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1 |Introduction    

Language of mathematics will play a crucial role in explaining( or interpreting) the physical world around us, 

it begins by describing the many in one by expressing (or interpreting) it by using the concept of set. Namely, 

that abstract set that describes what it contains, without any relations or operations on it. This procedure 

represents the first step in the methodology of mathematical thought when that set is born in the mind of 

someone who uncovers it from the world of nothingness to the world of existence. After that, mathematicians 

are interested in, how to construct relations and operations, and so they study new mathematical structures 

similar to those known in old mathematical structures. The Science of Neutrosophy is a modern school of 

mathematical systems treating a world reality that contains indeterminacy which is the opposite of 

determinacy; when we encounter physical world problems that include some indeterminacy issues. 

Indeterminacy can occur in various situations or phenomena related to ontology or epistemology. The 

concept of indeterminacy, in Neutrosophy, according to Smarandeche" is everything that is in between the 

opposites. 〈𝐴〉 and 〈𝑎𝑛𝑡𝐴〉, written 〈𝑎𝑛𝑡𝐴〉 [14,18]. This paper aims to continue our study in neutrosophic 

set theory in [4,6,7,8]. It also enhances our work in [3,5,10] with the same approach. In addition, it represents 

a kind of contribution to the dissemination of neutrosophic knowledge with other works in [1,2,9],  and in 

the field of algebraic neutrosophic. We will refer to the sources of neutrosophic logic and neutrosophic set as 
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generalizations of the Intuitionistic fuzzy set and fuzzy set in [13,15,16,17], and concerning the classical set 

theory see [11,12,19].  

 

2 |Neutrosophic Functions on Neutrosophic Sets of Three Types 

 In this section, we will begin our development of the axiomatic neutrosophic set theory that corresponds to 

the axiomatic set theory. In the literature philosophy of mathematical axiomatic systems, it consists of a set of 

undefined terms and axioms, axioms mean that a declarative sentence (or proposition) is assumed to be true. 

We will postulate the basis of neutrosophic functions on a neutrosophic set of three types, and we investigate 

their properties. This section includes neutrosophic functions on neutrosophic sets of three types with their 

neutrosophic graph, neutrosophic restriction, extension, identity, and constant functions. In addition, the 

concepts of one-to-one, onto, and composition functions are addressed with some theorems and examples.   

Definition 1.2 Let 𝑋𝑖
𝑡[𝐼] and 𝑌𝑖

𝑡[𝐼] ( 𝑖 = 1,2,3) be two neutrosophic sets of three types generated by 𝑋 and 

𝑌. Assume that 𝑓𝑛
𝑖(𝐼) = 𝐼, for any 𝑖 = 1,2,3 and 𝑓𝑛

𝑖(𝑥𝐼) = 𝑓𝑐(𝑥)𝑓𝑛
𝑖(𝐼). Intuitively, we can define the 

neutrosophic functions. 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] of three types generated by a classical function 𝑓𝑐: 𝑋 ⟼ 𝑌 as 

follows: 

1. 𝑓𝑛
1(𝑥) = 𝑓𝑐(𝑥1) + 𝑓𝑛

1(𝑥2𝐼) = 𝑓𝑐(𝑥1) + 𝑓𝑐(𝑥2)𝑓𝑛
1(𝐼),   

2. 𝑓𝑛
2(𝑥) = {

𝑓𝑐(𝑥)  

𝑓𝑛
2(𝑥𝐼) 

, and  

3. 𝑓𝑛
3(𝑥) = {

𝑓𝑐(𝑥1)                   

𝑓𝑐(𝑥1) + 𝑓𝑛
3(𝑥2𝐼)

 

for all 𝑥 ∈ 𝑋𝑖
𝑡[𝐼 ], 𝑥1 , 𝑥2 ∈ 𝑋, and an indeterminacy 𝐼. In other words, a correspondence from a neutrosophic 

set 𝑋𝑖
𝑡[𝐼] to a neutrosophic set 𝑌𝑖

𝑡[𝐼] is a quadruple 𝑓𝑛
𝑖 = (𝑋𝑖

𝑡[𝐼], 𝑌𝑖
𝑡[𝐼], 𝑓𝑛

𝑖(𝐼), Γ𝑛[𝐼]), where 𝑋𝑖
𝑡[𝐼] is a 

neutrosophic domain of 𝑓𝑛
𝑖, 𝑌𝑖

𝑡[𝐼] is the neutrosophic co-domain of 𝑓𝑛
𝑖, 𝑓𝑛

𝑖(𝐼) is a neutrosophic image of  

indeterminacy 𝐼, and Γ𝑛[𝐼] is a neutrosophic subset of  𝑋𝑖
𝑡[𝐼] × 𝑌𝑖

𝑡[𝐼], and it's called the neutrosophic graph 

of  𝑓𝑛
𝑖. The neutrosophic set:  

𝑁𝑒𝑢𝐷𝑜𝑚(𝑓𝑛
𝑖) = {𝑥 ∈ 𝑋𝑖

𝑡[𝐼]: ∃𝑦 ∈ 𝑌𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦 ⇔ (𝑥, 𝑦) ∈ Γ𝑛[𝐼]} ⊆ 𝑋𝑖
𝑡[𝐼], is the  

 neutrosophic domain of 𝑓𝑛
𝑖 , and the neutrosophic set: 

  𝑁𝑒𝑢𝐶𝑜𝑑(𝑓𝑛
𝑖) = {𝑦 ∈ 𝑌𝑖

𝑡[𝐼]: ∃𝑥 ∈ 𝑋𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦 ⇔ (𝑥, 𝑦) ∈ Γ𝑛[𝐼]} ⊆ 𝑌𝑖
𝑡[𝐼], is the 

The neutrosophic range (or neutrosophic co-domain) of 𝑓𝑛
𝑖.  

