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1 |Introduction 

In recent years, eminent and passionate researchers in the field of educational developments have indicated 

their ultimate interest in educational data mining techniques. Thus, several studies that can definitely 

contribute to the improvement of the educational process are conducted. The results of this lead to several 

issues that have to be addressed if the students general academic performances are to be improved. In this 

paper, we investigate the academic performance of a set of students in their core subjects. This we did by 

using the concept of the neutrosophic frequency as well as the neutrosophic relative frequency distribution 

for the class of scores for the set of students. The results give some form of expectation for their general 

performance. This exercise serves as a means to enhance the educational process of the chosen set of students 

by identifying the students at risk of failure or dropping out and predicting the students' academic level at an 

early stage to provide the necessary support for the at-risk students [10]. Studies involving the exploitation of 

the concepts and  techniques of neutrosophic inference that rely on neutrosophic logic are very useful in 

evaluating the level of human resource performance in economics, institutions, and other working enterprises, 

such as in the field of food industries. This logic is an extension of fuzzy logic and is characterized by its 
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  ability to deal with indeterminate information that carries different degrees of truth, falsehood, neutrality, and 

uncertainty.  This can be further followed by the application of computer software, which produces a 

neutrosophic inference system for human resource data that can be related to qualifications, experiences, 

skills, productivity, absence, discipline, and others. In [6] (Haitham I. A. Ward et al., 2023), data were 

converted into neutrosophic values using membership, comparison, and action functions. Then neutrosophic 

rules were used to calculate human resource performance scores in terms of truth, falsehood, neutrality, and 

uncertainty. The results of the study showed that the level of human resource performance in the institution 

was average in general.  Hence, based on their results, some recommendations were presented in order to 

improve human resource performance in the institution, such as developing training, motivation, evaluation, 

and reward programs. 

Education is generally regarded as a necessary and essential requirement for human development. It is central 

to socioeconomic and technological advancements, and it is critical to the self-generating process of positive 

transformation in modern society. Education is partially about primary socialization and partly about the 

process of imparting knowledge for progress and development, both at the individual and group levels. 

Education is not just about literacy and enlightenment. It is about value formation, value generation, and 

orientation. Having critically examined the word “study,” what is the perception or attitude of students 

towards study? This leads us to the meaning and effect of this perception towards study. Attitude or 

perception, as defined by a researcher, is a mental or neural state of readiness organized through experience 

exerting a directive or dynamic influence upon the individual response to all subjects and situations with 

which it is related. In 1996, a researcher defined attitude as a kind of mental state, representing a predisposition 

to form an opinion. Attitude is one of the determining factors that aid the development of interest, which 

guides action, and the type of attitude that students have developed towards learning has been directed to a 

great extent by their academic performance. Thomas (1977) observed that students who have a positive  

perception of a subject teacher perform better than those who have a negative perception of their subject. 

There are also some attitudes that can affect students learning and have implications for their performance. 

These attitudes include students’ expectations, self-concept, cultural differences, and motivation [4]. Sodipo 

(2015). We enjoin our readers to refer to [10]–[86] of our references. 

An extension of classical statistics is modern neutrosophic statistics. In classical statistics, the data is known 

and formed by crisp numbers, while in neutrosophic statistics, the data may have some forms of 

indeterminacy. Multiple problems, such as attributes in decision-making processes, are often solved using 

hesitant, fuzzy linguistic information.  In the case of the neutrosophic statistics, the data may not be so direct. 

It may seem vague, ambiguous, incomplete, imprecise, or even unknown.[2] (Florentin Smarandache, 2014). 

In  practice.  Sets (such as intervals) [1] in neutrosophic statistics are used instead of crisp numbers in classical 

statistics. In addition, the neutrosophic concepts are undoubtedly very applicable to a host of important 

statistical and mathematical ideals and concepts [5, 9]. 

2 |Preliminaries 

Since the advent of neutrosophic statistics through the concerted efforts of Prof. Dr. Florentin Smarandache, 

many other significant and essential concepts have continually been developed. This includes, among others, 

the introduction of the Neutrosophic Descriptive Statistics (NDS), the Neutrosophic Inferential Statistics 

(NIS), the Neutrosophic Applied Statistics (NAS), and the Neutrosophic Statistical Quality Control (NSQC). 

