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1 |Introduction 

In 1995, Smarandache introduced a new branch of philosophy, Neutrosophy Science. In this philosophy, the 

mathematical system neutrosophic includes indeterminacy in the set such 𝐼𝐴(𝑥) is called the indeterminacy 

for 𝑇𝐴(𝑥) or 𝐹𝐴(𝑥) on nonstandard interval ]0−, 1+[ or single-valued [0,1] as a generalization of an 

intuitionistic fuzzy set. Neutrosophy is the base of neutrosophic logic, a multiple-value logic that generalizes 

intuitionistic fuzzy logic, and fuzzy logic respectively. For more information about the principle of 

neutrosophic philosophy, and extend the debate including; the thesis 〈𝐴〉 and antithesis 〈𝐴𝑛𝑡𝑖𝐴〉 to get a 

synthesis, thesis 〈𝐴〉 and antithesis 〈𝐴𝑛𝑡𝑖𝐴〉 to get a retrosynthesis 〈𝑁𝑒𝑢𝑡𝐴〉, neutrosophic system, and 

neutrosophic dynamic system. I refer to [1, 2]. In addition,  for neutrosophic over/under/off/ sets from the 

point view degree of membership function [3]. The neutrosophic algebra structures based on the 

neutrosophic number of the form 𝑁1 = 𝑎 + 𝑏𝐼, 𝐼 is literal in indeterminacy, 𝐼2 = 𝐼, and 0𝐼 = 0 used by 

scholars such as [4, 5]. In [6], I have tried to provide the necessary initial concepts for constructing the 

neutrosophic set theory as a generalization of set theory. Furthermore, I tried to construct from a classical set 
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a neutrosophic set of three types 𝐻𝑖

𝑡[𝐼 ], where 𝑖 = 1,2,3, and a neutrosophic number in my work represents 

the first type that comes from any classical set, while 𝑁2 = {𝑎} ∪ 𝑎𝐼 and 𝑁3 = (𝑎 + 𝑏𝐼) ∪ {𝑎} Represents 

the second and third types respectively. This article aims to complement and expand the previous work in [6] 

by presenting the complements of the neutrosophic set, the difference, and the symmetric difference of the 

neutrosophic set and presenting some of their properties. This work establishes the theory of neutrosophic 

set theory with [6] and reinforces previous work in [7-11]. 

2 |More Information on Subsets, Union, Intersection, and Power 

Neutrosophic Sets 

In this section, I present more information on subsets, union, intersection, and power sets of neutrosophic 

sets of three types with some theorems and examples as extension concepts in [4].       

Definition 2.1 [6] Let 𝐻 ≠ ∅ ⊂ 𝑈 be a non-empty set, then;  

i). 𝐻1
𝑡[𝐼] = {ℎ1 + ℎ2𝐼: ℎ1, ℎ2 ∈ 𝐻} be a neutrosophic set of type 1,  

ii). 𝐻2
𝑡[𝐼] = {𝑎𝐼 ∪ {𝑎}: 𝑎 ∈ 𝐻} be a neutrosophic set of type 2, and 

iii). 𝐻3
𝑡[𝐼] = {(ℎ1 + ℎ2𝐼) ∪ {ℎ1}: ℎ1, ℎ2 ∈ 𝐻} be a neutrosophic set of type 3, where 𝐼 is an 

indeterminacy 

Theorem 2.1 Let 𝐻𝑖
𝑡[𝐼], 𝑁𝑖

𝑡[𝐼], and 𝑀𝑖
𝑡[𝐼] be three neutrosophic sets of type 𝑖, and  𝑖 equals 1, 2, or  3. If  

𝐻𝑖
𝑡[𝐼] ⊂ 𝑀𝑖

𝑡[𝐼], and 𝐻𝑖
𝑡[𝐼] ⊂ 𝑁𝑖

𝑡[𝐼], then 

i). 𝐻𝑖
𝑡[𝐼] ⊂ 𝑀𝑖

𝑡[𝐼] ∩ 𝑁𝑖
𝑡[𝐼], and  

ii). 𝐻𝑖
𝑡[𝐼] ⊂ 𝑀𝑖

𝑡[𝐼] ∪ 𝑁𝑖
𝑡[𝐼]. 

 Proof (1). Let 𝐻𝑖
𝑡[𝐼] ⊂ 𝑀𝑖

𝑡[𝐼], and 𝐻𝑖
𝑡[𝐼] ⊂ 𝑁𝑖

𝑡[𝐼]. Assume that 𝑥 ∈ 𝐻𝑖
𝑡[𝐼]. 

