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1 |Introduction 

1.1 |Uncertain Graph Theory 

Graph theory is a foundational branch of mathematics that models networks using vertices (nodes) and edges 

(connections) to represent relationships between entities [19, 29, 85, 91, 123]. In graph theory, parameters 

such as shortest path distance [7, 35, 93, 98] and diameter [8, 18, 34, 67] are often studied to analyze the 

mathematical structure of a given graph. 

This paper investigates several uncertain graph models, including Fuzzy, Intuitionistic Fuzzy, Neutrosophic, 

and Plithogenic Graphs, which enhance classical graph theory by introducing different layers of uncertainty. 

These models offer a comprehensive framework for analyzing complex and imprecise relationships, making 

them applicable to various real-world contexts. Consequently, a variety of related graph classes and 

applications have emerged [38, 39, 41-43, 46, 48-52]. Foundational concepts such as Fuzzy Sets and 

Neutrosophic Sets have also been extensively studied and documented in the literature [10, 14, 26] Similarly, 

parameters like shortest path distance and diameter are actively studied within uncertain graphs as well [75, 

115, 116]. For a more comprehensive overview, readers are encouraged to refer to existing survey papers [44, 

46, 48]. 
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Graph theory, a mathematical field, investigates the relationships between entities through vertices and edges [29]. 

Within this discipline, Uncertain Graph Theory emerges to model uncertainties in realworld networks. This paper 
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1.2 |Contributions 

This paper introduces the concept of the Antipodal Turiyam Neutrosophic Graph. Antipodal graph is a graph 

where two nodes are connected if their shortest path distance equals the graph's diameter, highlighting farthest 

node connections [9, 36, 53, 59, 63, 92]. Turiyam Neutrosophic Graphs expand the traditional graph 

framework by assigning four membership values-truth, indeterminacy, falsity, and liberal state-to each vertex 

and edge, allowing for a more comprehensive representation of complex relationships [44, 46, 54, 103]. Note 

that Turiyam Neutrosophic Set is actually a particular case of the quadripartitioned Neutrosophic Set, by 

replacing "Contradiction" with "Liberal" [104]. The corresponding graph concept known as quadripartitioned 

neutrosophic graphs is well-documented [69, 70]. 

While Antipodal Graphs have been extensively studied in contexts like Fuzzy [4, 58, 87, 97], Vague[81], and 

Neutrosophic Graphs [78-80], the concept of the Turiyam Neutrosophic Antipodal Graph has not been 

thoroughly explored. This paper aims to address this gap by defining and analyzing the properties of 

Antipodal Turiyam Neutrosophic Graphs. 

1.3 |The Structure of the Paper 

The format of this paper is described below. Section 2 provides the Preliminaries and Definitions. Section 3 

introduces results of the antipodal single valued Turiyam neutrosophic graph while and future directions in 

Section 4. 

2 |Preliminaries and Definitions 

This section provides an overview of the fundamental definitions and notations used throughout the paper. 

2.1 |Basic Graph Concepts 

Below are some of the foundational concepts in graph theory. For more comprehensive information on graph 

theory and its notations, refer to [27-29, 64, 119]. 

Definition 1 (Graph). [29] A graph 𝐺 is a mathematical structure that represents relationships between 

objects. It consists of a set of vertices 𝑉(𝐺) and a set of edges 𝐸(𝐺), where each edge connects a pair of 

vertices. Formally, a graph is represented as 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of 

edges. 

Definition 2 (Degree). [29] Let 𝐺 = (𝑉, 𝐸) be a graph. The degree of a vertex 𝑣 ∈ 𝑉, denoted deg(𝑣), is 

defined as the number of edges connected to 𝑣. For undirected graphs, the degree is given by: 

deg(𝑣) = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}| 

For directed graphs, the in-degree deg−(𝑣) refers to the number of edges directed towards 𝑣, while the out-

degree deg+(𝑣) represents the number of edges directed away from 𝑣. 

