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1 |Introduction 

Given the great difficulty that we may face when studying the operation of any real system, as well as the high 

cost of studying it, in addition to the fact that some systems cannot be studied directly, here comes the 

importance of the simulation process in all branches of science, as it depends on applying the study to... 

Systems similar to real systems and then projecting these results, if they are appropriate, onto the real system. 

The main interest in statistical analysis is to generate a series of random variables that follow the probability 

distribution in which the system under study operates. In almost all simulation tests, we need to generate 

random variables. Follow a distribution, a distribution that adequately describes and represents the physical 
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The simulation process depends on generating a series of random numbers subject to a regular probability 

distribution in the field [0, 1]. The generation of these numbers is based on the cumulative distribution function of 

the regular distribution, but we encounter many systems that do not, by nature, follow the regular distribution 

adopted in the simulation process. Therefore, it is necessary to Convert these random numbers into random 

variables that follow the probability distribution in which the system to be simulated operates. In classical logic, 

many techniques can be used in the conversion process, which results in random variables that follow irregular 

probability distributions. However, the results we obtain are specific results that do not take into account the 

changes that may occur in the system’s operating environment. To obtain more accurate results, we presented in 

previous research a study to generate neutrosophic random numbers that follow a regular distribution with no 

specificity that can be enjoyed by both ends of the field [0, 1]. One or both of them together, and for systems that 

operate according to probability distributions other than the regular distribution defined in the field [0, 1], we have 

presented some techniques through which we can obtain neutrosophic random variables based on the neutrosophic 

random numbers that were generated, in this research and using Previous information: We present a neutrosophic 

study to generate random variables that follow the Erlang distribution, which is one of the most important and 

widely used distributions in scientific fields. 
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process involved in the experiment at that point. During the experiment, it may be necessary to generate a 

random variable from a distribution many times depending on the complexity of the model to be simulated. 

We can generate random events that simulate any real system by examining probability distributions that apply 

to Events and properties of this system, there are several techniques for generating random variables from a 

specific distribution and keeping up with the recent studies that were presented using neutrosophic logic, 

which included most branches of science [1-11], and provided a new formulation of probability distributions, 

we found it necessary to reformulate some of the techniques used to generate Random variables follow 

probability distributions using the concepts of this logic. We presented various research in this field, such as 

the uniform distribution over the field [a, b], the exponential distribution, the inverse transformation 

technique - the beta distribution, the gamma distribution, the rejection and acceptance technique - the Poisson 

distribution, and the mixed technique - the distribution. Natural and Box-Muller technique [12-19]. In 

continuation of what we did previously, we present in this research a neutrosophic study. To generate 

neutrosophic random variables that follow the Erlang distribution, based on the relations linking it to the 

gamma distribution and the exponential distribution. It is one of the distributions for which a neutrosophical 

study of the process of generating random variables has been presented. 

2 | Conversation 

The Erlang distribution is one of the important distributions in practical applications, and it is a form of the 

gamma distribution when the value of K in it is equal to a positive integer. It has been proven by statisticians 

that this distribution is nothing more than the sum of K Asian variables, each of which has a mathematical 

expectation equal to 1/K , and from there, to generate random variables that follow the Erlang distribution, 

we only need to collect K exponential random variables, each of which has a mathematical expectation equal 

to 1/K. We know that the process of generating random variables that follow any probability distribution is 

preceded by the process of generating random numbers that follow a uniform distribution in the field [0, 1]. 

2.1 | To Generate Classical Random Numbers that Follow a Uniform Distribution 

in the Interval [0, 1] [20, 21]: 

Several methods can be used to obtain a series of classical random numbers 𝑅1, 𝑅2, … that follow a uniform 

distribution in the range [0,1]. In this research, we will use the mean square method defined according to the 

following equation: 

𝑅𝑖+1 = 𝑀𝑖𝑑[𝑅𝑖
2] ; 𝑖 = 0,1,2,3.               (1) 

Where 𝑀𝑖𝑑 is to the middle four ranks of 𝑅𝑖
2, and 𝑅0 is chosen, i.e., a fractional random number consisting 

of four ranks (called a seed) that does not contain zero in any of its four ranks. 

Since we want to present a neutrosophic study, these classical random numbers must be converted into 

neutrosophic random numbers as follows: 

2.2 | To Convert Classical Random Numbers that Follow a Uniform Distribution 

in the Domain [0, 1] into Neutrosophic Random Numbers [12] 

To convert the numbers resulting from (1) into neutrosophic random numbers that follow a uniform 

distribution in the field [0, 1], we distinguish the following cases for the field [0, 1] with a margin of 

indeterminacy 𝛿 where 𝛿 ∈ [0, 𝑚] and 0 < 𝑚 < 1. 