 ∵ 𝑥 ∈ 𝐻𝑖
𝑡[𝐼 ] ⇒ 𝑥 ∈ 𝑀𝑖

𝑡[𝐼] ∧  𝑥 ∈ 𝑁𝑖
𝑡[𝐼] 

                          ⇒ (∃𝑥1, 𝑥2 ∈ 𝑀) ∧ (∃𝑥1, 𝑥2 ∈ 𝑁), indeterminacy  𝐼  such that 𝑥 = 𝑥1 + 𝑥2𝐼  

                                    ⇒ (∃𝑥1, 𝑥2 ∈ (𝑀 ∧ 𝑁)), indeterminacy  𝐼  such that 𝑥 = 𝑥1 + 𝑥2𝐼  

                          ⇒ (𝑥 ∈ (𝑀𝑖
𝑡[𝐼] ∧ 𝑁𝑖

𝑡[𝐼])) 

                          ⇒ (𝑥 ∈ (𝑀𝑖
𝑡[𝐼] ∩ 𝑁𝑖

𝑡[𝐼])) 

                          ⇒ 𝐻𝑖
𝑡[𝐼] ⊂ 𝑀𝑖

𝑡[𝐼] ∩ 𝑁𝑖
𝑡[𝐼].∎ 

  (2). By the same method. 

Theorem 2.2 Let 𝐻𝑖
𝑡[𝐼], 𝑁𝑖

𝑡[𝐼],  𝑀𝑖
𝑡[𝐼],  and 𝑂𝑖

𝑡[𝐼] be four neutrosophic sets of type 𝑖, and  𝑖 equals  1,2 or 

3. If 𝐻𝑖
𝑡[𝐼 ] ⊂ 𝑁𝑖

𝑡[𝐼 ], and 𝑀𝑖
𝑡[𝐼 ] ⊂ 𝑂𝑖

𝑡[𝐼 ], then:  

i). 𝐻𝑖
𝑡[𝐼] ∪ 𝑀𝑖

𝑡[𝐼] ⊂ 𝑁𝑖
𝑡[𝐼] ∪ 𝑂𝑖

𝑡[𝐼], and 

ii). 𝐻𝑖
𝑡[𝐼] ∩ 𝑀𝑖

𝑡[𝐼] ⊂ 𝑁𝑖
𝑡[𝐼] ∩ 𝑂𝑖

𝑡[𝐼]. 

Proof (1). Suppose that 𝐻𝑖
𝑡[𝐼] ⊂ 𝑁𝑖

𝑡[𝐼], and 𝑀𝑖
𝑡[𝐼] ⊂ 𝑂𝑖

𝑡[𝐼], for any 𝑖 = 1,2,3. 

 Assume that, 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ∪ 𝑀𝑖

𝑡[𝐼]) ⇒ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∨ (𝑥 ∈ 𝑀𝑖

𝑡[𝐼]) 

                                                   ⇒ (𝑥 ∈ 𝑁𝑖
𝑡[𝐼]) ∨ (𝑥 ∈ 𝑂𝑖

𝑡[𝐼]) 

                                                   ⇒ 𝑥 ∈ (𝑁𝑖
𝑡[𝐼] ∪ 𝑂𝑖

𝑡[𝐼])  
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                                                   ⇒ 𝐻𝑖
𝑡[𝐼] ∪ 𝑀𝑖

𝑡[𝐼] ⊂ 𝑁𝑖
𝑡[𝐼] ∪ 𝑂𝑖

𝑡[𝐼]. ∎ 

(2) By a similar method. 

 Definition 2.2 [4] Let 𝐻𝑖
𝑡[𝐼] be three neutrosophic sets of type 𝑖, and  𝑖 equals 1,2 or 3. 

The neutrosophic complement sets of type 𝑖 are denoted by 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

, and defined by: 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

=

{𝑥: 𝑥 ∉ 𝐻𝑖
𝑡[𝐼]  ∧ 𝑥 ∈ 𝑈𝑖

𝑡[𝐼] } = {𝑥: 𝑥 ∉ 𝐻 ∧ 𝑥 ∈ 𝑈},  

Definition 2.3 [6] Let 𝐻𝑖
𝑡[𝐼] be three neutrosophic sets of type 𝑖. The neutrosophic power sets of type 𝑖 

defined by  ℑ (𝐻𝑖
𝑡[𝐼]) = {𝑁𝑖

𝑡[𝐼]: 𝑁𝑖
𝑡[𝐼] ⊆ 𝐻𝑖

𝑡[𝐼], 𝑖 = 1,2,3}.   

