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1 |Introduction 

The absence of specific knowledge in a reasoning process (for example, when making a choice) is referred to 

as uncertainty. The following are the primary causes of uncertainty encountered when solving problems [1]: 

 Inaccurate data, such as that obtained from a low-accuracy sensor. 

 Incomplete data, such as when several sensors in a control system fail and an instant judgment must 

be made using data from the remaining sensors.  
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Addressing uncertainty is a significant challenge in the field of artificial intelligence (AI). AI systems often encounter 

uncertainty due to incomplete data, ambiguous information, or inherent unpredictability in specific situations. To 

tackle this uncertainty, various solutions have been developed. These solutions range from probabilistic approaches 

like Bayesian networks and Monte Carlo methods to fuzzy logic and neural networks. These strategies enable AI 

systems to model and make judgments amid ambiguity by assigning probabilities, dealing with imprecise data, or 

utilizing learning processes that adapt to changing and uncertain contexts. However, probabilistic methods have 

limitations when it comes to handling uncertainty. These limitations include assumptions of independence, 

computational complexity, difficulty in capturing subjectivity, and interpretability. To address these limitations, 

other methods have been proposed, such as the model of certainty factors. This model offers a framework for 

reasoning under uncertainty by assigning a numerical value to statements or propositions. Additionally, 

neutrosophic logic extends classical logic by incorporating the concept of indeterminacy through 

truth/indeterminacy/falsity-membership functions. In this paper, we propose a method for investigating how 

certainty factors adapt to a neutrosophic environment. This method contributes to the development of more robust 

and adaptable decision support systems capable of dealing with diverse uncertainty. Our method, introduced for 

the first time in related literature, addresses issues such as the limited handling of indeterminacy, the inability to 

address contradictions, and the limited binary representation of uncertainty that characterize the model of certainty 

factors. We will provide a clear illustration of these implications through an example that demonstrates the 

superiority of our suggested method over the traditional technique of certainty factors. 
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 Subjectivity or deficiencies in the description of knowledge, particularly when using heuristic 

methods, where subjectivity is frequently incorporated. 

 Any limits that render the whole decision-making framework insufficient, such as cost constraints 

that make some measurements unprofitable and time constraints that need an immediate decision to 

be taken to defuse dangerous situations. 

Handling uncertainty is a significant challenge in the field of Artificial Intelligence (AI). The pursuit of accurate 

decision-making often grapples with incomplete information, ambiguous data, and unpredictable 

circumstances. Uncertainty permeates various aspects of AI, stemming from factors like noisy data, imprecise 

measurements, or the inherent complexity of real-world environments. 

AI-enabled decision-making systems rely on computers to gather relevant data, construct modeling 

algorithms, and arrive at a conclusion. However, the issue of ambiguity in decision-making has not been 

adequately addressed. This raises two questions: (1) What are the sources of uncertainty? (2) How can 

uncertainty be tackled in AI-enabled decision-making applications? 

Traditional AI methods for dealing with uncertainty have drawbacks, including probabilistic approaches such 

as Bayesian networks and Monte Carlo methods, as well as fuzzy logic and neural networks. These constraints 

include assumptions of independence, computational complexity, difficulties capturing subjectivity, and 

interpretability concerns. The classic model of certainty factors, while useful, suffers from a basic binary 

representation of uncertainty, insufficient handling of indeterminacy, and an inability to adequately handle 

contradictions. 

To solve these constraints, this paper suggests a novel methodology that combines certainty factors with 

neutrosophic logic. Neutrosophic logic builds on classical logic by introducing the idea of indeterminacy via 

truth/indeterminacy/falsity-membership functions. By merging these two models, we hope to improve the 

resilience and flexibility of decision support systems across a wide range of uncertain scenarios. 

Certainty factors (CF) [2-3] play a crucial role in the AI landscape as they provide a formal framework for 

dealing with uncertainty and making informed decisions in knowledge-based systems. In the field of artificial 

intelligence, certainty factors are numerical representations of confidence or conviction in the accuracy of 

claims or hypotheses. These variables, typically ranging between -1 and +1, aid in decision-making by 

integrating data from multiple sources to reach conclusions in the presence of uncertainty or limited 

knowledge. Initially rooted in expert systems, certainty factors have significantly enhanced the flexibility and 

robustness of AI models. They enable these models to handle challenging scenarios by combining diverse 

data sources and managing conflicting information. Certainty factors, within the realm of AI and decision-

making, find various applications in domains such as expert systems [3-8], medical diagnosis [9-16], fault 

diagnosis in engineering [17-18], financial analysis [19-20], natural language processing [21] and risk 

assessment and management [22-23]. 

Certainty factors, often utilized in expert systems and decision support systems for reasoning under 

uncertainty, are a valuable tool in computational reasoning. They are especially useful in scenarios where 

uncertainty is common and human judgment or expertise is essential. However, this method, with its simple 

binary representation, may not fully capture the complexity of real-world uncertainties that exist on a 

spectrum. Other limitations include difficulties in managing conflicting evidence, a lack of quantitative 

precision, and an inability to adapt to contextual changes. 

Neutrosophic logic, an advanced extension of classical logic, transforms how we perceive and address 

uncertainty, indeterminacy, and contradictions in complex systems. Neutrosophic logic introduces a trio of 

functions, namely truth-membership, indeterminacy-membership, and falsity-membership to resolve 

constraints in classical logic when faced with partial, imprecise, or conflicting information [24]. This 

innovative paradigm acknowledges not only true and false values but also a third domain of indeterminacy, 

where items can possess both truth and falsity characteristics simultaneously. The ability of neutrosophic logic 
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to capture and formalize this inherent complexity makes it a crucial tool in various domains, including artificial 

intelligence, decision sciences, engineering, and philosophy. 

