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1 |Introduction 

Fuzzy sets theory has been widely used in various fields. Specially, fuzzy reasoning plays an important role in 

fuzzy sets theory. In fuzzy reasoning, the most basic reasoning models are Fuzzy Modus Ponens (FMP) and 

Fuzzy Modus Tollens (FMT), which can be respectively shown as follows: [1, 2]. 

FMP(𝐴, 𝐵, 𝐴∗): for given a fuzzy rule 𝐴 → 𝐵 and premise 𝐴∗, attempt to deduce a reasonable conclusion 𝐵∗. 

FMT(𝐴, 𝐵, 𝐵∗): for given a fuzzy rule 𝐴 → 𝐵 and premise 𝐵∗, attempt to deduce a reasonable conclusion 𝐴∗. 

In the above reasoning models, 𝐴, 𝐴∗ ∈ 𝐹(𝑋) and 𝐵, 𝐵∗ ∈ 𝐹(𝑌), where 𝐹(𝑋) and 𝐹(𝑌) respectively denote 

fuzzy subsets of the universes 𝑋 and 𝑌. 

As the pioneer of fuzzy inference method, Zadeh [1] first proposed the Compositional Rule of Inference 

(CRI for short). However, there are some shortcomings for the CRI method, for example: the CRI method 

lacks logic sense and is not reducible. Based on these situations, Wang [2] proposed the fuzzy reasoning triple 

implication method ( triple I method for short). And the fuzzy reasoning triple I method was established a 

strict logical basis [3]. Many research results on fuzzy reasoning triple I method have been obtained. Pei [4] 

constructed unified 𝛼-triple I method and gave some special results based on four important residual 
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implication. Luo and Yao [5] studied the triple I method based on Schweizer-Sklar residual implications. 

Although the triple I method makes up for some of the shortcomings of the CRI method, it ignores the 

comparison of 𝐴∗ and 𝐴 ( or 𝐵 and 𝐵∗) in the inference process. The consideration of proximity will make 

the calculation results appear unreasonable due to trivial solutions under certain data. In order to better 

promote the development of reasoning algorithms, Zhou [6] gave the quintuple implication algorithm for 

fuzzy reasoning, which considers the closeness of 𝐴∗ and 𝐴 (or 𝐵 and 𝐵∗) in the inference process. Based on 

the monoidal t-norm based logic, Luo and Zhou [7] expressed the predicate form of the quintuple implication 

algorithm solution, bringing the quintuple implication algorithm into a strict logical framework. 

Although fuzzy sets have been successfully applied in many fields, there are some defects in describing fuzzy 

and uncertain information. Intuitionistic fuzzy set was introduced by Atanassov [8]. Moreover, Atanassov 

and Gargov [9] showed that intuitionistic fuzzy sets and interval-valued fuzzy sets are equipotent. Zheng et 

al. [10] studied fuzzy reasoning triple I method based on intuitionistic fuzzy sets. Li et al. [11] extended CRI 

method on interval-valued fuzzy set. Luo et al. [12, 13, 14, 15, 16] researched fuzzy reasoning triple I methods 

based on interval-value associated t-norm and t-representable t-norm, respectively. Li et al. [17] proposed the 

five implication principles based on interval-value S-implications. Luo and Zhou [18] studied the interval-

value quintuple implication method based on interval-value associated t-norm. 

Although intuitionistic fuzzy set has some advantages in dealing with fuzzy and incomplete information, it 

has defects in dealing with fuzzy, incomplete and inconsistent information. In order to deal with these issues, 

Smarandache [19] proposed neutrosophic set, which is represented by a truth-membership function, an 

indeterminacy-membership function and a falsity-membership function. However, truth-membership, 

indeterminacy-membership and falsity-membership function are nonstandard fuzzy subsets, which is difficult 

to apply in practice. Wang et al [20] proposed single valued neutrosophic set (SVNS for short), its the truth-

membership, indeterminacy-membership and falsity-membership degree are real number in unit interval [0, 

1]. Single valued neutrosophic set can be considered as a generalization intuitionistic fuzzy set. In recent years, 

Scholars have paid attention to the study for single valued neutrosophic set. Smarandache [19] studied a 

unifying field in logics. Smarandache [21] proposed n-norm and n-conorm in neutrosophic logic. Zhang et 

al. [22] gave new inclusion relation for neutrosophic sets. Hu and Zhang [23] constructed the residuated 

lattices based on the neutrosophic t-norms and neutrosophic residual implications. Zhao et al. [24] study 

reverse triple I algorithms based on single valued neutrosophic set. Luo et al. [25] studied fuzzy reasoning 

triple I method based on single valued neutrosophic t-representable t-norm. However, there are some defects 

for fuzzy reasoning triple I method based on single valued neutrosophic t-representable t-norm, which can 

not to solve the following problem. 

Example 1. Let 𝑋 and 𝑌 be no-empty sets. Suppose small, medium and large are three single valued 

neutrosophic sets on 𝑆𝑉𝑁𝑆(𝑋), which can be denoted as follows: 

[small]=< 1,0,0 >,< 0.4,0.5,0.3 >,< 0,1,1 >,< 0,1,1 >,< 0,1,1 >, 

[medium]=< 0,1,1 >,< 0.4,0.5,0.3 >,< 1,0,0 >,< 0.4,0.5,0.3 >,< 0,1,1 >, 

[large]=< 0,1,1 >,< 0,1,1 >,< 0,1,1 >,< 0.4,0.5,0.3 >,< 1,0,0 >. 

Table 1. Model of FMP. 

Rule If 𝒙 is small, then 𝒚 is large 

Premise 𝑥 is medium 

Calculate 𝑦 is ? 

 

The problem of FMP is described as in Table 1. Let 𝐴(𝑥), 𝐵(𝑦) and 𝐴∗(𝑥) denote 𝑥 is small, 𝑦 is large and 

𝑥 is medium, respectively. The goal is to calculate 𝐵∗. 
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Using the triple I method for FMP [25], we have 𝐵∗ =< 1,0,0 >,< 1,0,0 >,< 1,0,0 >,< 1,0,0 >,<

1,0,0 > for each of the three implications: 𝐺�̈�𝑑𝑒𝑙 implication, 𝐿ukasiewicz implication and Gougen 

implication. In other words, we can get triple I solution for FMP is trivial. 

Table 2. Model of FMT. 

Rule If 𝒙 is small, then 𝒚 is large 

Premise 𝑦 is medium 

Calculate 𝑥 is ? 

 

The problem of FMT is described as in Table 2. Let (𝑥) , 𝐵(𝑦) , 𝐵∗(𝑦) denote 𝑥 is small, 𝑦 is large and 𝑦 is 

medium, respectively. The goal is to calculate 𝐴∗. Using the triple I method for FMT [25], we have 𝐴∗ = {<

0,1,1 >,< 0,1,1 >,< 0,1,1 >,< 0,1,1 >,< 0,1,1 >} for each of the three implications: 𝐺�̈�𝑑𝑒𝑙 

implication, 𝐿ukasiewicz implication and Gougen implication. In other words, we can get triple I solution for 

FMT is trivial. 

Through analyzing Example 1, we have the following results: let 𝐴 → 𝐵 is a fuzzy rule, if there exists an 

element 𝑥0 ∈ 𝑋 such that 𝐴(𝑥0) =< 0,1,1 > and 𝐴∗(𝑥0) =< 1,0,0 >, then the triple I solution for FMP is 

trivial, i.e., 𝐵∗(𝑦) =< 1,0,0 > for every 𝑦 ∈ 𝑌. If there exists an element 𝑦0 ∈ 𝑌 such that 𝐵(𝑦0) =<

1,0,0 > and 𝐵∗(𝑦0) =< 0,1,1 >, then the triple I solution for FMT is trivial, i.e., 𝐴∗(𝑥) =< 0,1,1 > for 

every 𝑥 ∈ 𝑋. 

In order to solve the above problem, we study fuzzy reasoning quintuple implication method based on left-

continuous single valued neutrosophic t-representable t-norms. The rest of this paper is organized as follows. 

