐺 = (𝑉 , 𝐸) is bipartite if there exists a partition (𝑉1, 𝑉2) such that for every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸,
either 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2 or 𝑢 ∈ 𝑉2 and 𝑣 ∈ 𝑉1.

A graph 𝐺 is bipartite if and only if it contains no odd-length cycles.

Definition 9 (Complete Bipartite Graph). (cf.[46]) A complete bipartite graph is a graph 𝐺 = (𝑉 , 𝐸) whose
vertex set 𝑉 can be partitioned into two disjoint subsets 𝑉1 and 𝑉2 such that:

• 𝑉 = 𝑉1 ∪ 𝑉2 and 𝑉1 ∩ 𝑉2 = ∅.

• There is an edge between every vertex in 𝑉1 and every vertex in 𝑉2.

• There are no edges between vertices within the same subset 𝑉1 or 𝑉2.

The complete bipartite graph with |𝑉1| = 𝑚 and |𝑉2| = 𝑛 is denoted by 𝐾𝑚,𝑛. It has the following properties:

• The number of vertices is |𝑉 | = 𝑚 + 𝑛.

• The number of edges is |𝐸| = 𝑚 × 𝑛.

• Each vertex in 𝑉1 has degree 𝑛, and each vertex in 𝑉2 has degree 𝑚.

Definition 10 (homomorphic). (cf.[47]) Two graphs 𝐺 = (𝑉 , 𝐸) and 𝐻 = (𝑉 ′, 𝐸′) are said to be homomorphic
if there exists a mapping 𝜙 ∶ 𝑉 → 𝑉 ′ such that for every edge (𝑢, 𝑣) ∈ 𝐸, the image (𝜙(𝑢), 𝜙(𝑣)) is an edge in 𝐸′.
In other words, there is a structure-preserving mapping from 𝐺 to 𝐻 that maintains the adjacency relationships
between vertices.

2.2 | Intersection graph and permutation graphs
In this paper, we focus on permutation graphs, which are known as intersection graphs. Intersection graphs
have been extensively studied[2]. The definition is provided below[2].

Definition 11 (Intersection graph). [2] A intersection graph is a graph that represents the intersection
relationships between sets. Formally, let 𝒮 = {𝑆1, 𝑆2, … , 𝑆𝑛} be a collection of sets. The intersection graph
𝐺 = (𝑉 , 𝐸) associated with 𝒮 is a graph where:

• The vertex set 𝑉 corresponds to the sets in 𝒮, i.e., 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, where each vertex 𝑣𝑖 represents
the set 𝑆𝑖 ∈ 𝒮.

• There is an edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 if and only if the corresponding sets 𝑆𝑖 and 𝑆𝑗 have a non-empty intersection,
i.e., 𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅.
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The definitions of permutation graphs and bipartite permutation graphs are provided below. As mentioned in
the introduction, extensive research has been conducted on these graphs [48, 49].

Definition 12. [11] A graph 𝐺 = (𝑉 , 𝐸) is called a permutation graph if there exists a permutation 𝜋 of the set
{1, 2, … , 𝑛}, where 𝑛 = |𝑉 |, such that for any two distinct vertices 𝑢 and 𝑣 ∈ 𝑉, the edge (𝑢, 𝑣) ∈ 𝐸 exists if and
only if the indices of 𝑢 and 𝑣 in 𝜋 are reversed in order. Formally, for a permutation 𝜋, if vertices 𝑢 = 𝑖 and
𝑣 = 𝑗 satisfy 𝑖 < 𝑗 and 𝜋(𝑖) > 𝜋(𝑗), then there exists an edge (𝑢, 𝑣) ∈ 𝐺.

In other words, a permutation graph is the intersection graph of line segments joining pairs of points on two
parallel lines, where each vertex corresponds to a line segment, and two vertices are adjacent if their corresponding
line segments intersect.

Example 13. Consider the set 𝑉 = {1, 2, 3, 4} and the permutation 𝜋 = (3, 1, 4, 2), which maps the elements of
𝑉 as follows:

𝜋(1) = 3, 𝜋(2) = 1, 𝜋(3) = 4, 𝜋(4) = 2

The permutation graph 𝐺 = (𝑉 , 𝐸) is formed by adding edges between vertices 𝑖 and 𝑗 if the indices are reversed
in 𝜋. That is, (𝑖, 𝑗) ∈ 𝐸 if 𝑖 < 𝑗 and 𝜋(𝑖) > 𝜋(𝑗).

From the permutation 𝜋 = (3, 1, 4, 2), we add edges between the following vertices:

(1, 2) because 1 < 2 and 𝜋(1) = 3 > 𝜋(2) = 1,

(1, 4) because 1 < 4 and 𝜋(1) = 3 > 𝜋(4) = 2,

(3, 4) because 3 < 4 and 𝜋(3) = 4 > 𝜋(4) = 2.

Thus, the edge set 𝐸 is:
𝐸 = {(1, 2), (1, 4), (3, 4)}

The resulting graph is the permutation graph corresponding to 𝜋 = (3, 1, 4, 2).

Definition 14. [17, 50] A graph 𝐺 = (𝑉 , 𝐸) is called a bipartite permutation graph if 𝐺 is both a bipartite graph
and a permutation graph. Specifically, 𝐺 is bipartite if its vertex set can be partitioned into two independent
sets 𝑉1 and 𝑉2, where there are no edges between vertices within the same set. The edges of 𝐺 are defined based
on the adjacency condition of a permutation graph.

Formally, 𝐺 = (𝑉1 ∪ 𝑉2, 𝐸) is a bipartite permutation graph if there exists a permutation 𝜋 of the vertices in
𝑉1 ∪ 𝑉2 such that for any two vertices 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2, there is an edge (𝑢, 𝑣) ∈ 𝐸 if and only if 𝜋(𝑢) and 𝜋(𝑣)
intersect in the corresponding permutation diagram. Thus, bipartite permutation graphs combine the structure
of bipartite graphs with the properties of permutation graphs.