Neutrosophic logic's versatility and ability to handle uncertainties, contradictions, and vague information find 

applications across various domains. It has been successfully applied to decision-making systems [25-30], 

medical diagnosis and healthcare [31-36], pattern recognition and image processing [37-41], control systems 

and robotics [42-45], engineering and risk management [46-49] and environmental studies [50-53]. 

1.1 |Motivation and Research Objectives 

 The main motivation concerning our study is the observation that lack of evidence for the truth or 

falsity of a sentence cannot be expressed rigorously within the certainty factors (CF) model. In such 

a model this is applied by assigning zero value to the certainty factor of the sentence, i.e. CF=0. This 

limitation in expressing indeterminacy motivated us to hybridize CF models with neutrosophic logic. 

Within this framework, lack of evidence aligns with indeterminacy, uncertain membership degrees, 

and incomplete information, signifying situations where the available evidence is insufficient or 

inconclusive to determine the truth or falsity of a statement with certainty. In other words, our 

primary aim was to pursue the extension of an uncertainty theory by which we would be able to 

recognize our ignorance and indeterminacy without ignoring and overlooking available information. 

 CFs are calculated using two independent measurement units: belief and disbelief. The requirement 

for two unique and independent measures stems from a comprehension of confirmation theory, 

which states that evidence supporting one hypothesis does not always imply evidence against that 

hypothesis. In favor of this, many researchers have stated that, although they trust in a hypothesis to 

some extent, they are unwilling to say that they agree with the hypothesis’s negation to some extent 

[54]. In our study, we integrate neutrosophic logic with certainty factors to get intuitively correct 

results regarding the aforementioned problem. The idea of complement in neutrosophic logic is 

similar to that of classical set theory; however, in neutrosophic logic, an element's membership in a 

set may have a truth degree, an indeterminacy degree, and a falsehood degree, rather than a strict 

binary membership as in classical sets. 

 CF models might struggle with detached and locality reasoning or overlooking uncertainty. By 

hybridizing CFs with neutrosophic logic, our motivation is to provide a framework that will allow 

for a clearer representation of uncertainty, improving the accuracy of conclusions. In this manner, 

an integrated technique can help to reduce mistakes that might occur when relying solely on CF 

models. The possibility for reasoning mistakes due to detachment or location concerns is reduced by 

exploiting the capabilities of models like neutrosophic logic and certainty factors. 

 CFs are often binary, indicating either certainty (positive) or doubt (negative). However, this 

simplistic view may not accurately capture the intricacies of uncertainties in the real world, which 

exist on a spectrum. By incorporating neutrosophic logic, we propose a more suitable framework 

that can represent uncertainties in a more nuanced manner, encompassing not just true/false but also 

indeterminate states. 

 Many real-world situations involve complex uncertainties that cannot be categorized as either true or 

false. By utilizing certainty factors within a neutrosophic framework, we can better model 

uncertainties in relation to the complexities of these real-world scenarios. 

 The integration of certainty factors into neutrosophic frameworks enhances the decision-making 

process. This combination enables systems to make judgments based on a more comprehensive 

understanding of uncertainty, leading to more informed and adaptable choices. 

 To propose a method that combines certainty factors with neutrosophic logic, allowing for a more 

sophisticated depiction of uncertainty, including indeterminate states. 
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 To demonstrate the suggested method's advantages over traditional certainty factors using illustrative 

cases. 

 To establish a theoretical foundation and practical implementations for the suggested strategy in a 

variety of sectors where AI decision-making is crucial. 

1.2 |Novelties 

 Decision support systems can make better-informed judgments by incorporating neutrosophic 

certainty factors, which take into account not only certainties and uncertainties but also degrees of 

indeterminacy. In complicated and unpredictable contexts, this refined approach aids in more 

accurate decision-making. 

 Neutrosophic logic is based on a triadic concept that encompasses truth, indeterminacy, and falsity. 

The certainty factors within this framework can regulate and convey the extent to which a statement 

or proposition is true, indeterminate, or false, thereby facilitating a more sophisticated understanding 

of uncertainty. 

 Neutrosophic certainty factors pave the way for the emergence of more complex reasoning 

mechanisms. They enable systems to reason with insufficient, inconsistent, or inaccurate data, 

resulting in more resilient and flexible reasoning processes. 

1.3 |Contributions 

 To the best of the author’s knowledge, this is the first research in the related literature that combines 

neutrosophic logic with certainty factors. In this approach, we aim to present a new formalism that 

will serve as a strong theoretical foundation in the field of knowledge representation and reasoning, 

particularly in dealing with uncertainty. 

 Our methodology introduces an innovative approach to modeling uncertainties, offering a 

sophisticated representation that goes beyond binary concepts and addresses situations characterized 

by indeterminacy. 

 Our research not only contributes to the theoretical framework of neutrosophic certainty factors but 

also demonstrates their practical applicability in various domains. This lays the groundwork for 

advanced decision support systems and opens doors for future enhancements and integrations within 

hybrid uncertainty models. 

1.4 |Structure of the Paper 

The current research work follows the next structure: Section 2 summarises the main concepts and ideas 

needed to comprehend the fundamental principles of neutrosophic logic and certainty factors to construct 

our theory and propose our logic formalism, called neutrosophic certainty factors (NCF). Section 3 provides 

an illustrative example to demonstrate NFC’s applicability and expressiveness in a real-world setting. 

Following that, in section 4, we describe why and where our formalism may find fruitful study ground, and 

in the last section, we emphasize NEC's utility and relevance from a scientific standpoint, which could lead 

the way for academics and practitioners. Then, in Section 5 we briefly provide a comparative analysis of our 

proposed method with other well-known approaches in AI that handle uncertainty, aiming to elucidate the 

advantages of the proposed NCF approach. Lastly, we provide our concluding remarks about the practical 

implications and potential applications of our methodology and propose future research work based on the 

limitations of our study. 
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2 |Materials and Methods 

In this section, we will first introduce the fundamental ideas and definitions of certainty factors and 

neutrosophic logic, which will provide the foundation for describing our suggested formalism, namely 

neutrosophic certainty factors (NCF). 

