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1 |Introduction 

Ecology, a field within the realm of biological science, focuses on the interactions among living organisms 

and their physical surroundings, encompassing both living and non-living elements. As technological 

advancements and environmental impacts have rapidly expanded, ecological research has flourished across 
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Abstract 

 

The parameter involve in ecological model always uncertain due to environmental and demographic fuzziness. In 

this paper, we consider a food chain model with different fear effects in which all ecological parameters are taken 

into account in a parametric functional form of an interval number. In the suggested model,the middle predator is 

the specialist. Using the interval differential equation approach, we point out the importance of modeling on 

uncertainity by the proposed model. Existence and uniqueness along with non-negativity and boundedness of the 

model system have been investigated. Equilibrium points and their feasibility and nature of critical points of the 

proposed system are discussed in uncertain environment with the help of MATLAB. We were able to conduct 

graphical demonstrations and numerical simulations. 
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various scales. Ecosystem ecologists often emphasize the flow of energy and the recycling of nutrients. In 

ecological studies, one of the central elements is the interaction between predators and prey, which dictates 

the transfer of energy and biomass from one trophic level to another, influencing population sizes. The 

responses of prey to predators have a profound impact on the dynamics of these interactions, either directly 

or indirectly affecting the predator and prey populations. Following the pioneering work of Lotka and 

Volterra [1-2], numerous intricate predator-prey models have been developed to elucidate the dynamics of 

these systems in diverse real-world settings [3-9]. Researchers have proposed several hypotheses to explain 

the coexistence of interacting populations in different environments. Much attention has been devoted to 

two-species or three-species predator-prey models. Hastings and Powell [10] and Alidoust and Ghahfarokhi 

[11] explored a three-species food chain model, revealing chaotic behavior. Roy and Alam [12] analyzed 

versions of a food chain model, considering intra-species competition in the top predator. Freedman and 

Waltman [13] identified conditions for the persistence of a three-species predator-prey model. Moura and 

Silva [14] elucidated the food web and ecological models applicable to aquatic ecosystems. Abrams [15] 

demonstrated the relationship between food availability and the foraging efforts of species in their ecological 

environment. Nath et al. [16] illustrated how refuge and Allee effects in prey species can stabilize chaos in tri-

trophic food chain models. Barbier et al. [17] discussed pyramids, cascades, and the synthesis of functionality 

and stability in food chains. Banerjee and Das [18] investigated the impulsive effects on a tri-trophic food 

chain model, considering mixed functional responses under seasonal perturbations. Castellonas et al. [19] 

observed both Hopf and Bautin bifurcations in a tritrophic food chain model. Huang et al. [20] delved into 

the dynamic behavior of a food chain model with stage structure and time delays. 

1.1 |Motivation and Novelty 

Numerous studies of mathematical models of biology concentrate on the deterministic model, which is 

primarily based on the law of large numbers and the presumption that, if there are enough biological 

individuals, the system’s behaviors will exhibit a reasonably stable statistical regularity. Numerous scholars 

previously used the interval approach and stochastic approach to address these uncertainty concerns [21-28]. 

The unknown parameters are described by interval-valued functions in the interval method. We use fuzzy set 

theory to represent erroneous parameters to get around these problems. For the first time, Professor Zadeh 

established the fuzzy set theory [29] and he also suggested using fuzzy differential equations as a natural 

technique to model dynamic systems with probabilistic uncertainty [30]. It is important to note that based on 

the fuzzy instantaneous annual rate of discount, the optimal harvesting strategy is explored by Sadhukhan et 

al. [31] when they investigated the optimal harvesting of a food chain model in a fuzzy environment. The 

majority of research studies in mathematical modeling, particularly bio-mathematical modeling, take place in 

a crisp (precise) environment. Therefore, in these circumstances, the majority of a biological model’s 

parameters are not exact. A biological model becomes inaccurate if some ambiguous parameters are included. 

We have considered a tri-tropic food chain model where the middle predator is a generalized predator and 

the top predator is a specialist. In addition, two fear effects are suggested in this paper. 

1.2 |Structure of the Paper 

The rest of this article is organized as follows: Some basic definitions such as interval number, parametric 

representation of a number in the interval, and some properties of interval number are discussed in detail in 

Section 2. We develop the mathematical model as well as the system’s positivity, and boundedness in Section 

3. In Section 4, we study the local stability analysis and global stability analysis. In Section 5, we use numerical 

simulations to validate the outcomes of our analysis. The article concludes with a few conclusions in Section 

6. 