Theorem 2.3 Let 𝐻𝑖
𝑡[𝐼]  𝑎nd 𝑁𝑖

𝑡[𝐼] be two neutrosophic sets of type 𝑖, consider  ℑ(𝐻𝑖
𝑡[𝐼]) and  ℑ(𝑁𝑖

𝑡[𝐼]) 

are neutrosophic power sets of type 𝑖. Then  

i). 2𝐻𝑖
𝑡[𝐼] ∩ 2𝑁𝑖

𝑡[𝐼] = 2𝐻𝑖
𝑡[𝐼]∩𝑁𝑖

𝑡[𝐼], and  

ii). 2𝐻𝑖
𝑡[𝐼] ∪ 2𝑁𝑖

𝑡[𝐼] ⊂ 2𝐻𝑖
𝑡[𝐼]∩𝑁𝑖

𝑡[𝐼], for any  𝑖 = 1,2,3, 𝐻 and 𝑁 are classical sets.  

Furthermore, 

ℑ(𝐻𝑖
𝑡[𝐼]) or 2𝐻𝑖

𝑡[𝐼] represents the same notation of neutrosophic power sets of type 𝑖.   

Proof (1). Assume that 𝐸𝑖
𝑡[𝐼 ] ∈ (2𝐻𝑖

𝑡[𝐼 ] ∩ 2𝑁𝑖
𝑡[𝐼 ]),  

                         ⇔ (𝐸𝑖
𝑡[𝐼 ] ∈ 2𝐻𝑖

𝑡[𝐼 ]) ∧  (𝐸𝑖
𝑡[𝐼 ] ∈ 2𝑁𝑖

𝑡[𝐼]),                                 

                         ⇔ (𝐸𝑖
𝑡[𝐼 ] ⊆ 𝐻𝑖

𝑡[𝐼]) ∧  (𝐸𝑖
𝑡[𝐼 ] ⊆ 𝑁𝑖

𝑡[𝐼]),  

                         ⇔ 𝐸𝑖
𝑡[𝐼 ] ⊆ (𝐻𝑖

𝑡[𝐼] ∩  𝑁𝑖
𝑡[𝐼]),  

                         ⇔ 𝐸𝑖
𝑡[𝐼] ∈ 2𝐻𝑖

𝑡[𝐼]∩𝑁𝑖
𝑡[𝐼] 

Hence, 2𝐻𝑖
𝑡[𝐼 ] ∩ 2𝑁𝑖

𝑡[𝐼 ] = 2𝐻𝑖
𝑡[𝐼 ]∩𝑁𝑖

𝑡[𝐼 ], for any 𝑖 = 1,2,3.∎ 

 (2). Suppose that 𝐸𝑖
𝑡[𝐼 ] ∈ (2𝐻𝑖

𝑡[𝐼] ∪ 2𝑁𝑖
𝑡[𝐼]) 

             ⇒ (𝐸𝑖
𝑡[𝐼] ∈ 2𝐻𝑖

𝑡[𝐼]) ∨ (𝐸𝑖
𝑡[𝐼] ∈ 2𝑁𝑖

𝑡[𝐼])   

             ⇒ (𝐸𝑖
𝑡[𝐼] ⊆ 𝐻𝑖

𝑡[𝐼]) ∨ (𝐸𝑖
𝑡[𝐼] ⊆ 𝑁𝑖

𝑡[𝐼]) 

             ⇒ 𝐸𝑖
𝑡[𝐼] ⊆ (𝐻𝑖

𝑡[𝐼] ∪ 𝑁𝑖
𝑡[𝐼]) 

             ⇒ 𝐸𝑖
𝑡[𝐼] ∈ 2𝐻𝑖

𝑡[𝐼]∪𝑁𝑖
𝑡[𝐼] 

             ⇒ 2𝐻𝑖
𝑡[𝐼] ∪ 2𝑁𝑖

𝑡[𝐼] ⊂ 2𝐻𝑖
𝑡[𝐼]∩𝑁𝑖

𝑡[𝐼], for any 𝑖 = 1,2,3.∎ 

Example 2.1 Let 𝐻 = {𝑎, 𝑏} and 𝑁 = {𝑐} be two classical sets, then the neutrosophic sets of type-1, type-2, 

and type-3 are given by:  