2.1 |Certainty Factors 

Bayes' formulae are complicated enough and insufficient for human brain reasoning functions. Certainty 

factors theory is a viable alternative to Bayesian reasoning when trustworthy statistical data is unavailable or 

evidence independence cannot be assumed. In this manner, certainty factors avoid the problem of computing 

all simple and conditional probabilities that require using Bayes’ law. Furthermore, calculations when 

combining certainties are simpler, due to the assumption of independence of events [1]. 

Certainty factors are numerical values that express the certainty of the truth of a sentence or event. They were 

first introduced into the MYCIN expert system to add some degree of certainty to the conclusions of the 

various rules [3]. Such rules have a general form: 

If event then hypothesis with certainty factor CF 

That is, if the fact is true, then we are sure of the hypothetical conclusion to the degree of CF. The certainty 

factor takes values in the interval [-1, +1]. The value -1 expresses absolute certainty about the falsehood of 

the proposition, the value +1 absolute certainty about its truth, while the value 0 expresses ignorance. 

Since a certainty factor concerning some hypotheses should provide some measure of certainty of our belief 

in the hypothesis, we could state the following axiom: 

Axiom 1.  A certainty factor is a function whose range is the interval [-1, +1]. The certainty factor CF(H,E) 

is intended to measure the change in belief in H given the evidence E with 0 indicating no change, +1 indicating 

that H is certain, and -1 indicating that ¬ H is certain. As CF(H,E) increases, so does the change in belief in 

H given E. The value of CF(H,E) does not depend on the prior belief in H. 

For example, the following rule:  

R1: If fever then flu 0.85 

expresses the fact that if a patient has a fever then the case that he has flu can be made with certainty factor 

0.85. 

In addition to the certainty accompanying the rule, it is possible to assign certainty values to the value of the 

rule's event (or events). In this case, the final certainty of the hypothetical conclusion is equal to the product 

of the certainties. For example, consider the following rule:  

R2: If 𝑓𝑒𝑣𝑒𝑟𝐶𝐹=𝑂.65 then flu 0.85 

The fact that the patient has a fever is recorded with a certainty of 0.65. The latter is possible for example in 

the case where the fever is not measured with a thermometer but is estimated by the touch. In this case, the 

certainty of the hypothetical conclusion of the rule will be 0.65 * 0.85 = 0.55. 

If there is more than one event in the left part of the rule which are associated with AND (or with OR) then 

the certainty factor of the left part is considered as the smallest (or largest) value of CF that appears. This is 

because in such cases certainty is determined by the degree of certainty of the least (or most) possible event. 

The total certainty factor of the rule is again obtained by the product of the total certainty factor of the left 

part and the certainty factor of the hypothetical conclusion. 

Thus, the certainty factor of a constructed premise A is calculated using the following formulae, starting with 

the certainty degrees of the components [55]: 
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cf (A) = max (cf (A1), cf (A2))    if 𝐴 =  𝐴1 ∨  𝐴2                             (1) 

cf (A) = min (cf (A1), cf (A2))     if 𝐴 = 𝐴1 ∧  𝐴2                               (2) 

cf (A) = −cf (A)                              if 𝐴 =�̅�.                           (3) 

For example in the following rule: 

R3: If 𝑓𝑒𝑣𝑒𝑟0.8 and 𝑐𝑜𝑙𝑑0.7 then flu 0.9 

the overall certainty factor of the recorded events i.e. of the left part of the rule is: 

𝐶𝐹𝑖𝑓 = min (𝐶𝐹𝑓𝑒𝑣𝑒𝑟 ,𝐶𝐹𝑐𝑜𝑙𝑑) = min (0.8, 0.7) = 0.7 

while the hypothetical conclusion that the patient has the flu is inferred with certainty: 

𝐶𝐹𝑓𝑙𝑢 = 𝐶𝐹𝑖𝑓 * 0.9 = 0.7 * 0.9 = 0.63. 

In the case that the certainty of some hypothetical conclusion is already 𝐶𝐹𝑝 and the activation of another 

rule draws the same hypothetical conclusion with certainty 𝐶𝐹𝑛, then the overall certainty of the hypothetical 

conclusion is determined by the signs of 𝐶𝐹𝑝 and 𝐶𝐹𝑛 ,  based on the following relations [55]: 

 If 𝐶𝐹𝑝> 0 and 𝐶𝐹𝑛 > 0, then CF = 𝐶𝐹𝑝 + 𝐶𝐹𝑛 (1 -𝐶𝐹𝑝) = 𝐶𝐹𝑝 + 𝐶𝐹𝑛 −  𝐶𝐹𝑛𝐶𝐹𝑝            (4) 

 If 𝐶𝐹𝑝< 0 and 𝐶𝐹𝑛 < 0, then CF = 𝐶𝐹𝑝 + 𝐶𝐹𝑛 (1 +𝐶𝐹𝑝) = 𝐶𝐹𝑝 + 𝐶𝐹𝑛 + 𝐶𝐹𝑛𝐶𝐹𝑝                              (5) 

 If 𝐶𝐹𝑝 ∗ 𝐶𝐹𝑛< 0, then CF = 
𝐶𝐹𝑝     + 𝐶𝐹𝑛

1   − min (|𝐶𝐹𝑝|∗|𝐶𝐹𝑛|)
                                     (6) 

2.2 |Neutrosophic Logic 

Neutrosophic logic is concerned with three essential elements: truth, falsehood, and indeterminacy. Truth 

refers to the degree to which a proposition is entirely true, while falsehood refers to the extent to which a 

statement is absolutely untrue. Indeterminacy, on the other hand, refers to the degree of uncertainty in a 

proposition, or the idea that it is partially true and partially untrue. By using truth degrees, in neutrosophic 

logic, a concept A is T% true, I% indeterminate, and F% false, where (T, I, F) ⊂ ||-0, 1+||3, ||-0, 1+|| 

being an interval of hyperreals. 