Example 15. Consider a bipartite graph 𝐺 = (𝑉1 ∪ 𝑉2, 𝐸), where 𝑉1 = {1, 2} and 𝑉2 = {3, 4}. Let the
permutation 𝜋 = (4, 3, 2, 1) represent the mapping of the vertices 1, 2, 3, 4.

In this graph, edges are formed between the vertices in 𝑉1 and 𝑉2 based on the permutation condition (𝑖, 𝑗) ∈ 𝐸
if 𝜋(𝑖) and 𝜋(𝑗) are reversed. For 𝜋 = (4, 3, 2, 1):

(1, 3) because 𝜋(1) = 4 > 𝜋(3) = 2,

(2, 4) because 𝜋(2) = 3 > 𝜋(4) = 1.

Thus, the bipartite permutation graph has the edge set:

𝐸 = {(1, 3), (2, 4)}

This graph satisfies the bipartite and permutation graph conditions.
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2.3 | Permutation graph in Fuzzy Graphs
Now, we explore permutation graph and bipartite permutation graphs within the context of fuzzy graphs.

Fuzzy sets extend classical sets by allowing elements to have varying degrees of membership, represented by
values between 0 and 1, rather than a binary classification of membership or non-membership[31]. Similarly,
fuzzy graphs generalize classical graph theory by incorporating the principles of fuzzy sets [31, 51]. Due to their
flexibility and practical utility, fuzzy graphs have been widely studied [52, 30]. They find applications in fields
such as decision-making [53, 54], Disaster management[55, 56], and neural networks [57, 58], among others.

The definition of a fuzzy graph is provided below.

Definition 16 (Fuzzy Graph). [30] A fuzzy graph 𝜓 = (𝑉 , 𝜎, 𝜇) consists of:

• 𝑉 is a set of vertices.

• 𝜎 ∶ 𝑉 → [0, 1] is a function that assigns a membership degree to each vertex 𝑣 ∈ 𝑉, representing the
degree of membership of 𝑣 in the fuzzy graph.

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is a fuzzy relation that represents the strength of the connection between each pair of
vertices (𝑢, 𝑣) ∈ 𝑉 × 𝑉, such that 𝜇(𝑢, 𝑣) ≤ min{𝜎(𝑢), 𝜎(𝑣)}.

These functions satisfy the following conditions:

(1) 𝜇(𝑢, 𝑣) ≤ min{𝜎(𝑢), 𝜎(𝑣)} for all 𝑢, 𝑣 ∈ 𝑉,

(2) 𝜇(𝑢, 𝑣) = 𝜇(𝑣, 𝑢) for all 𝑢, 𝑣 ∈ 𝑉 (symmetry),

(3) 𝜇(𝑣, 𝑣) = 0 for all 𝑣 ∈ 𝑉 (no self-loops).

The definitions of Fuzzy Permutation Graph and Fuzzy Bipartite Permutation Graph are provided below.

Definition 17 (Fuzzy Permutation Graph). (cf. [40]) Let 𝑉 = {1, 2, … , 𝑛} be a finite set of vertices, and let 𝜋
be a permutation of 𝑉. A fuzzy permutation graph 𝜓 = (𝑉 , 𝜎, 𝜇) is a fuzzy graph where:

• 𝜎 ∶ 𝑉 → (0, 1] assigns a positive membership degree to each vertex 𝑣 ∈ 𝑉.

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is defined as:

𝜇(𝑢, 𝑣) = {min{𝜎(𝑢), 𝜎(𝑣)}, if 𝑢 < 𝑣 and 𝜋(𝑢) > 𝜋(𝑣),
0, otherwise.

The underlying crisp graph 𝐺 = (𝑉 , 𝐸), where 𝐸 = {(𝑢, 𝑣) ∣ 𝜇(𝑢, 𝑣) > 0}, is a permutation graph corresponding
to the permutation 𝜋.

Definition 18 (Fuzzy Bipartite Permutation Graph). Let 𝑉 = 𝑉1 ∪ 𝑉2 be a finite set of vertices partitioned
into two disjoint independent sets 𝑉1 and 𝑉2, and let 𝜋 be a permutation of 𝑉. A fuzzy bipartite permutation
graph 𝜓 = (𝑉 , 𝜎, 𝜇) is a fuzzy graph where:

• 𝜎 ∶ 𝑉 → (0, 1] assigns positive membership degrees to each vertex 𝑣 ∈ 𝑉.

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is defined as:

𝜇(𝑢, 𝑣) = {min{𝜎(𝑢), 𝜎(𝑣)}, if 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2, and 𝜋(𝑢) > 𝜋(𝑣),
0, otherwise.

The underlying crisp graph 𝐺 = (𝑉 , 𝐸), where 𝐸 = {(𝑢, 𝑣) ∣ 𝜇(𝑢, 𝑣) > 0}, is a bipartite permutation graph
corresponding to the permutation 𝜋.
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2.4 | Permutation graph in Intuitionistic fuzzy Graphs
Next, we examine permutation graphs within the framework of intuitionistic fuzzy graphs. Intuitionistic fuzzy
graphs are an extended form of fuzzy graphs and have been the focus of extensive research for over 15 years [32].
They are closely related to the concept of intuitionistic fuzzy sets [59, 60].

Much like fuzzy-related concepts, the study of intuitionistic fuzzy graphs and their related ideas has also seen
significant progress [61, 62]. The definitions of intuitionistic fuzzy graphs and intuitionistic fuzzy permutation
graphs are presented below.

Definition 19 (Intuitionistic Fuzzy Graph (IFG)). [63] Let 𝐺 = (𝑉 , 𝐸) be a classical graph where 𝑉 denotes the
set of vertices and 𝐸 denotes the set of edges. An Intuitionistic Fuzzy Graph (IFG) on 𝐺, denoted 𝐺𝐼𝐹 = (𝐴, 𝐵),
is defined as follows:

(1) (𝜇𝐴, 𝑣𝐴) is an Intuitionistic Fuzzy Set (IFS) on the vertex set 𝑉. For each vertex 𝑥 ∈ 𝑉, the degree of
membership 𝜇𝐴(𝑥) ∈ [0, 1] and the degree of non-membership 𝑣𝐴(𝑥) ∈ [0, 1] satisfy:

𝜇𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 1

The value 1 − 𝜇𝐴(𝑥) − 𝑣𝐴(𝑥) represents the hesitancy or uncertainty regarding the membership of 𝑥 in
the set.