2 |Pre-requisite Concept 

Definition. For an interval [𝑇𝑚1 , 𝑇𝑛1] The interval-valued function can be created as𝑘1(𝜂) =

(𝑇𝑚1)
1−𝜂(𝑇𝑛1)

𝜂for𝜂 ∈ [0,1], which is also called parametric form in interval figure. 
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Properties. Let, two intervals (parametric form) as 𝑘1(𝜂) = (𝑇𝑚1)
1−𝜂(𝑇𝑛1)

𝜂and ℎ1(𝜂) =

(𝑅𝑚1)
1−𝜂(𝑅𝑛1)

𝜂for ∈ [0,1] , then the following operation was obtained: 

1. 𝑔1(𝜂) = 𝑘1(𝜂) + ℎ1(𝜂) = (𝑇𝑚1 + 𝑅𝑚1)
1−𝜂(𝑇𝑛1 + 𝑅𝑛1)

𝜂. 

2. 𝑠1(𝜂) =  𝑘1(𝜂) − ℎ1(𝜂) = (𝑇𝑚1 − 𝑅𝑚1)
1−𝜂(𝑇𝑛1 − 𝑅𝑛1)

𝜂. 

3. 𝑟1(η)= 𝑘1(𝜂)ℎ1(𝜂) =

(min {T𝑚1R𝑚1 , T𝑛1R𝑛1,T𝑚1T𝑛1 , R𝑚1R𝑛1})
1−η(max {{T𝑚1R𝑚1 , T𝑛1R𝑛1,T𝑚1T𝑛1 , R𝑚1R𝑛1})

η

 

4. 𝑦ϛ1(𝜂) = 𝑒(𝜂) = 𝑦(𝑇𝑚1)
1−𝜂(𝑇𝑛1)

𝜂𝑖𝑓𝑦 > 0, 

                        = 𝑦(𝑇𝑚1)
1−𝜂(𝑇𝑛1)

𝜂𝑖𝑓𝑦 < 0. 

5. 𝑝1(𝛼) =
𝑘1(𝜂)

ℎ1(𝜂)
= (min {

𝑇𝑚1
𝑅𝑚1

,
𝑅𝑛1
𝑇𝑛1
,
𝑅𝑚1
𝑇𝑛1
,
𝑇𝑛1
𝑅𝑚1
})1−𝜂(max {{

𝑅𝑚1
𝑇𝑚1

,
𝑅𝑛1
𝑇𝑛1
,
𝑇𝑚1
𝑅𝑛1
,
𝑇𝑛1
𝑅𝑚1
})𝜂. 

Where the parametric interval-valued function is 𝑔1(𝜂), 𝑠1(𝜂), 𝑟1(η), 𝑦𝑘1(𝜂), 𝑝1(𝛼), 𝑒(𝜂) for constant ϛ1and 

𝜂 ∈ [0,1]. 

3 |Proposed Model 

Let 𝑢(𝑡), 𝑣(𝑡), and 𝑤(𝑡) represent the density of the prey population, intermediate predator, and top 

predator, respectively, at any time 𝑡.To formulate the model system, the following assumption is made: 𝑢 (𝑡) 

and 𝑣 (𝑡) increase at the growth rate of 𝑟1 and 𝑟2, with two carrying capacity 𝐾1 and 𝐾2, 𝑝1 and 𝑝2 represents 

the predation rate, according to Holling Type-II functional response 𝑞1 and 𝑞2 represents the rate of 

conversion, d1 represent natural data rate, m1 and m2 represents the fear levels, c1 represent a half-saturation 

constant. Let 𝐸1 and 𝐸2 be the harvesting effort and 𝑑1, 𝑑2 be the catchability coefficients of intermediate 

predator and top predator respectively. 

Our proposed bio-mathematical model is 

𝑑𝑢

𝑑𝑡
=

𝑟1𝑢

1+𝑚1𝑤
(1 −

𝑢

𝐾1
) − 𝑝1𝑢𝑣, 

𝑑𝑣

𝑑𝑡
=

𝑟2𝑣

1+𝑚2𝑤
(1 −

𝑣

𝐾2
) + 𝑝2𝑢𝑣 −

𝑞1𝑣𝑤

𝑐1+𝑣
− 𝐸1𝑑1𝑣,            (1) 

𝑑𝑤

𝑑𝑡
=
𝑞2𝑣𝑤

𝑐1 + 𝑣
− 𝑑1𝑤 − 𝐸2𝑑2𝑤. 