In this paradigm, truth, falsity, and indeterminacy can all exist concurrently, allowing for a more thorough 

representation of complicated and uncertain information. Sets that contain neutrosophic components are 

used in neutrosophic logic, where the elements have degrees of membership in truth, falsity, and 

indeterminacy. Its ability to handle ambiguity and uncertainty makes it valuable in situations where traditional 

logic systems might struggle to provide accurate representations. 

In this framework, a formula 𝜑 is characterized by a triplet of truth values, called the neutrosophic value defined 

as [56]:  

NL(𝜑) = (T(𝜑), I(𝜑), F(𝜑))                                           (7) 

where (T(𝜑), I(𝜑), F(𝜑)) ⊂ ||-0, 1+||3  

2.3 |Neutrosophic Certainty Factors 

To introduce our method we first give basic definitions and operations of single-valued neutrosophic numbers 

(SVNNs). 

Definition 1 [57].  Let A = (TA(x), IA(x), FA(x)) and B= (TB(x), IB(x), FB(x)) be two any SVNNs. Then the 

following set operations hold: 

�̅� = (FA(x), 1-IA(x), TA(x)), for all x ∈ 𝑋                                       (8) 
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where 𝑋 is a universal space of points (objects).  

𝐴 ∩ 𝐵 = (min (TA(x),TB(x)), max (IA(x),IB(x)), max (FA(x),FB(x))) for all x ∈ 𝑋                          (9) 

𝐴 ∪ 𝐵 = (max (TA(x),TB(x)), min (IA(x),IB(x)), min (FA(x),FB(x))) for all x ∈ 𝑋                       (10) 

Definition 2 [57]. Let A = (TA(x), IA(x), FA(x)) and B= (TB(x), IB(x), FB(x)) be two any SVNNs. Then 

𝐴⨁𝐵 = (TA(x) + TB(x)-TA(x)∙TB(x), IA(x)∙IB(x), FA(x)∙FB(x))                                            (11) 

𝐴⨂𝐵 = (TA(x)⋅TB(x), IA(x)+IB(x)- IA(x)∙IB(x), FA(x)+FB(x)- FA(x)∙FB(x))                               (12)  

Definition 3 [58].  Let A = (T, I, F) be a single-valued neutrosophic number, and let F be a single-valued 

neutrosophic scoring function. The level of membership, based on the degree of membership, indeterminacy, 

and falsehood degree of membership of A, is specified by: 

F(A) = 
1+𝑇−2𝐼−𝐹

2
                           (13) 

Definition 4. Let CFA = (CFT,CFI,CFF) be the NCF for proposition A, where: CFT is the certainty of the 

truth of A, CFI is the certainty of the indeterminacy of A and CFF is the certainty of the falsity of A. 

These values are calculated based on the following operations: 

Negation: ¬A = (CFF,CFI,CFT)                         (14) 

This operation swaps the truth and falsity components. 

Conjunction(AND):A∩B=(min(CFT(A),CFT(B)),max(CFI(A),CFI(B)),max(CFF(A),CFF(B)))                (15) 

Disjunction(OR):A∪B=(max(CFT(A),CFT(B)),min(CFI(A),CFI(B)),min(CFF(A),CFF(B)))                     (16) 

Based on Axiom 1, given in subsection 2.1 for certainty factors, we can apply the following axiom that holds 

in a neutrosophic environment: 

Axiom 2.  A neutrosophic certainty factor CFA(H,E) is a function whose range is the interval [-1, +1]. It 

measures the degree of belief in H given the evidence E, where: 

CFA(H,E) = +1 indicates that H is certain, 

CFA(H,E)) = -1 indicates that ¬H is certain, 

CFA(H,E) = 0 indicates complete indeterminacy or neutrality (neither H nor ¬H is certain). 

As CFA(H,E) increases (from -1 to +1), the degree of belief in H given E changes accordingly. The value of 

CFA(H,E) reflects the level of certainty or uncertainty considering all possible truth values of H (true, 

indeterminate, false). Importantly, CFA(H,E) is independent of the prior belief in H and captures the overall 

impact of evidence E on the belief in H within the neutrosophic framework. 

Now, we can re-examine the rules that were used in subsection 2.1 and use certainty factors in a neutrosophic 

environment instead. For example, let's consider rule 2: 

R4: If 𝑓𝑒𝑣𝑒𝑟𝐶𝐹=(𝑂.65,0.1,0.25) then flu (0.7, 0.1, 0.2) 

Using this approach, we can express certainty factors more realistically and expressively. We can argue that 

the evidence of the patient having a fever is 65% true, 25% false, and 10% indeterminate, as it was estimated 

through touch. Based on this evidence, we can assume that the hypothetical part of rule 2, which states that 

the patient has the flu (due to the fever), is 70% true, 20% false, and 10% indeterminate, possibly due to a 

malfunctioning thermometer or other measurement issues. 

Let us now examine rule 3 in the neutrosophic framework, thus utilizing neutrosophic certainty factors (NCF). 