The first case: indeterminacy at the minimum of the field, i.e., [0 + δ, 1]. In this case, we substitute the 

following equation: 

𝑁𝑅𝑖 =
𝑅𝑖−𝛿

1−𝛿
                  (2) 

𝑅𝑖 are the random numbers resulting from the Eq. (1). 
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The second case: Indeterminacy at the upper limit of the field, i.e., [0,1 + δ]. In this case, we substitute the 

following equation: 

𝑁𝑅𝑖 =
𝑅𝑖

1+𝛿
                  (3) 

The third case: Indeterminacy in the upper and lower limits of the field, i.e., [0 + 𝛿, 1 + 𝛿]. In this case, we 

substitute the following equation: 

𝑁𝑅𝑖 = 𝑅𝑖 − 𝛿                 (4) 

We know that to obtain neutrosophic random variables that follow a probability distribution based on a series 

of classical or neutrosophic random numbers, we distinguish three cases: 

The first case: Neutrosophic random numbers and the probability distribution are given in the classical form. 

In the second case: the random numbers are classical and the probability distribution is given in the 

neutrosophic form. 

The third case: Neutrosophic random numbers and the probability distribution are given in the Neutrosophic 

form. Therefore, to generate neutrosophic random variables that follow the exponential distribution, we have 

the following subsection. 

2.3 | To Generate Neutrosophic Random Variables that Follow an Exponential 

Distribution [14]: 

To obtain neutrosophic random variables that follow an exponential distribution, we have the following cases: 

The First case: 

Generate random variables that follow an exponential distribution defined by the following probability density 

function: 

f(x) = λe−λx   ;    x > 0 

Using a series of neutrosophic random numbers that we obtain from one of the Eqs. (2) or (3) or (4). 

Using the inverse transformation method as we found previously, we substitute the following equation: 

yNi = −
lnNRi

λ
      i = 0,1,2               (5) 

Accordingly: 

By substituting Eq. (2) with Eq. (5), we get the equation: 

yNi = −
lnNRi

λ
= −

1

λ
 ln [

Ri−δ

1−δ
]      i = 0,1,2              (6) 

By substituting Eq. (3) with Eq. (5) we get the equation: 

yNi = −
lnNRi

λ
= −

1

λ
 ln [

Ri

1+δ
]      i = 0,1,2             (7) 

By substituting Eq. (4) with Eq. (5) we get the equation: 

yNi = −
lnNRi

λ
= −

1

λ
 ln[Ri − δ]     i = 0,1,2             (8) 

The second case: The series of random numbers is classical, i.e., R0, R1, R2, …and follows a uniform 

distribution over the field [0,1]. The exponential distribution is given in the neutrosophic form, i.e., defined 

by the equation: 

f(x) = λNe−λNx   ;    x > 0 
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Using the inverse transformation method as we found previously, we substitute the equation : 

yNi = −
lnRi

λN
      i = 0,1,2                (9) 

The Third case 

We have the series of neutrosophic random numbers, i.e., NR0, NR1, NR2, …and we obtain it from one of the 

Eqs (2) or (3) or (4), and the exponential distribution is defined in the neutrosophic form, i.e., by the equation: 

f(x) = λNe−λNx   ;    x > 0 

Using the inverse transformation method as we found previously, we substitute the equation: 

yNi = −
lnNRi

λN
      i = 0,1,2                     (10) 

By replacing Eq. (2) with Eq. (10), we get the following equation: 

yNi = −
lnNRi

λN
= −

1

λN
 ln [

Ri−δ

1−δ
]      i = 0,1,2           (11) 

By replacing Eq. (3) with Eq. (10), we get the following equation: 

yNi = −
lnNRi

λN
= −

1

λN
 ln [

Ri

1+δ
]      i = 0,1,2           (12) 

By replacing Eq. (4) with Eq. (10), we get the following equation: 

yNi = −
lnNRi

λN
= −

1

λN
 ln[Ri − δ]     i = 0,1,2           (13) 

2.4 | The Classical Study of Generating Random Variables Following the Erlang 

Distribution [20, 21]: 

We found that the Erlang distribution is a special case of the gamma distribution, which is defined by two 

parameters, 𝑘 and 𝜇. The Erlang  distribution is defined by a probability density function given by the 

following equation: 

𝑓(𝑥; 𝑘, 𝜇) =
𝑥𝑘−1𝑒

−
𝑥
𝜇

𝜇𝑘(𝑘 − 1)!
    ; 𝑥, 𝜇 ≥ 0 

Where 𝑘 is a positive integer, which is a special case of the gamma distribution when the parameter 𝜆 is integer 

and positive.    

It has been proven that this distribution results from the sum of 𝑘 = 𝜆, a random variable subject to the 

exponential distribution with a uniform mathematical expectation equal to 
1

𝐾
 . So, to generate random variables 

that follow the Erlang  distribution, we generate 𝐾, a random variable subject to the exponential distribution, 

defined by the following probability density function: 

𝑓(𝑥) = 𝑘𝑒−𝑘𝑥   ;    𝑥 > 0 

Then we take the sum of its logarithm 𝑥 and thus we get the following equation: 
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𝑥 = ∑ 𝑦𝑖

𝑘
𝑖=1                (14) 

3 | Generating Neutrosophic Random Variables from the Erlang 

Distribution 

From the above, we can present the following neutrosophic study for generating neutrosophic random 

variables that follow the Erlang  distribution: 

Depending on the state of indeterminacy that the problem under study requires, we take the neutrosophic 

random variables 𝑦𝑁𝑖 that follows the exponential distribution that we obtain using one of the Eqs. (6), (7), 