3.1 |Model in Imprecise Environment 

The proposed model (1) in the imprecise environment can be changed with the coefficients taken as interval 

numbers as follows: 

 
𝑑𝑢

𝑑𝑡
=

𝑟̂1𝑢

1+𝑚̂1𝑤
(1 −

𝑢

𝐾1
) − 𝑝̂1𝑢𝑣, 

𝑑𝑣

𝑑𝑡
=

𝑟̂2𝑣

1+𝑚̂2𝑤
(1 −

𝑣

𝐾2
) + 𝑝̂2𝑢𝑣 −

𝑞̂1𝑣𝑤

𝑐1̂+𝑣
− 𝐸1𝑑1𝑣,            (2) 

𝑑𝑤

𝑑𝑡
=
𝑞̂2𝑣𝑤

𝑐1̂+𝑣
− 𝑑̂1𝑤 − 𝐸2𝑑2𝑤. 

Now, we take 𝐼𝑙(𝜌) = 𝐼1𝐿
1−𝜌
𝐼1𝑅
𝜌

 for 𝜌 ∈ [0,1] for an interval [𝐼1𝐿, 𝐼1𝑅]. Then the above system (2) can be 

written as follows: 
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𝑑𝑢

𝑑𝑡
=

𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌

1+𝑤𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌 𝑢 (1 −

𝑢

𝐾1
) − 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑢𝑣, 

𝑑𝑣

𝑑𝑡
=

𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌

1+𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝑤
𝑣 (1 −

𝑣

𝐾2
) + 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑢𝑣 −

𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣
𝑣𝑤 − 𝐸1𝑑1𝑣,                           (3)      

𝑑𝑤

𝑑𝑡
=

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌

𝑐1𝐿
1−𝜌

𝑐1𝑅
𝜌
+𝑣
𝑣𝑤 − 𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
𝑤 − 𝐸2𝑑2𝑤. 

where, 𝜌 ∈ [0,1]. 

3.2 |Positivity and Boundedness of the Proposed Model 

Theorem 1. All the solutions of the model system (3) are positive. 

Proof. From the model system (3), we have𝑑𝑢 = 𝑢𝜓(𝑢, 𝑣, 𝑤)𝑑𝑡, with 

𝜓(𝑢, 𝑣, 𝑤) = [
𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌

1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤
(1 −

𝑢

𝐾1
) − 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑣]. 

Taking integration, then 𝑢(𝑡) = 𝑢(0)𝑒∫ 𝜓(𝑢,𝑣,𝑤)𝑑𝑡
𝑡

0 > 0 ∀𝑡. 

Similarly,𝑣(𝑡) = 𝑣(0)𝑒∫ 𝜑(𝑢,𝑣,𝑤)𝑑𝑡
𝑡

0 > 0∀𝑡. 

Where, 𝜑(𝑢, 𝑣, 𝑤) =
𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌

1+𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝑤
(1 −

𝑣

𝐾2
) + 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑢 −

𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣
𝑤 

And 𝑤(𝑡) = 𝑤(0)𝑒∫ 𝜃(𝑢,𝑣,𝑤)𝑑𝑡
𝑡

0 > 0 ∀𝑡. 

where,𝜃(𝑢, 𝑣, 𝑤) =
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌

𝑐1𝐿
1−𝜌

𝑐1𝑅
𝜌
+𝑣
𝑣 − 𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌

 

As a result, all of the solutions are positive. 

Theorem 2.The compact set S ={(𝑢, 𝑣, 𝑤) ∈ 𝑅+
3 :  0 < 𝑧(𝑡) <

𝛽𝐿
1−𝜌

𝛽𝑅
𝜌

Ω𝐿
1−𝜌

Ω𝑅
𝜌}. All the solution of the model system 

(3) is ultimately bounded solution. 

Proof. Let the function  𝑍 = 𝑢 +
𝑝1𝑅
1−𝜌

𝑃1𝐿
𝜌

𝑝2𝐿
1−𝜌

𝑃2𝑅
𝜌 𝑣 +

𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌 𝑤. 