In Section 2, some basic concepts for single valued neutrosophic sets are reviewed. In Section 3, we give 

quintuple implication principles for fuzzy inference based on left-continuous single valued neutrosophic t-

representable t-norms for fuzzy modus ponens and fuzzy modus tollens, and the corresponding solutions of 

single valued neutrosophic ℛ-type quintuple implication methods. In Section 4, the robustness of quintuple 

implication method based on left-continuous single valued neutrosophic t-representable t-norm is 

investigated. Finally, the conclusions are given in Section 5. 

2 |Preliminaries 

In this section, we review some basic concepts for single valued neutrosophic sets, which will be used in this 

article. 

Definition 2.1. [26] A mapping T: [0,1]2 → [0,1] is called a triangular norm (t-norm), if it satisfied 

associativity, commutativity, monotonicity and boundary condition 𝑇(𝑥, 1)=𝑥 for any 𝑥 ∈ [0,1]. 

A mapping S: [0,1]2 → [0,1] is called a triangular conorm (t-conorm), if it satisfied associativity, 

commutativity, monotonicity and boundary condition 𝑆(𝑥, 0)=𝑥 for any 𝑥 ∈ [0,1]. A t-norm is called the 

dual t-norm of the t-conorm, if 𝑇(𝑥, 𝑦) = 1 − 𝑆(1 − 𝑥, 1 − 𝑦). Similarly, a t-conorm is called the dual t-

conorm of the t-norm, if 𝑆(𝑥, 𝑦) = 1 − 𝑇(1 − 𝑥, 1 − 𝑦). 

Definition 2.2. [26]A t-norm 𝑇 is called left-continuous (resp., right-continuous), if for any (𝑥0, 𝑦0) ∈ [0,1]
2, 

and for each 휀 > 0 there is a 𝛿 > 0 such that 

𝑇(𝑥, 𝑦) > 𝑇(𝑥0, 𝑦0) − 휀, whenever (𝑥, 𝑦) ∈ (𝑥0 − 𝛿, 𝑥0] × (𝑦0 − 𝛿, 𝑦0] (resp., 𝑇(𝑥, 𝑦) < 𝑇(𝑥0, 𝑦0) + 휀, 

whenever (𝑥, 𝑦) ∈ [𝑥0, 𝑥0 + 𝛿] × [𝑦0, 𝑦0 + 𝛿]) . 

Proposition 2.1. [26]A t-norm 𝑇 is a left-continuous t-norm if and only if there exists a binary operation 

𝑅𝑇 such that (𝑇, 𝑅𝑇) satisfies the residual principle, i.e., 𝑇(𝑥, 𝑧) ≤ 𝑦 iff 𝑧 ≤ 𝑅𝑇(𝑥, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ [0,1], 

where  
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𝑅𝑇(𝑥, 𝑦) = ⋁{𝑧 ∣ 𝑇(𝑥, 𝑧) ≤ 𝑦} 

is called a residual implication (𝑅-implication for short) induced by t-norm 𝑇. 

Proposition 2.2. [27]A t-conorm 𝑆 is a right-continuous t-conorm if and only if there exists a binary operation 

𝑅𝑆 such that (𝑆, 𝑅𝑆) forms a co-adjoint pair, i.e., 𝑥 ≤ 𝑆(𝑦, 𝑧) iff 𝑅𝑆(𝑥, 𝑦) ≤ 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ [0,1], where  

𝑅𝑆(𝑥, 𝑦) = ⋀{𝑧 ∣ 𝑥 ≤ 𝑆(𝑦, 𝑧)} 

is called a coresidual implication (𝑅𝑆-implication for short) induced by t-conorm 𝑆. 

Example 2. Three important t-norms and their residuum, t-conorms and their coresiduum [26, 27]. 

Table 3. t-norms and its residuum, t-conorms and its coresiduum. 

Name t-norms 
Residual 

implications 
t-conorms Coresidual implications 

Łukasiewicz 
𝑇𝐿(𝑥, 𝑦) 

=0 ∨ (𝑥 + 𝑦 − 1) 

𝑅𝑇𝐿(𝑥, 𝑦)

= 1 ∧ (1 − 𝑥 + 𝑦) 

𝑆𝐿(𝑥, 𝑦)

= (𝑥 + 𝑦) ∧ 1 

𝑅𝑆𝐿(𝑥, 𝑦) 

= (𝑥 − 𝑦) ∨ 0 

Gougen 𝑇𝐺𝑜(𝑥, 𝑏) = 𝑥𝑦 𝑅𝑇𝐺𝑜(𝑥, 𝑦) = 1 ∧
𝑦

𝑥
 

𝑆𝐺𝑜(𝑥, 𝑦)= 𝑥 + 𝑦 −

𝑥𝑦 
𝑅𝑆𝐺𝑜(𝑥, 𝑦) =

𝑥 − 𝑦

1 − 𝑦
∨ 0 

𝐆�̈�𝐝𝐞𝐥 𝑇𝐺(𝑥, 𝑦) = 𝑥 ∧ 𝑦 

𝑅𝑇𝐺(𝑥, 𝑦)

= {
1, 𝑖𝑓 𝑥 ≤ 𝑦,
𝑦, 𝑖𝑓 𝑥 > 𝑦.

 
𝑆𝐺(𝑥, 𝑦) = 𝑥 ∨ 𝑦 

𝑅𝑆𝐺𝑜(𝑥, 𝑦)

= {
0, 𝑖𝑓 𝑥 ≤ 𝑦,
𝑥, 𝑖𝑓 𝑥 > 𝑦.

 

 

Definition 2.3. [20] Let 𝑋 is a universal set. A single valued neutrosophic set 𝐴 on 𝑋 is characterized by three 

functions, i.e., truth-membership function 𝑡𝐴(𝑥), indeterminacy-membership function 𝑖𝐴(𝑥), and falsity-

membership function 𝑓𝐴(𝑥). A single valued neutrosophic set 𝐴 can be defined as follows: 

𝐴 = {< 𝑥, 𝑡𝐴(𝑥), 𝑖𝐴(𝑥), 𝑓𝐴(𝑥) >∣∣ 𝑥 ∈ 𝑋 }, 

where 𝑡𝐴(𝑥), 𝑖𝐴(𝑥), 𝑓𝐴(𝑥) ∈ [0,1] and satisfy the condition 0 ≤ 𝑡𝐴(𝑥) + 𝑖𝐴(𝑥) + 𝑓𝐴(𝑥) ≤ 3 for each 𝑥 in 

𝑋. 

The family of all single valued neutrosophic sets on 𝑋 is denoted by 𝑆𝑉𝑁𝑆(𝑋). 

Definition 2.4. [24] Let 𝐴, 𝐵 be two single valued neutrosophic sets on universal 𝑋, the following relations 

are defined as follows: 

1) 𝐴 ⊆ 𝐵 if and only 𝑡𝐴(𝑥) ≤ 𝑡𝐵(𝑥), 𝑖𝐴(𝑥) ≥ 𝑖𝐵(𝑥) and 𝑓𝐴(𝑥) ≥ 𝑓𝐵(𝑥) for all 𝑥 ∈ 𝑋; 

2) 𝐴 = 𝐵 if and only 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴; 

3) 𝐴 ∩ 𝐵 = 〈min(𝑡𝐴(𝑥), 𝑡𝐵(𝑥)),max(𝑖𝐴(𝑥), 𝑖𝐵(𝑥)),max(𝑓𝐴(𝑥), 𝑓𝐵(𝑥))〉 for all 𝑥 ∈ 𝑋 for all 𝑥 ∈ 𝑋; 

4) 𝐴 ∪ 𝐵 = 〈max(𝑡𝐴(𝑥), 𝑡𝐵(𝑥)),min(𝑖𝐴(𝑥), 𝑖𝐵(𝑥)),min(𝑓𝐴(𝑥), 𝑓𝐵(𝑥))〉 for all 𝑥 ∈ 𝑋; 

5) 𝐴𝑐 = {〈𝑓𝐴(𝑥), 1 − 𝑖𝐴(𝑥), 𝑡𝐴(𝑥)〉|𝑥 ∈ 𝑋}. 