(8), (9), (11), (12), (13). By replacing it with the Eq. (14), we obtain the variables required for the simulation in 

the system under study. This is done using one of the following conversion expressions: 

By replacing Eq. (6) with Eq. (14), we get the following equation: 

= 𝑥𝑁 ∑ 𝑦𝑁𝑖
𝑘
𝑖=1 = −

1

𝑘
∑ 𝑙𝑛 [

𝑅𝑖−𝛿

1−𝛿
]𝑘

𝑖=1             (15) 

By replacing Eq. (7) with Eq. (14), we get the following equation: 

𝑥𝑁 = ∑ 𝑦𝑁𝑖
𝑘
𝑖=1 = −

1

𝑘
∑  𝑙𝑛 [

𝑅𝑖

1+𝛿
]𝑘

𝑖=1             (16) 

By replacing Eq. (8) with Eq. (14), we get the following equation: 

𝑥𝑁 = ∑ 𝑦𝑁𝑖
𝑘
𝑖=1 = −

1

𝑘
∑  𝑙𝑛[𝑅𝑖 − 𝛿]𝑘

𝑖=1             (17) 

By replacing Eq. (9) with Eq. (14), we get the following equation: 

𝑥𝑁 = ∑ 𝑦𝑁𝑖
𝑘𝑁
𝑖=1 = −

1

𝑘𝑁
∑  𝑙𝑛𝑅𝑖

𝑘𝑁
𝑖=1             (18) 

By replacing Eq. (11) with Eq. (14), we get the following equation:  

𝑥𝑁 = ∑ 𝑦𝑁𝑖
𝑘𝑁
𝑖=1 = −

1

𝑘𝑁
∑  𝑙𝑛 [

𝑅𝑖−𝛿

1−𝛿
]

𝑘𝑁
𝑖=1             (19) 

By replacing Eq. (12) with Eq. (14), we get the following equation: 

𝑥𝑁 = ∑ 𝑦𝑁𝑖
𝑘𝑁
𝑖=1 = −

1

𝑘𝑁
∑   𝑙𝑛 [

𝑅𝑖

1+𝛿
]

𝑘𝑁
𝑖=1             (20) 

By replacing Eq. (13) with Eq. (14), we get the following equation: 

𝑥𝑁 = ∑ 𝑦𝑁𝑖
𝑘𝑁
𝑖=1  = −

1

𝑘𝑁
∑  𝑙𝑛[𝑅𝑖 − 𝛿]𝑘𝑁

𝑖=1             (21) 

Where 𝑘𝑁 = 𝑘 ± 휀 and 휀 is the indeterminacy in the 𝑘 parameter, and it can be any number provided that 

𝑘𝑁 remains a positive integer. 

4 | Practical Example 

Suppose we have a system that operates according to the Erlang  distribution, whose classical probability 

density function is given by the following formula: 

𝑓(𝑥; 2,3) =
𝑥𝑒−

𝑥
3

9
    ; 𝑥, 𝜇 ≥ 0 

Since 𝑘 = 2 is a positive integer, then this distribution arises from the sum of 𝑘 = 2, a random variable 

subject to an exponential distribution with a uniform mathematical expectation equal to 
1

2
, and its probability 

density function if 𝑘 is a neutrosophic value, i.e., 𝑘𝑁 = 𝑘 ± 휀 where it is indeterminacy. We take it as 휀 ∈

{0,1,2}, then the probability density function becomes as follows: 
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𝑓(𝑥; 𝑘 ∈ {2,3,4}, 3) =
𝑥{1,2,3}𝑒−

𝑥
3

3{2,3,4}({2,3,4} − 1)!
    ; 𝑥, 𝜇 ≥ 0 

Therefore, to generate random variables that follow the Erlang  distribution, we follow the following steps: 

We generate random variables that follow a uniform distribution over the field [0,1] using the mean square 

method, and taking the seed 𝑅0 = 0.1276, we obtain the following two classical random numbers: 

𝑅1 = 0.6281, 𝑅2 = 0.4509, 𝑅3 = 0.3310, 𝑅4 = 0.9561 

For the field [0 + 𝛿, 1 + 𝛿] we take the indeterminacy 𝛿 ∈ [0,0.03] and for 𝑘𝑁 = 𝑘 ± 휀 we take 휀 ∈ {0,1,2} 

and then substitute in Eqs. (15), (16), and (21). 

 By substituting in Eq. (15) we get: 

𝑥𝑁 = ∑ 𝑦𝑁𝑖

𝑘

𝑖=1

= −
1

𝑘
∑ 𝑙𝑛 [

𝑅𝑖−𝛿

1 − 𝛿
]

𝑘

𝑖=1

   

𝑥𝑁 = −
1

𝑘
∑ 𝑙𝑛 [

𝑅𝑖−𝛿

1 − 𝛿
]

𝑘

𝑖=1

= −
1

2
  ∑ 𝑙𝑛 (

𝑅𝑖 − [0,0.03]

1 − [0,0.03]
)

2

𝑖=1

   

𝑥𝑁 = −
1

2
  [𝑙𝑛 (

0.6281 − [0,0.03]

1 − [0,0.03]
) + 𝑙𝑛 (

0.4509 − [0,0.03]