Differentiating with respect to time of the above function, we have 

𝑑𝑍

𝑑𝑡
=
𝑑𝑢

𝑑𝑡
+
𝑝1𝑅
1−𝜌
𝑃1𝐿
𝜌

𝑝2𝐿
1−𝜌
𝑃2𝑅
𝜌

𝑑𝑣

𝑑𝑡
+
𝑞1𝑅
1−𝜌
𝑞1𝐿
𝜌

𝑞2𝐿
1−𝜌
𝑞2𝑅
𝜌

𝑑𝑤

𝑑𝑡
  , 

=
𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌

1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤
𝑢 (1 −

𝑢

𝐾1
) − 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑢𝑣 + 

𝑝1𝑅
1−𝜌

𝑃1𝐿
𝜌

𝑝2𝐿
1−𝜌

𝑃2𝑅
𝜌 (

𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌

1+𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝑤
𝑣 (1 −

𝑣

𝐾2
) + 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑢𝑣 −

𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣
𝑣𝑤) +

𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌 (

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌

𝑐1𝐿
1−𝜌

𝑐1𝑅
𝜌
+𝑣
𝑣𝑤 − 𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
𝑤) 

≤ −Ω(𝑢 +
𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌

𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌 𝑣 +

𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌 𝑤) −

𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌

𝐾1(1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤)
(𝑢 − 𝐾1)

2 −
𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌

𝐾2𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌
(1+𝑚2𝐿

1−𝜌
𝑚2𝑅
𝜌
𝑤)
𝑣2 +

𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌

𝑐1𝐿
1−𝜌

𝑐1𝑅
𝜌
+𝑣
𝑣𝑤. 

Where,Ω = min{𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌
, 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
, 𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌
, 𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
} 

𝑑𝑍

𝑑𝑡
≤ −Ω𝐿

1−𝜌
Ω𝑅
𝜌
𝑧 + 𝛽𝐿

1−𝜌
𝛽𝑅
𝜌

.                (4) 
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where, 𝛽𝐿
1−𝜌
𝛽𝑅
𝜌
=

𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌

𝑐1𝐿
1−𝜌

𝑐1𝑅
𝜌
+𝑣
𝑣𝑤. 

Solving the above inequality (4), using the theory of differential inequality, we get  

0< 𝑧(𝑡) <
𝛽𝐿
1−𝜌

𝛽𝑅
𝜌

Ω𝐿
1−𝜌

Ω𝑅
𝜌 (1 − 𝑒

−Ω𝐿
1−𝜌

Ω𝑅
𝜌
𝑡)+z(0)𝑒−Ω𝐿

1−𝜌
Ω𝑅
𝜌
𝑡. 

Now taking the limit of the above inequality as𝑡 → ∞, we have 

  0< 𝑧(𝑡) <
𝛽𝐿
1−𝜌

𝛽𝑅
𝜌

Ω𝐿
1−𝜌

Ω𝑅
𝜌.                                                                         

(5) 

From Eq. (5) all the solutions are bounded in ℝ+ 
3 . 

4 |Stability Analysis 

In this section, we obtained trivial and non-trivial equilibrium points of the system (3) and stated their 

existence condition, also including the stability analysis of these equilibrium points. 

4.1 |Existence of Equilibrium Point 

The model system (3) has five equilibrium points, considered as follows: 

1. Trivial equilibrium point 𝐸00(0,0,0), which always exist. 

2. Axial equilibrium point 𝐸11(𝐾1, 0,0), which always exists. 

3. Another axial point 𝐸22(0,𝐾2, 0), which always exists. 

4. Planer equilibrium point 𝐸𝑃(𝑢2, 𝑣2, 0) on the 𝑢𝑣 −plane where, 𝑢2 =

𝐾1𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
(𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
−𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
K2)

𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
+𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌
K1K2

, 𝑣2 =
𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
K2(K1+𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌
)

𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
+𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌
K1K2

. Therefore, the 

planer equilibrium point exists if 𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌
> 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
K2. 

