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Abstract

The parameter involve in ecological model always uncertain due to environmental and demographic fuzziness. In
this paper, we consider a food chain model with different fear effects in which all ecological parameters are taken
into account in a parametric functional form of an interval number. In the suggested model,the middle predator is
the specialist. Using the interval differential equation approach, we point out the importance of modeling on
uncertainity by the proposed model. Existence and uniqueness along with non-negativity and boundedness of the
model system have been investigated. Equilibrium points and their feasibility and nature of critical points of the
proposed system are discussed in uncertain environment with the help of MATLAB. We were able to conduct

graphical demonstrations and numerical simulations.

Keywords: Tri-tropic Food Chain Model, Different Level Fear Effect, Stability Analysis, Numerical Simulation.

1 | Introduction

Ecology, a field within the realm of biological science, focuses on the interactions among living organisms
and their physical surroundings, encompassing both living and non-living elements. As technological

advancements and environmental impacts have rapidly expanded, ecological research has flourished across

@ Corresponding Author: animeshmahata8@gmail.com
d_ https://doi.org/10.61356/j.nois.2024.4342
@@ Licensee Neutrosophic Optimization and Intelligent Systems. This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).


https://doi.org/10.61356/j.nois.2024.4342
https://sciencesforce.com/index.php/nois
https://sciencesforce.com/index.php/nois
https://orcid.org/0009-0008-0627-7234
https://orcid.org/0009-0006-2674-0930
https://orcid.org/0009-0003-0381-9003
https://orcid.org/0000-0002-5886-4341
https://orcid.org/0000-0002-4261-0611
https://orcid.org/0009-0005-7205-7481
https://orcid.org/0000-0001-5586-8358
https://orcid.org/0000-0001-5231-1474
https://sciencesforce.com/
https://sciencesforce.com/index.php/nois/

Results and Discussion of the Food Chain Model with Different Fear Effects under Uncertain Environment

various scales. Ecosystem ecologists often emphasize the flow of energy and the recycling of nutrients. In
ecological studies, one of the central elements is the interaction between predators and prey, which dictates
the transfer of energy and biomass from one trophic level to another, influencing population sizes. The
responses of prey to predators have a profound impact on the dynamics of these interactions, either directly
or indirectly affecting the predator and prey populations. Following the pioneering work of Lotka and
Volterra [1-2], numerous intricate predator-prey models have been developed to elucidate the dynamics of
these systems in diverse real-world settings [3-9]. Researchers have proposed several hypotheses to explain
the coexistence of interacting populations in different environments. Much attention has been devoted to
two-species or three-species predator-prey models. Hastings and Powell [10] and Alidoust and Ghahfarokhi
[11] explored a three-species food chain model, revealing chaotic behavior. Roy and Alam [12] analyzed
versions of a food chain model, considering intra-species competition in the top predator. Freedman and
Waltman [13] identified conditions for the persistence of a three-species predator-prey model. Moura and
Silva [14] elucidated the food web and ecological models applicable to aquatic ecosystems. Abrams [15]
demonstrated the relationship between food availability and the foraging efforts of species in their ecological
environment. Nath et al. [16] illustrated how refuge and Allee effects in prey species can stabilize chaos in tri-
trophic food chain models. Barbier et al. [17] discussed pyramids, cascades, and the synthesis of functionality
and stability in food chains. Banerjee and Das [18] investigated the impulsive effects on a tri-trophic food
chain model, considering mixed functional responses under seasonal perturbations. Castellonas et al. [19]
observed both Hopf and Bautin bifurcations in a tritrophic food chain model. Huang et al. [20] delved into
the dynamic behavior of a food chain model with stage structure and time delays.