1 − [0,0.03]
)] 

𝑥𝑁 = −
1

2
  [𝑙𝑛 (

[0.5981,0.6281]

[0.97,1]
) + 𝑙𝑛 (

[0.4209,0.4509]

[0.97,1]
)] 

𝑥𝑁 = −
1

2
  [𝑙𝑛([0.6166,0.6281]) + 𝑙𝑛([0.4339,0.4509])] 

𝑥𝑁 ∈ [0.2325,0.2418] + [0.3983,0.4175] = [0.6308,0.6593] 

𝑥𝑁 ∈ [0.6308,0.6593] 

 By substituting in Eq. (16) we get: 

𝑥𝑁 = ∑ 𝑦𝑁𝑖

𝑘

𝑖=1

= −
1

𝑘
∑  𝑙𝑛 [

𝑅𝑖

1 + 𝛿
] 

𝑘

𝑖=1

 

𝑥𝑁 = −
1

𝑘
∑ 𝑙𝑛 [

𝑅𝑖

1 + 𝛿
]

𝑘

𝑖=1

= −
1

2
  ∑ 𝑙𝑛 (

𝑅𝑖

1 + [0,0.03]
)

2

𝑖=1

   

𝑥𝑁 = −
1

2
  [𝑙𝑛 (

0.6281 

1 + [0,0.03]
) + 𝑙𝑛 (

0.4509 

1 + [0,0.03]
)] 

𝑥𝑁 = −
1

2
  [𝑙𝑛 (

0.6281 

[1,1.03]
) + 𝑙𝑛 (

0.4509 

[1,1.03]
)] 
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𝑥𝑁 ∈ [0.6308,0.6603] 

  By substituting in Eq. (17) we get: 

𝑥𝑁 = ∑ 𝑦𝑁𝑖

𝑘

𝑖=1

= −
1

𝑘
∑  𝑙𝑛[𝑅𝑖 − 𝛿]  

𝑘

𝑖=1

 

𝑥𝑁 = −
1

𝑘
∑ 𝑙𝑛[𝑅𝑖 − 𝛿]

𝑘

𝑖=1

= −
1

2
  ∑ 𝑙𝑛(𝑅𝑖 − [0,0.03])

2

𝑖=1

   

𝑥𝑁 = −
1

2
  [𝑙𝑛(0.6281 − [0,0.03]) + 𝑙𝑛(0.4509 − [0,0.03])] 

𝑥𝑁 = −
1

2
  [𝑙𝑛( [0.5981,0.6281]) + 𝑙𝑛([0.4209,0.4509])] 

𝑥𝑁 ∈  [[0.2325,0.2370] + [0.3983,0.4327]] = [0.6308,0.6697] 

𝑥𝑁 ∈  [0.6308,0.6697] 
 By substituting into (18), for all values of 𝑘𝑁. 

𝑥𝑁 = ∑ 𝑦𝑁𝑖

𝑘𝑁

𝑖=1

= −
1

𝑘𝑁
∑  𝑙𝑛𝑅𝑖

𝑘𝑁

𝑖=1

   

For 𝑘𝑁 = 2 + 0 we find: 

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛𝑅𝑖

𝑘𝑁

𝑖=1

= −
1

2
  ∑ 𝑙𝑛(𝑅𝑖)

2

𝑖=1

   

𝑥𝑁 = −
1

2
  [𝑙𝑛(0.6281 ) + 𝑙𝑛(0.4509)] 

𝑥𝑁 = 0.2325 + 0.3983 = 0.6308 

𝑥𝑁 = 0.6308 

For 𝑘𝑁 = 2 + 1 we find: 

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛𝑅𝑖

𝑘𝑁

𝑖=1

= −
1

3
  ∑ 𝑙𝑛(𝑅𝑖)

3

𝑖=1

   

𝑥𝑁 = −
1

3
  [𝑙𝑛(0.6281 ) + 𝑙𝑛(0.4509) + ln (0.3310)] 

𝑥𝑁 =  [0.1550 + 0.2655 + 0.3685] = 0.789 

𝑥𝑁 = 0.789 

For 𝑘𝑁 = 2 + 2 we find: 

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛𝑅𝑖

𝑘𝑁

𝑖=1

= −
1

4
  ∑ 𝑙𝑛(𝑅𝑖)

4

𝑖=1

   

𝑥𝑁 = −
1

4
  [𝑙𝑛(0.6281 ) + 𝑙𝑛(0.4509) + ln(0.3310) + ln (0.9561)] 
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𝑥𝑁 =  [0.1163 + 0.1991 + 0.2764 + 0.0112] = 0.603 

𝑥𝑁 =  0.603 

We calculate the value of 𝑥𝑁 in the three cases and put the result in the figure 

𝑥𝑁 ∈ {0.6308,0.789,0.603} 

 By substituting into (19), for all values of 𝑘𝑁. 