5. The interior equilibrium point is 𝐸𝐼
∗(𝑢∗, 𝑣∗, 𝑤∗), where 𝑢∗, 𝑣∗, 𝑤∗ obtained as follows, 

𝑢∗is the positive root of the following quadratic equation,𝑢∗2 + 𝐵1𝑢
∗ +𝐵2 = 0,  

where, 𝐵1 =
𝐾1
2

𝐾2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
(𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
)𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌
−K1𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

[𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
K2(𝑐1𝑅

1−𝜌
𝑐1𝐿
𝜌
+

𝑣∗) +
(𝑚2𝐿

1−𝜌
𝑚2𝑅
𝜌
+𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
)𝐾2(𝑞2𝐿

1−𝜌
𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
)𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌

𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌
K1

−
𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝐾2

𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌 +

𝑞1𝑅
1−𝜌
𝑞1𝐿
𝜌
𝑚2𝐿
1−𝜌
𝑚2𝑅
𝜌
𝑘2 (

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌

𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌 )

2 (
2(𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
)2

𝐾1
−
2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌

𝐾1(𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
)

)], 

𝐵2 =
𝐾1
2

𝐾2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
(𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
)𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌
−K1𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

[𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌 (K2 − 𝑣

∗)(𝑐1𝑅
1−𝜌
𝑐1𝐿
𝜌
+

𝑣∗) − 𝑞1𝑅
1−𝜌
𝑞1𝐿
𝜌
K2 (

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌

𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌 ) (𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
−
𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌 ) −

𝑞1𝑅
1−𝜌
𝑞1𝐿
𝜌
𝑚2𝐿
1−𝜌
𝑚2𝑅
𝜌
K2(

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌

𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌 )

2 {(𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌
)2 −

2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌 +

(
𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌 )

2

}]. 

Therefore, the roots of the above quadratic equation given by, 



Results and Discussion of the Food Chain Model with Different Fear Effects under Uncertain Environment 

 

6

 

  

𝑢∗ =
−𝐵1±√𝐵1

2−4𝐵1𝐵2

2
. 

So, for a positive equilibrium point 𝐸𝐼
∗, 𝑢∗attains at least one positive root if the following condition is 

satisfied as follows 

i). 𝐵1 > 0, 𝐵2 > 0, 

ii). 𝐵1 < 0, 𝐵2 < 0, 

iii). 𝐵1 > 0, 𝐵2 > 0 and  𝐵1
2 − 4𝐵1𝐵2 > 0. 

The positiveness of 𝑣∗, 𝑤∗ holds as follows: 

𝑣∗ =
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌 , 

𝑤∗ =
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌

𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌 [𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
(1 −

𝑢∗

K1
) −

𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑚1𝐿
1−𝜌

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌 ], 

which exists if, 𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌
(1 −

𝑢∗

K1
) >

𝑝1𝑅
1−𝜌

𝑝1𝐿
𝜌
𝑚1𝐿
1−𝜌

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑑1𝑅
1−𝜌

𝑑1𝐿
𝜌

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
−𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌 . 

Now, we analyze the stability condition of the model system (3) at all equilibrium points as follows theorem. 

Theorem 3. The trivial equilibrium point 𝐸00(0,0,0) of the system (3) always unstable. 

Proof. The variational matrix 𝑉𝐸00at 𝐸00 is given by, 

𝑉𝐸00 = (

𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌

0 0

0 𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌

0

0 0 −𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌

). 

Consider η is the eigenvalue of 𝑉𝐸00 , then the characteristics equationdet (𝑉𝐸00 − 𝜂𝐼) = 0. 

Therefore, the eigenvalues of 𝑉𝐸00are 𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌

,𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
, −𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌

. Here one of two eigenvalues is positive, 

𝐸00 is the saddle point. The system (3) is unstable at 𝐸00. 

Theorem 4.The axial equilibrium point 𝐸1(𝑘1, 0,0) of the system (3) is unstable. 

Proof.Thevariational matrix 𝑉𝐸1at 𝐸1 is given by, 

𝑉𝐸1 = (

−𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌

−𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
K1 0

0 𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
K1 0

0 0 −𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌

). 

Consider 𝜂1 be the eigenvalue of 𝑉𝐸1 , then the characteristic equation is det(𝑉𝐸1 − 𝜂1𝐼) = 0. 

The eigenvalues are −𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌
, (𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
K1),− − 𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
.Since one eigenvalue (𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌
+

𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
K1) > 0, 𝐸1 is a saddle point. Therefore, the system (3) is unstable at 𝐸1. 

Theorem 5. Another axial equilibrium point 𝐸2(0, 𝐾2, 0) of the system (3) is LAS if 𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
K2 > 𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌

, 

𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌
(𝑐1𝑅
1−𝜌
𝑐1𝐿
𝜌
+ 𝐾2) > 𝑞2𝐿

1−𝜌
𝑞2𝑅
𝜌
𝐾2. 

Proof. The variational matrix 𝑉𝐸2at 𝐸2 is given by, 
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𝑉𝐸2 =

(

  
 

𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌
− 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
K2 0 0

𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
K2 −𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌

−
𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌
K2

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝐾2

0 0
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝐾2

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝐾2

− 𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌

)

  
 

. 