1.1 | Motivation and Novelty

Numerous studies of mathematical models of biology concentrate on the deterministic model, which is
primarily based on the law of large numbers and the presumption that, if there are enough biological
individuals, the system’s behaviors will exhibit a reasonably stable statistical regularity. Numerous scholars
previously used the interval approach and stochastic approach to address these uncertainty concerns [21-28].
The unknown parameters are described by interval-valued functions in the interval method. We use fuzzy set
theory to represent erroneous parameters to get around these problems. For the first time, Professor Zadeh
established the fuzzy set theory [29] and he also suggested using fuzzy differential equations as a natural
technique to model dynamic systems with probabilistic uncertainty [30]. It is important to note that based on
the fuzzy instantaneous annual rate of discount, the optimal harvesting strategy is explored by Sadhukhan et
al. [31] when they investigated the optimal harvesting of a food chain model in a fuzzy environment. The
majority of research studies in mathematical modeling, particularly bio-mathematical modeling, take place in
a crisp (precise) environment. Therefore, in these circumstances, the majority of a biological model’s
parameters are not exact. A biological model becomes inaccurate if some ambiguous parameters are included.
We have considered a tri-tropic food chain model where the middle predator is a generalized predator and
the top predator is a specialist. In addition, two fear effects are suggested in this paper.

1.2 | Structure of the Paper

The rest of this article is organized as follows: Some basic definitions such as interval number, parametric
representation of a number in the interval, and some properties of interval number are discussed in detail in
Section 2. We develop the mathematical model as well as the system’s positivity, and boundedness in Section
3. In Section 4, we study the local stability analysis and global stability analysis. In Section 5, we use numerical
simulations to validate the outcomes of our analysis. The article concludes with a few conclusions in Section

6.
2 | Pre-requisite Concept

Definition. For an interval [T, , Ty, ] The interval-valued function can be created ask,(n) =

(T ) 7"(T, )forn € [0,1], which is also called parametric form in interval figure.
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Properties. Let, two intervals (parametric form) as ky(n) = (T, 1)1_77 (Tp)"and  hy(n) =
(R, ) ™" (Ry,)for € [0,1] , then the following operation was obtained:

Logi(m) =k +h @)= (Tm1 + le)l_n(Tnl + Rnl)n~
2. s51(m) = ki(m) —hi(m) = (Tm1 - le)l_n(Tnl - Rnl)n-

3. rim)=ki(mMhi(m) =
. _ 7
(mln{Tmlle,Tannl'TmlTnl,leRnl})1 ”(max{{Tmlle,TannllelTnl,leRnl )

4. ys1 () = e(m) = y(T, ) 7"(Tn,)"ify > 0,

= Y(Tml)l_n (Tnl)nify <0.

k1(m) . Tmy Rny Rmy Ta Rm, Rp, Tm, Tn
S. pl(a)=1—=(m1n{#,—1 -, 1})1 ”(max{{ L, 1})”.

ha(m) 1 Tny ’ Tn1 Tn1 " Rp le

Where the parametric interval-valued function is g1 (1), s1(m), 11 (), Yk1(m), p1 (), e(n) for constant §;and
n € [0,1].

3 | Proposed Model

Let u(t),v(t), and w(t) represent the density of the prey population, intermediate predator, and top
predator, respectively, at any time t.To formulate the model system, the following assumption is made: u (t)
and v (t) increase at the growth rate of 17 and 1, with two carrying capacity K; and K5, p; and p, represents
the predation rate, according to Holling Type-1I functional response q; and ¢, represents the rate of
conversion, d; represent natural data rate, m; and m; represents the fear levels, ¢; represent a half-saturation

constant. Let Ey and E; be the harvesting effort and dq, d be the catchability coefficients of intermediate
predator and top predator respectively.

Our proposed bio-mathematical model is

du _ nu (
at 1+mqw

1- Kll) — p1uv,

dv x4 ( v qivw
— = 1- —) uv — — E dqv, 1
dt 1+myw K, t Pz c1+v 11 ( )

dw  qyvw
dt ¢, +v

—dyw — Eyd,w.