Neutrosophic statistics is also a generalization of interval statistics. This is because while interval statistics is 

based on interval analysis, neutrosophic statistics is based on set analysis (meaning all kinds of sets, not only 

intervals). Hence, the neutrosophic statistics seem to be more elastic when compared with the classical 

statistics. For instance, if all the data and inference methods are determinate, then the neutrosophic statistics 

coincide with the classical statistics. In reality, our world possesses more indeterminate data than determinate 

data. Hence, there is definitely a need for more neutrosophic statistical procedures than classical ones. 
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3 |On Neutrosophic Statistics 

In neutrosophic statistics, the data may be ambiguous, vague, imprecise, incomplete, or even unknown. 

Instead of crisp numbers used in classical statistics, one uses sets (that respectively approximate these crisp 

numbers) in neutrosophic statistics [2] (Florentin Smarandache, 2014). 

Also, in neutrosophic statistics, the sample size may not be exactly known (for example, the sample size could 

be between 30 and 80; this may happen because, for example, the statistician is not sure about the 50 sample 

individuals if they belong or not to the population of interest, or because the 50 sample individuals only 

partially belong to the population of interest while partially they don’t belong) [8].  

In this example, the neutrosophic sample size is taken as an interval n = [30, 80], instead of a crisp number n 

= 30 (or n = 80) as in classical statistics. Neutrosophic statistics refers to a set of data, such that the data or a 

part of it is indeterminate in some degree, and to methods used to analyze the data (Florentin Smarandache, 

2014) [2]. In classical statistics, all data are determined; this is the distinction between neutrosophic statistics 

and classical statistics.  In many cases, when indeterminacy is zero, neutrosophic statistics coincide with 

classical statistics. We can use the neutrosophic measure for measuring indeterminate data. Neutrosophic data 

is data that contains some indeterminacy. Similarly to classical statistics, it can be classified as: 

- discrete neutrosophic data, if the values are isolated points;for example: 6 + 𝑖1, where  𝑖1 ∈[0,1], 7,  26 + 𝑖2,  

𝑖2  ∈[3,5];  

- and continuous neutrosophic data, if the values form one or more intervals, for example: [0,0.4]  or [0.2 ,1.4] 

(i.e. not sure which one).  

Another classification:  - quantitative (numerical) neutrosophic data; for example: a number in the interval [2, 

5] (we do not know exactly), 47, 52, 67 or 69 (we do not know exactly); - and qualitative (categorical) 

neutrosophic data; for example: blue or red (we don’t know exactly), white, black or green or yellow (not 

knowing exactly (Florentin Smarandache , 2014 ) [2]. Also, we may have: - univariate neutrosophic data, i.e. 

neutro-sophic data that consists of observations on a neutrosophic single attribute;  and multivariable 

neutrosophic data, i.e. neutrosophic data that consists of observations on two or more attributes.  As a 

particular cases we mention the bivariate neutrosophic data, and trivariateneutrosophic data.  A Neutrosopical 

Statistical Number N has the form: 𝑁 = 𝑑 + 𝑖, where d is the determinate (sure) part of N, and iis the 

indeterminate (unsure) part of N.  For example, 𝑎 = 5 + 𝑖, where 𝑖∈ [0, 0.4],is equivalent to 𝑎∈ [5, 5.4], so 

for sure 𝑎 ≥ 5 (meaning that the determinate part of a is 5), while the indeterminate part 𝑖∈ [0,0.4] means the 

possibility for number  “a” to be a little bigger than 5. While the Classical Statistics deals with determinate 

data and determinate inference methods only, the Neutrosophic Statistics deals with indeterminate data, i.e. 

data that has some degree of indeterminacy (unclear, vague, partially unknown, contradictory, incomplete, 

etc.), and indeterminate inference methods that contain degrees of indeterminacy as well (for example, instead 

of crisparguments and values for the probability distributions, charts, diagrams, algorithms, functions etc. 

Neutrosophic Numbers of the form N = a+bI have been defined by W.B. Vasantha  Kandasamy and F. 