𝑥𝑁 = ∑ 𝑦𝑁𝑖

𝑘𝑁

𝑖=1

= −
1

𝑘𝑁
∑  𝑙𝑛 [

𝑅𝑖−𝛿

1 − 𝛿
]

𝑘𝑁

𝑖=1

       

For 𝑘𝑁 = 2 + 0 we find: 

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛 [

𝑅𝑖−𝛿

1 − 𝛿
]

𝑘𝑁

𝑖=1

= −
1

2
  ∑ 𝑙𝑛 (

𝑅𝑖 − [0,0.03]

1 − [0,0.03]
)

2

𝑖=1

   

𝑥𝑁 = −
1

2
  [𝑙𝑛 (

0.6281 − [0,0.03]

1 − [0,0.03]
) + 𝑙𝑛 (

0.4509 − [0,0.03]

1 − [0,0.03]
)] 

𝑥𝑁 = −
1

2
  [𝑙𝑛 (

[0.5981,0.6281]

[0.97,1]
) + 𝑙𝑛 (

[0.4209,0.4509]

[0.97,1]
)] 

𝑥𝑁 = −
1

2
  [𝑙𝑛([0.6166,0.6281]) + 𝑙𝑛([0.4339,0.4509])] 

𝑥𝑁 ∈ [0.2325,0.2418] + [0.3983,0.4175] = [0.6308,0.6593] 

𝑥𝑁 ∈ [0.6308,0.6593] 

For 𝑘𝑁 = 2 + 1 we find: 

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛 [

𝑅𝑖−𝛿

1 − 𝛿
]

𝑘𝑁

𝑖=1

= −
1

3
  ∑ 𝑙𝑛 (

𝑅𝑖 − [0,0.03]

1 − [0,0.03]
)

3

𝑖=1

   

𝑥𝑁 = −
1

3
  [𝑙𝑛 (

0.6281 − [0,0.03]

1 − [0,0.03]
) + 𝑙𝑛 (

0.4509 − [0,0.03]

1 − [0,0.03]
) + 𝑙𝑛 (

0.3310 − [0,0.03]

1 − [0,0.03]
)] 

𝑥𝑁 = −
1

3
  [𝑙𝑛 (

[0.5981,0.6281]

[0.97,1]
) + 𝑙𝑛 (

[0.4209,0.4509]

[0.97,1]
) + (

[0.301,0.3310]

[0.97,1]
)] 

𝑥𝑁 = −
1

3
  [𝑙𝑛([0.6166,0.6281]) + 𝑙𝑛([0.4339,0.4509]) + 𝑙𝑛([0.3103,0.3310])] 

𝑥𝑁 ∈ [0.1550,0.1612] + [0.2655,0.2783] + [0.3685,0.3901] = [0.8296,0.789] 

𝑥𝑁 ∈ [0.789,0.8296] 

For 𝑘𝑁 = 2 + 2 we find:  



An Efficient Neutrosophic Method for Generating Random Variates from Erlang Distribution 

 

06

 

  

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛 [

𝑅𝑖−𝛿

1 − 𝛿
]

𝑘𝑁

𝑖=1

= −
1

4
  ∑ 𝑙𝑛 (

𝑅𝑖 − [0,0.03]

1 − [0,0.03]
)

4

𝑖=1

   

𝑥𝑁 = −
1

4
  [𝑙𝑛 (

0.6281 − [0,0.03]

1 − [0,0.03]
) + 𝑙𝑛 (

0.4509 − [0,0.03]

1 − [0,0.03]
) + 𝑙𝑛 (

 0.9561 − [0,0.03]

1 − [0,0.03]
)] 

𝑥𝑁 = −
1

4
  [𝑙𝑛 (

[0.5981,0.6281]

[0.97,1]
) + 𝑙𝑛 (

[0.4209,0.4509]

[0.97,1]
) + 𝑙𝑛 (

[0.301,0.3310]

[0.97,1]
)

+ 𝑙𝑛 (
[0.9261, 0.9561]

[0.97,1]
)] 

𝑥𝑁 = −
1

4
  [𝑙𝑛([0.6166,0.6281]) + 𝑙𝑛([0.4339,0.4509]) + 𝑙𝑛([0.3103,0.3310])

+ 𝑙𝑛([0.9547,0.9561])] 

𝑥𝑁 ∈ [0.1163,0.1209] + [0.1991,0.2087] + [0.2764,0.2926] + [0.0112,0.0116] = [0.6338,0.603] 

𝑥𝑁 ∈ [0.603,0.6338] 

We calculate the value of 𝑥𝑁  in the three cases and put the result in the figure 

𝑥𝑁 ∈ {[0.6308,0.6593], [0.789,0.8296], [0.603,0.6338]} 

 By substituting into (20), for all values of 𝑘𝑁. 