(2) (𝜇𝐵, 𝑣𝐵) is an Intuitionistic Fuzzy Relation (IFR) on the edge set 𝐸. For each edge (𝑥, 𝑦) ∈ 𝐸, the
degree of membership 𝜇𝐵(𝑥, 𝑦) ∈ [0, 1] and the degree of non-membership 𝑣𝐵(𝑥, 𝑦) ∈ [0, 1] satisfy:

𝜇𝐵(𝑥, 𝑦) + 𝑣𝐵(𝑥, 𝑦) ≤ 1

Additionally, the following constraints must hold for all 𝑥, 𝑦 ∈ 𝑉:

𝜇𝐵(𝑥, 𝑦) ≤ 𝜇𝐴(𝑥) ∧ 𝜇𝐴(𝑦)

𝑣𝐵(𝑥, 𝑦) ≤ 𝑣𝐴(𝑥) ∨ 𝑣𝐴(𝑦)

In this definition:

• 𝜇𝐴(𝑥) and 𝑣𝐴(𝑥) represent the degree of membership and non-membership of the vertex 𝑥, respectively.

• 𝜇𝐵(𝑥, 𝑦) and 𝑣𝐵(𝑥, 𝑦) represent the degree of membership and non-membership of the edge (𝑥, 𝑦),
respectively.

• If 𝑣𝐴(𝑥) = 0 and 𝑣𝐵(𝑥, 𝑦) = 0 for all 𝑥 ∈ 𝑉 and (𝑥, 𝑦) ∈ 𝐸, then the Intuitionistic Fuzzy Graph reduces
to a Fuzzy Graph.

Next, we define the Intuitionistic Fuzzy Permutation Graph and Intuitionistic Fuzzy Bipartite Permutation
Graph.

Definition 20 (Intuitionistic Fuzzy Permutation Graph). An Intuitionistic Fuzzy Permutation Graph is an
extension of the permutation graph into the intuitionistic fuzzy domain, where each vertex and edge is assigned
both a membership degree and a non-membership degree, representing the uncertainty of their presence. Let
𝐺 = (𝑉 , 𝐸) be a classical permutation graph and 𝜋 be a permutation of the set {1, 2, … , 𝑛}, where 𝑛 = |𝑉 |. The
graph is defined as follows:

• 𝑉 is the set of vertices.

• For each vertex 𝑣 ∈ 𝑉, the degree of membership 𝜇𝑉(𝑣) ∈ [0, 1] and the degree of non-membership
𝜈𝑉(𝑣) ∈ [0, 1] satisfy:

𝜇𝑉(𝑣) + 𝜈𝑉(𝑣) ≤ 1
The value 1 − 𝜇𝑉(𝑣) − 𝜈𝑉(𝑣) represents the hesitancy or uncertainty regarding the membership of the
vertex 𝑣.
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• For each pair of vertices 𝑢, 𝑣 ∈ 𝑉, the degree of membership 𝜇𝐸(𝑢, 𝑣) ∈ [0, 1] and the degree of non-
membership 𝜈𝐸(𝑢, 𝑣) ∈ [0, 1] for the edge (𝑢, 𝑣) satisfy:

𝜇𝐸(𝑢, 𝑣) + 𝜈𝐸(𝑢, 𝑣) ≤ 1
The edge membership degree 𝜇𝐸(𝑢, 𝑣) is determined as:

𝜇𝐸(𝑢, 𝑣) = {min(𝜇𝑉(𝑢), 𝜇𝑉(𝑣)), if 𝑢 < 𝑣 and 𝜋(𝑢) > 𝜋(𝑣),
0, otherwise.

Similarly, the non-membership degree 𝜈𝐸(𝑢, 𝑣) is:

𝜈𝐸(𝑢, 𝑣) = {max(𝜈𝑉(𝑢), 𝜈𝑉(𝑣)), if 𝑢 < 𝑣 and 𝜋(𝑢) > 𝜋(𝑣),
1, otherwise.

The underlying crisp graph corresponds to the permutation graph associated with the permutation 𝜋.

Definition 21 (Intuitionistic Fuzzy Bipartite Permutation Graph). An Intuitionistic Fuzzy Bipartite Permutation
Graph extends both the concepts of bipartite graphs and permutation graphs into the intuitionistic fuzzy
framework. Let 𝑉 = 𝑉1 ∪ 𝑉2 be a finite set of vertices, partitioned into two independent sets 𝑉1 and 𝑉2, with 𝜋
as a permutation on 𝑉1 ∪ 𝑉2. The graph 𝐺 = (𝑉 , 𝐸, 𝜇𝑉, 𝜈𝑉, 𝜇𝐸, 𝜈𝐸) is defined as follows:

• 𝑉1 and 𝑉2 are independent sets of vertices.

• For each vertex 𝑣 ∈ 𝑉, the degree of membership 𝜇𝑉(𝑣) ∈ [0, 1] and the degree of non-membership
𝜈𝑉(𝑣) ∈ [0, 1] satisfy:

𝜇𝑉(𝑣) + 𝜈𝑉(𝑣) ≤ 1
The value 1 − 𝜇𝑉(𝑣) − 𝜈𝑉(𝑣) represents the uncertainty regarding the membership of the vertex 𝑣.