Consider 𝜂2 be the eigenvalue of 𝑉𝐸2 , then the characteristic equation is det(𝑉𝐸2 − 𝜂2𝐼) = 0 

The eigenvalues of 𝑉𝐸2 are (𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌
− 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
K2),−𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌
, (
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝐾2

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝐾2

− 𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌
). 

Since the 1st, and 3rd eigenvalues are less than zero when 𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
K2 > 𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌

, 𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌
(𝑐1𝑅
1−𝜌
𝑐1𝐿
𝜌
+ 𝐾2) >

𝑞2𝐿
1−𝜌
𝑞2𝑅
𝜌
𝐾2. Therefore the system (3) is locally asymptotically stable when 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
K2 > 𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌

, 

𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌
(𝑐1𝑅
1−𝜌
𝑐1𝐿
𝜌
+ 𝐾2) > 𝑞2𝐿

1−𝜌
𝑞2𝑅
𝜌
𝐾2. 

Theorem 6. The planer equilibrium point 𝐸𝑃(𝑢2, 𝑣2, 0) of the system (3) is LAS if 

𝑞2𝐿
1−𝜌
𝑞2𝑅
𝜌
𝑣2 < 𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
(𝑐1𝑅
1−𝜌
𝑐1𝐿
𝜌
+ 𝑣2), 𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
+ 𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑢2 < 2(

𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑢2

𝐾1
+
𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑣2

𝐾2
) +

𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑣2, (𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
+ 𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢2 +

4𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑢2𝑣2

𝐾1𝐾2
+
2𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑣2
2𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌

𝐾2
+

𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢2𝑣2) > 2𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
(
𝑣2

𝐾2
+
𝑢2

𝐾1
) +

2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
u2
2𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌

𝐾1
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
𝑣2 +

(𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
)2 𝑢2𝑣2, 𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
> 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝐾2. 

Proof. The variational matrix 𝑉𝐸𝑝at 𝐸𝑝 is given by, 

𝑉𝐸𝑝 = (

𝐴1 −𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
𝑢2 −(1 −

𝑢2

𝐾1
) 𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
𝑚1𝐿
1−𝜌
𝑚1𝑅
𝜌
𝑢2

𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑣2 𝐴2 𝐴3

0 0 𝐴4

), 

Where𝐴1 = 𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌
−
2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
u2

K1
− 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑣2, 𝐴2 = 𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌
−
2𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑣2

K2
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑢2, 𝐴3 =

−𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
𝑣2𝑚2𝐿

1−𝜌
𝑚2𝑅
𝜌
(1 −

𝑣2

𝐾2
) −

𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌
𝑣2

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣2

, 𝐴4 =
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑣2

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣2
− 𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌

. 

If 𝜂3 be the eigenvalue of 𝑉𝐸𝑝 , then the characteristic equation becomes, 

{(𝐴1 − 𝜂3)(𝐴2 − 𝜂3) − 𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢2𝑣2}(𝐴4 − 𝜂3) = 0 

Here, the one eigenvalue is 𝐴4which is negative when 𝑞2𝐿
1−𝜌
𝑞2𝑅
𝜌
𝑣2 < 𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
(𝑐1𝑅
1−𝜌
𝑐1𝐿
𝜌
+ 𝑣2) 

And, another eigen equation given as, 

𝜂3
2 − (𝐴1 + 𝐴2)𝜂3 + (𝐴1𝐴2 + 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢2𝑣2) = 0 

The roots of the above quadratic equation give negative values if, 

𝐴1 + 𝐴2 < 0, 𝑟1𝐿
1−𝜌
𝑟1𝑅
𝜌
+ 𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑢2 < 2(

𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑢2

𝐾1
+
𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑣2

𝐾2
) + 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑣2, 

And (𝐴1𝐴2 + 𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢2𝑣2) > 0, (𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
+ 𝑟2𝐿

1−𝜌
𝑟2𝑅
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢2 +

4𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑢2𝑣2

𝐾1𝐾2
+
2𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑣2
2𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌

𝐾2
+ 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢2𝑣2) > 2𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
(
𝑣2

𝐾2
+
𝑢2

𝐾1
) +

2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
u2
2𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌

𝐾1
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
𝑣2 + (𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
)2 𝑢2𝑣2, 𝑟1𝐿

1−𝜌
𝑟1𝑅
𝜌
> 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝐾2. 
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From the above mathematical calculation, we obtain that the planer equilibrium point 𝐸𝑝 of the system (3) is 

locally asymptotically stable. 