3.1 [ Model in Imprecise Environment

The proposed model (1) in the imprecise environment can be changed with the coefficients taken as interval
numbers as follows:

du _ fHu (1 u) 5D
dat ~ 1+mw Ky p1uv,

dv _  Tv (
dt ~ 1+m,w

) + pouv — qlv — Eidyv, )

dw _ Gvw 5 _
pTiirw diw — E,d,w.
Now, we take I;(p) = IllL_prR for p € [0,1] for an interval [I17, I1g]. Then the above system (2) can be

written as follows:
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1-p_p

du LEVAET S ( u) 1-p_p
— =Lk -—) - uv
dt = Trwml PmP K, Pir D1 UV,
1-p_p 1-p_p
dv L 2R ( v ) 1-p_p 3R 911
— =—5U 1——)+ uv__—UW_EdU 3
dt 1+m;me§Rw K, P21 P2r cllRpchH; 1715 3)
1-p_p
aw 431, 3R 1-p ;p
— =22 yw—d;,"dy,w—E,d,w.
dt cllech+v 1R 1L 272

where, p € [0,1].
3.2 | Positivity and Boundedness of the Proposed Model

Theorem 1. All the solutions of the model system (3) are positive.

Proof. From the model system (3), we havedu = uy(u, v, w)dt, with

1-p_p
_ 1L Tir ( u) 1-p_p
u,v,w)=|— r—>=—(1——) — v|.
1/J( » Vo ) [1+ 1Lp fRW K]_ le plL

t
Taking integration, then u(t) = u(O)efo Ywrw)dt - 0y

t
Similarly,v(t) = v(0)elo P@PWAt 5 gy,

PP v - qi:PqP
h v, :%(1__) PP 4y — J1R 1
Where, ¢ (u, v, w) 1+m;me§Rw K + P2 Parlt cllRpchHJ
t
And w(t) = w(0)elo 0@rWIAt 5 vt
951." 95 1-p p
where,@(u, v, W) =755, V— le dlL
ClL ClR+v
As a result, all of the solutions are positive.
B "BR
Theorem 2.The compact set S Z{(u, v,w) ERS: 0< z(t) < ﬁ}. All the solution of the model system
Qp "Qp

(3) is ultimately bounded solution.

pi=PpP q*=Pq?
Proof. Let the function Z = u + ffp },L v+ i}_?p })L w.
PaL T2r 431 2R

Differentiating with respect to time of the above function, we have

dZ du P;prL dv ‘hlgp‘IfL dw
dr dt T 1-ppp gt " 1-p.p gt ’
dt dt pZL PZR dt q dt

2L Q2R
1-p_p 1-ppp 1-p..p
ri-r, u 1— pip P Ty, T v 1-
— 1L _"1R PP 1R "1l 2L "2R PP
= TemiPmP u(l _K_) ~ Pir P1LUV + 1-ppp (1+ 1-p_p v(l _K_) + Dy DopUV —
my MW 1 P F2r My MarW 2
1-p_p 1-p_p 1-p _p
a,r 911 AR 911 o 921 2R 1-p 4p
T,V +—1 55 (Cl—pcp +vvw_d1R di W)
1R C1L 431 92r “1L C1r
1-p_p 1-p_p 1-p_p 1-p_p 1-p_p
p p q q T T p P1LT: T.
< -0 (u + il_ep :,L’U + yjp zL W) _ p 1+1L1_p1Rp (u _ Kl)z _ 1—p1Rp 1L 2L1_;Rp Uz +
P31 DR 4y, 93r 1( myL m1RW) KszL sz(1+m2L mzRW)
1-p _p
a,r 911
o, W
€1 G1rTY

s 1-p.p _1-p p Jl-p,yp _1-p_ p
Whef@,ﬂ—mm{rm g P1r Pip@dir’ dip Ty rZR}

az 1- 1-
<0,z + B, "B )
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T-p_p
1L C€1rtY

where ﬁl_pﬁp:M vw
»PL PR '
Solving the above inequality (4), using the theory of differential inequality, we get

1-ppp 1-p P 1-p P
0< z(t) < —Bﬁ_pﬁ’; (1 —e™ QR’T)Jrz(O)e‘QL Ot
QL QR

Now taking the limit of the above inequality ast — o, we have

B "Bh
0< z(t) < P
©)

From Eq. (5) all the solutions are bounded in R3 .