• For each edge (𝑢, 𝑣) ∈ 𝑉1 × 𝑉2, the degree of membership 𝜇𝐸(𝑢, 𝑣) ∈ [0, 1] and the degree of non-
membership 𝜈𝐸(𝑢, 𝑣) ∈ [0, 1] satisfy:

𝜇𝐸(𝑢, 𝑣) + 𝜈𝐸(𝑢, 𝑣) ≤ 1
The membership degree of the edge (𝑢, 𝑣) is:

𝜇𝐸(𝑢, 𝑣) = {min(𝜇𝑉(𝑢), 𝜇𝑉(𝑣)), if 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2 and 𝜋(𝑢) > 𝜋(𝑣),
0, otherwise.

The non-membership degree 𝜈𝐸(𝑢, 𝑣) is:

𝜈𝐸(𝑢, 𝑣) = {max(𝜈𝑉(𝑢), 𝜈𝑉(𝑣)), if 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2 and 𝜋(𝑢) > 𝜋(𝑣),
1, otherwise.

This definition ensures that the intuitionistic fuzzy bipartite permutation graph maintains both the bipartite and
permutation graph structures while incorporating intuitionistic fuzzy membership and non-membership degrees.

2.5 | Permutation graph in Neutrosophic Graphs
As noted in the introduction, neutrosophic graphs are an extension of fuzzy graphs and intuitionistic fuzzy
graphs. A neutrosophic graph assigns truth, indeterminacy, and falsity membership degrees to each vertex and
edge, representing uncertainty. Similar to fuzzy graphs, neutrosophic graphs have been extensively studied
[64, 65, 66].

Neutrosophic graphs are closely linked to the concept of neutrosophic sets [67].

Beyond graphs and sets, research on neutrosophic theory has paralleled the depth of studies on fuzzy theory,
with numerous contributions [68, 69].

The formal definition is provided below [70, 71]

Definition 22. [71] A neutrosophic graph 𝐺 = (𝑉 , 𝐸, 𝜎 = (𝜎𝑇, 𝜎𝐼, 𝜎𝐹), 𝜇 = (𝜇𝑇, 𝜇𝐼, 𝜇𝐹)) is a graph where:
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• 𝜎 ∶ 𝑉 → [0, 1]3 assigns a triple (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)) representing the truth, indeterminacy, and falsity
membership degrees to each vertex 𝑣 ∈ 𝑉.

• 𝜇 ∶ 𝐸 → [0, 1]3 assigns a triple (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)) representing the truth, indeterminacy, and falsity
membership degrees to each edge 𝑒 ∈ 𝐸.

• For every edge 𝑒 = 𝑣𝑖𝑣𝑗 ∈ 𝐸, the following condition holds:
𝜇𝑇(𝑒) ≤ min(𝜎𝑇(𝑣𝑖), 𝜎𝑇(𝑣𝑗)).

(1) 𝜎 is called the neutrosophic vertex set.

(2) 𝜇 is called the neutrosophic edge set.

(3) The number of vertices |𝑉 | is the order of 𝐺, denoted by 𝑂(𝐺).

(4) The sum of the truth values over all vertices, ∑𝑣∈𝑉 𝜎𝑇(𝑣), is the neutrosophic order of 𝐺, denoted by
𝑂𝑛(𝐺).

(5) The number of edges |𝐸| is the size of 𝐺, denoted by 𝑆(𝐺).

(6) The sum of the truth values over all edges, ∑𝑒∈𝐸 𝜇𝑇(𝑒), is the neutrosophic size of 𝐺, denoted by 𝑆𝑛(𝐺).

Next, we define the neutrosophic permutation graph and neutrosophic Bipartite Permutation Graph. The
neutrosophic permutation graph extends the structure of the permutation graph by degrees of truth, indeterminacy,
and falsity for each vertex and edge.

Definition 23 (Neutrosophic Permutation Graph). A Neutrosophic Permutation Graph is an extension of
the classical permutation graph into the neutrosophic domain, where each vertex and edge is assigned truth,
indeterminacy, and falsity membership degrees. Let 𝐺 = (𝑉 , 𝐸) be a permutation graph with a permutation 𝜋 of
the set {1, 2, … , 𝑛}, where 𝑛 = |𝑉 |. The neutrosophic permutation graph 𝐺𝑁 = (𝑉 , 𝐸, 𝜎, 𝜇) is defined as follows:

• 𝜎 ∶ 𝑉 → [0, 1]3 assigns to each vertex 𝑣 ∈ 𝑉 a triple (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)) representing the truth,
indeterminacy, and falsity membership degrees, respectively.

• 𝜇 ∶ 𝐸 → [0, 1]3 assigns to each edge 𝑒 ∈ 𝐸 a triple (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)), representing the truth,
indeterminacy, and falsity membership degrees, respectively.

• For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, the truth membership degree 𝜇𝑇(𝑢, 𝑣) is determined as:

𝜇𝑇(𝑢, 𝑣) = {min(𝜎𝑇(𝑢), 𝜎𝑇(𝑣)), if 𝑢 < 𝑣 and 𝜋(𝑢) > 𝜋(𝑣),
0, otherwise.

The indeterminacy 𝜇𝐼(𝑢, 𝑣) and falsity 𝜇𝐹(𝑢, 𝑣) degrees are defined similarly.

Definition 24 (Neutrosophic Bipartite Permutation Graph). A Neutrosophic Bipartite Permutation Graph is
an extension of the bipartite permutation graph into the neutrosophic domain, where truth, indeterminacy, and
falsity membership degrees are assigned to vertices and edges. Let 𝐺 = (𝑉1 ∪ 𝑉2, 𝐸) be a bipartite permutation
graph with vertex sets 𝑉1 and 𝑉2, and let 𝜋 be a permutation on 𝑉1 ∪𝑉2. The neutrosophic bipartite permutation
graph 𝐺𝑁 = (𝑉1 ∪ 𝑉2, 𝐸, 𝜎, 𝜇) is defined as follows:

• 𝜎 ∶ 𝑉 → [0, 1]3 assigns to each vertex 𝑣 ∈ 𝑉1 ∪ 𝑉2 a triple (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)) representing the truth,
indeterminacy, and falsity membership degrees, respectively.