Theorem 7.The interior equilibrium point 𝐸𝐼
∗(𝑢∗, 𝑣∗, 𝑤∗) of the system (3) is LAS if 

2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑢∗

𝐾1(1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤∗)
+

𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
𝑣∗ +

2𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑣∗

𝐾2(1+𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝑤∗)
+ 𝑑1𝑅

1−𝜌
𝑑1𝐿
𝜌
𝑤∗ (

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2) + 𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌
>

𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌

1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤∗
+

𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌

1+𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝑤∗
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑢∗ +

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑣∗

𝑐1𝐿
1−𝜌

𝑐1𝑅
𝜌
+𝑣∗

, 
𝐵𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑣∗𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 > 𝐴𝐶𝐸 +
𝐷𝑐1𝑅

1−𝜌
𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 ,(𝐴 +

𝐶 + 𝐸)(𝐴𝐶 + 𝐶𝐸 + 𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢∗𝑣∗) + 𝐴𝐶𝐸 +

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
D𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 >

𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
B𝑣∗𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 . 

Proof. The variational matrix 𝑉𝐸𝐼at 𝐸𝐼
∗ is given by, 

𝑉𝐸𝐼 =

(

 
 

𝐴 −𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
𝑢∗ −𝐵

𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑣∗ 𝐶 −𝐷

0
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 𝐸
)

 
 

. 

where, 𝐴 =
𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌

1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤∗
−

2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑢∗

𝐾1(1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤∗)
− 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑣∗, 𝐵 = (1 −

𝑢∗

𝐾1
)
𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑢∗

(1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤∗)2

, 𝐶 =

𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌

1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤∗
−

2𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑣∗

𝐾2(1+𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝑤∗)
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑢∗ −

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌
𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 , 𝐷 = 𝑟2𝐿
1−𝜌
𝑟2𝑅
𝜌
𝑣∗ (1 −

𝑣∗

𝐾2
)

𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌

(1+𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝑤∗)2

+
𝑞1𝑅
1−𝜌

𝑞1𝐿
𝜌
𝑣∗

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗

, 𝐸 =
𝑞2𝑣

∗

𝑐1+𝑣
∗ − 𝑑1. 

Consider 𝜂4 be the eigenvalue of 𝑉𝐸𝐼 , then the characteristic equation becomes, 

𝜂4
3 + 𝑓11𝜂4

2 + 𝑓22𝜂4 + 𝑓33 = 0,           (6) 

where, 𝑓11 = −(𝐴 + 𝐶 + 𝐸), 𝑓22 = 𝐴𝐶 + 𝐶𝐸 + 𝐸𝐶 + 𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢∗𝑣∗, 𝑓33 =

𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
B𝑣∗𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 − 𝐴𝐶𝐸 −
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
D𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 . 

Using Routh-Hurwitz criteria the system (3) is locally asymptotically stable at the interior equilibrium point 

𝐸𝐼
∗if 𝑓11 > 0, 𝑓22 > 0, 𝑓33 > 0, 𝑓11𝑓22 > 𝑓33 and 

2𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌
𝑢∗

𝐾1(1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤∗)
+ 𝑝1𝑅

1−𝜌
𝑝1𝐿
𝜌
𝑣∗ +

2𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌
𝑣∗

𝐾2(1+𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝑤∗)
+

𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌
𝑤∗ (

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2) + 𝑑1𝑅
1−𝜌
𝑑1𝐿
𝜌
>

𝑟1𝐿
1−𝜌

𝑟1𝑅
𝜌

1+𝑚1𝐿
1−𝜌

𝑚1𝑅
𝜌
𝑤∗
+

𝑟2𝐿
1−𝜌

𝑟2𝑅
𝜌

1+𝑚2𝐿
1−𝜌

𝑚2𝑅
𝜌
𝑤∗
+ 𝑝2𝐿

1−𝜌
𝑝2𝑅
𝜌
𝑢∗ +

𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑣∗

𝑐1𝐿
1−𝜌

𝑐1𝑅
𝜌
+𝑣∗

,  

𝐵𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑣∗𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 > 𝐴𝐶𝐸 +
𝐷𝑐1𝑅

1−𝜌
𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 ,(𝐴 + 𝐶 + 𝐸)(𝐴𝐶 + 𝐶𝐸 +

𝑝1𝑅
1−𝜌
𝑝1𝐿
𝜌
𝑝2𝐿
1−𝜌
𝑝2𝑅
𝜌
𝑢∗𝑣∗) + 𝐴𝐶𝐸 +

𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
D𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 >
𝑝2𝐿
1−𝜌

𝑝2𝑅
𝜌
𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
𝑞2𝐿
1−𝜌

𝑞2𝑅
𝜌
B𝑣∗𝑤∗

(𝑐1𝑅
1−𝜌

𝑐1𝐿
𝜌
+𝑣∗)

2 . 