The set of all single valued neutrosophic numbers is denoted by 𝑆𝑉𝑁𝑁, i.e. 𝑆𝑉𝑁𝑆 = {< 𝑡, 𝑖, 𝑓 > |𝑡, 𝑖, 𝑓 ∈

[0,1]}. For 𝛼 =< 𝑡𝛼 , 𝑖𝛼 , 𝑓𝛼 >, 𝛽 =< 𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽 >∈ 𝑆𝑉𝑁𝑁, an ordering on 𝑆𝑉𝑁𝑁 as 𝛼 ≤ 𝛽 if and only if 

𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 ≥ 𝑖𝛽 , 𝑓𝛼 ≥ 𝑓𝛽 . 𝛼 = 𝛽 iff 𝛼 ≤ 𝛽 and 𝛽 ≤ 𝛼 [20]. 

Obviously, 𝛼⋀𝛽 =< 𝑡𝛼 ∧ 𝑡𝛽 , 𝑖𝛼 ∨ 𝑖𝛽 , 𝑓𝛼 ∨ 𝑓𝛽 >, 𝛼⋁𝛽 =< 𝑡𝛼 ∨ 𝑡𝛽 , 𝑖𝛼 ∧ 𝑖𝛽 , 𝑓𝛼 ∧ 𝑓𝛽 >, ⋀ 𝛼𝑖𝑖∈𝐼 =<

⋀ 𝑡𝛼𝑖𝑖∈𝐼 , ⋁ 𝑖𝛼𝑖𝑖∈𝐼 , ⋁ 𝑓𝛼𝑖𝑖∈𝐼 >, ⋁ 𝛼𝑖𝑖∈𝐼 =< ⋁ 𝑡𝛼𝑖𝑖∈𝐼 , ⋀ 𝑖𝛼𝑖𝑖∈𝐼 , ⋀ 𝑓𝛼𝑖𝑖∈𝐼 >, 0∗ =< 0,1,1 > and 1∗ =< 1,0,0 > 

are the smallest element and the greatest element in the set 𝑆𝑉𝑁𝑁, respectively. It is easy to verify that (𝑆𝑉𝑁𝑁, 

≤) is a complete lattice. 
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Definition 2.5. [24]A binary operator 𝒯: 𝑆𝑉𝑁𝑁 × 𝑆𝑉𝑁𝑁 → 𝑆𝑉𝑁𝑁 defined by 𝒯(𝛼, 𝛽) =<

𝑇(𝑡𝛼 , 𝑡𝛽), 𝑆(𝑖𝛼 , 𝑖𝛽), 𝑆(𝑓𝛼 , 𝑓𝛽) > is a single valued neutrosophic t-norm, which is called a single valued 

neutrosophic t-representable t-norm, where 𝑇 is a t-norm and 𝑆 is its dual t-conorm on [0, 1]. 𝒯 is called a 

left-continuous single valued neutrosophic t-representable t-norm if 𝑇 is left-continuous and 𝑆 is right-

continuous.  

Definition 2.6. [24]A single valued neutrosophic residual implication (ℛ-implication for short) is defined by 

ℛ𝒯(𝛼, 𝛽) = ⋁{𝛾 ∈ 𝑆𝑉𝑁𝑁|𝒯(𝛾, 𝛼) ≤ 𝛽}, ∀𝛼, 𝛽 ∈ 𝑆𝑉𝑁𝑁, where 𝒯 is a left-continuous single valued 

neutrosophic t-representable t-norm. 

Proposition 2.3. [24] Let 𝒯 be a single valued neutrosophic t-representable t-norm, the following statements 

are equivalent: 

1) 𝒯 is left-continuous; 

2) 𝒯 and ℛ𝒯 form an adjoint pair, i.e., they satisfy the following residual principle 

𝒯(𝛾, 𝛼) ≤ 𝛽 ⇔ 𝛾 ≤ ℛ𝒯(𝛼, 𝛽), 𝛼, 𝛽, 𝛾 ∈ 𝑆𝑉𝑁𝑆. 

Proposition 2.4. [24]Let 𝛼, 𝛽 ∈ 𝑆𝑉𝑁𝑆, 𝛼 =< 𝑡𝛼 , 𝑖𝛼 , 𝑓𝛼 >, 𝛽 =< 𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽 >, then single valued 

neutrosophic residual implication ℛ𝒯(𝛼, 𝛽) = big < 𝑅𝑇(𝑡𝛼 , 𝑡𝛽)), 𝑅𝑆(𝑖𝛽 , 𝑖𝛼), 𝑅𝑆(𝑓𝛽 , 𝑓𝛼)big >, where 𝑅𝑇 is 

residual implication induced by left-continuous t-norm 𝑇, 𝑅𝑆 is coresidual implication induced by right-

continuous t-conorm 𝑆. 

Proposition 2.5. Let ℛ𝒯 be single valued neutrosophic residual implication induced by left-continuous single 

valued neutrosophic t-representable t-norm 𝒯, then 

1) ℛ𝒯(𝛼, 𝛽) = 1
∗ iff 𝛼 ≤ 𝛽; 

2) 𝛾 ≤ ℛ𝒯(𝛼, 𝛽) iff 𝛼 ≤ ℛ𝒯(𝛾, 𝛽); 

3) ℛ𝒯(1
∗, 𝛼) = 𝛼; 

4) ℛ𝒯(𝛼, ℛ𝒯(ℛ𝒯(𝛼, 𝛽), 𝛽) = 1
∗; 

5) ℛ𝒯(⋁ 𝛽𝑖𝑖∈𝐼 , 𝛼) = ⋀ ℛ𝒯𝑖∈𝐼 (𝛽𝑖, 𝛼); 

6) ℛ𝒯(𝛽, ⋀ 𝛼𝑖∈𝐼 ) = ⋀ ℛ𝒯𝑖∈𝐼 (𝛽, 𝛼𝑖); 

7) ℛ𝒯 is antitone in the first variable and isotone in the second variable.  

Example 3. [24] The following are three important single valued neutrosophic t-representable t-norms and 

their residual implications. 

1) The single valued neutrosophic Łukasiewicz t-norm and its residual implication: 

𝒯𝐿(𝛼, 𝛽) = 〈(𝑡𝛼 + 𝑡𝛽 − 1) ∨ 0, (𝑖𝛼 + 𝑖𝛽) ∧ 1, (𝑓𝛼 + 𝑓𝛽) ∧ 1〉 

ℛ𝒯𝐿(𝛼, 𝛽) = 〈1 ∧ (1 − 𝑡𝛼 + 𝑡𝛽), (𝑖𝛽 − 𝑖𝛼) ∨ 0, (𝑓𝛽 − 𝑓𝛼) ∨ 0〉. 

2) The single valued neutrosophic Gougen t-norm and its residual implication: 

𝒯𝐺𝑜(𝛼, 𝛽) = 〈𝑡𝛼𝑡𝛽 , 𝑖𝛼 + 𝑖𝛽 − 𝑖𝛼𝑖𝛽 , 𝑓𝛼 + 𝑓𝛽 − 𝑓𝛼𝑓𝛽〉. 

 



   Luo et al. | Neutrosophic Opt. Int. Syst. 3 (2024) 8-22 

 

01 

ℛ𝒯𝐺𝑜(𝛼, 𝛽) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

〈1,0,0〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈1,0,
𝑓𝛽 − 𝑓𝛼

1 − 𝑓𝛼
〉 , 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛼 < 𝑓𝛽 ,

〈1,
𝑖𝛽 − 𝑖𝛼

1 − 𝑖𝛼
, 0〉 , 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈1,
𝑖𝛽 − 𝑖𝛼

1 − 𝑖𝛼
,
𝑓𝛽 − 𝑓𝛼

1 − 𝑓𝛼
〉 , 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛼 < 𝑓𝛽 ,

〈
𝑡𝛽

𝑡𝛼
, 0,0〉 , 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈
𝑡𝛽

𝑡𝛼
, 0,
𝑓𝛽 − 𝑓𝛼

1 − 𝑓𝛼
〉 , 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛼 < 𝑓𝛽 ,

〈
𝑡𝛽

𝑡𝛼
,
𝑖𝛽 − 𝑖𝛼

1 − 𝑖𝛼
, 0〉 , 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈
𝑡𝛽

𝑡𝛼
,
𝑖𝛽 − 𝑖𝛼

1 − 𝑖𝛼
,
𝑓𝛽 − 𝑓𝛼

1 − 𝑓𝛼
〉 , 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛼 < 𝑓𝛽 .

 

3) The single valued neutrosophic t-norm and its residual implication: 

𝒯𝐺(𝛼, 𝛽) = 〈𝑡𝛼 ∧ 𝑡𝛽 , 𝑖𝛼 ∨ 𝑖𝛽 , 𝑓𝛼 ∨ 𝑓𝛽〉. 