𝐻1
𝑡[𝐼 ] = {

𝑎 + 𝑎𝐼, 𝑎 + 𝑏𝐼,
𝑏 + 𝑎𝐼, 𝑏 + 𝑏𝐼,

}, 𝐻2
𝑡[𝐼 ] = {

𝑎, 𝑎𝐼,
𝑏, 𝑏𝐼,

}, and 𝐻3
𝑡[𝐼 ] = {

𝑎, 𝑎 + 𝑎𝐼, 𝑎 + 𝑏𝐼,
𝑏, 𝑏 + 𝑎𝐼, 𝑏 + 𝑏𝐼,

}. While 

𝑁1
𝑡[𝐼 ] = {𝑐 + 𝑐𝐼}, 𝑁2

𝑡[𝐼 ] = {𝑐, 𝑐𝐼}, and 𝑁3
𝑡[𝐼 ] = { 𝑐, 𝑐 + 𝑐𝐼}, we see that 

2𝐻2
𝑡[𝐼 ] :  0 neutrosophic- element: ∅2

𝑡 [𝐼]⏟  
0

, 
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         1 neutrosophic- element: 𝐻2

𝑡[𝐼]⏟  
1

= {𝑎},  𝐻2
𝑡[𝐼]⏟  
2

{𝑎𝐼}, 𝐻2
𝑡[𝐼]⏟  
3

{𝑏}, and  𝐻2
𝑡[𝐼]⏟  
4

{𝑏𝐼}, 

              2 neutrosophic- elements: 𝐻2
𝑡[𝐼]⏟  
5

= {𝑎, 𝑎𝐼},  𝐻2
𝑡[𝐼]⏟  
6

{𝑎, 𝑏}, 𝐻2
𝑡[𝐼]⏟  
7

{𝑎, 𝑏𝐼},  

                                                       𝐻2
𝑡[𝐼]⏟  
8

{𝑎𝐼, 𝑏},  𝐻2
𝑡[𝐼]⏟  
9

{𝑎𝐼, 𝑏𝐼}, and  𝐻2
𝑡[𝐼]⏟  
10

{𝑎𝐼, 𝑏𝐼}, 

               3 neutrosophic- elements:  𝐻2
𝑡[𝐼]⏟  
11

= {𝑎, 𝑎𝐼, 𝑏},  𝐻2
𝑡[𝐼]⏟  
12

{𝑎, 𝑎𝐼, 𝑏𝐼}, 𝐻2
𝑡[𝐼]⏟  
13

{𝑎𝐼, 𝑏, 𝑏𝐼}, and  

                                                        𝐻2
𝑡[𝐼]⏟  
14

= {𝑎, 𝑏, 𝑏𝐼} 

            4 neutrosophic- elements:  𝐻2
𝑡[𝐼]⏟  
15

= {
𝑎, 𝑎𝐼,
𝑏, 𝑏𝐼,

}. Also, we have, 

2𝑁2
𝑡[𝐼 ] :  0 neutrosophic- element: ∅2

𝑡 [𝐼]⏟  
0

, 

                       1 neutrosophic- element: 𝑁2
𝑡[𝐼]⏟  
1

= {𝑐},  𝐻2
𝑡[𝐼]⏟  
2

{𝑐𝐼}, and 

                       2 neutrosophic- elements: 𝑁2
𝑡[𝐼]⏟  
3

= {𝑐, 𝑐𝐼}. Now, 2𝐻2
𝑡[𝐼] ∪ 2𝑁2

𝑡[𝐼] Consists of 24 neutrosophic 

elements. While 𝐻2
𝑡[𝐼] ∪ 𝑁2

𝑡[𝐼] = {
𝑎, 𝑎𝐼,
𝑏, 𝑏𝐼
𝑐, 𝑐𝐼

}, and the neutrosophic power set 2𝐻2
𝑡[𝐼]∪𝑁2

𝑡[𝐼] consists of 64 

neutrosophic elements, and consequently, 2𝐻2
𝑡[𝐼 ] ∪ 2𝑁2

𝑡[𝐼 ] ≠ 2𝐻2
𝑡[𝐼 ]∪𝑁2

𝑡[𝐼 ]. 

3 |More Difference and Symmetric Difference of Neutrosophic Sets of 

Type-1, ype-2, and Type-3 with their Properties 

This section addresses to study of the difference between neutrosophic sets, and the symmetric difference 

between neutrosophic sets of three types with their properties. 

Definition 3.1 Let 𝐻𝑖
𝑡[𝐼], 𝑁𝑖

𝑡[𝐼] be six neutrosophic sets of type 𝑖. Then the difference of neutrosophic sets 

of type 𝑖, defined by 

𝐻𝑖
𝑡[𝐼] ⊝𝑁𝑖

𝑡[𝐼] = {𝑥: (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∉ 𝑁𝑖

𝑡[𝐼]), 𝑖 = 1,2,3} 

                         = {(∃ 𝑥1, 𝑥2 ∈ 𝐻) ∧ (∃ 𝑥1, 𝑥2 ∉ 𝑁),   indeterminacy  𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 =  𝑥1 + 𝑥2𝐼} 