2.2 |Uncertain Graph 

This paper addresses Fuzzy, Intuitionistic Fuzzy, Neutrosophic, Turiyam, and Plithogenic concepts. Note 

that Turiyam Neutrosophic Set is actually a particular case of the Quadruple Neutrosophic Set, by replacing 

"Contradiction" with "Liberal" [104]. 

Definition 3 (Unified Uncertain Graphs Framework). (cf.[47]) Let 𝐺 = (𝑉, 𝐸) be a classical graph with a set 

of vertices 𝑉 and a set of edges 𝐸. Depending on the type of graph, each vertex 𝑣 ∈ 𝑉 and edge 𝑒 ∈ 𝐸 is 

assigned membership values to represent various degrees of truth, indeterminacy, falsity, and other nuanced 

measures of uncertainty. 

1. Fuzzy Graph [17, 40, 57, 60, 74, 82, 86, 99, 100, 112, 118] 
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 Each vertex 𝑣 ∈ 𝑉 is assigned a membership degree 𝜎(𝑣) ∈ [0,1]. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a membership degree 𝜇(𝑢, 𝑣) ∈ [0,1]. 

2. Intuitionistic Fuzzy Graph (IFG) [41,16,24,72,83,114,117,124]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned two values: 𝜇𝐴(𝑣) ∈ [0,1] (degree of membership) and 𝑣𝐴(𝑣) ∈

[0,1] (degree of non-membership), such that 𝜇𝐴(𝑣) + 𝑣𝐴(𝑣) ≤ 1. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned two values: 𝜇𝐵(𝑢, 𝑣) ∈ [0,1] and 𝑣𝐵(𝑢, 𝑣) ∈ [0,1], with 

𝜇𝐵(𝑢, 𝑣) + 𝑣𝐵(𝑢, 𝑣) ≤ 1. 

3. Neutrosophic Graph [5,6,23,44,49,52,65,68,73,101,109,110] : 

 Each vertex 𝑣 ∈ 𝑉 is assigned a triplet 𝜎(𝑣) = (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)), where 

𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣) ∈ [0,1] and 𝜎𝑇(𝑣) + 𝜎𝐼(𝑣) + 𝜎𝐹(𝑣) ≤ 3. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a triplet 𝜇(𝑒) = (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)). 

4. Turiyam Neutrosophic Graph 54 56]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a quadruple 𝜎(𝑣) = (𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣)), where each 

component is in [0,1] and 𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is similarly assigned a quadruple. 

5. Vague Graph [2, 3, 20, 22, 95, 96, 102]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a pair (𝜏(𝑣), 𝜙(𝑣)), where 𝜏(𝑣) ∈ [0,1] is the degree of 

truthmembership and 𝜙(𝑣) ∈ [0,1] is the degree of false-membership, with 𝜏(𝑣) + 𝜙(𝑣) ≤ 1. 

 The grade of membership is characterized by the interval [𝜏(𝑣),1 − 𝜙(𝑣)]. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a pair (𝜏(𝑒), 𝜙(𝑒)), satisfying: 

𝜏(𝑒) ≤ min{𝜏(𝑢), 𝜏(𝑣)},  𝜙(𝑒) ≥ max{𝜙(𝑢), 𝜙(𝑣)} 

6. Hesitant Fuzzy Graph [15, 62, 88, 20]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a hesitant fuzzy set 𝜎(𝑣), represented by a finite subset of [0,1], 

denoted 𝜎(𝑣) ⊆ [0,1]. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a hesitant fuzzy set 𝜇(𝑒) ⊆ [0,1]. 

 Operations on hesitant fuzzy sets (e.g., intersection, union) are defined to handle the hesitation 

in membership degrees. 