ℛ𝒯𝐺(𝛼, 𝛽) =

{
 
 
 
 

 
 
 
 
〈1,0,0〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈1,0, 𝑓𝛽〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛼 < 𝑓𝛽 ,

〈1, 𝑖𝛽 , 0〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈1, 𝑖𝛽 , 𝑓𝛽〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛼 < 𝑓𝛽 ,

〈𝑡𝛽 , 0,0〉, 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈𝑡𝛽 , 0, 𝑓𝛽〉, 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛼 < 𝑓𝛽 ,

〈𝑡𝛽 , 𝑖𝛽 , 0〉, 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽〉, 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛼 < 𝑓𝛽 .

 

 

3 |Single Valued Neutrosophic Fuzzy Inference Quintuple Implication 

Method 

In this section, we discuss fuzzy inference quintuple implication method based on left-continuous single 

valued neutrosophic t-representable t-norm. 

Definition 3.1. Let 𝑋 and 𝑌 be no-empty sets. 𝐵∗ is called single valued neutrosophic ℛ-type quintuple 

implication solution for FMP, if it is the smallest single valued neutrosophic set on 𝑆𝑉𝑁𝑆(𝑌) such that the 

following inference formula equal to the maximum: 

ℛ (ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ (ℛ(𝐴∗(𝑥), 𝐴(𝑥)), ℛ(𝐴∗(𝑥), 𝐵∗(𝑦)))) 

Definition 3.2. Let 𝑋 and 𝑌 be no-empty sets. 𝐴∗ is called single valued neutrosophic ℛ-type quintuple 

implication solution 𝐴∗ for FMT, if it is the smallest single valued neutrosophic set on 𝑆𝑉𝑁𝑆(𝑌) such that 

the following inference formula equal to the maximum: 

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(ℛ(𝐵(𝑦), 𝐵∗(𝑦)), ℛ(𝐴(𝑥), 𝐴∗(𝑥)))) 
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Theorem 3.1. Let , 𝐴∗ ∈ 𝑆𝑉𝑁𝑆(𝑋) , 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑌). Suppose ℛ is a single valued neutrosophic residual 

implication induced by a left-continuous single valued neutrosophic t-representable t-norm 𝒯, then the single 

valued neutrosophic ℛ-type quintuple implication solution 𝐵∗ of FMP is as follows: 

𝐵∗(𝑦) =⋁𝒯

𝑥∈𝑋

(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐴∗(𝑥), 𝐴(𝑥))), 𝐴∗(𝑥))(∀𝑦 ∈ 𝑌) (1) 

 

Proof: For all , 𝐴∗ ∈ 𝑆𝑉𝑁𝑆(𝑋) , 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑌). Fistly, we prove 

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(ℛ(𝐴∗(𝑥), 𝐴(𝑥)), ℛ(𝐴∗(𝑥), 𝐵∗(𝑦)))) = 1∗. It follows from Eq. (1), we have 

𝒯(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐴∗(𝑥), 𝐴∗(𝑥))), 𝐴∗(𝑥)) ≤ 𝐵∗(𝑦). By the residuation property, then 

ℛ(𝐴(𝑥), 𝐵(𝑦)) ≤ ℛ(ℛ(𝐴∗(𝑥), 𝐴(𝑥)), ℛ(𝐴∗(𝑥), 𝐵∗(𝑦))). Therefore, 

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(ℛ(𝐴∗(𝑥), 𝐴(𝑥)), ℛ(𝐴∗(𝑥), 𝐵∗(𝑦)))) = 1∗. 

Second, we show that 𝐵∗ is the smallest single valued neutrosophic fuzzy subset such that ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), 

ℛ(ℛ(𝐴∗(𝑥), 𝐴(𝑥)), ℛ(𝐴∗(𝑥), 𝐵∗(𝑦)))) = 1∗. Suppose 𝐶 is a arbitrary single valued neutrosophic fuzzy 

subset such that ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(ℛ(𝐴∗(𝑥), 𝐴(𝑥)), ℛ(𝐴∗(𝑥), 𝐶(𝑦)))) = 1∗. By the residuation 

property, ℛ(𝐴(𝑥), 𝐵(𝑦)) ≤ ℛ(ℛ(𝐴∗(𝑥), 𝐴(𝑥)), ℛ(𝐴∗(𝑥), 𝐶(𝑦))). 

Then 𝒯(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐴∗(𝑥), 𝐴(𝑥))), 𝐴∗(𝑥)) ≤ 𝐶(𝑦). Thus, 𝐵∗ ≤ 𝐶. 

Therefore, 𝐵∗ for Eq. (1) is the single valued neutrosophic ℛ-type quintuple implication solution of FMP . 

Corollary 3.1. Suppose ℛ is a single valued neutrosophic residual implication induced by a left-continuous 

single valued neutrosophic t-representable t-norm 𝒯, then the single valued neutrosophic ℛ-type quintuple 

implication solution 𝐵∗ = {< 𝑡𝐵∗(𝑦), 𝑖𝐵∗(𝑦), 𝑓𝐵∗(𝑦) >∣ 𝑦 ∈ 𝑌} for FMP is expressed as follows: 

𝑡𝐵∗(𝑦) = ⋁ 𝑇𝑥∈𝑋 (𝑇(𝑅𝑇(𝑡𝐴(𝑥), 𝑡𝐵(𝑦)), 𝑅𝑇(𝑡𝐴∗(𝑥), 𝑡𝐴(𝑥))), 𝑡𝐴∗(𝑥))(∀𝑦 ∈ 𝑌), 

𝑖𝐵∗(𝑦) = ⋀ 𝑆𝑥∈𝑋 (𝑆(𝑅𝑆(𝑖𝐵(𝑦), 𝑖𝐴(𝑥)), 𝑅𝑆(𝑖𝐴(𝑥), 𝑖𝐴∗(𝑥))), 𝑖𝐴∗(𝑥))(∀𝑦 ∈ 𝑌), 

𝑓𝐵∗(𝑦) = ⋀ 𝑆𝑥∈𝑋 (𝑆(𝑅𝑆(𝑓𝐵(𝑦), 𝑓𝐴(𝑥)), 𝑅𝑆(𝑓𝐴(𝑥), 𝑓𝐴∗(𝑥))), 𝑓𝐴∗(𝑥))(∀𝑦 ∈ 𝑌). 

Corollary 3.2. The ℛ𝒯𝐿-type quintuple implication solution 𝐵∗(𝑦) =< 𝑡𝐵∗(𝑦), 𝑖𝐵∗(𝑦), 𝑓𝐵∗(𝑦) > (𝑦 ∈ 𝑌) for 

FMP is expressed as follows: 

𝑡𝐵∗(𝑦) = ⋁ {𝑥∈𝑋 [𝑡𝐴∗(𝑥) + ((((1 − 𝑡𝐴(𝑥) + 𝑡𝐵(𝑦)) ∧ 1) + ((1 − 𝑡𝐴∗(𝑥) + 𝑡𝐴(𝑥)) ∧ 1) − 1) ∨ 0) − 1] ∨

0}(∀𝑦 ∈ 𝑌), 

𝑖𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 [𝑖𝐴∗(𝑥) + ((((𝑖𝐵(𝑦) − 𝑖𝐴(𝑥)) ∨ 0) + ((𝑖𝐴(𝑥) − 𝑖𝐴∗(𝑥)) ∨ 0)) ∧ 1)] ∧ 1}(∀𝑦 ∈ 𝑌), 

𝑓𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 [𝑓𝐴∗(𝑥) + ((((𝑓𝐵(𝑦) − 𝑓𝐴(𝑥)) ∨ 0) + ((𝑓𝐴(𝑥) − 𝑓𝐴∗(𝑥)) ∨ 0)) ∧ 1)] ∧ 1}(∀𝑦 ∈ 𝑌). 