R5: If 𝑓𝑒𝑣𝑒𝑟(0.8,0.1,0.1) and 𝑐𝑜𝑙𝑑(0.7,0.15,0.15) then flu (0.8, 0.1, 0.1) 
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According to equation (15), the overall certainty factor of the recorded events i.e. of the left part of the rule 

is: 

𝐶𝐹𝑖𝑓 = 𝐶𝐹𝑓𝑒𝑣𝑒𝑟 ∩ 𝐶𝐹𝑐𝑜𝑙𝑑 = (min (0.8, 0.7), max (0.1,0.15), max (0.1,0.15)) = (0.7,0.15,0.15) 

while the hypothetical conclusion that the patient has the flu is inferred with neutrosophic certainty by 

calculating equation (12): 

𝐶𝐹𝑓𝑙𝑢 = 𝐶𝐹𝑖𝑓 ⨂ (0.8, 0.1, 0.1) = (0.7,0.15,0.15) ⨂ (0.8, 0.1, 0.1) =  (0.7*0.8, 0.15+0.1 -0.15*0.1, 0.15+0.1 -0.15*0.1) 

= (0.56, 0.24, 0.24). 

3 |Results 

3.1 |Interpretation of Neutrosophic Values 

Neutrosophic values are expressed as triplets (T, I, F), representing the degrees of truth, indeterminacy, and 

falsity, respectively. Each component ranges between 0 and 1. 

Truth (T): This value indicates the degree of belief that a statement or hypothesis is true. Higher values 

signify greater confidence in the truth of the proposition. 

Indeterminacy (I): This value represents the degree of uncertainty or ambiguity about the truth or falsity of 

a proposition. Higher values indicate more uncertainty. 

Falsity (F): This value reflects the degree of belief that a statement or hypothesis is false. Higher values 

signify greater confidence in the falsity of the proposition. 

3.2 |Illustrative Examples of Neutrosophic Certainty Factors 

Example 1. Let us assume that two rules lead to the same hypothetical conclusion B but under different 

assumptions. For example: 

R6: If 𝑋𝐶𝐹=0,45 then B 0.75, 

R7: If 𝑌𝐶𝐹=0.8  and 𝑍𝐶𝐹=0.7 and 𝛺𝐶𝐹=0.45 then B 0.65 

According to what we have said in subsection 2.1., it follows that for rule R6 it will be: 

𝐶𝐹𝑝 = 0.45 * 0.75 = 0.34                        (17) 

while for R7 (equation (2)): 

𝐶𝐹𝑛 = 0.65 * min (0.8, 0.7, 0.45) = 0.65 * 0.45 = 0.29                  (18) 

Since 𝐶𝐹𝑝 and 𝐶𝐹𝑛 are both positive, the total certainty of the hypothetical conclusion B will be Eq. (4): 

𝐶𝐹𝐵 = 0.34 + 0.29 (1-0.34) = 0.53                     (19) 

Although there is nothing wrong with the above scenario, it does not provide us with a solution when it 

comes to dealing with indeterminacy often encountered in real-world case studies. This can occur, for 

example, when multiple experts provide opinions or judgments regarding a specific outcome or decision, and 

discrepancies among their assigned CFs are expressed. It can also occur when integrating data from various 

sources, resulting in inconsistencies or contradictions that lead to uncertainty in CF assignments. Sometimes, 

not all relevant information or evidence is available to accurately assign CFs. In such cases, judgments are 

made based on limited data, leading to indeterminacy. Lastly, certain situations might present ambiguous 

evidence or information that can be interpreted in multiple ways, leading to differing CF assignments. 

Under this assumption, the above scenario could be easily dealt with by assigning neutrosophic values to the 

certainty factors as discussed in subsection 2.3: 

R8: If  𝑋𝐶𝐹=(0.45,0.3,0.2) then B (0.75, 0.2, 0.1), 
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R9: If  𝑌𝐶𝐹=(0.8,0.2,0.1)  and 𝑍𝐶𝐹=(0.7,0.2,0.2) and 𝛺𝐶𝐹=(0.45,0.1,0.3) then B (0.65, 0.15, 0.25) 

By applying equation (12): 

𝐶𝐹𝑝 = (0.45*0.75, 0.3+0.2 – 0.3*0.2, 0.2+0.1-0.2*0.1) = (0.34, 0.44, 0.28)                          (20) 

Now, by applying equations (9) and (12): 

𝐶𝐹𝑛 = (0.65, 0.15, 0.25) ⨂ 𝐶𝐹𝑖𝑓                           (21) 

where 𝐶𝐹𝑖𝑓= 𝐶𝐹𝑌 ∩ 𝐶𝐹𝑍 ∩ 𝐶𝐹𝛺 = (min(0.8,0.7,0.45), max(0.2,0.2,0.1), max(0.1,0.2,0.3) = (0.45, 0.2, 0.3) 

Now equation (21) becomes: 

𝐶𝐹𝑛 = (0.65, 0.15, 0.25) ⨂(0.45, 0.2, 0.3) = (0.65*0.45, 0.15+0.2-0.15*0.2, 0.25 +0.3-0.25*0.3) = 

(0.29, 0.32, 0.47)                             (22) 

To calculate 𝐶𝐹𝐵 in the neutrosophic environment and because equations (4), (5) & (6) do not apply in our 

framework, as it is always the case that 𝐶𝐹𝑝 and 𝐶𝐹𝑛 > 0 since (T, I, F) ∈ [0,1], we apply the neutrosophic 

addition operator as expressed in equation (11): 

𝐶𝐹𝐵= 𝐶𝐹𝑝⨁ 𝐶𝐹𝑛= (0.34, 0.44, 0.28)⨁(0.29, 0.32, 0.47) =(0.34+0.29-0.34*0.29, 0.44*0.32, 0.28*0.47) = (0.53, 

0.14, 0.13)                                       (23) 

In neutrosophic logic/set/probability it’s possible to have the sum of components (T, I, F) different from 1. 

More specifically [59]:  

T+I+F>1, for paraconsistent (conflicting) information;  

T+I+F=1, for complete information;  

T+I+F<1, for incomplete information.      