• 𝜇 ∶ 𝐸 → [0, 1]3 assigns to each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 a triple (𝜇𝑇(𝑢, 𝑣), 𝜇𝐼(𝑢, 𝑣), 𝜇𝐹(𝑢, 𝑣)), representing the
truth, indeterminacy, and falsity membership degrees, respectively.

• The truth membership degree 𝜇𝑇(𝑢, 𝑣) for each edge 𝑒 = (𝑢, 𝑣) is defined as:

𝜇𝑇(𝑢, 𝑣) = {min(𝜎𝑇(𝑢), 𝜎𝑇(𝑣)), if 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2 and 𝜋(𝑢) > 𝜋(𝑣),
0, otherwise.

The indeterminacy 𝜇𝐼(𝑢, 𝑣) and falsity 𝜇𝐹(𝑢, 𝑣) degrees are defined similarly.
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2.6 | Permutation graph in Turiyam Neutrosophic Graph
We explore Permutation graphs within the context of Turiyam Neutrosophic Graphs. Turiyam Neutrosophic
Graph extends classical graphs by assigning four values—truth, indeterminacy, falsity, and liberal state—to each
vertex and edge. Research on Turiyam Neutrosophic Graphs, which introduce parameters to extend Neutrosophic
Graphs, is actively ongoing [72, 73]. These graphs serve as graphical representations of the Turiyam Neutrosophic
Set [74]. The formal definition is provided below.

Definition 25 (Turiyam Neutrosophic Graph). [72, 75] Let 𝐺 = (𝑉 , 𝐸) be a classical graph with a finite set of
vertices 𝑉 = {𝑣𝑖 ∶ 𝑖 = 1, 2, … , 𝑛} and edges 𝐸 = {(𝑣𝑖, 𝑣𝑗) ∶ 𝑖, 𝑗 = 1, 2, … , 𝑛}. A Turiyam Neutrosophic Graph of
𝐺, denoted 𝐺𝑇 = (𝑉 𝑇, 𝐸𝑇), is defined as follows:

(1) Turiyam Neutrosophic Vertex Set: For each vertex 𝑣𝑖 ∈ 𝑉, the Turiyam Neutrosophic graph assigns the
following mappings:

𝑡(𝑣𝑖), 𝑖𝑣(𝑣𝑖), 𝑓𝑣(𝑣𝑖), 𝑙𝑣(𝑣𝑖) ∶ 𝑉 → [0, 1],
where:

• 𝑡(𝑣𝑖) is the truth value (tv) of the vertex 𝑣𝑖,

• 𝑖𝑣(𝑣𝑖) is the indeterminacy value (iv) of 𝑣𝑖,

• 𝑓𝑣(𝑣𝑖) is the falsity value (fv) of 𝑣𝑖,

• 𝑙𝑣(𝑣𝑖) is the Turiyam Neutrosophic state (or liberal value) (lv) of 𝑣𝑖,

for all 𝑣𝑖 ∈ 𝑉, such that the following condition holds for each vertex:

0 ≤ 𝑡(𝑣𝑖) + 𝑖𝑣(𝑣𝑖) + 𝑓𝑣(𝑣𝑖) + 𝑙𝑣(𝑣𝑖) ≤ 4.

(2) Turiyam Neutrosophic Edge Set: For each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, the Turiyam Neutrosophic graph assigns the
following mappings:

𝑡(𝑣𝑖, 𝑣𝑗), 𝑖𝑣(𝑣𝑖, 𝑣𝑗), 𝑓𝑣(𝑣𝑖, 𝑣𝑗), 𝑙𝑣(𝑣𝑖, 𝑣𝑗) ∶ 𝐸 → [0, 1],

where:

• 𝑡(𝑣𝑖, 𝑣𝑗) is the truth value of the edge (𝑣𝑖, 𝑣𝑗),

• 𝑖𝑣(𝑣𝑖, 𝑣𝑗) is the indeterminacy value of (𝑣𝑖, 𝑣𝑗),

• 𝑓𝑣(𝑣𝑖, 𝑣𝑗) is the falsity value of (𝑣𝑖, 𝑣𝑗),

• 𝑙𝑣(𝑣𝑖, 𝑣𝑗) is the Turiyam Neutrosophic state (or liberal value) of (𝑣𝑖, 𝑣𝑗),

for all (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, such that the following condition holds for each edge:

0 ≤ 𝑡(𝑣𝑖, 𝑣𝑗) + 𝑖𝑣(𝑣𝑖, 𝑣𝑗) + 𝑓𝑣(𝑣𝑖, 𝑣𝑗) + 𝑙𝑣(𝑣𝑖, 𝑣𝑗) ≤ 4.

In this case, 𝑉 𝑇 represents the Turiyam Neutrosophic vertex set of the graph 𝐺𝑇, and 𝐸𝑇 represents the Turiyam
Neutrosophic edge set of 𝐺𝑇.

Next, we define the Turiyam Neutrosophic Permutation Graph and Turiyam Neutrosophic Bipartite Permutation
Graph. The resulting graph combines the structure of the permutation graph with the Turiyam Neutrosophic
values for truth, indeterminacy, falsity, and liberal state.

Definition 26 (Turiyam Neutrosophic Permutation Graph). A Turiyam Neutrosophic Permutation Graph
extends the classical permutation graph into the Turiyam Neutrosophic framework, where each vertex and edge
is assigned four values: truth, indeterminacy, falsity, and liberal state. Let 𝐺 = (𝑉 , 𝐸) be a classical permutation
graph and 𝜋 be a permutation of the set {1, 2, … , 𝑛}, where 𝑛 = |𝑉 |. The Turiyam Neutrosophic permutation
graph 𝐺𝑇 = (𝑉 𝑇, 𝐸𝑇, 𝑡, 𝑖𝑣, 𝑓𝑣, 𝑙𝑣) is defined as follows:
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• For each vertex 𝑣 ∈ 𝑉, the Turiyam Neutrosophic graph assigns the following values:
𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣) ∶ 𝑉 → [0, 1],

where 𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), and 𝑙𝑣(𝑣) represent the truth value, indeterminacy value, falsity value, and
liberal value of the vertex 𝑣, respectively, satisfying:

0 ≤ 𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4.