Corollary 3.3. The ℛ𝒯𝐺𝑜-type quintuple implication solution 𝐵∗(𝑦) =< 𝑡𝐵∗(𝑦), 𝑖𝐵∗(𝑦), 𝑓𝐵∗(𝑦) > (𝑦 ∈ 𝑌) 

for FMP is expressed as follows: 

𝑡𝐵∗(𝑦) =⋁{𝑡𝐴∗(𝑥) ⋅ (
𝑡𝐵(𝑦)

𝑡𝐴(𝑥)
∧ 1) ⋅ (

𝑡𝐴(𝑥)

𝑡𝐴∗(𝑥)
∧ 1)}

𝑥∈𝑋

(∀𝑦 ∈ 𝑌) 
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𝑖𝐵∗(𝑦) =⋀{𝑖𝐴∗(𝑥)

𝑥∈𝑋

+ [(
𝑖𝐵(𝑦) − 𝑖𝐴(𝑥)

1 − 𝑖𝐴(𝑥)
∨ 0) + (

𝑖𝐴(𝑥) − 𝑖𝐴∗(𝑥)

1 − 𝑖𝐴∗(𝑥)
∨ 0) − (

𝑖𝐵(𝑦) − 𝑖𝐴(𝑥)

1 − 𝑖𝐴(𝑥)
∨ 0)

⋅ (
𝑖𝐴(𝑥) − 𝑖𝐴∗(𝑥)

1 − 𝑖𝐴∗(𝑥)
∨ 0)] − 𝑖𝐴∗(𝑥)

⋅ [(
𝑖𝐵(𝑦) − 𝑖𝐴(𝑥)

1 − 𝑖𝐴(𝑥)
∨ 0) + (

𝑖𝐴(𝑥) − 𝑖𝐴∗(𝑥)

1 − 𝑖𝐴∗(𝑥)
∨ 0) − (

𝑖𝐵(𝑦) − 𝑖𝐴(𝑥)

1 − 𝑖𝐴(𝑥)
∨ 0)

⋅ (
𝑖𝐴(𝑥) − 𝑖𝐴∗(𝑥)

1 − 𝑖𝐴∗(𝑥)
∨ 0)]} (∀𝑦 ∈ 𝑌) 

s𝑓𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 𝑓𝐴∗(𝑥) + [(
𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0) + (

𝑓𝐴(𝑥)−𝑓𝐴∗(𝑥)

1−𝑓𝐴∗(𝑥)
∨ 0) − (

𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0) ⋅ (

𝑓𝐴(𝑥)−𝑓𝐴∗(𝑥)

1−𝑓𝐴∗(𝑥)
∨

0)] − 𝑓𝐴∗(𝑥) ⋅ [(
𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0) + (

𝑓𝐴(𝑥)−𝑓𝐴∗(𝑥)

1−𝑓𝐴∗(𝑥)
∨ 0) − (

𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0) ⋅ (

𝑓𝐴(𝑥)−𝑓𝐴∗(𝑥)

1−𝑓𝐴∗(𝑥)
∨ 0)]}(∀𝑦 ∈

𝑌).  

Corollary 3.4. The ℛ𝒯𝐺-type quintuple implication solution 𝐵∗(𝑦) =< 𝑡𝐵∗(𝑦), 𝑖𝐵∗(𝑦), 𝑓𝐵∗(𝑦) > (𝑦 ∈ 𝑌) 

for FMP is expressed as follows: 

𝑡𝐵∗(𝑦) = ⋁ {𝑥∈𝑋 𝑡𝐴∗(𝑥) ∧ [𝑅𝑇𝐺(𝑡𝐴(𝑥), 𝑡𝐵(𝑦)) ∧ 𝑅𝑇𝐺(𝑡𝐴∗(𝑥), 𝑡𝐴(𝑥))]}(∀𝑦 ∈ 𝑌), 

𝑖𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 𝑖𝐴∗(𝑥) ∨ [𝑅𝑆𝐺(𝑖𝐵(𝑦), 𝑖𝐴(𝑥)) ∨ 𝑅𝑆𝐺(𝑖𝐴(𝑥), 𝑖𝐴∗(𝑥))]}(∀𝑦 ∈ 𝑌), 

𝑓𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 𝑓𝐴∗(𝑥) ∨ [𝑅𝑆𝐺(𝑓𝐵(𝑦), 𝑓𝐴(𝑥)) ∨ 𝑅𝑆𝐺(𝑓𝐴(𝑥), 𝑓𝐴∗(𝑥))]}(∀𝑦 ∈ 𝑌). 

Theorem 3.2. Let ∈ 𝑆𝑉𝑁𝑆(𝑋) , 𝐵, 𝐵∗ ∈ 𝑆𝑉𝑁𝑆(𝑌), ℛ be single valued neutrosophic residual implication 

induced by a left-continuous single valued neutrosophic t-representable t-norm 𝒯, then the single valued 

neutrosophic ℛ-type quintuple implication solution 𝐴∗ for FMT is as follows: 

𝐴∗(𝑥) =⋁𝒯

𝑦∈𝑌

(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐵(𝑦), 𝐵∗(𝑦))), 𝐴(𝑥))(∀𝑥 ∈ 𝑋) (2) 

Proof: For all ∈ 𝑆𝑉𝑁𝑆(𝑋) , 𝐵, 𝐵∗ ∈ 𝑆𝑉𝑁𝑆(𝑌). Fistly, we prove 

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(ℛ(𝐵(𝑦), 𝐵∗(𝑦)), ℛ(𝐴(𝑥), 𝐴∗(𝑥)))) = 1∗. It follows from equation (2), we have 

𝒯(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐵(𝑦), 𝐵∗(𝑦))), 𝐴(𝑥)) ≤ 𝐴∗(𝑥). By the residuation property, then 

ℛ(𝐴(𝑥), 𝐵(𝑦)) ≤ ℛ(ℛ(𝐵(𝑦), 𝐵∗(𝑦)), ℛ(𝐴(𝑥), 𝐴∗(𝑥))). Therefore, we 

have ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(ℛ(𝐵(𝑦), 𝐵∗(𝑦)), ℛ(𝐴(𝑥), 𝐴∗(𝑥)))) = 1∗. 

Second, we show that 𝐴∗ is the smallest single valued neutrosophic fuzzy subset such 

that ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(ℛ(𝐵(𝑦), 𝐵∗(𝑦)), ℛ(𝐴(𝑥), 𝐴∗(𝑥)))) = 1∗. Suppose 𝐷 is a arbitrary single valued 

neutrosophic fuzzy subset such that 

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(ℛ(𝐵(𝑦), 𝐵∗(𝑦)), ℛ(𝐴(𝑥), 𝐷(𝑥)))) = 1∗ . By the residuation property, we have 

ℛ(𝐴(𝑥), 𝐵(𝑦)) ≤ ℛ(ℛ(𝐵(𝑦), 𝐵∗(𝑦)), ℛ(𝐴(𝑥), 𝐷(𝑥))). 

Then, 𝒯(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐵(𝑦), 𝐵∗(𝑦))), 𝐴(𝑥)) ≤ 𝐷(𝑥). Thus, 𝐴 ≤ 𝐷. 

Therefore, 𝐴∗ is the single valued neutrosophic ℛ-type quintuple implication solution for FMT. 

Corollary 3.5. Let ℛ is a single valued neutrosophic residual implication induced by a left-continuous single 

valued neutrosophic t-representable t-norm 𝒯, then the single valued neutrosophic ℛ-type quintuple 

implication solution 𝐴∗ = {< 𝑡𝐴∗(𝑥), 𝑖𝐴∗(𝑥), 𝑓𝐴∗(𝑥) >∣ 𝑥 ∈ 𝑋} for FMT is expressed as follows: 

𝑡𝐴∗(𝑥) = ⋁ 𝑇𝑦∈𝑌 (𝑇(𝑅𝑇(𝑡𝐴(𝑥), 𝑡𝐵(𝑦)), 𝑅𝑇(𝑡𝐵(𝑦), 𝑡𝐵∗(𝑦))), 𝑡𝐴(𝑥))(∀𝑥 ∈ 𝑋), 
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𝑖𝐴∗(𝑥) = ⋀ 𝑆𝑦∈𝑌 (𝑆(𝑅𝑆(𝑖𝐵(𝑦), 𝑖𝐴(𝑥)), 𝑅𝑆(𝑖𝐵∗(𝑦), 𝑖𝐵(𝑦))), 𝑖𝐴(𝑥))(∀𝑥 ∈ 𝑋), 

𝑓𝐴∗(𝑥) = ⋀ 𝑆𝑦∈𝑌 (𝑆(𝑅𝑆(𝑓𝐵(𝑦), 𝑓𝐴(𝑥)), 𝑅𝑆(𝑓𝐵∗(𝑦), 𝑓𝐵(𝑦))), 𝑓𝐴(𝑥))(∀𝑥 ∈ 𝑋). 