Theorem 3.1 Let 𝑈𝑖
𝑡[𝐼]  be a neutrosophic universal set of type 𝑖,  𝐻𝑖

𝑡[𝐼], and  𝑁𝑖
𝑡[𝐼] ⊂ 𝑈𝑖

𝑡[𝐼]. Then: 

1. 𝐻𝑖
𝑡[𝐼] ⊝ ∅𝑖

𝑡[𝐼] = 𝐻𝑖
𝑡[𝐼],  

2. 𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼] ⊂ 𝐻𝑖
𝑡[𝐼] and 𝑁𝑖

𝑡[𝐼] ⊝ 𝐻𝑖
𝑡[𝐼] ⊂ 𝑁𝑖

𝑡[𝐼], 

3. 𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼] = 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

 ⊝ 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

, 

4. 𝐻𝑖
𝑡[𝐼 ] ⊝ 𝑁𝑖

𝑡[𝐼] = 𝐻𝑖
𝑡[𝐼] ∩ 𝑁𝑖

𝑡[𝐼]⏞  
𝑐

, 

5. 𝐻𝑖
𝑡[𝐼] ∩ 𝑁𝑖

𝑡[𝐼] = 𝐻𝑖
𝑡[𝐼] ⊝ (𝐻𝑖

𝑡[𝐼] ⊝ 𝑁𝑖
𝑡[𝐼]), 

6. 𝐻𝑖
𝑡[𝐼] ∪ 𝑁𝑖

𝑡[𝐼] = 𝐻𝑖
𝑡[𝐼] ∪ (𝑁𝑖

𝑡[𝐼] ⊝ 𝐻𝑖
𝑡[𝐼]), and  

7. 𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼] = 𝐻𝑖
𝑡[𝐼] ⊝ (𝐻𝑖

𝑡[𝐼]  ∩ 𝑁𝑖
𝑡[𝐼]). 
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Proof. 

1. Consider 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ⊝ ∅𝑖

𝑡[𝐼]) ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∉ ∅𝑖

𝑡[𝐼]) 

                                       ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∈ ∅𝑖

𝑡[𝐼]⏞
𝑐

) 

                                        ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∈ 𝑈𝑖

𝑡[𝐼]) 

                                        ⇔ (𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ∩ 𝑈𝑖

𝑡[𝐼])) 

                                        ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]), hence 𝐻𝑖

𝑡[𝐼] ⊝ ∅𝑖
𝑡[𝐼] = 𝐻𝑖

𝑡[𝐼].∎ 

2. Assume that 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼]), for any, 𝑖 = 1,2,3  

                 ⇒ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∉ 𝑁𝑖

𝑡[𝐼]) 

                ⇒ (∃ 𝑥1, 𝑥2  ∈ 𝐻) ∧ (∃ 𝑥1, 𝑥2) ∉ 𝑁, indeterminacy 𝐼 such that 𝑥 =  𝑥1 + 𝑥2𝐼  

                ⇒ (∃ 𝑥1, 𝑥2 ∈ 𝐻), indeterminacy 𝐼 such that 𝑥 =  𝑥1 + 𝑥2𝐼 

                ⇒ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼])  ⇒ 𝐻𝑖

𝑡[𝐼] ⊝ 𝑁𝑖
𝑡[𝐼] ⊂ 𝐻𝑖

𝑡[𝐼].∎ The second part by the same argument. 

3. Assume that 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼]), for any, 𝑖 = 1,2,3  

              ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∉ 𝑁𝑖

𝑡[𝐼]),  

              ⇔ (∃ 𝑥1, 𝑥2 ∈ 𝐻) ∧ (∃ 𝑥1, 𝑥2) ∉ 𝑁, indeterminacy 𝐼 such that 𝑥 =  𝑥1 + 𝑥2𝐼 

              ⇔ (∃ 𝑥1, 𝑥2 ∉ 𝐻⏞
𝑐

) ∧ (∃ 𝑥1, 𝑥2 ∈ 𝑁⏞
𝑐

),  indeterminacy 𝐼 such that 𝑥 =  𝑥1 + 𝑥2𝐼 

              ⇔ (∃ 𝑥1, 𝑥2 ∈ 𝑁⏞
𝑐

) ∧ (∃ 𝑥1, 𝑥2 ∉ 𝐻⏞
𝑐

),  indeterminacy 𝐼 such that 𝑥 =  𝑥1 + 𝑥2𝐼  

              ⇔ (𝑥 ∈ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

) ∧ (𝑥 ∉ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

),  

              ⇔ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

 ⊝ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

 , therefore,  𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼] = 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

 ⊝ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

. ∎ 

   