𝑥𝑁 = ∑ 𝑦𝑁𝑖

𝑘𝑁

𝑖=1

= −
1

𝑘𝑁
∑   𝑙𝑛 [

𝑅𝑖

1 + 𝛿
]

𝑘𝑁

𝑖=1

   

For 𝑘𝑁 = 2 + 0 we find: 

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛 [

𝑅𝑖

1 + 𝛿
]

𝑘𝑁

𝑖=1

= −
1

2
  ∑ 𝑙𝑛 (

𝑅𝑖

1 + [0,0.03]
)

2

𝑖=1

   

𝑥𝑁 = −
1

2
  [𝑙𝑛 (

0.6281 

1 + [0,0.03]
) + 𝑙𝑛 (

0.4509 

1 + [0,0.03]
)] 

𝑥𝑁 = −
1

2
  [𝑙𝑛 (

0.6281 

[1,1.03]
) + 𝑙𝑛 (

0.4509 

[1,1.03]
)] 

𝑥𝑁 = −
1

2
  [ln ([0.6098,0.6281]) + 𝑙𝑛([0.4378,0.4509])] 

𝑥𝑁 ∈ ([0.2325,0.2473] + [0.3983,0.4130]) 

𝑥𝑁 ∈ [0.6308,0.6603] 

For 𝑘𝑁 = 2 + 1 we find:  

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛 [

𝑅𝑖

1 + 𝛿
]

𝑘𝑁

𝑖=1

= −
1

3
  ∑ 𝑙𝑛 (

𝑅𝑖

1 + [0,0.03]
)

3

𝑖=1
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𝑥𝑁 = −
1

3
  [𝑙𝑛 (

0.6281 

1 + [0,0.03]
) + 𝑙𝑛 (

0.4509 

1 + [0,0.03]
) + 𝑙𝑛 (

0.3310 

1 + [0,0.03]
)] 

𝑥𝑁 = −
1

3
  [𝑙𝑛 (

0.6281 

[1,1.03]
) + 𝑙𝑛 (

0.4509 

[1,1.03]
) + 𝑙𝑛 (

0.3310  

[1,1.03]
)] 

𝑥𝑁 = −
1

3
  [ln([0.6098,0.6281]) + 𝑙𝑛([0.4378,0.4509]) + 𝑙𝑛([0.3214,0.3310])] 

𝑥𝑁 ∈ ([0.1550,0.1649] + [0.2655,0.2753] + [0.3685,0.3784]) 

𝑥𝑁 ∈ [0.789,0.8186] 

For 𝑘𝑁 = 2 + 2 we find: 

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛 [

𝑅𝑖

1 + 𝛿
]

𝑘𝑁

𝑖=1

= −
1

4
  ∑ 𝑙𝑛 (

𝑅𝑖

1 + [0,0.03]
)

4

𝑖=1

   

𝑥𝑁 = −
1

4
  [𝑙𝑛 (

0.6281 

1 + [0,0.03]
) + 𝑙𝑛 (

0.4509 

1 + [0,0.03]
) + 𝑙𝑛 (

0.3310 

1 + [0,0.03]
) + 𝑙𝑛 (

0.9561

1 + [0,0.03]
)] 

𝑥𝑁 = −
1

4
  [𝑙𝑛 (

0.6281 

[1,1.03]
) + 𝑙𝑛 (

0.4509 

[1,1.03]
) + 𝑙𝑛 (

0.3310  

[1,1.03]
) + 𝑙𝑛 (

0.9561  

[1,1.03]
)] 

𝑥𝑁 = −
1

4
  [ln([0.6098,0.6281]) + 𝑙𝑛([0.4378,0.4509]) + 𝑙𝑛([0.3214,0.3310])

+ 𝑙𝑛([0.9283,0.9561])] 

𝑥𝑁 ∈ ([0.1163,0.1237] + [0.1991,0.2065] + [0.2764,0.2838] + [0.0112,0.0186]) 

𝑥𝑁 ∈ [0.603,0.6326] 

We calculate the value of 𝑥𝑁 in the three cases and put the result in the figure: 

𝑥𝑁 ∈ {[0.6308,0.6603], [0.789,0.8186], [0.603,0.6326]} 

 By substituting into (21), for all values of 𝑘𝑁. 

𝑥𝑁 = ∑ 𝑦𝑁𝑖

𝑘𝑁

𝑖=1

 = −
1

𝑘𝑁
∑  𝑙𝑛[𝑅𝑖 − 𝛿]

𝑘𝑁

𝑖=1

  

For 𝑘𝑁 = 2 + 0 we find: 

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛[𝑅𝑖 − 𝛿]

𝑘𝑁

𝑖=1

= −
1

2
  ∑ 𝑙𝑛(𝑅𝑖 − [0,0.03])

2

𝑖=1

   

𝑥𝑁 = −
1

2
  [𝑙𝑛(0.6281 − [0,0.03]) + 𝑙𝑛(0.4509 − [0,0.03])] 

𝑥𝑁 = −
1

2
  [𝑙𝑛( [0.5981,0.6281]) + 𝑙𝑛([0.4209,0.4509])] 

𝑥𝑁 ∈  [[0.2325,0.2570] + [0.3983,0.4327]] 

𝑥𝑁 ∈  [0.6308,0.6897] 
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For 𝑘𝑁 = 2 + 1 we find: 

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛[𝑅𝑖 − 𝛿]

𝑘𝑁

𝑖=1

= −
1

3
  ∑ 𝑙𝑛(𝑅𝑖 − [0,0.03])

3

𝑖=1

   

𝑥𝑁 = −
1

3
  [𝑙𝑛(0.6281 − [0,0.03]) + 𝑙𝑛(0.4509 − [0,0.03]) + 𝑙𝑛( 0.3310  − [0,0.03])] 

𝑥𝑁 = −
1

3
  [𝑙𝑛( [0.5981,0.6281]) + 𝑙𝑛([0.4209,0.4509]) + 𝑙𝑛([0.301, 0.3310 ])] 