• For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, the Turiyam Neutrosophic graph assigns the following values:
𝑡(𝑢, 𝑣), 𝑖𝑣(𝑢, 𝑣), 𝑓𝑣(𝑢, 𝑣), 𝑙𝑣(𝑢, 𝑣) ∶ 𝐸 → [0, 1],

where 𝑡(𝑢, 𝑣), 𝑖𝑣(𝑢, 𝑣), 𝑓𝑣(𝑢, 𝑣), and 𝑙𝑣(𝑢, 𝑣) represent the truth value, indeterminacy value, falsity value,
and liberal value of the edge (𝑢, 𝑣), respectively, satisfying:

0 ≤ 𝑡(𝑢, 𝑣) + 𝑖𝑣(𝑢, 𝑣) + 𝑓𝑣(𝑢, 𝑣) + 𝑙𝑣(𝑢, 𝑣) ≤ 4.

• The edges in the graph are defined based on the permutation 𝜋. There is an edge between vertices 𝑢
and 𝑣 if 𝑢 < 𝑣 and 𝜋(𝑢) > 𝜋(𝑣).

Definition 27 (Turiyam Neutrosophic Bipartite Permutation Graph). A Turiyam Neutrosophic Bipartite
Permutation Graph extends both bipartite graphs and permutation graphs into the Turiyam Neutrosophic
framework, where vertices and edges are assigned truth, indeterminacy, falsity, and liberal values. Let 𝐺 =
(𝑉1 ∪ 𝑉2, 𝐸) be a bipartite permutation graph, where 𝑉1 and 𝑉2 are independent sets, and 𝜋 is a permutation on
𝑉1 ∪ 𝑉2. The Turiyam Neutrosophic bipartite permutation graph 𝐺𝑇 = (𝑉 𝑇, 𝐸𝑇, 𝑡, 𝑖𝑣, 𝑓𝑣, 𝑙𝑣) is defined as follows:

• For each vertex 𝑣 ∈ 𝑉1 ∪ 𝑉2, the Turiyam Neutrosophic graph assigns the following values:
𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣) ∶ 𝑉 → [0, 1],

where 𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), and 𝑙𝑣(𝑣) represent the truth value, indeterminacy value, falsity value, and
liberal value of the vertex 𝑣, respectively, satisfying:

0 ≤ 𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4.

• For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, where 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2, the Turiyam Neutrosophic graph assigns the
following values:

𝑡(𝑢, 𝑣), 𝑖𝑣(𝑢, 𝑣), 𝑓𝑣(𝑢, 𝑣), 𝑙𝑣(𝑢, 𝑣) ∶ 𝐸 → [0, 1],
where 𝑡(𝑢, 𝑣), 𝑖𝑣(𝑢, 𝑣), 𝑓𝑣(𝑢, 𝑣), and 𝑙𝑣(𝑢, 𝑣) represent the truth value, indeterminacy value, falsity value,
and liberal value of the edge (𝑢, 𝑣), respectively, satisfying:

0 ≤ 𝑡(𝑢, 𝑣) + 𝑖𝑣(𝑢, 𝑣) + 𝑓𝑣(𝑢, 𝑣) + 𝑙𝑣(𝑢, 𝑣) ≤ 4.

• The edges between 𝑉1 and 𝑉2 are defined based on the permutation 𝜋, such that there is an edge between
𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2 if 𝜋(𝑢) > 𝜋(𝑣).

3 | Result in this paper

In this section, we present the results of this paper.

3.1 | Property of Neutrosophic Permutation graph
We examine the properties of the Neutrosophic Permutation Graph. Similar properties are also observed in the
Fuzzy Permutation Graph, Intuitionistic Fuzzy Permutation Graph, and Turiyam Neutrosophic Permutation
Graph.

Theorem 28. Every Neutrosophic Permutation Graph can be transformed into a classical Permutation Graph.

Proof : Let
𝐺𝑁 = (𝑉 , 𝐸, 𝜎, 𝜇)

be a Neutrosophic Permutation Graph, where:
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• 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is the vertex set.

• 𝜎 ∶ 𝑉 → [0, 1]3 assigns to each vertex 𝑣 ∈ 𝑉 a triple
𝜎(𝑣) = (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣))

representing the truth, indeterminacy, and falsity membership degrees.

• 𝜇 ∶ 𝐸 → [0, 1]3 assigns to each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 a triple
𝜇(𝑒) = (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒))

satisfying the usual neutrosophic condition
𝜇𝑇(𝑒) ≤ min{𝜎𝑇(𝑢), 𝜎𝑇(𝑣)}.

Assume that the graph is equipped with a permutation 𝜋 on 𝑉 such that an edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 exists if and only if
𝑖 < 𝑗 and 𝜋(𝑣𝑖) > 𝜋(𝑣𝑗). Define the underlying crisp graph 𝐺 = (𝑉 , 𝐸′) by setting

𝐸′ = {(𝑣𝑖, 𝑣𝑗) ∣ (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 and 𝜇𝑇(𝑣𝑖, 𝑣𝑗) > 0}.
Because the existence of an edge in 𝐺𝑁 is dictated by the permutation condition (i.e., 𝑖 < 𝑗 and 𝜋(𝑣𝑖) > 𝜋(𝑣𝑗))
and a positive truth value, it follows that 𝐺 is exactly the classical permutation graph associated with 𝜋. In
other words, by “forgetting” the neutrosophic membership degrees, we recover a classical permutation graph.
This completes the proof. �

Corollary 29. Every Neutrosophic Bipartite Permutation Graph can be transformed into a classical Bipartite
Permutation Graph.