4. Suppose that 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼]) 
     

                 ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∉ 𝑁𝑖

𝑡[𝐼]), 𝑖 = 1,2,3 

 

                             ⇔ (∃ 𝑥1, 𝑥2 ∈ 𝐻) ∧ (∃ 𝑥1, 𝑥2 ∉ 𝑁), indeterminacy 𝐼 such that 𝑥 =  𝑥1 + 𝑥2𝐼 

                 ⇔ (∃ 𝑥1, 𝑥2 ∈ 𝐻) ∧ (∃ 𝑥1, 𝑥2 ∈ 𝑁⏞
𝑐

), indeterminacy 𝐼 such that 𝑥 =  𝑥1 + 𝑥2𝐼 

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∈ 𝑁𝑖

𝑡[𝐼]⏞  
𝑐

),  

                  ⇔ 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ∩ 𝑁𝑖

𝑡[𝐼]⏞  
𝑐

),  therefore,  𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼] = 𝐻𝑖
𝑡[𝐼] ∩ 𝑁𝑖

𝑡[𝐼]⏞  
𝑐

. ∎ 

5. Suppose that, 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ⊝ (𝐻𝑖

𝑡[𝐼] ⊝ 𝑁𝑖
𝑡[𝐼])), for any, 𝑖 = 1,2,3 

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∉ (𝐻𝑖

𝑡[𝐼] ⊝ 𝑁𝑖
𝑡[𝐼])) 

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ ( 𝑥 ∉ 𝐻𝑖

𝑡[𝐼] ∨ 𝑥 ∈ 𝑁𝑖
𝑡[𝐼]),  

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ ( 𝑥 ∈ 𝐻𝑖

𝑡[𝐼 ]⏞  
𝑐

∨ 𝑥 ∈ 𝑁𝑖
𝑡[𝐼]),  

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ∧ 𝑥 ∈ 𝐻𝑖

𝑡[𝐼 ]⏞  
𝑐

 ) ∨ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]  ∧ 𝑥 ∈ 𝑁𝑖

𝑡[𝐼]),  

                  ⇔ (𝐹𝑁  ) ∨ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]  ∧ 𝑥 ∈ 𝑁𝑖

𝑡[𝐼]),   

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]  ∧ 𝑥 ∈ 𝑁𝑖

𝑡[𝐼]),   
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                  ⇔  𝑥 ∈ (𝐻𝑖

𝑡[𝐼] ∩ 𝑁𝑖
𝑡[𝐼]),  therefore, 𝐻𝑖

𝑡[𝐼] ∩ 𝑁𝑖
𝑡[𝐼] = 𝐻𝑖

𝑡[𝐼] ⊝ (𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼]). ∎  

6. Presume that, 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ∪ (𝑁𝑖

𝑡[𝐼] ⊝ 𝐻𝑖
𝑡[𝐼])), for any, 𝑖 = 1,2,3 

                   ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∨ (𝑥 ∈ (𝑁𝑖

𝑡[𝐼] ⊝ 𝐻𝑖
𝑡[𝐼])) 

                   ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∨ ( 𝑥 𝑁𝑖

𝑡[𝐼]  ∧  𝑥 ∉ 𝐻𝑖
𝑡[𝐼]),  

                   ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∨ (𝑥 ∈ 𝑁𝑖

𝑡[𝐼 ]  ∧  𝑥 ∈ 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

), 

                   ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ∨ 𝑥 ∈ 𝑁𝑖

𝑡[𝐼]) ∧ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]  ∧ 𝑥 ∈ 𝐻𝑖

𝑡[𝐼]⏞  
𝑐

),  

                   ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ∨ 𝑥 ∈ 𝑁𝑖

𝑡[𝐼]) ∧ (𝐹𝑁),  

                   ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ∨ 𝑥 ∈ 𝑁𝑖

𝑡[𝐼]),  

                   ⇔ 𝑥 ∈ (𝐻𝑖
𝑡[𝐼]  ∪  𝑁𝑖

𝑡[𝐼]), hence  𝐻𝑖
𝑡[𝐼] ∪ 𝑁𝑖

𝑡[𝐼] = 𝐻𝑖
𝑡[𝐼] ∪ (𝑁𝑖

𝑡[𝐼] ⊝ 𝐻𝑖
𝑡[𝐼]).∎ 

7. Assume that 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ⊝ (𝐻𝑖

𝑡[𝐼] ∩ 𝑁𝑖
𝑡[𝐼])), for any, 𝑖 = 1,2,3  

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ (𝑥 ∉ (𝐻𝑖

𝑡[𝐼] ∩ 𝑁𝑖
𝑡[𝐼])) 