Corollary 3.6. The ℛ𝒯𝐿-type quintuple implication solution 𝐴∗(𝑥) =< 𝑡𝐴∗(𝑥), 𝑖𝐴∗(𝑥), 𝑓𝐴∗(𝑥) > (𝑥 ∈ 𝑋) for 

FMT is expressed as follows: 

𝑡𝐴∗(𝑥) = ⋁ {𝑦∈𝑌 [𝑡𝐴(𝑥) + ((((1 − 𝑡𝐴(𝑥) + 𝑡𝐵(𝑦)) ∧ 1) + ((1 − 𝑡𝐵(𝑦) + 𝑡𝐵∗(𝑦)) ∧ 1) − 1) ∨ 0) − 1] ∨

0}(∀𝑥 ∈ 𝑋), 

𝑖𝐴∗(𝑥) = ⋀ {𝑦∈𝑌 [𝑖𝐴(𝑥) + ((((𝑖𝐵(𝑦) − 𝑖𝐴(𝑥)) ∨ 0) + ((𝑖𝐵∗(𝑦) − 𝑖𝐵(𝑦)) ∨ 0)) ∧ 1)] ∧ 1}(∀𝑥 ∈ 𝑋), 

𝑓𝐴∗(𝑥) = ⋀ {𝑦∈𝑌 [𝑓𝐴(𝑥) + ((((𝑓𝐵(𝑦) − 𝑓𝐴(𝑥)) ∨ 0) + ((𝑓𝐵∗(𝑦) − 𝑓𝐵(𝑦)) ∨ 0)) ∧ 1)] ∧ 1}(∀𝑥 ∈ 𝑋). 

Corollary 3.7. The ℛ𝒯𝐺𝑜-type quintuple implication solution 𝐴∗(𝑥) =< 𝑡𝐴∗(𝑥), 𝑖𝐴∗(𝑥), 𝑓𝐴∗(𝑥) > (𝑥 ∈ 𝑋) 

for FMT is expressed as follows: 

𝑡𝐴∗(𝑥) = ⋀ {𝑦∈𝑌 𝑡𝐴(𝑥) ⋅ (
𝑡𝐵(𝑦)

𝑡𝐴(𝑥)
∧ 1) ⋅ (

𝑡𝐵∗(𝑦)

𝑡𝐵(𝑦)
∧ 1)}(∀𝑥 ∈ 𝑋), 

𝑖𝐴∗(𝑥) = ⋁ {𝑦∈𝑌 𝑖𝐴(𝑥) + [(
𝑖𝐵(𝑦)−𝑖𝐴(𝑥)

1−𝑖𝐴(𝑥)
∨ 0) + (

𝑖𝐵∗(𝑦)−𝑖𝐵(𝑦)

1−𝑖𝐵(𝑦)
∨ 0) − (

𝑖𝐵(𝑦)−𝑖𝐴(𝑥)

1−𝑖𝐴(𝑥)
∨ 0) ⋅ (

𝑖𝐵∗(𝑦)−𝑖𝐵(𝑦)

1−𝑖𝐵(𝑦)
∨ 0)] −

𝑖𝐴(𝑥) ⋅ [(
𝑖𝐵(𝑦)−𝑖𝐴(𝑥)

1−𝑖𝐴(𝑥)
∨ 0) + (

𝑖𝐵∗(𝑦)−𝑖𝐵(𝑦)

1−𝑖𝐵(𝑦)
∨ 0) − (

𝑖𝐵(𝑦)−𝑖𝐴(𝑥)

1−𝑖𝐴(𝑥)
∨ 0) ⋅ (

𝑖𝐵∗(𝑦)−𝑖𝐵(𝑦)

1−𝑖𝐵(𝑦)
∨ 0)]}(∀𝑥 ∈ 𝑋), 

𝑓𝐴∗(𝑥) = ⋁ {𝑦∈𝑌 𝑓𝐴(𝑥) + [(
𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0) + (

𝑓𝐵∗(𝑦)−𝑓𝐵(𝑦)

1−𝑓𝐵(𝑦)
∨ 0) − (

𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0) ⋅ (

𝑓𝐵∗(𝑦)−𝑓𝐵(𝑦)

1−𝑓𝐵(𝑦)
∨

0)] − 𝑓𝐴(𝑥) ⋅ [(
𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0) + (

𝑓𝐵∗(𝑦)−𝑓𝐵(𝑦)

1−𝑓𝐵(𝑦)
∨ 0) − (

𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0) ⋅ (

𝑓𝐵∗(𝑦)−𝑓𝐵(𝑦)

1−𝑓𝐵(𝑦)
∨ 0)]}(∀𝑥 ∈

𝑋). 

Corollary 3.8. The ℛ𝒯𝐺-type quintuple implication solution 𝐴∗(𝑥) =< 𝑡𝐴∗(𝑥), 𝑖𝐴∗(𝑥), 𝑓𝐴∗(𝑥) > (𝑥 ∈ 𝑋) for 

FMT is expressed as follows: 

𝑡𝐴∗(𝑥) = ⋀ {𝑦∈𝑌 𝑡𝐴(𝑥) ∧ [𝑅𝑇𝐺(𝑡𝐴(𝑥), 𝑡𝐵(𝑦)) ∧ 𝑅𝑇𝐺(𝑡𝐵(𝑦), 𝑡𝐵∗(𝑦))]}(∀𝑥 ∈ 𝑋), 

𝑖𝐴∗(𝑥) = ⋁ {𝑦∈𝑌 𝑖𝐴(𝑥) ∨ [𝑅𝑆𝐺(𝑖𝐵(𝑦), 𝑖𝐴(𝑥)) ∨ 𝑅𝑆𝐺(𝑖𝐵∗(𝑦), 𝑖𝐵(𝑦))]}(∀𝑥 ∈ 𝑋),  

𝑓𝐴∗(𝑥) = ⋁ {𝑦∈𝑌 𝑓𝐴(𝑥) ∨ [𝑅𝑆𝐺(𝑓𝐵(𝑦), 𝑓𝐴(𝑥)) ∨ 𝑅𝑆𝐺(𝑓𝐵∗(𝑦), 𝑓𝐵(𝑦))]}(∀𝑥 ∈ 𝑋). 

Example 4. We use the quintuple implication method as stated in Eq.(1) to deal with the FMP problem 

shown in Example 1. For the three implications: 𝐺�̈�𝑑𝑒𝑙 implication, Lukasiewicz implication and Gougen 

implication, we have the same result 𝐵∗ = {< 0,1,1 >,< 0,1,1 >,< 0,1,1 >,< 0.4,0.5,0.3 >,<

0.4,0.5,0.3 >}, which is close to the statement ``𝑦 is large". Therefore, it is consistent with human thinking. 

Moreover, we use the quintuple implication method as stated in Eq.(2) to deal with the FMT problem shown 

in Example 1. For the three implications: 𝐺�̈�𝑑𝑒𝑙 implication, Lukasiewicz implication and Gougen 

implication, we have the same result 𝐴∗ = {< 0.4,0.5,0.3 >,< 0.4,0.5,0.3 >,< 0,1,1 >,< 0,1,1 >,<

0,1,1 >}, which is close to the statement ``𝑥 is small". Hence, it is consistent with human thinking. 

As for fuzzy reasoning, the reductivity of an inference method is a significant subject. Therefore, we consider 

the reductivity of single valued neutrosophic fuzzy modus ponens and single valued neutrosophic fuzzy 

modus tollens. 

Definition 3.3. ([3] A method for FMP is said recoverable if 𝐴∗ = 𝐴 implies 𝐵∗ = 𝐵. Similarly, a method for 

FMT is recoverable if 𝐵∗ = 𝐵 implies 𝐴∗ = 𝐴. 