Smarandache in 2003, and theywere interpreted as "a" is the determinate part of the number  N, and "bI"as 

the  ndeterminate.  In Imprecise Probability,  the probability of an event is a subset T in [0,1], not a number 

p in [0, 1], what’s left is supposed to be the opposite, subset F (also from the unit interval [0, 1]); there is no 

indeterminate subset I in imprecise probability ( F. Smarandache, 2013)[3] .The function that models the 

Neutrosophic Probability of a random variable x is called Neutrosophic distribution: NP(x) = ( T(x), I(x), 

F(x) ), where T(x) represents the probability that value x occurs, F(x) represents the probability that value x 

does not occur, and I(x) represents the indeterminate / unknown probability of value x. It could be  deduced 

that the  Neutrosophic idea is continuous within the interval while the crisp idea is discrete. And so, combining 

the cases we have as required and indicated:   NP(x) = (T(x), I(x), F(x)). A true neutrosophic number contains 

the indeterminacy I with a non-zero coefficient. According to M. Mahmud etal  (2020) [7],  the generalization 

of the Fuzzy set and Intuitionistic Fuzzy set concept is called as neutrosophic set. This is a  powerful general 



Assessing Students Performance Using Neutrosophic Tool 

 

01

 

  formal framework. The components in neutrosophic set has a degree of truth (T), indeterminacy (I) and falsity 

(F).The value of this components are between [0,1], respectively. A neutrosphic set has a general formal 

framework for analysing uncertainty in data set or undetermined information. Not only uncertainty, 

neutrosophic set can also analyse large information sets or big data sets as well. Single Valued Neutrosophioc 

sets (SVNs) was introduce to be used expediently to deal with real problems and it is appropriate in solving 

data mining problem and make a decision for the problem. In their  paper,  titled “  Student engagement and 

attitude in mathematics achievement using single valued neutrosophic set “, Single valued neutrosophic set 

(SVNs) was proposed to measuring factors impact on student engagement and attitude in mathematics 

achievement based on Trends in International Mathematics and Science Study TIMSS 2015 for ASEAN 

countries. Although the neutrosophic statistics has been defined since 1996, and published in the 1998 book 

Neutrosophy/ Neutrosophic Probability, Set, and Logic, it has not been developed since now. A similar fate 

had the neutrosophic probability that, except a few sporadic articles published in the meantime, it was barely 

developed in the 2013 book “Introduction to Neutrosophic Measure, Neutrosophic Integral, and 

Neutrosophic Probability”. Neutrosophic Statistics is an extension of the classical statistics,and one deals with 

set values instead of crisp values. Neutrosophic Statistics refers to a set of data, such that the data or a part 

of it are indeterminate in some degree, and to methods used to analyze the data. In Classical Statistics all data 

are determined; this is the distinction between neutrosophic statistics and classical statistics.  

Tables 1 - 5  below show the ( percentage ) performance of some sets of six classes of  science students in a 

particular high school in selected five core subjects for the sciences. 

Table 1. shows the percentage performance of some sets of six classes of science students in a particular high school 

in the core subjects: English. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students 

score range 
39-62 44-61 56–64 54-60 50-63 37-73 

 

Table 2. shows the percentage performance of some sets of six classes of science students in a particular high school 

in the core subjects: mathematics. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students 

score range 
54-66 63-67 60-72 58-67 68-76 47-94 

 

Table 3. shows the percentage performance of some sets of six classes of science students in a particular high school 

in the core subjects: physics. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students 

score range 
34-50 44-60 53-67 62-73 44–68 37-76 

 

Table 4. shows the percentage performance of some sets of six classes of science students in a particular high school 

in the core subjects: chemistry. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students 

score range 
52-67 48-65 45-68 46-68 40–70 36-80 

  

Table 5. shows the percentage performance of some sets of six classes of science students in a particular high school 

in the core subjects: biology. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students 

score range 
56-68 48-72 55-67 54-76 45–70 37-92 
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4 | Neutrosophic Frequency Distribution 

A neutrosophic frequency distribution is a table displaying the categories, frequencies, and relative frequencies 

with some indeterminacies. Most often, indeterminacies occur due to imprecise, incomplete, or unknown data 

related to frequency. As a consequence, relative frequency becomes imprecise, incomplete, or unknown too. 

The frequencies are not crisp numbers as in classical statistics, but between some limits. In real life, we cannot 

always compute or provide exact values for the statistical characteristics, but we need to approximate them. 

This is one way of passing from classical to neutrosophic statistics. 

An example of the neutrosophic frequency distribution concerning the range of scores for five core subjects 

for science students in a certain high school is done subject by subject as follows using Tables 6–10: 

Table 6. shows the neutrosophic frequency distribution and the neutrosophic relative frequency distribution 

concerning the range of scores for the science students in a certain high school in the core subject: english. 