5 |Numerical Simulation 

In this part, we run careful numerical simulations to test and confirm our model system's analytical 

conclusions. To numerically estimate the solution of our model system, we utilized the mathematical tools 

Matlab (2018) and Matcont. It is legitimate to state that determining numerical values for the model system's 
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range of constraints based on real-world data is tough enough. In several scenarios, we simulated the model 

system with various model parameters. The stability of our proposed model is discussed at 𝐸𝑝and 𝐸1
∗in Part 

I and Part II. 

5.1 |Part I: Analyze the Notion of Planer Equilibrium 𝐄𝐩 

In this scenario, we simulate the system (3) using the model parameter values shown in Table 1 and set the 

value of parameter ‘𝜌’ into three different levels (𝜌 = 0, 0.5, 1), which satisfies the condition as given in 

Theorem 6. Figure 1 shows the time series plot of the model system (3) in the time range [0, 200], which 

indicates the stability of the planer equilibrium point Ep for different values of parameter ‘𝜌’.  

Table 1. Shows the values of different parameters that have been used to simulate the system in Part I. 

Parameters Values (For Planer) Values (For Interior) 

𝒓𝟏 [1.51, 1.71] [2.051, 2.071] 

𝒓𝟐 [1.15, 1.35] [3.15, 3.35] 

𝑲𝟏 12.4 0.5 

𝑲𝟐 0.5 2.4 

𝒑𝟏 [0.64, 0.75] [0.64, 0.75] 

𝒑𝟐 [0.15, 0.25] [0.15, 0.25] 

𝒎𝟏 [0.035, 0.055] [0.035, 0.055] 

𝒎𝟐 [0.51, 0.71] [0.51, 0.71] 

𝒒𝟏 [0.43, 0.55] [0.43, 0.55] 

𝒒𝟐 [0.041, 0.051 [0.041, 0.051] 

𝒄𝟏 [0.9, 1.3] [9, 13] 

𝒅𝟏 [0.15, 0.35] [0.0015, 0.0035] 

 

 
Figure 1. For various values of the parameter 𝜌, depicts the stable nature of the planer equilibrium point. 

5.2 |Part II: Explore the Effects of the Interior Equilibrium Point 𝐄𝟏
∗ 

In this scenario, we simulate the system (3) using the model parameter values shown in Table 1 and set the 

value of parameter ‘𝜌’ into three different levels (𝜌 = 0, 0.5, 1), which satisfies the condition as given in 

Theorem 7. Figure 2 shows the time series plot of the model system (3) in the time range [0, 200], which 

indicates the stability of the planer equilibrium point 𝐸1
∗ for different values of parameter ‘𝑝’.  
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Figure 2. Indicates the time series plot of the system (3) for various values of parameter ‘𝜌’ in the time range [0, 200] 

at the interior equilibrium point 𝐸1
∗. 

6 |Conclusion 

We have considered a tri-tropic food chain model where the middle predator is a generalized predator and 

the top predator is a specialist. In addition, two fear effects are suggested in this paper. It discusses the 

dynamic characteristics of the model within the context of an uncertain environment. The model incorporates 

interval uncertainty and takes into account the fear's effects on prey caused by the predator population. The 

study discusses a straightforward predator-prey model where ecological parameters are represented as 

parametric-functional interval values for biological parameters, except for the environmental carrying capacity 

and the fear factor, which are introduced in the field of mathematical biology. These ecological parameters, 

including prey growth rate, prey consumption, prey-to-predator conversion, transition rate from immature to 

mature predator, and death rate of immature and mature predators, are treated as parametric-functional 

intervals. The article establishes the positivity and boundedness of the solutions starting from any non-

negative initial points. We have studied the local stability at all equilibrium points. In future studies, the authors 

plan to analyze further ecological modeling using neutrosophic environments and apply mathematical 

modeling techniques to suggest medical research models. 
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