From the results obtained in equation (26), we observe that the truth degree (0.53), when utilizing NCFs, is 

equal to the value obtained with equation (19) using "traditional" CFs. However, the latter does not indicate 

that we are dealing with incomplete information in this scenario (as T+I+F<1). Therefore, CFs may give a 

false sense of confidence if applied to situations with limited data or insufficient information to make 

definitive judgments. The absence of data or incomplete information can lead to uncertainties that are difficult 

to represent using a single numerical value. This can pose challenges when assessing hypotheses or making 

decisions based on incomplete evidence.  

The fundamental purpose of a score function is to determine the conversion of a neutrosophic number to a 

real number. It is used as a systematic approach to solving decision-making problems with neutrosophic 

information. By applying equation (13) to the result obtained in (23), we have F(A) = 0.56. With the result of 

the score function, the decision-maker(s) can define a threshold value, which serves as a boundary or limit 

that helps in evaluating options or situations, according to their judgment and expertise. Depending on the 

value of the threshold the rules of the model could be activated or rejected thus providing a clear guideline 

for decision-makers and helping streamline the decision-making process by making it more objective and 

consistent.  

Example 2: Now let us examine a different example to evaluate the robustness of our proposed method 

against the traditional Bayesian approach. 

Let us assume that we have collected the following data from a patient of a hospital including symptoms and 

test results, to calculate the likelihood of a disease X. 

Symptoms and Test Results: 

Symptom A (present in 70% of Disease X cases) 

Symptom B (present in 60% of Disease X cases) 
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Test 1 (positive in 80% of Disease X cases) 

Test 2 (positive in 75% of Disease X cases) 

Patient’s Data: 

Patient: Symptom A (yes), Symptom B (no), Test 1 (positive), Test 2 (positive) 

A) Traditional Bayesian method 

P(Disease X∣Symptoms and Tests)∝P(Symptoms and Tests∣Disease X)×P(Disease X) 

Assuming P(Disease X)=0.1 (prevalence) 

P(Symptom A∣Disease X)=0.7 

P(Symptom B∣Disease X)=0.6 

P(Test 1∣Disease X)=0.8 

P(Test 2∣Disease X)=0.75 

Since the patient has Symptom A, positive Test 1 and positive Test 2: 

P(Symptoms and Tests∣Disease X)=0.7×0.8×0.75=0.42                       (24) 

The probability of Disease X given the symptoms and tests for the Patient is proportional to 0.42. 

B) Proposed NFC method 

Symptoms and Test Results: 

Symptom A: 70% true, 20% false, 10% indeterminate  

Symptom B: 40% true, 50% false, 10% indeterminate  

Test 1: 80% true, 15% false, 5% indeterminate 

Test 2: 75% true, 20% false, 5% indeterminate  

Patient’s Data: 

Patient: Symptom A (neutrosophic value), Symptom B (neutrosophic value), Test 1 (neutrosophic-positive), Test 2 (neutrosophic-

positive) 

According to our conceptual framework, we obtain the following rule based on the symptoms and tests taken 

on the patient: 

Based on the patient’s data, he/she shows evidence of symptom A, thus we have the following rule: 

R10: If  𝛢𝐶𝐹=(0.7,0.1,0.2)  and 𝑍𝐶𝐹=(0.8,0.05,0.15) and 𝛺𝐶𝐹=(0.75,0.05,0.2) then X 

Based on the patient’s data, he/she shows evidence of symptom Β, thus we have the following rule: 

R11: If  𝛣𝐶𝐹=(0.4,0.1,05)  and 𝑍𝐶𝐹=(0.8,0.05,0.15) and 𝛺𝐶𝐹=(0.75,0.05,0.2) then X 

Assuming, as in case (A), that the prior probability that the patient, given the symptoms and tests taken, has 

the disease X is 10% (in neutrosophic formulation (0.1, 0.0, 0.9)), the hypothetical conclusion that the patient 

has the disease X is inferred with neutrosophic certainty by calculating next equation: 

CF = CFif * CFthen                (25) 

For rule R5: 

Based on equation (15), the overall certainty factor of the recorded events i.e. of the left part of the rule is: 

𝐶𝐹𝑃 = 𝐶𝐹𝐴 ∩ 𝐶𝐹𝑍 ∩ 𝐶𝐹𝛺  = (min (0.7, 0.8, 0.75), max (0.1,0.05,0.05), max (0.2,0.15,0.2)) = (0.7,0.1,0.2)         (26) 
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and by applying equation (25): 

𝐶𝐹𝐷𝑖𝑠𝑋1 = 𝐶𝐹𝑃 ⨂ (0.1, 0.0, 0.9) = (0.7,0.1,0.2) ⨂ (0.1, 0.0, 0.9) =  (0.7*0.1, 0.0, 0.2+0.9 -0.2*0.9) =  

(0.07, 0.00, 0.92)                 (27) 

For rule R6: 

Based on equation (15), the overall certainty factor of the recorded events i.e. of the left part of the rule is: 

𝐶𝐹𝑁 = 𝐶𝐹𝑌 ∩ 𝐶𝐹𝑍 ∩ 𝐶𝐹𝛺  = (min (0.4, 0.8, 0.75), max (0.1,0.05,0.05), max (0.5,0.15,0.2)) = (0.4,0.1,0.5)         (28) 

𝐶𝐹𝐷𝑖𝑠𝑋2 = 𝐶𝐹𝛮 ⨂ (0.1, 0.0, 0.9) = (0.4,0.1,0.5) ⨂ (0.1, 0.0, 0.9) =  (0.4*0.1, 0.0, 0.5+0.9 -0.5*0.9) =  

(0.04, 0.00, 0.95)                 (29) 