CLASSES Neutrosophic frequency 
Neutrosophic relative 

frequency 

JSS1 [39 , 62] [ 0.102, 0.221] 

JSS2 [44 , 61] [0.115, 0.218] 

JSS3 [56 , 64] [0.146, 0.229] 

SS1 [54 , 60] [0.141, 0.214] 

SS2 [50 , 63] [0.131, 0.225] 

SS3 [37 , 73] [0.097, 0.261] 

TOTAL : JSS1 – SS3 [280 , 383] [ 0.731, 1.368] 

 

From here , the minimum neutrosophic frequency for the English classes of scores could be calculated as 

follows : 

𝑀𝑖𝑛nf(e)  = 39 + 44 + 56 +54 +50 +37 =  280  and   𝑀𝑎𝑥nf(e)  = 62 + 61 + 64 +60 + 63 + 73 =  383 

Also, for the neutrosophic relative frequency, we have as follows: 

The   𝑀𝑖𝑛nf(e)    and   𝑀𝑎𝑥nf(e) [39 , 62] ÷ [280 , 383]  =  [0.102, 0.221] 

Table 7. shows the neutrosophic frequency distribution and the neutrosophic relative frequency distribution 

concerning the range of scores for the science students in a certain high school in the core subject: mathematics. 

CLASSES Neutrosophic frequency 
Neutrosophic relative 

frequency 

JSS1 [54 , 66] [ 0.122, 0.189] 

JSS2 [63 , 67] [0.142, 0.191] 

JSS3 [60 , 72] [0.136, 0.206] 

SS1 [58 , 67] [0.131, 0.191] 

SS2 [68 , 76] [0.154, 0.217] 

SS3 [47, 94] [0.106, 0.266] 

TOTAL : JSS1 – SS3 [350 , 442] [0.791, 1.260] 

 

For the JSS1 class , we have the calculations as follows: 

𝑀𝑖𝑛nf(e)  = 54 + 63 + 60 +58 +68 +47 =  350  and  𝑀𝑎𝑥nf(e) = 66 + 67 + 72 +67 +76 + 94 =  442 

Also, for the neutrosophic relative frequency, we have as follows: 

The  𝑀𝑖𝑛nf(e)  and 𝑀𝑎𝑥nf(e) =  [54 , 66] ÷ [350 , 442]  =  [ 0.122, 0.189] 
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  Other calculations are thus obtained analogously and recorded in the respective cells of the tables. 

In order to make our calculations easier, we quickly give the approximate total neutrosophic relative 

frequencies as recorded in the  tables. 

Table 8. shows the neutrosophic frequency distribution and the neutrosophic relative frequency distribution 

concerning the range of scores for the science students in a certain high school in the core subject: physics. 

CLASSES Neutrosophic frequency Neutrosophic relative frequency 

JSS1 [34 , 50] [0.086, 0.183] 

JSS2 [44 ,  60] [0.117, 0.219] 

JSS3 [53 ,  67] [0.135, 0.245] 

SS1 [62 ,  73] [0.157, 0.266] 

SS2 [44 ,  68] [0.112, 0.248] 

SS3 [37 ,  76] [0.094, 0.277] 

TOTAL : JSS1 – SS3 [274 , 394] [0.701, 1.438] 

 

Table 9. shows the neutrosophic frequency distribution and the neutrosophic relative frequency distribution 

concerning the range of scores for the science students in a certain high school in the core subject: chemistry. 

CLASSES Neutrosophic frequency 
Neutrosophic relative 

frequency 

JSS1 [52 , 67] [0.124 . 0. 251] 

JSS2 [48 , 65] [0.115 . 0.244] 

JSS3 [45 , 68] [0. 108. 0. 255] 

SS1 [46 , 68] [0.110 . 0. 255] 

SS2 [40 , 70] [0.096 . 0. 262] 

SS3 [36 , 80] [0. 086. 0. 300] 

TOTAL : JSS1 – SS3 [267 , 418] [0.639 .1.567] 

 

Table 10. shows the neutrosophic frequency distribution and the neutrosophic relative frequency distribution 

concerning the range of scores for the science students in a certain high school in the core subject: biology. 

CLASSES Neutrosophic frequency 
Neutrosophic relative 

frequency 

JSS1 [56 , 68] [0. 126 . 0. 231] 

JSS2 [48 ,72] [0. 108. 0. 244] 

JSS3 [55 , 67] [0.124 . 0. 227] 

SS1 [54 , 76] [0.121 . 0. 258] 

SS2 [45 , 70] [0. 101. 0. 237] 

SS3 [37 , 92] [0.083 . 0. 312] 

TOTAL : JSS1 – SS3 [295 , 445] [0.663 .1.509] 

 

5 |Classical Statistical Frequency Distribution 

Another idea for solving this problem would be to transform the neutrosophic data into classical data, either 

by taking the midpoint of each set or.  In classical statistics, all data are determined; this is the distinction 

between neutrosophic statistics and classical statistics. While classical statistics refers to randomness only, 

neutrosophic statistics refers to both randomness and especially indeterminacy.  