Proof : Let
𝐺𝑁 = (𝑉1 ∪ 𝑉2, 𝐸, 𝜎, 𝜇)

be a Neutrosophic Bipartite Permutation Graph, where the vertex set is partitioned into two disjoint sets 𝑉1
and 𝑉2, and a permutation 𝜋 is defined on 𝑉1 ∪ 𝑉2 so that for every edge (𝑢, 𝑣) ∈ 𝐸 with 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2, the
condition 𝜋(𝑢) > 𝜋(𝑣) holds.

Construct the crisp graph 𝐺 = (𝑉1 ∪ 𝑉2, 𝐸′) by
𝐸′ = {(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈ 𝐸 and 𝜇𝑇(𝑢, 𝑣) > 0}.

Since the permutation condition is preserved and every edge in 𝐸′ satisfies the bipartite condition, 𝐺 is a classical
Bipartite Permutation Graph. �

Corollary 30. Every Fuzzy Permutation Graph, Intuitionistic Fuzzy Permutation Graph, and Turiyam Neutro-
sophic Permutation Graph can be transformed into a classical Permutation Graph.

Proof : In each of these graph models, the existence of an edge is defined by the permutation condition on the
vertex set, in conjunction with a positive membership (or truth) value. By constructing the underlying crisp
graph via

𝐸′ = {(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈ 𝐸 and the corresponding membership degree is positive},
we recover a classical permutation graph. The argument follows identically to that in Theorem 28. �

Corollary 31. Every Fuzzy Bipartite Permutation Graph, Intuitionistic Fuzzy Bipartite Permutation Graph, and
Turiyam Neutrosophic Bipartite Permutation Graph can be transformed into a classical Bipartite Permutation
Graph.

Proof : The transformation is analogous to that in Corollary 29. In each case, by retaining only the edges
with positive membership degrees and preserving the permutation condition within the bipartition 𝑉1 ∪ 𝑉2, the
resulting crisp graph is a classical Bipartite Permutation Graph. �

Theorem 32. Every Neutrosophic Graph whose underlying crisp graph is a permutation graph can be represented
as a Neutrosophic Permutation Graph.
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Proof : Let
𝐺𝑁 = (𝑉 , 𝐸, 𝜎, 𝜇)

be an arbitrary Neutrosophic Graph with vertex set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}. Our goal is to construct a permutation
𝜋 on 𝑉 such that the edge set of 𝐺𝑁 conforms to the permutation condition.

Step 1: Constructing the Permutation. Assign to each vertex 𝑣 ∈ 𝑉 its truth degree 𝜎𝑇(𝑣). Order the
vertices in non-increasing order with respect to 𝜎𝑇(𝑣). (If two vertices have identical truth values, use a secondary
criterion, such as their indeterminacy values 𝜎𝐼(𝑣).) This ordering defines a permutation 𝜋 on 𝑉.

Step 2: Reconstructing the Edge Set. For any two vertices 𝑣𝑖 and 𝑣𝑗 with 𝑖 < 𝑗 (according to the ordering
induced by 𝜋), include an edge (𝑣𝑖, 𝑣𝑗) in the Neutrosophic Permutation Graph if and only if 𝐺𝑁 originally
contains an edge between 𝑣𝑖 and 𝑣𝑗. The neutrosophic membership of the edge is preserved.

Step 3: Verification. By construction, the permutation 𝜋 guarantees that an edge (𝑣𝑖, 𝑣𝑗) satisfies 𝑖 < 𝑗 and
𝜋(𝑣𝑖) > 𝜋(𝑣𝑗) if it exists. Furthermore, the membership conditions

𝜇𝑇(𝑣𝑖, 𝑣𝑗) ≤ min{𝜎𝑇(𝑣𝑖), 𝜎𝑇(𝑣𝑗)}

remain valid. Therefore, the graph 𝐺𝑁 is represented as a Neutrosophic Permutation Graph. �

Theorem 33. Every subgraph of a Neutrosophic Permutation Graph is itself a Neutrosophic Permutation Graph.

Proof : Let
𝐺𝑁 = (𝑉 , 𝐸, 𝜎, 𝜇)

be a Neutrosophic Permutation Graph with associated permutation 𝜋, and let

𝐺′
𝑁 = (𝑉 ′, 𝐸′, 𝜎′, 𝜇′)

be a subgraph with 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. Define the restricted permutation 𝜋′ on 𝑉 ′ as the restriction of 𝜋 to
𝑉 ′. For any two vertices 𝑢, 𝑣 ∈ 𝑉 ′ with 𝑢 < 𝑣 in the order induced by 𝜋′, if (𝑢, 𝑣) ∈ 𝐸′ then by the definition of
𝐺𝑁 it must be that 𝜋(𝑢) > 𝜋(𝑣). Furthermore, the membership functions 𝜎′ and 𝜇′ are the restrictions of 𝜎 and
𝜇 to 𝑉 ′ and 𝐸′. Thus, 𝐺′

𝑁 satisfies all conditions of a Neutrosophic Permutation Graph. �

3.2 | Relation of Neutrosophic Bipartite Graphs
Next, we examine the relationship between Neutrosophic Bipartite Graphs and Neutrosophic Bipartite Permuta-
tion Graphs. The definition of Neutrosophic Bipartite Graph is provided below.

Definition 34 (Neutrosophic Bipartite Graph). A Neutrosophic Bipartite Graph is an extension of the classical
bipartite graph into the neutrosophic domain, where truth, indeterminacy, and falsity membership degrees are
assigned to each vertex and edge.

Let 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) be a neutrosophic graph. The graph 𝐺 is said to be a Neutrosophic Bipartite Graph if there
exists a partition of the vertex set 𝑉 into two disjoint sets 𝑉1 and 𝑉2, such that:

𝑉 = 𝑉1 ∪ 𝑉2 and 𝑉1 ∩ 𝑉2 = ∅,

and for each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, one vertex 𝑢 ∈ 𝑉1 and the other vertex 𝑣 ∈ 𝑉2, i.e., every edge connects a
vertex in 𝑉1 to a vertex in 𝑉2.