7. Single-Valued Pentapartitioned Neutrosophic Graph [25, 69, 71, 94]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a quintuple 𝜎(𝑣) = (𝑇(𝑣), 𝐶(𝑣), 𝑅(𝑣), 𝑈(𝑣), 𝐹(𝑣)), where: 

- 𝑇(𝑣) ∈ [0,1] is the truth-membership degree. 

- 𝐶(𝑣) ∈ [0,1] is the contradiction-membership degree. 

- 𝑅(𝑣) ∈ [0,1] is the ignorance-membership degree. 

- 𝑈(𝑣) ∈ [0,1] is the unknown-membership degree. 

- 𝐹(𝑣) ∈ [0,1] is the false-membership degree. 

- 𝑇(𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5. 
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 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a quintuple 𝜇(𝑒) = (𝑇(𝑒), 𝐶(𝑒), 𝑅(𝑒), 𝑈(𝑒), 𝐹(𝑒)), 

satisfying: 

{
 
 

 
 
𝑇(𝑒) ≤ min{𝑇(𝑢), 𝑇(𝑣)}
𝐶(𝑒) ≤ min{𝐶(𝑢), 𝐶(𝑣)}
𝑅(𝑒) ≥ max{𝑅(𝑢), 𝑅(𝑣)}
𝑈(𝑒) ≥ max{𝑈(𝑢), 𝑈(𝑣)}
𝐹(𝑒) ≥ max{𝐹(𝑢), 𝐹(𝑣)}

 

Definition 4. [61, 106, 107 111 113] Let 𝐺 = (𝑉, 𝐸) be a crisp graph where 𝑉 is the set of vertices and 𝐸 ⊆

𝑉 × 𝑉 is the set of edges. A Plithogenic Graph 𝑃𝐺 is defined as: 

𝑃𝐺 = (𝑃𝑀, 𝑃𝑁) 

where: 

1. Plithogenic Vertex Set 𝑃𝑀 = (𝑀, 𝑙,𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓) : 

 𝑀 ⊆ 𝑉 is the set of vertices. 

 𝑙 is an attribute associated with the vertices. 

 𝑀𝑙 is the range of possible attribute values. 

 adf : 𝑀 ×𝑀𝑙 → [0,1]𝑠 is the Degree of Appurtenance Function (DAF) for vertices. 

 𝑎𝐶𝑓:𝑀𝑙 × 𝑀𝑙 → [0,1]𝑡 is the Degree of Contradiction Function (DCF) for vertices. 

2. Plithogenic Edge Set 𝑃𝑁 = (𝑁,𝑚,𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓) : 

 𝑁 ⊆ 𝐸 is the set of edges. 

 𝑚 is an attribute associated with the edges. 

 𝑁𝑚 is the range of possible attribute values. 

 bdf : 𝑁 × 𝑁𝑚 → [0,1]𝑠 is the Degree of Appurtenance Function (DAF) for edges. 

 bCf: Nm × 𝑁𝑚 → [0,1]𝑡 is the Degree of Contradiction Function (DCF) for edges. 

 

The Plithogenic Graph 𝑃𝐺 must satisfy the following conditions: 

1. Edge Appurtenance Constraint: For all (𝑥, 𝑎), (𝑦, 𝑏) ∈ 𝑀 ×𝑀𝑙 : 

𝑏𝑑𝑓((𝑥𝑦), (𝑎, 𝑏)) ≤ min{𝑎𝑑𝑓(𝑥, 𝑎), 𝑎𝑑𝑓(𝑦, 𝑏)} 

where 𝑥𝑦 ∈ 𝑁 is an edge between vertices 𝑥 and 𝑦, and (𝑎, 𝑏) ∈ 𝑁𝑚 × 𝑁𝑚 are the corresponding 

attribute values.  