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]) ∧ ((𝑥 ∉ 𝐻𝑖

𝑡[𝐼 ]) ∨ (𝑥 ∉ 𝑁𝑖
𝑡[𝐼 ])),  

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼 ]) ∧ ((𝑥 ∈ 𝐻𝑖

𝑡[𝐼 ]⏞  
𝑐

) ∨ (𝑥 ∉ 𝑁𝑖
𝑡[𝐼])),  

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ∧ 𝑥 ∈ 𝐻𝑖

𝑡[𝐼]⏞  
𝑐

) ∨ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ∧ 𝑥 ∉ 𝑁𝑖

𝑡[𝐼]),  

                  ⇔ 𝐹𝑁 ∨ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ∧ 𝑥 ∉ 𝑁𝑖

𝑡[𝐼]),  

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ∧ 𝑥 ∉ 𝑁𝑖

𝑡[𝐼]),  

                  ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ∧  𝑥 ∉ 𝑁𝑖

𝑡[𝐼]),  

                  ⇔ 𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼], hence  

                  𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼] = 𝐻𝑖
𝑡[𝐼] ⊝ (𝐻𝑖

𝑡[𝐼] ∩ 𝑁𝑖
𝑡[𝐼]). ∎ 

The following theorem gives us the generalization of De-Morgan's theorem in classical set theory in 

neutrosophic classical set theory. 

Theorem 3.2 Let 𝑈𝑖
𝑡[𝐼]  be a neutrosophic universal set of type 𝑖, 𝐻𝑖

𝑡[𝐼], and 𝑁𝑖
𝑡[𝐼] ⊂ 𝑈𝑖

𝑡[𝐼]. Then: 

i). (𝐻𝑖
𝑡[𝐼] ∪ 𝑁𝑖

𝑡[𝐼])⏞          
𝑐

= 𝐻𝑖
𝑡[𝐼 ]⏞  
𝑐

∩ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

 , and 

ii). (𝐻𝑖
𝑡[𝐼] ∩ 𝑁𝑖

𝑡[𝐼])⏞          
𝑐

= 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

∪ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

 . 

Notation. It is appropriate to express of 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

= 1⊝𝐻𝑖
𝑡[𝐼], for any  𝑖 = 1,2,3, where 

𝐻𝑖
𝑡[𝐼 ] ⊂ 1, because all neutrosophic sets belong to considered space with full or 100% degree 

membership of 1. 

Proof (1). Suppose that 𝑥 ∈ (𝐻𝑖
𝑡[𝐼] ∪ 𝑁𝑖

𝑡[𝐼])⏞          
𝑐

 ⇔ 𝑥 ∈ (1⊝ (𝐻𝑖
𝑡[𝐼] ∪ 𝑁𝑖

𝑡[𝐼])) 

⇔ (𝑥 ∈ 1 ∧  𝑥 ∉ (𝐻𝑖
𝑡[𝐼] ∪ 𝑁𝑖

𝑡[𝐼])) 

                                              ⇔ (𝑥 ∈ 1 ∧ (𝑥 ∉ 𝐻𝑖
𝑡[𝐼] ∧ 𝑥 ∉ 𝑁𝑖

𝑡[𝐼])) 
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                                             ⇔ (𝑥 ∈ 1 ∧ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

∧ 𝑥 ∈ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

)) 

                                             ⇔ ((𝑥 ∈ 1 ∧ 𝑥 ∈ 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

) ∧ 𝑥 ∈ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

) 

                                             ⇔ (𝑥 ∈ 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

 ∧ 𝑥 ∈ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

) 

                                             ⇔ 𝑥 ∈ (𝐻𝑖
𝑡[𝐼]⏞  
𝑐

∩ 𝑥 ∈ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

), hence  

                                             (𝐻𝑖
𝑡[𝐼] ∪ 𝑁𝑖

𝑡[𝐼])⏞          
𝑐

= 𝐻𝑖
𝑡[𝐼]⏞  
𝑐

∩ 𝑁𝑖
𝑡[𝐼]⏞  
𝑐

. ∎ 

(2). By a similar method. 

Definition 3.2 Let 𝐻𝑖
𝑡[𝐼 ], 𝑁𝑖

𝑡[𝐼 ] be six neutrosophic sets of type 𝑖. Then the symmetric difference of 

neutrosophic sets of type 𝑖  defined by: 

𝐻𝑖
𝑡[𝐼] ⊚𝑁𝑖

𝑡[𝐼] =  {𝑥: 𝑥 ∈ 𝐻𝑖
𝑡[𝐼] ⨁ 𝑥 ∈ 𝑁𝑖

𝑡[𝐼], 𝑖 = 1,2,3} 

                         = {(∃ 𝑥1, 𝑥2 ∈ 𝐻)⨁(∃ 𝑥1, 𝑥2) ∈ 𝑁,   indeterminacy  𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 =  𝑥1 + 𝑥2𝐼} 