4 | Stability Analysis

In this section, we obtained trivial and non-trivial equilibrium points of the system (3) and stated their
existence condition, also including the stability analysis of these equilibrium points.

4.1 | Existence of Equilibrium Point

The model system (3) has five equilibrium points, considered as follows:
1. Trivial equilibrium point Ey(0,0,0), which always exist.
2. Axial equilibrium point E;1 (K7, 0,0), which always exists.
3. Another axial point E3, (0, K3, 0), which always exists.

4. Planer  equilibtium  point  Ep(uy,v,,0) on  the uv—plane  where, U =

1-p.p o 1=-p.p __1-p_p 1-p_p 1=p_p 1-p_p
Kty "Top(ryy “TiR—P1r" P1K2) v, = — 1L TRPIR P11 KoKy 4751 "ToR) Therefore the
PP P =P p o T=p p 1=p p e 0 V2 T 1=pp 1=p p L 1=p p T-p P " >
1L T1RT2L T2rTPir P1LP2L PorB1f2 1L T1RT2L T2rTP1r P1LP2p PapBif2

o , U T 1-
planer equilibrium point exists if 77, P TI‘; >p; Rp pf 1Ko,

5. 'The intetior equilibrium point is Ef (u*, v*,w™), where u*, v*, w* obtained as follows,

. . . . . 2
u*is the positive root of the following quadratic equation,u™” + Byu* + B, = 0,

Kf

- 1-p_p 1-p_p
where, B; =———— )[pZL porK2(erz"cry +

Kaoryy, T1Rm;1jpm§R(q;Zpqu_dil_apde)qi;quL_Klp;prfR(Cgpch"'v*
v*) (mgzpng'l'd;};pde)KZ(q;L_pqu_dL;pde)TllL_prlpR . m;zpmSRKz +
pi;ppfl,mi;pmfkC;Epchd;pdeKl mi;pmfR
qigquLmizpngkz ( — q%gfqu_diépde — )2 (2(T111,_prlpR)2 _ 2T11L_pr1pRpligpprC;ip_Cdei;epde)]’
p1Rpprm1LpmfRCmpCdempde Ky Kl(qupqé)R_dmpde)
_ K? 1-p_p o (1=p p
B2 = Kzr;;prme;megR(q;qugR_di;pde)qL;quL_Klp;L_ppgR(C;;pCfL"'”*) [TZL TZR(KZ —v )(ClR O
U*) - qigquLKZ ( 1-p_p qggfgng_dEngL 1=p P ) (r11L_pr1ﬁ;e - pi;pﬁ%i};pclﬁ{ig:dﬁ> -
Pig P My MipCigr €11%1R 91 dp1 92~k G4

1-p _p _ 1-p ,p 1=p_p 1=p _p 1-p p 1-p .p
ql—PqP ml—PmP K, ( 921 92r—%iR 911 )2 ,r.l—PrP )2 _ 21y TRPiR P11Cir C1.%iR d1L+
1R 41.My;, Myp T-p_p . 1-p._p 1-p_p ,1-p P 1L "R T-p_p _,1-P,p

Pir PiMip MigCir S11%ir 411 431 9~ diR %45

T=p P _1-P 4P
1L

_ — — 2

1-p_p 1-p p 1-p .p

(le P11C1r €11%R d1L)
431" 92~ 4R

Therefore, the roots of the above quadratic equation given by,
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-B+ /312_43132
* - N

2

u

So, for a positive equilibrium point E}, uattains at least one positive root if the following condition is

satisfied as follows
i). B;>0,B,>0,
ii). B; <0,B, <0,
iif) B; > 0,B, > 0and B? —4B;B, > 0.