2. Contradiction Function Constraint: For all (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑁𝑚 ×𝑁𝑚 : 

𝑏𝐶𝑓((𝑎, 𝑏), (𝑐, 𝑑)) ≤ min{𝑎𝐶𝑓(𝑎, 𝑐), 𝑎𝐶𝑓(𝑏, 𝑑)} 

3. Reflexivity and Symmetry of Contradiction Functions: 

𝑎𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙
𝑎𝐶𝑓(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙
𝑏𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚
𝑏𝐶𝑓(𝑎, 𝑏) = 𝑏𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

 

Example 5. (cf. [44, 47]) The following examples are provided. 
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 When 𝑠 = 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Fuzzy Graph. 

 When 𝑠 = 2, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Intuitionistic Fuzzy Graph. 

 When 𝑠 = 3, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Neutrosophic Graph. 

 When 𝑠 = 4, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Turiyam Neutrosophic Graph. 

The General Plithogenic Graph is a relax definition of the Plithogenic Graph (cf.[37,44, 84]). 

 

Definition 6 (General Plithogenic Graph). [44] Let 𝐺 = (𝑉, 𝐸) be a classical graph, where 𝑉 is a finite set of 

vertices, and 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges. 

A General Plithogenic Graph 𝐺𝐺𝑃 = (𝑃𝑀, 𝑃𝑁) consists of: 

1. General Plithogenic Vertex Set PM: 

𝑃𝑀 = (𝑀, 𝑙,𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓) 

where: 

 𝑀 ⊆ 𝑉 : Set of vertices. 

 𝑙 : Attribute associated with the vertices. 

 𝑀𝑙 : Range of possible attribute values. 

 𝑎𝑑𝑓:𝑀 ×𝑀𝑙 → [0,1]𝑠 : Degree of Appurtenance Function (DAF) for vertices. 

 𝑎𝐶𝑓:𝑀𝑙 × 𝑀𝑙 → [0,1]𝑡 : Degree of Contradiction Function (DCF) for vertices. 

2. General Plithogenic Edge Set PN: 

𝑃𝑁 = (𝑁,𝑚,𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓) 

where: 

 𝑁 ⊆ 𝐸 : Set of edges. 

 𝑚 : Attribute associated with the edges. 

 Nm: Range of possible attribute values. 

 bdf: 𝑁 × 𝑁𝑚 → [0,1]𝑠 : Degree of Appurtenance Function (DAF) for edges. 

 𝑏𝐶𝑓:𝑁𝑚 × 𝑁𝑚 → [0,1]𝑡 : Degree of Contradiction Function (DCF) for edges. 

The General Plithogenic Graph 𝐺𝐺𝑃 only needs to satisfy the following Reflexivity and Symmetry properties 

of the Contradiction Functions: 

 Reflexivity and Symmetry of Contradiction Functions: 

𝑎𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙
𝑎𝐶𝑓(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙
𝑏𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚
𝑏𝐶𝑓(𝑎, 𝑏) = 𝑏𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

 

2.3 |Antipodal Fuzzy Graph and Neutrosophic Graph 

In Uncertain Graph Theory, Antipodal Fuzzy Graphs [58, 87, 97] and Neutrosophic Graphs [78-80] are well-

known concepts. Their definitions are presented below. 

Definition 7 (Antipodal Fuzzy Graph). [58] Let 𝐺 = (𝜎, 𝜇) be a fuzzy graph with the underlying set 𝑉, where: 
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 𝜎: 𝑉 → [0,1] is a fuzzy subset of 𝑉, 

 𝜇: 𝑉 × 𝑉 → [0,1] is a symmetric fuzzy relation on 𝜎, satisfying 𝜇(𝑢, 𝑣) ≤ 𝜎(𝑢) ∧ 𝜎(𝑣), where ∧ 

denotes the minimum operation. 