𝑥𝑁 ∈  [[0.1550,0.1713] + [0.2655,0.2885] + [0.3685,0.4002]] 

𝑥𝑁 ∈  [0.789,0.86] 
For 𝑘𝑁 = 2 + 2 we find:  

𝑥𝑁 = −
1

𝑘𝑁
∑ 𝑙𝑛[𝑅𝑖 − 𝛿]

𝑘𝑁

𝑖=1

= −
1

4
  ∑ 𝑙𝑛(𝑅𝑖 − [0,0.03])

4

𝑖=1

   

𝑥𝑁 = −
1

4
  [𝑙𝑛(0.6281 − [0,0.03]) + 𝑙𝑛(0.4509 − [0,0.03]) + 𝑙𝑛( 0.3310  − [0,0.03])

+ 𝑙𝑛(0.9561 − [0,0.03])] 

𝑥𝑁 = −
1

4
  [𝑙𝑛( [0.5981,0.6281]) + 𝑙𝑛([0.4209,0.4509]) + 𝑙𝑛([0.301, 0.3310 ])

+ 𝑙𝑛([0.9261, 0.9561 ])] 
𝑥𝑁 ∈  [[0.1163,0.1285] + [0.1991,0.2163] + [0.2764,0.3002] + [0.0112,0.0192]]

= [0.603,0.6642] 
𝑥𝑁 ∈  [0.603,0.6642] 

We calculate the value of 𝑥𝑁 in the three cases and put the result in the figure 

𝑥𝑁 ∈ {[0.6308,0.6897], [0.789,0.86], [0.603,0.6642]} 

5 | Conclusions 

Simulation has become a modern tool that helps us study many systems that could not be studied or predict 

the results that we can obtain through the operation of these systems over time. The simulation process 

depends on generating a series of random numbers subject to a regular probability distribution in the field 

[0,1], and then converting these random numbers into random variables that follow the probability 

distribution in which the system to be simulated operates. The studies that were presented according to 

classical logic give the results specific values that suit specific circumstances, and any change that occurs in 

the work environment makes them inappropriate results and may cause unexpected losses to avoid such 

losses, we presented in this research a neutrosophic study to generate random variables that follow the Erlang 

distribution using mathematical relationships that were deduced from the relation of the Erlang distribution 

to the gamma distribution and the exponential distribution. Accordingly, we benefited from the neutrosophic 

studies that we presented in previous research for generating neutrosophic random numbers and the 

neutrosophic study for generating Random variables that follow the exponential distribution, and we obtained 

neutrosophic mathematical relations that can be used to obtain random variables that follow the Erlang 

distribution. Through the indeterminacy of the neutrosophic values, we will obtain simulation results suitable 

for all conditions that the working environment of the system under study can pass through. Thus, simulating 

the systems Using the concepts of neutrosophic logic provides us with more accurate results than the results 

provided by the classical study. 

 

Acknowledgments  

The author is grateful to the editorial and reviewers, as well as the correspondent author, who offered 

assistance in the form of advice, assessment, and checking during the study period. 



   Jdid, M | Neutrosophic Opt. Int. Syst. 2 (2024) 56-68 

 

05 

Author Contribution 

All authors contributed equally to this work. 

Funding 

This research has no funding source. 

Data Availability 

The datasets generated during and/or analyzed during the current study are not publicly available due to the 

privacy-preserving nature of the data but are available from the corresponding author upon reasonable 

request. 

Conflicts of Interest 

The authors declare that there is no conflict of interest in the research. 

Ethical Approval 

This article does not contain any studies with human participants or animals performed by any of the authors. 

 

References  

 Florentin Smarandache , Maissam Jdid, On Overview of Neutrosophic and Plithogenic Theories and Applications, Prospects 

for Applied Mathematics and Data Analysis, Volume 2 , Issue 1, PP: 19-26 , 2023 ,Doi 

:https://doi.org/10.54216/PAMDA.020102 

 AL-baker, S. F., El-henawy, I., & Mohamed, M. (2024). Pairing New Approach of Tree Soft with MCDM Techniques: 

Toward Advisory an Outstanding Web Service Provider Based on QoS Levels. Neutrosophic Systems With Applications, 

14, 17-29. https://doi.org/10.61356/j.nswa.2024.129 

 Luo, M., Sun, Z., Xu, D., & Wu, L. (2024). Fuzzy Inference Full Implication Method Based on Single Valued Neutrosophic 

t-representable t-norm: Purposes, Strategies, and a Proof-of-Principle Study. Neutrosophic Systems With Applications, 14, 

1-16. https://doi.org/10.61356/j.nswa.2024.104 

 Jdid, M., & Smarandache, F. (2023). An Efficient Optimal Solution Method for Neutrosophic Transport Models: Analysis, 

Improvements, and Examples. Neutrosophic Systems with Applications, 12, 56–67. 

https://doi.org/10.61356/j.nswa.2023.111 

 X. Mao, Z. Guoxi, M. Fallah, and S. Edalatpanah, "A neutrosophic-based approach in data envelopment analysis with 

undesirable outputs," Mathematical problems in engineering, vol. 2020. 