The symbol ⨁ means that, the exclusive or, that is 𝑥 ∈ 𝐻𝑖
𝑡[𝐼] or 𝑥 ∈ 𝑁𝑖

𝑡[𝐼] but not both. In other words, 

𝐻𝑖
𝑡[𝐼] ⊚𝑁𝑖

𝑡[𝐼] = (𝐻𝑖
𝑡[𝐼] ∪ 𝑁𝑖

𝑡[𝐼])⊝ (𝐻𝑖
𝑡[𝐼] ∩ 𝑁𝑖

𝑡[𝐼]) or  

                                   = (𝐻𝑖
𝑡[𝐼] ⊝ 𝑁𝑖

𝑡[𝐼]) ∪ (𝑁𝑖
𝑡[𝐼] ⊝ 𝐻𝑖

𝑡[𝐼]) 
 

Theorem 3.3 Let 𝑈𝑖
𝑡[𝐼] be a neutrosophic universal set of type 𝑖. Consider  𝐻𝑖

𝑡[𝐼 ],  𝑁𝑖
𝑡[𝐼 ], and 

 𝑀𝑖
𝑡[𝐼 ] ⊂ 𝑈𝑖

𝑡[𝐼 ]. Then for any 𝑖 = 1,2,3, we have  

1. 𝐻𝑖
𝑡[𝐼] ⊚ ∅𝑖

𝑡[𝐼] = 𝐻𝑖
𝑡[𝐼], 

2. 𝐻𝑖
𝑡[𝐼] ⊚ 𝐻𝑖

𝑡[𝐼] = ∅𝑖
𝑡[𝐼], 

3. 𝐻𝑖
𝑡[𝐼] ⊚ 𝑁𝑖

𝑡[𝐼] = 𝑁𝑖
𝑡[𝐼] ⊚ 𝐻𝑖

𝑡[𝐼], 

4. (𝐻𝑖
𝑡[𝐼] ⊚ 𝑁𝑖

𝑡[𝐼]) ⊚𝑀𝑖
𝑡[𝐼] = 𝐻𝑖

𝑡[𝐼] ⊚ (𝐻𝑖
𝑡[𝐼] ⊚𝑀𝑖

𝑡[𝐼]), and 

5. 𝐻𝑖
𝑡[𝐼] ⊚ 𝑁𝑖

𝑡[𝐼] = ∅𝑖
𝑡[𝐼] ⇔ 𝐻𝑖

𝑡[𝐼] = 𝑁𝑖
𝑡[𝐼].  

 
Proof. 

1. 𝐻𝑖
𝑡[𝐼] ⊚ ∅𝑖

𝑡[𝐼] = (𝐻𝑖
𝑡[𝐼] ∪ ∅𝑖

𝑡[𝐼])⊝ (𝐻𝑖
𝑡[𝐼] ∩ ∅𝑖

𝑡[𝐼]) 

                                         = 𝐻𝑖
𝑡[𝐼] ⊝ ∅𝑖

𝑡[𝐼] 

                                         = 𝐻𝑖
𝑡[𝐼].∎ 

2. It is clear that by definition 𝐻𝑖
𝑡[𝐼] ⊚ 𝐻𝑖

𝑡[𝐼] = ∅𝑖
𝑡[𝐼].∎ 

3. (𝐻𝑖
𝑡[𝐼] ⊚ 𝑁𝑖

𝑡[𝐼] = (𝐻𝑖
𝑡[𝐼] ∪ N𝑖

𝑡[𝐼])⊝ (𝐻𝑖
𝑡[𝐼] ∩ N𝑖

𝑡[𝐼]) 

                                         = (N𝑖
𝑡[𝐼] ∪ 𝐻𝑖

𝑡[𝐼]) ⊝ (N𝑖
𝑡[𝐼] ∩ 𝐻𝑖

𝑡[𝐼]) 

                                         = 𝑁𝑖
𝑡[𝐼] ⊚ 𝐻𝑖

𝑡[𝐼].∎ 
The parts (4) and (5) by the same method. 

4 |Conclusion 

In previous work, I Presented the concepts of neutrosophic sets including universal, empty, compliment, and 

subsets, denoted as 𝐻𝑖
𝑡[𝐼 ],  where 𝑖 equals to 1,2 or 3. I also explored neutrosophic operations and their 

properties, such as neutrosophic unions and neutrosophic intersections. In this article, I shall delve into 

additional materials and theorems related to these concepts and discuss neutrosophic and symmetric 

differences, including their properties. 
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