The Antipodal Fuzzy Graph of 𝐺, denoted as 𝐴(𝐺) = (𝜎𝐴(𝐺), 𝜇𝐴(𝐺)), is defined as follows: 

1. The node set of 𝐴(𝐺) is the same as the node set of 𝐺, i.e., 𝑉. 

2. The fuzzy subset 𝜎𝐴(𝐺) is defined as: 

𝜎𝐴(𝐺)(𝑢) = 𝜎(𝑢),   for all 𝑢 ∈ 𝑉 

3. The fuzzy relation 𝜇𝐴(𝐺) is defined based on the 𝜇-distance between nodes: 

𝜇𝐴(𝐺)(𝑢, 𝑣) = {

𝜇(𝑢, 𝑣),  if 𝛿(𝑢, 𝑣) = diam(𝐺) and 𝑢, 𝑣 are neighbors in 𝐺,

𝜎(𝑢) ∧ 𝜎(𝑣),  if 𝛿(𝑢, 𝑣) = diam(𝐺) and 𝑢, 𝑣 are not neighbors in 𝐺,

0,  otherwise. 

 

Here: 

 𝛿(𝑢, 𝑣) denotes the 𝜇-distance between nodes 𝑢 and 𝑣 in the fuzzy graph 𝐺, defined as the smallest 

𝜇-length of any 𝑢 − 𝑣 path. 

 diam(𝐺) is the diameter of 𝐺, calculated as the maximum eccentricity of any node 𝑣 ∈ 𝑉, where the 

eccentricity 𝑒(𝑣) is given by: 

𝑒(𝑣) = max
𝑢∈𝑉

 𝛿(𝑢, 𝑣) 

The Antipodal Fuzzy Graph 𝐴(𝐺) is a fuzzy graph because: 

1. 𝜎𝐴(𝐺)(𝑢) = 𝜎(𝑢) for all 𝑢 ∈ 𝑉, ensuring that 𝜎𝐴(𝐺) is a valid fuzzy subset on 𝑉. 

2. By the definition of 𝜇𝐴(𝐺), it remains a fuzzy relation on 𝜎𝐴(𝐺), satisfying: 

𝜇𝐴(𝐺)(𝑢, 𝑣) ≤ 𝜎𝐴(𝐺)(𝑢) ∧ 𝜎𝐴(𝐺)(𝑣),   for all 𝑢, 𝑣 ∈ 𝑉 

Thus, the graph 𝐴(𝐺) is called the Antipodal Fuzzy Graph of 𝐺, as it connects pairs of nodes whose 𝜇-

distance equals the diameter of 𝐺. 

Definition 8 (Antipodal Single Valued Neutrosophic Graph (ASVNG)). 79] Let 𝐺 = (𝐴, 𝐵) be a single-

valued neutrosophic graph (SVNG), where: 

 𝐴 is the neutrosophic membership function on the vertex set 𝑉, with: 

𝐴(𝑣) = (𝑇𝐴(𝑣), 𝐼𝐴(𝑣), 𝐹𝐴(𝑣)),  ∀𝑣 ∈ 𝑉, 

where 𝑇𝐴(𝑣), 𝐼𝐴(𝑣), and 𝐹𝐴(𝑣) represent the truth, indeterminacy, and falsity memberships of vertex 

𝑣, respectively. 

 𝐵 is the neutrosophic relation on the edge set 𝐸, with: 

𝐵(𝑒) = (𝑇𝐵(𝑒), 𝐼𝐵(𝑒), 𝐹𝐵(𝑒)),  ∀𝑒 ∈ 𝐸, 

where 𝑇𝐵(𝑒), 𝐼𝐵(𝑒), and 𝐹𝐵(𝑒) represent the truth, indeterminacy, and falsity memberships of edge 

𝑒, respectively. 