Theorem 3.3. The single valued neutrosophic fuzzy inference quintuple implication method for FMP is 

recoverable if 𝐴 is normal single valued neutrosophic set (there is 𝑥0 ∈ 𝑋 such that 𝐴(𝑥0) =< 1,0,0 >= 1
∗). 
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Proof: Suppose  and there exists  such that . Then we have 

 

𝐵(𝑦) ≥ 𝐵∗(𝑦)
= ⋁ 𝒯𝑥∈𝑋 (𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐴∗(𝑥), 𝐴(𝑥))), 𝐴∗(𝑥))
≥ 𝒯(𝒯(ℛ(𝐴(𝑥0), 𝐵(𝑦)), ℛ(𝐴

∗(𝑥0), 𝐴(𝑥0))), 𝐴
∗(𝑥0))

= 𝒯(𝒯(ℛ(1∗, 𝐵(𝑦)), 1∗), 1∗)
= 𝐵(𝑦)

 

Therefore . This shows that the quintuple implication method for FMP is recoverable. 

Theorem 3.4. The single valued neutrosophic fuzzy inference quintuple I method for FMT is reductive if 

single valued neutrosophic residual implication ℛ satisfy ℛ(ℛ(𝐴, 0∗), 0∗) = 𝐴, and 𝐵 is co-normal single 

valued neutrosophic set (there is 𝑦0 ∈ 𝑌 such that 𝐵(𝑦0) =< 0,1,1 >= 0
∗). 

Proof: Suppose 𝐵∗ = 𝐵 is co-normal single valued neutrosophic set, i.e. there exists 𝑦0 ∈ 𝑌 such that 

𝐵∗(𝑦0) = 𝐵(𝑦0) =< 0,1,1 >= 0
∗, then we have 

𝐴(𝑥) ≥ 𝐴∗(𝑥)

=⋁𝒯

𝑦∈𝑌

(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐵(𝑦), 𝐵∗(𝑦))), 𝐴(𝑥))

≥ 𝒯(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦0)), ℛ(𝐵(𝑦0), 𝐵
∗(𝑦0))), 𝐴(𝑥))

= 𝒯(𝒯(ℛ(𝐴(𝑥), 1∗), 1∗), 𝐴(𝑥))
= 𝐴(𝑥)

 

Therefore 𝐴∗ = 𝐴. This shows that the quintuple I method for FMT is recoverable. 

4 | Robustness of Single Valued Neutrosophic Fuzzy Inference 

Quintuple I Method 

In this section, we introduce a new distance between single valued neutrosophic sets. We study robustness of 

quintuple I method based on left-continuous single valued neutrosophic t-representable t-norms with this 

new distance. 

Theorem 4.1. [25] Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, for all 𝛼, 𝛽 ∈ 𝑆𝑉𝑁𝑆(𝑋), then 

𝑑(𝛼, 𝛽) = max{⋁ |

𝑥𝑖∈𝑋

𝑡𝛼(𝑥𝑖) − 𝑡𝛽(𝑥𝑖)|, ⋁ |

𝑥𝑖∈𝑋

𝑖𝛼(𝑥𝑖) − 𝑖𝛽(𝑥𝑖)|, ⋁ |

𝑥𝑖∈𝑋

𝑓𝛼(𝑥𝑖) − 𝑓𝛽(𝑥𝑖)|} 

is a metric on 𝑆𝑉𝑁𝑆(𝑋) and (𝑆𝑉𝑁𝑆(𝑋), 𝑑) is a metric space. 𝑑 is called a distance on 𝑆𝑉𝑁𝑆(𝑋). 

Definition 4.1. [25] Suppose that 𝔉 is a n-tuple mapping form 𝑆𝑉𝑁𝑁𝑛 to 𝑆𝑉𝑁𝑁, ∀휀 ∈ (0,1). For any <

t, i, f >= (< 𝑡1, 𝑖1, 𝑓1 >,< 𝑡2, 𝑖2, 𝑓2 >, . . . , < 𝑡𝑛, 𝑖𝑛, 𝑓𝑛 >) ∈ 𝑆𝑉𝑁𝑁
𝑛,  

∆ 𝔉(< t, i, f >, 휀)

= ⋁{𝑑(𝔉 < t, i, f >, 𝔉 < t′, i′, f ′ >)| < t′, i′, f ′ >∈ 𝑆𝑉𝑁𝑁𝑛, 𝑑(< t, i, f >,< t′, i′, f ′ >) ≤ 휀} 

is called 휀 sensitivity of 𝔉 at point < t, i, f >, where 𝑑(< t, i, f >,< t′, i′, f ′ >) = max{⋁ |𝑗 𝑡𝑗 − 𝑡𝑗
′|, ⋁ |𝑗 𝑖𝑗 −

𝑖𝑗
′|, ⋁ |𝑗 𝑓𝑗 − 𝑓𝑗

′|}. 

Definition 4.2. [25] The biggest 휀 sensitivity of 𝔉 denoted by 

∆ 𝔉(휀) = ⋁ ∆ 𝔉
<i,t,f>∈𝑆𝑉𝑁𝑆𝑛

(< t, i, f >, 휀) 

is called 휀 sensitivity of 𝔉. 
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Definition 4.3.[25] Let 𝔉 and 𝔉′ be two n-tuple single valued neutrosophic fuzzy connectives. We say that 𝔉 

at least as robust as 𝔉′ at point < t, i, f >, if ∀휀 ∈ (0,1), ∆ 𝔉(< t, i, f >, 휀) ≤ ∆ 𝔉′(< t, i, f >, 휀). We say that 

𝔉 is more robust than 𝔉′ at point < t, i, f >, if there exists 휀 > 0 such that ∆ 𝔉(< t, i, f >, 휀) < ∆ 𝔉′(<

t, i, f >, 휀). 

Definition 4.4. [25] Let 𝔉 and 𝔉′ be two n-tuple single valued neutrosophic fuzzy connectives. We say that 

𝔉 at least as robust as 𝔉′, if ∀휀 ∈ (0,1), ∆ 𝔉(휀) ≤ ∆ 𝔉′(휀). We say that 𝔉 is more robust than 𝔉′ if there 

exists 휀 > 0 such that ∆ 𝔉(휀) < ∆ 𝔉′(휀). 

Definition 4.5.[25] Let 𝐴 and 𝐴′ be two single valued neutrosophic fuzzy sets on universal 𝑋. If ∥ 𝐴 −

𝐴′ ∥=⋁ 𝑑𝑥∈𝑋 (𝐴(𝑥), 𝐴′(𝑥)) ≤ 휀 for all 𝑥 ∈ 𝑋, then 𝐴′ is called 휀-perturbation of 𝐴 denoted by 𝐴′ ∈ 𝑂(𝐴, 휀). 

Proposition 4.1.[25] For a binary single valued neutrosophic fuzzy connectives 𝔉: 𝑆𝑉𝑁𝑁 × 𝑆𝑉𝑁𝑁 →

𝑆𝑉𝑁𝑁, we can obtain: 

1) Let 𝔉 be a left-continuous single valued neutrosophic t-representable t-norm on 𝑆𝑉𝑁𝑆, 𝒯(𝛼, 𝛽) =

< 𝑇(𝑡𝛼 , 𝑡𝛽), 𝑆(𝑖𝛼 , 𝑖𝛽), 𝑆(𝑓𝛼 , 𝑓𝛽) > for all 𝛼 =< 𝑡𝛼 , 𝑖𝛼 , 𝑓𝛼 >, 𝛽 =< 𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽 >∈ 𝑆𝑉𝑁𝑁, then

 

2) Let 𝔉 be single valued neutrosophic residuated implication ℛ𝒯 induced by left-continuous single 

valued neutrosophic t-representable t-norm 𝒯, ℛ𝒯(𝛼, 𝛽) = big <

𝑅𝑇(𝑡𝛼 , 𝑡𝛽)), 𝑅𝑆(𝑖𝛽 , 𝑖𝛼), 𝑅𝑆(𝑓𝛽 , 𝑓𝛼)big > for all 𝛼 =< 𝑡𝛼 , 𝑖𝛼 , 𝑓𝛼 >, 𝛽 =< 𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽 >∈ 𝑆𝑉𝑁𝑁, 

then 

 

 

where 𝑅𝑇 is residual implication induced by left-continuous t-norm 𝑇, 𝑅𝑆 is coresidual implication induced 

by right-continuous t-conorm 𝑆. 

Corollary 4.1. [25] The 휀 sensitivity of the single valued neutrosophic Lukasiewicz t-representable t-norm is 

△𝒯𝐿 (휀) = 2휀 ∧ 1. 