 M. Abdel-Basset, F. Smarandache, and J. Ye, "Special issue on “Applications of neutrosophic theory in decision making-

recent advances and future trends”," Complex & Intelligent Systems, vol. 5, pp. 363-364, 2019 

 Jdid, M., & Smarandache, F. (2024). Finding a Basic Feasible Solution for Neutrosophic Linear Programming Models: Case 

Studies, Analysis, and Improvements. Neutrosophic Systems with Applications, 14, 30–37. 

https://doi.org/10.61356/j.nswa.2024.130 

 Maissam Jdid, Florentin Smarandache Converting Some Zero-One Neutrosophic Nonlinear Programming Problems into 

Zero-One Neutrosophic Linear Programming Problems, Neutrosophic Optimization and Intelligent systems, Vol. 1 (2024) 

39-45, DOI: https://doi.org/10.61356/j.nois.2024.17489 , https://sciencesforce.com/index.php/nois/article/view/74/67 

 Maissam Jdid and Florentin Smarandache, Graphical Method for Solving Neutrosophical Nonlinear Programming Models, 

/ Int.J.Data.Sci. & Big Data Anal. 3(2) (2023) 66-72, https://dx.doi.org/10.51483/IJDSBDA.3.2.2023.66-72 

 Abdel-Baset, M., Chang, V., Gamal, A., Smarandache, F. An integrated neutrosophic ANP and VIKOR method for achieving 

sustainable supplier selection: A case study in importing field. Computers in Industry, 2019, 106, 94-110. 

 Smarandache F. (1998) “Neutrosophy. Neutrosophic Probability, Set, and Logic.” ProQuest Information & Learning, Ann 

Arbor, Michigan, USA,  

 Jdid, M.., Alhabib, R.., & Salama, A. A. (2022). Fundamentals of Neutrosophical Simulation for Generating Random 

Numbers Associated with Uniform Probability Distribution. Neutrosophic Sets and Systems, 49, 92-102. 

http://fs.unm.edu/nss8/index.php/111/article/view/2471 

 Maissam Jdid, A. Salama, Using the Inverse Transformation Method to Generate Random Variables that follow the 

Neutrosophic Uniform Probability Distribution, Journal of Neutrosophic and Fuzzy Systems, Volume 6 , Issue 2, PP: 15-22 

, 2023, Doi :https://doi.org/10.54216/JNFS.060202 



An Efficient Neutrosophic Method for Generating Random Variates from Erlang Distribution 

 

05

 

  
 Maissam Jdid, Rafif Alhabib, & A. A. Salama. (2023). The Basics of Neutrosophic Simulation for Converting Random 

Numbers Associated with a Uniform Probability Distribution into Random Variables Follow an Exponential Distribution. 

Neutrosophic Sets and Systems, 53, 358-366. https://fs.unm.edu/nss8/index.php/111/article/view/3233 

 Maissam Jdid, & Said Broumi. (2023). Neutrosophical Rejection and Acceptance Method for the Generation of Random 

Variables. Neutrosophic Sets and Systems, 56, 153-165. http://fs.unm.edu/nss8/index.php/111/article/view/3156 

 Maissam Jdid, & Nada A. Nabeeh. (2023). Generating Random Variables that follow the Beta Distribution Using the 

Neutrosophic Acceptance-Rejection Method. Neutrosophic Sets and Systems, 58, 139-147. 

http://fs.unm.edu/nss8/index.php/111/article/view/3537 

 Maissam Jdid, Florentin Smarandache, and Khalifa Al Shaqsi, Generating Neutrosophic Random Variables Based Gamma 

Distribution, Plithogenic Logic and Computation Vol. 1 (2024), 16-24, DOI: https://doi.org/10.61356/j.plc.2024.18760, 

https://sciencesforce.com/index.php/plc/article/view/87 

 Maissam Jdid, & Florentin Smarandache. (2024). Generating Neutrosophic Random Variables Following the Poisson 

Distribution Using the Composition Method (The Mixed Method of Inverse Transformation Method and Rejection 

Method). Neutrosophic Sets and Systems, 64, 132-140. https://fs.unm.edu/nss8/index.php/111/article/view/4264 

 Maissam Jdid , Florentin Smarandache, The Box and Muller Technique for Generating Neutrosophic Random Variables 

Follow a Normal Distribution, International Journal of Neutrosophic Science, Volume 23 , Issue 4, PP: 83-87 , 2024, Doi 

:https://doi.org/10.54216/IJNS.230406 

 Alali. Ibrahim Muhammad, Operations Research. Tishreen University Publications, 2004.  

 Bukajh J.S -. Mualla, W... and others - Operations Research Book translated into Arabic - The Arab Center for Arabization, 

Translation, Authoring and Publishing -Damascus -1998. (Arabic version). 

 

 

 

 

 

 

Disclaimer/Publisher’s Note: The perspectives, opinions, and data shared in all publications are the sole 

responsibility of the individual authors and contributors, and do not necessarily reflect the views of Sciences 

Force or the editorial team. Sciences Force and the editorial team disclaim any liability for potential harm to 

individuals or property resulting from the ideas, methods, instructions, or products referenced in the content. 