While the classical samples provide accurate information, the neutrosophic samples provide vague or 

incomplete information. Neutrosophic statistics is an extension of classical statistics. While in classical 
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statistics the data is known and formed by crisp numbers, in neutrosophic statistics the data has some 

indeterminacy. In neutrosophic statistics, the data may be ambiguous, vague, imprecise, incomplete, or even 

unknown. Instead of crisp numbers used in classical statistics, one uses sets (that respectively approximate 

these crisp numbers) in neutrosophic statistics. 

In Tables 11–15, the neutrosophic form data has been transformed into a crisp format. This is done by finding 

the average mean for each subject in the entire set of classes of the students under the assessment. 

Table 11. shows the neutrosophic form data transformed into a crisp format for the core subject: English. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students 

score range 
39-62 44-61 56–64 54–60 50-63 37-73 

Class average 

score 
50.5 52.5 60.0 57.0 56.5 55.0 

Total 331.5    Average = 331.5 ÷ 6 = 55.25 

 

Table 12. shows the neutrosophic form data transformed into a crisp format for the core subject: mathematics. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students 

score range 
54-66 63-67 60-72 

58-67 

 
68-76 47–94 

Class average 

score 
60 65 66 62.5 72 70.5 

Total 396    Average = 396.0  ÷ 6 =  66.00 

 

Table 13. shows the neutrosophic form data transformed into a crisp format for the core subject: physics. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students score 

range 
34-50 44-60 53-67 62-73 44-68 37–76 

Class average 

score 
42 52 60 67.5 56 56.5 

Total 334    Average = 334.0 ÷ 6 = 55.67 

 

Table 14. shows the neutrosophic form data transformed into the crisp format for the core subject: chemistry. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students 

score range 
52-67 48-65 45-68 46- 68 40-70 36-80 

Class average 

score 
59.5 56.5 56.5 57.0 55.0 58.0 

Total 342.5    Average = 342.5 ÷ 6 = 57.10 

  

Table 15. shows the neutrosophic form data transformed into a crisp format for the core subject: biology. 

Class JS1 JS2 JS3 SS1 SS2 SS3 

Students 

score range 
56-68 48-72 55-67 54-76 45-70 37-92 

Class 

average 

score 

62.0 60.0 61.0 65.0 57.5 64.5 

Total Average = 370.0 ÷ 6 = 61.67 
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6 |Analysis 

If we are to judge the performances by the highest attainable  score for each subject , clearly , it could easily 

be  observed   that  1.567   > 1.509 > 1.438 > 1.368 > 1.260, and accordingly, the order of performance from 

the highest to the lowest can be in this order Chemistry   >   Biology   >    Physics  >    English >   Mathematics 

Going by the classical statistical mean average for each subject for the sets of classes, we have the level of 

performance represented in the following manner: Mathematics. 1  (66.00 )  >  Biology.  2  (61.67)  >  

Chemistry. 3  (57.10 )  >  Physics. 4 (55.67 )  >  English. 5 ( 55.25 ). 

7 |Interpretation 

From the analysis of the event, the following observations emerge: (i) The classical statistics predict that the 

students are good in mathematics but very weak in English. (ii). The neutrosophic statistics predict that the 

students are poor in mathematics but very good in chemistry. If we go by the prediction of classical statistics, 

one may be deceived to believe that the academic performance of this set of students is okay for their chosen 

career since their mathematics as a core subject is on good ground. But the prediction of the neutrosophic 

statistics is very much in order, at least to be on the server side. This is because if one believes that the students 

performance in mathematics is poor, then efforts would be put in place to improve them and give them more 

of what it takes to prepare them for further future examinations. 

8 |Conclusion 

The classical statistical analysis may be faulty and not able to supply the required information necessary for 

the expected demand, whereas the neutrosophic statistics help in providing what could be of advantage for 

necessary improvements for future expectations. 

For future research, the authors are proposing the following:  

(i). Taking care of the other categories of measures of central tendencies involving neutrosophic 

statistics is also to be considered for the assessment and evaluation of students academic 

performance and other spheres of performance assessment.  

(ii). Putting in more of the Multi-Criteria Decision-Making (MCDM) analysis and subsequently the 

evolving algorithms on the subject. 
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