Corollary 4.2. [25] The 휀 sensitivity of the single valued neutrosophic Lukasiewicz residual implication is 

△ℛ𝒯𝐿
= 2휀 ∧ 1. 
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Definition 4.6. Let 𝐴, 𝐴′, 𝐵, 𝐵′, 𝐴∗ and 𝐴′∗ be single valued neutrosophic fuzzy sets. 𝐵∗ and 𝐵′∗ are the 

single valued neutrosophic ℛ-type quintuple I solution of FMP(𝐴, 𝐵, 𝐴∗) and FMP(𝐴′, 𝐵′, 𝐴′∗),respectively. 

If ∥ 𝐴 − 𝐴′ ∥≤ 휀, ∥ 𝐵 − 𝐵′ ∥≤ 휀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 휀, then the single valued neutrosophic ℛ-type quintuple I 

solution of FMP 휀-sensitivity ∆ 𝐵∗(휀): 

∆ 𝐵∗(휀) =∥ 𝐵
∗ − 𝐵′∗ ∥=⋁𝑑

𝑦∈𝑌

(𝐵∗(𝑦), 𝐵′∗(𝑦)) 

Definition 4.7. Let 𝐴, 𝐴′, 𝐵, 𝐵′, 𝐵∗ and 𝐵′∗ be single valued neutrosophic fuzzy sets. 𝐴∗ and 𝐴′∗ are the 

single valued neutrosophic ℛ-type quintuple I solution of FMT(𝐴,𝐵,𝐵∗) and FMT(𝐴′,𝐵′,𝐵′∗), respectively. 

If ||𝐴 − 𝐴′|| ≤ 휀, ||𝐵 − 𝐵′|| ≤ 휀, ||𝐵∗ − 𝐵′∗|| ≤ 휀, then the single valued neutrosophic ℛ-type quintuple I 

solution of FMT 휀-sensitivity ∆ 𝐴∗(휀): 

∆𝐴∗(휀) = ||𝐴
∗ − 𝐴′∗|| =⋁𝑑

𝑥∈𝑋

(𝐴∗(𝑥), 𝐴′∗(𝑥)) 

Theorem 4.2. Let 𝐴, 𝐴′, 𝐵, 𝐵′, 𝐴∗ and 𝐴′∗ be single valued neutrosophic fuzzy sets. 𝐵∗ and 𝐵′∗ are the single 

valued neutrosophic ℛ-type quintuple I solution of FMP(𝐴, 𝐵, 𝐴∗) and FMP(𝐴′, 𝐵′, 𝐴′∗), respectively. If ∥

𝐴 − 𝐴′ ∥≤ 휀, ∥ 𝐵 − 𝐵′ ∥≤ 휀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 휀, then the single valued neutrosophic ℛ-type quintuple I 

solution of FMP 휀-sensitivity ∆ 𝐵∗(휀) =∥ 𝐵
∗ − 𝐵′∗ ∥≤ ∆ 𝒯 (∆ 𝒯(∆ ℛ(휀))). 

Proof: Let 𝐴, 𝐴′, 𝐴∗, 𝐴′∗ ∈ 𝑆𝑁𝑉𝑆(𝑋), 𝐵, 𝐵′ ∈ 𝑆𝑁𝑉𝑆(𝑌). If ∥ 𝐴 − 𝐴′ ∥≤ 휀, ∥ 𝐵 − 𝐵′ ∥≤ 휀, ∥ 𝐴∗ − 𝐴′∗ ∥≤

휀, then 

 

By corollary 4.1, ∆ ℛ(휀) ≥ (2휀 ∧ 1) > 휀, then ∆ 𝒯(∆ ℛ(휀) ∨ 휀) = ∆ 𝒯(∆ ℛ(휀)), ∆ 𝐵∗(휀) =∥ 𝐵
∗ − 𝐵′∗ ∥≤

∆ 𝒯 (∆ 𝒯(∆ ℛ(휀))). 

Corollary 4.3. Let ℛ be single valued neutrosophic residuated implication induced by left-continuous single 

valued neutrosophic Łukasiewicz t-representable t-norm 𝒯, then ∆ 𝐵∗(휀) ≤ 휀 + 2∆ ℛ(휀). 

Proof: Let 𝐴∗(𝑥) =< 𝑡1, 𝑖1, 𝑓1 >, 𝐴(𝑥) =< 𝑡2, 𝑖2, 𝑓2 >, 𝐵(𝑦) =< 𝑡3, 𝑖3, 𝑓3 >, 𝐴′∗(𝑥) =< 𝑡1
′ , 𝑖1

′ , 𝑓1
′ >, 

𝐴′(𝑥) =< 𝑡2
′ , 𝑖2

′ , 𝑓2
′ >, 𝐵′(𝑦) =< 𝑡3

′ , 𝑖3
′ , 𝑓3

′ >. Suppose ∥ 𝐴 − 𝐴′ ∥≤ 휀, ∥ 𝐵 − 𝐵′ ∥≤ 휀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 휀. 

By proposition 4.1, we have 
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Theorem 4.3. Let 𝐴, 𝐴′, 𝐵, 𝐵′, 𝐵∗ and 𝐵′∗ be single valued neutrosophic fuzzy sets. 𝐴∗ and 𝐴′∗ are the single 

valued neutrosophic ℛ-type quintuple I solution of FMT (𝐴, 𝐵, 𝐵∗) and FMT(𝐴′, 𝐵′, 𝐵′∗), respectively. If 

∥ 𝐴 − 𝐴′ ∥≤ 휀, ∥ 𝐵 − 𝐵′ ∥≤ 휀, ∥ 𝐵∗ − 𝐵′∗ ∥≤ 휀, then the single valued neutrosophic ℛ-type quintuple I 

solution of FMT 휀-sensitivity 

∆ 𝐴∗(휀) =∥ 𝐴
∗ − 𝐴′∗ ∥≤ ∆ 𝒯 (∆ 𝒯(∆ ℛ(휀))). 

Proof: Let 𝐴, 𝐴′ ∈ 𝑆𝑁𝑉𝑆(𝑋), 𝐵, 𝐵′, 𝐵∗, 𝐵′∗ ∈ 𝑆𝑁𝑉𝑆(𝑌). If ∥ 𝐴 − 𝐴′ ∥≤ 휀, ∥ 𝐵 − 𝐵′ ∥≤ 휀, ∥ 𝐵∗ − 𝐵′∗ ∥≤

휀, then 

  

 

Corollary 4.4. Let ℛ be single valued neutrosophic residuated implication induced by left-continuous single 

valued neutrosophic Łukasiewicz t-representable t-norm 𝒯, then ∆ 𝐴∗(휀) ≤ 휀 + 2∆ ℛ(휀). 

Proof: Let 𝐵∗(𝑦) =< 𝑡1, 𝑖1, 𝑓1 >, 𝐴(𝑥) =< 𝑡2, 𝑖2, 𝑓2 >, 𝐵(𝑦) =< 𝑡3, 𝑖3, 𝑓3 >, 𝐵′∗(𝑦) =< 𝑡1
′ , 𝑖1

′ , 𝑓1
′ >, 

𝐴′(𝑥) =< 𝑡2
′ , 𝑖2

′ , 𝑓2
′ >, 𝐵′(𝑦) =< 𝑡3

′ , 𝑖3
′ , 𝑓3

′ >. Suppose ∥ 𝐴 − 𝐴′ ∥≤ 휀, ∥ 𝐵 − 𝐵′ ∥≤ 휀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 휀, 

By proposition 4.1, we have : 
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5 |Conclusions 

In this paper, we propose quintuple I method based on left-continuous single valued neutrosophic t-

representable t-norms. Single valued neutrosophic fuzzy inference quintuple I Principle for FMP and FMT 

are proposed. Moreover, the single valued neutrosophic ℛ-type quintuple I solutions for FMP and FMT are 

given respectively. We prove that single valued neutrosophic fuzzy inference quintuple I methods are 

recoverable and robust. The logical basis of a fuzzy inference method is very important. In future, we will 

consider to build the strict logic foundation for quintuple I method based on left-continuous single valued 

neutrosophic t-representable t-norms, and to bring the single valued neutrosophic fuzzy inference method 

within the framework of logical semantic. 
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