The positiveness of v*, w* holds as follows:

1-p_p 1-p ;P
v* = cir C11%ir 4
—="1-p_p __1-pp>
431, 9r~4iR dip
1-p _p _1=pp 1-p_p 1-p 1-p p ,1-p p
w* = 91 Br—%Rr dig [rl—PrP (1 _u_*) _ PR P My Cir SR dyp
— 1-p_p_1-p_p 1-p p 1i-p_p |"1L T1R 1-p _p _,1-p p >
Pig P1u™Mip Mig€ir €10.%ir 1L Ky 431 Gr~ %R 41
1-p_p 1-p 1=p p 1=p p
. . . 1- u* pip pyymy; e Rl ey diptd
which exists if, 77, prll;? (1 — K_) > R lf_p”“p 1R1_;1,L le E
1 dy1, 92r~4R dig

Now, we analyze the stability condition of the model system (3) at all equilibrium points as follows theorem.
Theorem 3. The trivial equilibrium point E((0,0,0) of the system (3) always unstable.

Proof. The variational matrix Vg, at Eq is given by,

1-p_p
711 MR 0 0
= 1-p_p
VEgy = 0 L TR 0
1-p 4p
0 0 —diz" dy;

Consider 7 is the eigenvalue of Vg, then the characteristics equationdet (Vg —nl) = 0.

Therefore, the eigenvalues of VEO oare TllL_p T{;,TZIL_p TZPR, —di;p df .- Here one of two eigenvalues is positive,
Eyg is the saddle point. The system (3) is unstable at Eyg.

Theorem 4.The axial equilibrium point E; (kq, 0,0) of the system (3) is unstable.

Proof.Thevariational matrix Vg at E; is given by,

1-p_p 1-p_p
TARET: —P1r P1 K1 0
1- 1-
Vg, = 0 L przlie Ll 2% ppgRKl 0
0 0 —dizPd?

Consider 11 be the eigenvalue of Vg, then the characteristic equation is det(Vg, — n,1I) = 0.

The eigenvalues ate _rllL—p r&, (rzlL—p T'Zp rT pzlzp pg R Kl), - — di;p de.Since one eigenvalue (rzlL—prZ;; +
p;L_p pg R Kl) > 0, E; is a saddle point. Therefore, the system (3) is unstable at E;.

Theorem 5. Another axial equilibrium point E, (0, K3, 0) of the system (3) is LAS if pllgp pf Ko > rllL_prf;,
diz’dg, (c1p”ctl + Kz) > 43" Gp K.

Proof. The variational matrix Vg at Ej is given by,
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1-p.p _ _1-p_p
1, g —Pir P K2 0 0 \
1-p p
pl—ppp K, B _ 4R 91Kz
f— 1—
Vg, = 2L D2r 2L T2r PP ik,
1-p _p
da." 92rK2 dl—PdP
0 0 1-p _p 1R 1L
CiR c1L+K2

Consider 17, be the eigenvalue of Vg,, then the characteristic equation is det(Vg, —1,1) = 0

1-p_p
. 1-p_p _ 1-p_p _1-p.p (92 9rK2 _ j1-p 4p
The elgenvalues OfVEZ are (rlL R — P1ir plLKz), oy rZR,(m le dlL .
1R “1

: . 1- 1- 1- 1-
Since the 1%, and 3 eigenvalues are less than zero when p; 5 pprKz >1, pr&, lepde (ClRpCfL + Kz) >

q;;pquKz. Therefore the system (3) is locally asymptotically stable when pllgp prKz > TllL_p Tll;?,

1-p4p (A=p p 1-p_p
dip dlL(ClR C1L+K2) > qy1," q2R Ko

Theorem 6. The planer equilibrium point Ep(Uy, V5, 0) of the system (3) is LAS if

1-p_p 1-p_p
1-p _p 1=p p (.1=p P 1-p_p 1-p_p 1-p_p T TiRY2 | Tor T2RV2
A2, a5rva < dig’df ez ety + v2) 1y Prip + 1o Prip 02 PSR U < 2( X, + X, +
1-p_p 1-p_p 1-p.p 2, 1-p_p
+4r1L "RT21 ToRU2V2 +2T2L T2RV2D31, PoR +
KK, K;