As stated above in the current subsection, the total NCF of Disease X will be (equation (11)): 

𝐶𝐹𝐷𝑖𝑠𝑋 = 𝐶𝐹𝐷𝑖𝑠𝑋1⨁ 𝐶𝐹𝐷𝑖𝑠𝑋2= (0.07, 0.00, 0.92) ⨁ (0.04, 0.00, 0.95) = (0.07+0.04–0.07*0.04,0.00*0.00, 0.92*0.95) 

=    (0.11, 0.00, 0.87).                             (30) 

By applying equation (13) to the above result, we have: 

F(DisX) = (1.11-0.87)/2= 0.12               (31) 

If we interpret the outcome of equation (31), we could indicate that the element or proposition in question 

(in our context, the proposition of a patient having Disease X)has a low overall degree of "certainty" or 

"truth,"(or in numbers, the proposition is only 12% true),  a fact that wasn’t quite clear when applying the 

Bayesian method (see equation (24)). In addition, our method allowed for a more holistic approach since we 

were able to include both symptoms A & B in our framework with little computational cost, to draw our 

conclusion regarding the patient’s disease in a more thorough manner. 

Hence, the numerical case study shows that the NCF model can produce a more nuanced and trustworthy 

estimate of disease X than the usual Bayesian technique. This improved ability to handle ambiguities and 

provide explicit certainty factors can have a substantial impact on diagnostic decision-making in medical 

practice. 

4 |Applications 

By considering the examples demonstrated in sections 2 and 3 it becomes clear that integrating neutrosophic 

logic into certainty factors greatly improves the traditional CF model. This enhancement enables us to 

effectively handle incomplete, indeterminate, and inconsistent information. Although both CFs and NCFs 

deal with uncertainty, CFs rely on a numerical scale that indicates belief or disbelief, while NCFs, in the 

context of neutrosophic logic, include a trivalent perspective that encompasses memberships of truth, 

indeterminacy, and falsity. This comprehensive approach allows for a more thorough treatment of uncertain 

information. 

This increased granularity is extremely useful in decision-making processes, particularly when dealing with 

highly uncertain or ambiguous data. It allows for a more exact evaluation and management of uncertainty. 

Furthermore, NCFs display improved flexibility and robustness when modeling complex systems, enabling 

better analysis and comprehension of circumstances characterized by uncertainty. Furthermore, NCFs excel 

at dealing with complicated and contradictory information by providing a framework for expressing changing 

degrees of uncertainty and improving the dependability of decision support systems.  

5 |Comparative Analysis 

In this section, we briefly conduct a comparative analysis of our proposed methodology compared to other 

well-established methods used in AI for handling uncertainty, namely Bayesian networks, fuzzy logic, and 

Dempster-Shafer theory. Our goal is to highlight the advantages of the proposed NCF approach. 
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5.1 |Bayesian Networks 

Bayesian networks [60-64] are graphical models that illustrate the probability connections between variables. 

They are particularly useful in scenarios with a clear probabilistic structure and sufficient data to estimate 

probabilities.  

Their strengths include a rigorous probabilistic framework that integrates prior knowledge with observed 

data, as well as an explicit treatment of variable dependencies. However, Bayesian networks sometimes rely 

on assumptions of conditional independence, which may not always hold true, and the inference process can 

be computationally intensive, especially for large networks. In contrast, the NCF model does not depend on 

independence assumptions and offers a more flexible representation by incorporating indeterminacy, making 

it a simpler and potentially more straightforward approach to handling uncertainty without extensive 

probability calculations. 

5.2 |Fuzzy Logic 

Fuzzy logic [65-69] is most suitable for control systems and decision-making processes where precision is not 

crucial. Its main advantages lie in its ability to perform well in situations with imprecise or ambiguous 

information, as well as its ease of implementation. However, fuzzy logic lacks a probabilistic interpretation of 

uncertainty, limiting its applicability in certain AI applications. Additionally, its rules are often static, making 

adaptation to new data or changing circumstances challenging. The NCF model enhances fuzzy logic by 

including indeterminacy and enabling more dynamic uncertainty management. While fuzzy logic effectively 

addresses imprecision, NCF offers a more comprehensive framework for handling both uncertainty and 

indeterminacy. 

5.3 |Dempster-Shafer Theory 

Dempster-Shafer theory (DST) [70-74] is a mathematical theory of evidence that combines information from 

multiple sources to evaluate the likelihood of an event. It establishes a formal framework for evidence 

combination and explicitly accounts for uncertainty by allowing for varying levels of confidence and 

plausibility. However, DST calculations can be computationally demanding, especially when dealing with large 

sets of evidence and interpreting belief functions may be less intuitive than probabilistic alternatives. The 

NCF model is similar to DST in addressing uncertainty and data combination, but it goes a step further by 

incorporating indeterminacy, offering a more nuanced approach to handling uncertainty. Additionally, NCF 

may require fewer computational resources than DST, making it more suitable for certain applications. 

Table 1 summarizes the key differences between NCF, Bayesian networks, fuzzy logic, and Dempster-Shafer 

theory. As observed in Table 1, the NCF model provides a strong and adaptable framework for dealing with 

uncertainty, especially in situations where indeterminacy is critical. Its capacity to combine levels of belief, 

skepticism, and indeterminacy enables more sophisticated decision-making than the aforementioned 

methods. 
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Table 1. Comparative analysis with other methods. 

 

6 |Concluding Remarks 

We are all aware that when studying a situation and forming judgments about it in the real world, we cannot 

be entirely certain of our conclusions. There is certainly some doubt surrounding it. Uncertainty exists in most 

tasks that require intellectual behavior, such as planning, reasoning, problem-solving, decision-making, and 

categorization. The majority of practical thinking comprises ambiguity, partial ignorance, and incomplete or 

conflicting knowledge, which frequently leads to confusion. This invites the following question: (a) How 

should uncertainty be represented? (b) How are uncertainty measures evaluated, merged, and modified? (c) 

How may these metrics be utilized to draw implications and conclusions? 