The Antipodal Single Valued Neutrosophic Graph (𝐴𝑆𝑉𝑁𝐺), denoted as 𝐴(𝐺) = (𝑄, 𝑅), is defined as 

follows: 

1. Node Set Q: 
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𝑄 = 𝐴,   on 𝑉 

2. Edge Set 𝑅 : Let 𝛿(𝑝, 𝑞) be the neutrosophic distance between nodes 𝑝 and 𝑞, and 𝑑(𝐺) be the diameter 

of 𝐺. For nodes 𝑝, 𝑞 ∈ 𝑉 : 

 If 𝛿(𝑝, 𝑞) = 𝑑(𝐺), then:  

a) If 𝑝 and 𝑞 are adjacent in 𝐺 : 

𝑅 = 𝐵,   on 𝐸. 

b) If 𝑝 and 𝑞 are not adjacent in 𝐺 : 

𝑇𝑅(𝑝, 𝑞) = min(𝑇𝐴(𝑝), 𝑇𝐴(𝑞))

𝐼𝑅(𝑝, 𝑞) = max(𝐼𝐴(𝑝), 𝐼𝐴(𝑞))

𝐹𝑅(𝑝, 𝑞) = max(𝐹𝐴(𝑝), 𝐹𝐴(𝑞))
 

3 |Result: Antipodal Single Valued Turiyam Neutrosophic Graph 

We consider the Antipodal Single Valued Turiyam Neutrosophic Graph. The following sections present its 

definition and theorems. 

Definition 9 (Antipodal Single Valued Turiyam Neutrosophic Graph (ASVTG)). Let 𝐺 = (𝐴, 𝐵) be a Single 

Valued Turiyam Neutrosophic Graph (SVTG), where: 

 𝑉 is a non-empty finite set of vertices. 

 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. 

 𝐴 is the Turiyam Neutrosophic membership function on 𝑉, defined as: 

𝐴(𝑣) = (𝑇𝐴(𝑣), 𝐼𝐴(𝑣), 𝐹𝐴(𝑣), 𝐿𝐴(𝑣)),  ∀𝑣 ∈ 𝑉 

where: 

- 𝑇𝐴(𝑣) is the truth-membership degree of vertex 𝑣. 

- 𝐼𝐴(𝑣) is the indeterminacy-membership degree of vertex 𝑣. 

- 𝐹𝐴(𝑣) is the falsity-membership degree of vertex 𝑣. 

- 𝐿𝐴(𝑣) is the latent-membership degree of vertex 𝑣. 

- Each 𝑇𝐴(𝑣), 𝐼𝐴(𝑣), 𝐹𝐴(𝑣), 𝐿𝐴(𝑣) ∈ [0,1]. 

- The sum satisfies 0 ≤ 𝑇𝐴(𝑣) + 𝐼𝐴(𝑣) + 𝐹𝐴(𝑣) + 𝐿𝐴(𝑣) ≤ 1. 

 𝐵 is the Turiyam Neutrosophic relation on 𝐸, defined as: 

𝐵(𝑒) = (𝑇𝐵(𝑒), 𝐼𝐵(𝑒), 𝐹𝐵(𝑒), 𝐿𝐵(𝑒)),  ∀𝑒 ∈ 𝐸. 

The Antipodal Single Valued Turiyam Neutrosophic Graph 𝐴(𝐺) = (𝑄, 𝑅) is defined as follows: 

1. Node Set Q: 

𝑄 = 𝐴,   on 𝑉 

2. Edge Set R: 

 Let 𝛿(𝑝, 𝑞) be the Turiyam Neutrosophic distance between nodes 𝑝 and 𝑞 in 𝐺. 

 Let diam(𝐺) denote the diameter of 𝐺. 