Furthermore, the following condition holds for each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸:

𝜇𝑇(𝑒) ≤ min(𝜎𝑇(𝑢), 𝜎𝑇(𝑣)),

where 𝜎𝑇(𝑢) and 𝜎𝑇(𝑣) represent the truth membership degrees of vertices 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2, respectively.

Theorem 35. A Neutrosophic Bipartite Graph can be transformed into a Bipartite Graph.
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Proof : Let
𝐺𝑁 = (𝑉 , 𝐸, 𝜎, 𝜇)

be a Neutrosophic Bipartite Graph, where the vertex set 𝑉 can be partitioned into two disjoint subsets 𝑉1 and
𝑉2 (i.e., 𝑉 = 𝑉1 ∪ 𝑉2 and 𝑉1 ∩ 𝑉2 = ∅). By definition, every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 satisfies 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2 (or
vice versa). In addition, each vertex 𝑣 ∈ 𝑉 is assigned a neutrosophic membership triple

𝜎(𝑣) = (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)),

and each edge 𝑒 ∈ 𝐸 is assigned a neutrosophic membership triple

𝜇(𝑒) = (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)).

To obtain the underlying crisp graph, define the edge set 𝐸′ as follows:

𝐸′ = {(𝑢, 𝑣) ∈ 𝐸 ∣ 𝜇𝑇(𝑢, 𝑣) > 0}.

That is, we retain only those edges for which the truth membership degree is strictly positive. The resulting
crisp graph is then

𝐺 = (𝑉 , 𝐸′).

Since 𝐺𝑁 is bipartite with partition 𝑉1 and 𝑉2, and the transformation does not alter the vertex set or the
bipartite nature of the connections (it only filters edges based on a membership criterion), the crisp graph 𝐺 is
also bipartite with the same vertex partition.

Thus, every Neutrosophic Bipartite Graph can be transformed into a (crisp) Bipartite Graph by this procedure. �

Theorem 36. A Neutrosophic Bipartite Graph is a Neutrosophic Graph.

Proof : By definition, a Neutrosophic Graph is a graph

𝐺𝑁 = (𝑉 , 𝐸, 𝜎, 𝜇)

in which each vertex 𝑣 ∈ 𝑉 is assigned a neutrosophic membership triple

𝜎(𝑣) = (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)),

and each edge 𝑒 ∈ 𝐸 is assigned a neutrosophic membership triple

𝜇(𝑒) = (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)),

satisfying the condition
𝜇𝑇(𝑒) ≤ min{𝜎𝑇(𝑢), 𝜎𝑇(𝑣)} for every 𝑒 = (𝑢, 𝑣) ∈ 𝐸.

A Neutrosophic Bipartite Graph is defined as a Neutrosophic Graph with the additional property that the vertex
set 𝑉 can be partitioned into two disjoint subsets 𝑉1 and 𝑉2 such that every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 connects a
vertex in 𝑉1 to a vertex in 𝑉2. This bipartite condition is an extra structural constraint, but it does not violate
any of the requirements of being a Neutrosophic Graph.

Therefore, since a Neutrosophic Bipartite Graph satisfies all the conditions of a Neutrosophic Graph (with the
extra bipartite partition imposed on 𝑉), it is indeed a Neutrosophic Graph. �

Theorem 37. Every Neutrosophic Bipartite Permutation Graph is a Neutrosophic Graph.

Proof : By definition, a Neutrosophic Bipartite Permutation Graph is a Neutrosophic Graph 𝐺𝑁 = (𝑉 , 𝐸, 𝜎, 𝜇)
with the additional structure that 𝑉 is partitioned into 𝑉1 and 𝑉2 and that there exists a permutation 𝜋 on
𝑉 satisfying 𝜋(𝑢) > 𝜋(𝑣) for every edge (𝑢, 𝑣) with 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2. This additional condition does not
violate any properties required by the definition of a Neutrosophic Graph. Hence, every Neutrosophic Bipartite
Permutation Graph is, in particular, a Neutrosophic Graph. �

Theorem 38. Every Neutrosophic Bipartite Graph whose underlying crisp graph is a bipartite permutation
graph can be represented as a Neutrosophic Bipartite Permutation Graph.
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Proof : Let
𝐺𝑁 = (𝑉1 ∪ 𝑉2, 𝐸, 𝜎, 𝜇)

be a Neutrosophic Bipartite Graph. We construct a permutation 𝜋 on 𝑉1 ∪ 𝑉2 as follows:

(1) Order the vertices in 𝑉1 in non-increasing order with respect to their truth degrees 𝜎𝑇(𝑣) and order the
vertices in 𝑉2 in non-decreasing order.

(2) Define the permutation 𝜋 on 𝑉1 ∪ 𝑉2 so that for every edge (𝑢, 𝑣) ∈ 𝐸 with 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2, we have
𝜋(𝑢) > 𝜋(𝑣).

Then, form the Neutrosophic Bipartite Permutation Graph

𝐺𝜋
𝑁 = (𝑉1 ∪ 𝑉2, 𝐸′, 𝜎, 𝜇′),

where
𝐸′ = {(𝑢, 𝑣) ∣ 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2, (𝑢, 𝑣) ∈ 𝐸 and 𝜋(𝑢) > 𝜋(𝑣)}.

For each edge (𝑢, 𝑣), define
𝜇𝑇(𝑢, 𝑣) = min{𝜎𝑇(𝑢), 𝜎𝑇(𝑣)},

(with analogous definitions for the indeterminacy and falsity degrees). Since the permutation 𝜋 is constructed
to satisfy the required condition, 𝐺𝜋

𝑁 is indeed a Neutrosophic Bipartite Permutation Graph representing the
original 𝐺𝑁. �

4 | Conclusion

In this paper, we introduced permutation graphs and bipartite permutation graphs within the frameworks of
Fuzzy Graphs (cf. [40]), Intuitionistic Fuzzy Graphs, Neutrosophic Graphs, and Turiyam Neutrosophic Graphs,
and then examine their properties and interrelationships. As a future direction of this research, we aim to
explore the practical applications of these graphs in real-life settings.
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