Several other methods have been proposed to handle uncertainty. Among them, some of the most commonly 

used techniques are fuzzy logic, which utilizes fuzzy sets, Bayesian reasoning with probabilities, and the theory 

of evidence or belief functions. However, as we have discussed in Section 5, all of the aforementioned 

methods share a common limitation when dealing with uncertainty: they do not offer a sufficient mechanism 

to represent incomplete, vague, indeterminate, and contradictory information. 

For these reasons, in this paper, we propose a new method that incorporates certainty factors in a 

neutrosophic environment. This approach provides a versatile and flexible framework with the ability to 

manage uncertainty, making our method a valuable tool in complex decision-making processes often 

encountered in the real world. 

6.1 |Practical Implications of Proposed Method 

Integrating Neutrosophic Certainty Factors (NCF) into AI systems has several important practical 

implications. 

 Improved Decision-Making Accuracy: By combining degrees of truth, indeterminacy, and falsity, 

the NCF model enables AI systems to make more precise and nuanced choices. This decreases the 

possibility of mistakes generated by simplistic binary or probabilistic models that fail to account for 

uncertainty completely. 

 Improved Handling of Uncertainty: The NCF model effectively addresses uncertainty, including 

missing and ambiguous data. This capacity is crucial in real-world applications because AI systems 

frequently confront noisy or incomplete datasets. 

 

Feature 

 

Bayesian Networks 
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Dempster-Shafer 

Theory 

 

Neutrosophic Certainty 
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Probabilistic 

Framework 
Yes No Yes No 

Imprecision 
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Indeterminacy 

Handling 
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Complexity 
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Assumptions 
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Independence 

Yes No No No 

Adaptability to 

New Data 
High Low Moderate High 

Intuitiveness Moderate High Low High 
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 Enhanced Interpretability: The triplet representation of NCF provides a clear and interpretable 

approach to comprehending the confidence levels of AI choices. This openness is critical for winning 

the trust and approval of end users and stakeholders, who need to understand the rationale behind 

AI-driven choices. 

6.2 |Advantages of Proposed Method 

Neutrosophic certainty factors (NCFs) offer several advantages in handling uncertain information within the 

neutrosophic logic framework. First and foremost, it is acknowledged [75] that uncertain reasoning, 

particularly when employing models like the Certainty Factor (CF) model, can indeed encounter challenges 

related to detachment and locality, potentially leading to errors in reasoning. By suggesting a hybrid method 

such as NFC we encounter to present a framework that can enhance the reasoning process and improve the 

accuracy of conclusions. A hybrid approach, like ours, provides a way to mitigate errors that may arise from 

overreliance on CF models alone. By leveraging the strengths of multiple models, the potential for errors in 

reasoning due to detachment or locality issues is minimized. Other advantages of our proposed method 

include: 

 NCFs communicate certainty or uncertainty in a more nuanced and detailed manner, enabling the 

expression of degrees of truth, falsehood, and indeterminacy. This allows for a more precise 

assessment of the dependability of information. 

 NCFs efficiently handle ambiguity by allowing for the expression of varying degrees of confidence 

or doubt. This is particularly useful when information cannot be easily categorized as true or false. 

 NCFs provide a flexible framework for decision-making in the presence of ambiguity. By 

incorporating certainty factors into the neutrosophic logic paradigm, they enable judgments that are 

adaptable and context-aware, taking into account degrees of confidence or uncertainty. 

 Compared to standard certainty metrics, NCFs can more effectively handle imprecise, incomplete, 

or contradictory information. This resilience is especially valuable in sectors where uncertain data is 

common, such as decision support systems and artificial intelligence. 

6.3 |Potential Applications 

The suggested NCF model may be implemented across several domains, boosting the performance and 

dependability of AI systems in real-world applications. 

 Healthcare: The NCF model may combine clinical data from several sources, including patient 

symptoms, test findings, and treatment outcomes, to improve medical diagnosis and treatment 

planning. This results in more accurate diagnosis and personalized treatment approaches. 

 Finance: The NCF model helps improve financial forecasting and risk management by delivering 

accurate predictions despite market volatility and insufficient economic data. This allows for better-

informed investment decisions and effective risk management. 

 Cybersecurity: In cybersecurity, the NCF model improves threat detection and response by 

estimating the confidence of possible threats based on incomplete or ambiguous signals. This 

increases the resilience of security measures while decreasing the risk of false positives and negatives. 

6.4 |Limitations of our Study 

Overcoming the limitations of our study, further improvements that could help strengthen the applicability, 

efficiency, and reliability of our proposed method are: 
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 Additional empirical research and real-world implementations can confirm the reliability of NCFs in 

many circumstances. This would reveal information about their practical value, strengths, and 

effectiveness. 

 Developing the theoretical underpinnings of NCFs inside neutrosophic logic might lead to a better 

understanding of their characteristics, connections, and interactions, hence facilitating their wider 

acceptance and improvement. 

 Efforts may be made to improve the interpretability of NCFs, making them more user-friendly and 

understandable. This might include visualizations or tools to help in understanding and manipulating 

these elements. 

 It would be interesting to develop a probabilistic interpretation for neutrosophic certainty factors 

based on the measures of belief and disbelief used in CF models with the use of neutrosophic 

Bayesian rule [76]. In this way, it could be shown that each combination function imposes 

conditional independence assumptions on the propositions involved in the combinations. For 

example, when we use the parallel-combination function to combine CFs for the rules "if e1 then h" 

and "if e2 then h," we implicitly assume that e1 and e2 are conditionally independent, given h and 

NOT h. 
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