For nodes 𝑝, 𝑞 ∈ 𝑉 : 
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 If 𝛿(𝑝, 𝑞) = diam(𝐺), then:  

a) If 𝑝 and 𝑞 are adjacent in 𝐺 : 

𝑅(𝑝, 𝑞) = 𝐵(𝑝, 𝑞) 

b) If 𝑝 and 𝑞 are not adjacent in 𝐺 : 

𝑇𝑅(𝑝, 𝑞) = min(𝑇𝐴(𝑝), 𝑇𝐴(𝑞))

𝐼𝑅(𝑝, 𝑞) = max(𝐼𝐴(𝑝), 𝐼𝐴(𝑞))

𝐹𝑅(𝑝, 𝑞) = max(𝐹𝐴(𝑝), 𝐹𝐴(𝑞))

𝐿𝑅(𝑝, 𝑞) = max(𝐿𝐴(𝑝), 𝐿𝐴(𝑞))

 

Theorem 10. The Antipodal Single Valued Turiyam Neutrosophic Graph 𝐴(𝐺) = (𝑄, 𝑅) can be 

transformed into a standard Turiyam Neutrosophic Graph by removing the antipodal conditions. 

Proof.  

1. Observation: The ASVTG 𝐴(𝐺) includes all vertices 𝑉 with Turiyam Neutrosophic memberships 𝐴 and 

edges defined based on antipodal conditions. 

2. Transformation Process: 

 Remove the antipodal condition by considering all possible edges. 

 Define the edge set 𝑅′ where: 

𝑅′(𝑝, 𝑞) = 𝐵(𝑝, 𝑞),   for all (𝑝, 𝑞) ∈ 𝐸 

 For (𝑝, 𝑞) ∉ 𝐸, define 𝑅′(𝑝, 𝑞) using Turiyam Neutrosophic edge definitions. 

3. Resulting Graph: The graph 𝐺′ = (𝐴, 𝑅′) is a Turiyam Neutrosophic Graph without antipodal 

constraints. Thus, the ASVTG transforms into a Turiyam Neutrosophic Graph. 

Theorem 11. By mapping the Turiyam Neutrosophic memberships to neutrosophic memberships, the 

ASVTG 𝐴(𝐺) can be transformed into an Antipodal Single Valued Neutrosophic Graph (ASVNG). 

Proof.  

1. Mapping of Memberships: 

 For each vertex 𝑣 ∈ 𝑉 : 

𝑇𝐴
′(𝑣) = 𝑇𝐴(𝑣)

𝐼𝐴
′ (𝑣) = 𝐼𝐴(𝑣) + 𝐿𝐴(𝑣)

𝐹𝐴
′(𝑣) = 𝐹𝐴(𝑣)

 

 Normalize 𝐼𝐴
′ (𝑣) to ensure it lies within [0, 1]: 

𝐼𝐴
′′(𝑣) =

𝐼𝐴
′ (𝑣)

max(1, 𝐼𝐴
′ (𝑣))

 

 Similar mappings for edges. 

2. Adjusted 𝐴𝑆𝑉𝑁𝐺: The new memberships satisfy neutrosophic conditions. 

3. Edge Definitions: Redefine the edge set 𝑅 using the neutrosophic memberships. 

Therefore, the ASVTG transforms into an ASVNG. 

Theorem 12. By reducing the Turiyam Neutrosophic memberships to single membership degrees, the 

ASVTG 𝐴(𝐺) can be transformed into an Antipodal Fuzzy Graph. 



  Fujita and Smarandache | Neutrosophic Opt. Int. Syst. 5 (2025) 1-13 

 

9 

Proof.  

1. Mapping of Memberships: 

 For each vertex 𝑣 ∈ 𝑉 : 

𝜎(𝑣) = 𝑇𝐴(𝑣) 

 For each edge 𝑒 ∈ 𝐸 : 

𝜇(𝑒) = 𝑇𝐵(𝑒) 

2. Edge Definitions: Redefine the edge set using fuzzy memberships. 

3. Antipodal Conditions: Use the fuzzy distance and diameter analogous to the Turiyam Neutrosophic case. 

Hence, the ASVTG reduces to an Antipodal Fuzzy Graph. 

4 |Future Research 

Future research will focus on extending this graph class to Hypergraphs, Directed Hypergraphs, and 

Superhypergraphs [45,66,108,109]. This extension will involve investigating the mathematical structures and 

exploring potential applications of these generalized forms. 
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