1-p_p 1-p.p 1-p_p 1-p_p_ 1-p_p
D21 P2RrV2, (rlL TRrT2L  Top T T2 TorP2 P2rUz2

1-p_p 2 1-p_p
1-p_p 1-p_p 1-p.p 1-p p (V2 , Uz 21y, " T1RY2Py1 PaR 1-p_p 1-p_p
Pir P1LP2L pZRuzvz) > 21y, "HRTL Tar (K_2+K_1)+ K, T P21 ParT2L T2rV2 T
1-p.p 2 1-p_p 1-p_p
(P2 " Par)“ U2V2, 1y, " TR > Pig D1 Ko

Proof. The variational matrix Vg_at E, is given by
P p >

_ 1P p (1 _ %\, 1-p.p_1-p p
Ay Pir P1LU2 ( 1) N TrRMy, Myple
Ve, =\ 1-p_p

P P21 D2rV2 4, 43 ’

0 0 4,
1-p_p 1-p_p
_ . 1-p_p 21y TpUz 1-p_p _ . 1l-p_p _ 2Ty ToRV2 1-p_p _

Wheredy =17, "1p T x,  Pir Pula Ay =71y "R — K +t Do, DaplUe, A3 =

PP 1op D ( VZ) 415" 45 v2 95,7 05Rv2 _ y1-p p
- 2 -~ )5 A= a5

21 2rV2MMy Map k) T PP 1y S L

If 113 be the eigenvalue of VEp, then the characteristic equation becomes,
1- 1-
{(A1 —n3)(Az —1n3) — P1RprLP2L ppruzvz}(A4 -1n3) =0
Here, the one eigenvalue is A4which is negative when q;;pqu vy < digpde (Cllgp CfL + vz)
And, another eigen equation given as,

1- 1-
n5 — (Ay + A)ns + (414, + P1RprLP2LpP§Ru2V2) =0

The roots of the above quadratic equation give negative values if,

1-p_p 1-p_p
1-p_p 1-p_p 1-p_p "L TirRY2 | Tp TaRV2 1-p_p
A1+A2 <0, T1L T1R+T2L T2R+p2L pZRuz < 2( + )+p2L pZRUZ’

Ky K>
1-p_p _ 1-p_p 1-p._p 1-p_p 1-p_p_ 1-p_p
And (A142 + pir" P1LP2L PorU2V2) >0, <T1L TN Tor T Tor TopD2 DParUz t+
1-p_p 1-p_p 1-p_p 2 1-p_p
ar; Prlor  Priusv 2r,; Prlvip, Pp 1— 1— 1— 1— v u
1L "1r"21 "T2R%2Y2 2L "2RY2P21 PaR PP PP p..pP p..p 2 2
KK, + K, * Pir P1LP2y pZRuZUZ) > 21y, "TiRTL  Tor (K_z + K_l) +

1-p_p 2 1-p_p
21y "TiRUID, P 1- 1- 1- 1- 1-
1L "1R“2P21 PaR PP p..p PP N2 P..P P..P
K, P2 PorTar TorV2 T (P21 P2g)” U2Vai Ty "Tig > Pig’ P1 Ko
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From the above mathematical calculation, we obtain that the planer equilibrium point Ey, of the system (3) is

locally asymptotically stable.

1-p_p .«
2T1L TlR‘IJ,

Theorem 7.The interior equilibrium point Ef (u*, v*,w*) of the system (3) is LAS if =
K1(1+m1mewa*)
1-p_p  x 27'21L_prszV* dl—PdP * ClllzpCfL dl—PdP TllL_prlpR
Pir P1LV +K a+mPmP wo) +djpa;w p p 7 | tdp dy > Tt PmP +
2 2L 2R (ClR clL+v*) 1L 1R
y1=P P 1 1=pop L+ ppl=Ppp 1=P P 1=p D s DEITP P g17P P
2L "2R +p PP o + q31, 92R Pai PorGiR C1191 92R > ACE + =4r 1921 2R (A +
Temi PP we P2l P2r PP 4y 1-p p 2 1-p p z >
2L 2R 1L “1R (C1R c1L+v*) (ClR c1L+v*)
1=p p 1=p_p 1=p _p o«
1-p_p 1=p_p _ % x C1r' €11931" d2r921 92RPW
C+ E)(AC + CE + p, " pl vy, " poru'™v™) + ACE + L2l >
(ClR cptv )
1=p p 1=p_p 1=p P o s s
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Using Routh-Hurwitz criteria the system (3) is locally asymptotically stable at the interior equilibrium point
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5 | Numerical Simulation

In this part, we run careful numerical simulations to test and confirm our model system's analytical
conclusions. To numerically estimate the solution of our model system, we utilized the mathematical tools
Matlab (2018) and Matcont. It is legitimate to state that determining numerical values for the model system's
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range of constraints based on real-world data is tough enough. In several scenarios, we simulated the model
system with various model parameters. The stability of our proposed model is discussed at Epand E; "in Part
I and Part I1.

5.1 | Part I: Analyze the Notion of Planer Equilibrium E,

In this scenario, we simulate the system (3) using the model parameter values shown in Table 1 and set the
value of parameter ‘p’ into three different levels (p = 0, 0.5, 1), which satisfies the condition as given in
Theorem 6. Figure 1 shows the time series plot of the model system (3) in the time range [0, 200], which
indicates the stability of the planer equilibrium point Ey, for different values of parameter ‘p’.

Table 1. Shows the values of different parameters that have been used to simulate the system in Part I.

Parameters Values (For Planer) Values (For Interior)

ry [1.51, 1.71] [2.051, 2.071]

Ty [1.15, 1.35] [3.15, 3.35]

K4 12.4 0.5

K, 0.5 2.4

P1 [0.64, 0.75] [0.64, 0.75]

D2 [0.15, 0.25] [0.15, 0.25]

my [0.035, 0.055] [0.035, 0.055]

m, [0.51, 0.71] [0.51, 0.71]

q1 [0.43, 0.55] [0.43, 0.55]

q> [0.041, 0.051 [0.041, 0.051]

cq [0.9, 1.3] [9, 13]

d, [0.15, 0.35] [0.0015, 0.0035]
. p=0 . p=0.5 5 p=1
of of =
: — s = ;

3, 3 3

N
N

0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
time(t) time(t) time(t)

Figure 1. For various values of the parameter p, depicts the stable nature of the planer equilibrium point.
5.2 | Part II: Explore the Effects of the Interior Equilibrium Point E;”

In this scenario, we simulate the system (3) using the model parameter values shown in Table 1 and set the
value of parameter ‘p’ into three different levels (o = 0, 0.5, 1), which satisfies the condition as given in
Theorem 7. Figure 2 shows the time series plot of the model system (3) in the time range [0, 200], which

indicates the stability of the planer equilibrium point E; " for different values of parameter ‘p’.



Results and Discussion of the Food Chain Model with Different Fear Effects under Uncertain Environment 10

= =1
=0 5 p=0.5 2 P=
2 u
I v
% ————
u |
15 v 15 — 15
—
B3 3
=3 =1 A
5 5
05 05 ] 05
0 [} 0
) 50 100 150 200 0 50 100 150 200 0 50 100 150 200
time(t) time(t) time(t)

Figure 2. Indicates the time series plot of the system (3) for various values of parameter ‘p’ in the time range [0, 200]

at the interior equilibrium point E; "
6 | Conclusion

We have considered a tri-tropic food chain model where the middle predator is a generalized predator and
the top predator is a specialist. In addition, two fear effects are suggested in this paper. It discusses the
dynamic characteristics of the model within the context of an uncertain environment. The model incorporates
interval uncertainty and takes into account the feat's effects on prey caused by the predator population. The
study discusses a straightforward predator-prey model where ecological parameters are represented as
parametric-functional interval values for biological parameters, except for the environmental carrying capacity
and the fear factor, which are introduced in the field of mathematical biology. These ecological parameters,
including prey growth rate, prey consumption, prey-to-predator conversion, transition rate from immature to
mature predator, and death rate of immature and mature predators, are treated as parametric-functional
intervals. The article establishes the positivity and boundedness of the solutions starting from any non-
negative initial points. We have studied the local stability at all equilibrium points. In future studies, the authors
plan to analyze further ecological modeling using neutrosophic environments and apply mathematical
modeling techniques to suggest medical research models.
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