Example 1.2 Let 𝑋 = {a, b}  and 𝑌 = {1,2,3} be two classical  sets, with a classical function 𝑓𝑐: 𝑋 ⟼ 𝑌 such 

that 𝑓𝑐(𝑎) = 1, and 𝑓𝑐(𝑏) = 2, the neutrosophic sets of three types which are generated by 𝑋, and 𝑌 are 

 𝑋1
𝑡[𝐼] = {

𝑎 + 𝑎𝐼, a + bI,
b + aI, b + bI

}, 𝑌1
𝑡[𝐼 ] = {

1 + 1𝐼, 1 + 2I, 1 + 3I,
2 + 1I, 2 + 2I, 2 + 3I,
3 + 1I, 3 + 2I, 3 + 3I

}, 𝑋2
𝑡[𝐼] = {

𝑎, 𝑎𝐼,
b, bI

}, 𝑌2
𝑡[𝐼] = {

1, 1𝐼,
2,2I,
3,3I

},  

𝑋3
𝑡[𝐼] = {

𝑎, 𝑎 + 𝑎𝐼, a + bI,
b, b + aI, b + bI

}, and 𝑌3
𝑡[𝐼 ] = {

1,1 + 1𝐼, 1 + 2I, 1 + 3I,    
2, 2 + 1I, 2 + 2I, 2 + 3I,    
3, 3 + 1I, 3 + 2I, 3 + 3I    

} respectively. The neutrosophic 

function 𝑓𝑛
1 of type-1 is given by:  

𝑓𝑛
1(𝑎 + a𝐼) = 𝑓𝑐(𝑎) + 𝑓𝑛

1(𝑎𝐼) = 𝑓𝑐(𝑎) + 𝑓𝑐(𝑎)𝑓𝑛
1(𝐼) = 1 + 1𝐼,  

𝑓𝑛
1(𝑎 + 𝑏𝐼) = 𝑓𝑐(𝑎) + 𝑓𝑛

1(𝑏𝐼) = 𝑓𝑐(𝑎) + 𝑓𝑐(𝑏)𝑓𝑛
1(𝐼) = 1 + 2𝐼,  

𝑓𝑛
1(𝑏 + 𝑎𝐼) = 𝑓𝑐(𝑏) + 𝑓𝑛

1(𝑎𝐼) = 𝑓𝑐(𝑏) + 𝑓𝑐(𝑎)𝑓𝑛
1(𝐼) = 2 + 1𝐼, and 

  𝑓𝑛
1(𝑏 + 𝑏𝐼) = 𝑓𝑐(𝑏) + 𝑓𝑛

1(𝑏𝐼) = 𝑓𝑐(𝑏) + 𝑓𝑐(𝑏)𝑓𝑛
1(𝐼)  = 2 + 2𝐼. The neutrosophic graph of the 

neutrosophic function 𝑓𝑛
1 is shown in Figure 1. 
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Figure 1. The graph Γ𝑛[𝐼] of 𝑓𝑛
1. 

 

Concerning the neutrosophic function 𝑓𝑛
2 of type-2, we have  

𝑓𝑛
2(𝑥) = {

𝑓𝑐(𝑥)  

𝑓𝑛
2(𝑥𝐼) 

, where  𝑓𝑐(𝑥) is a determinacy part and 𝑓𝑛
2(𝑥𝐼) is an indeterminacy part, the values of  

Neutrosophic function 𝑓𝑛
2 are  given by the following:  

𝑓𝑛
2(𝑎) = 𝑓𝑐(𝑎) = 1, 𝑓𝑛

2(𝑎𝐼) = 𝑓𝑐(𝑎)𝑓𝑛
2(𝐼) = 1𝐼, 𝑓𝑛

2(𝑏) = 𝑓𝑐(𝑏) = 2, 𝑎𝑛𝑑 𝑓𝑛
2(𝑏𝐼) = 𝑓𝑐(𝑏)𝑓𝑛

2(𝐼) = 2𝐼. 

The neutrosophic graph of the neutrosophic function 𝑓𝑛
2 is shown in Figure 2. 
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𝑡[𝐼]          𝑓𝑛

2         𝑌2
𝑡[𝐼 ] 

 

 

 

 

 

    

 

 

                                                   Figure 2. The graph Γ𝑛[𝐼] of 𝑓𝑛
2. 

 

Finally, the neutrosophic function  𝑓𝑛
3 of type3 is given by: 𝑓𝑛(𝑥) = {

𝑓𝑐(𝑥1)                   

𝑓𝑐(𝑥1) + 𝑓𝑛
3(𝑥2𝐼)

 

In this case, we have,  

𝑓𝑛
3(𝑎) = 𝑓𝑐(𝑎) =  1, 𝑓𝑛

3(𝑎 + a𝐼) = 𝑓𝑐(𝑎) + 𝑓𝑛
3(𝑎𝐼) = 𝑓𝑐(𝑎) + 𝑓𝑐(𝑎)𝑓𝑛

3(𝐼) = 1 + 1𝐼,  

𝑓𝑛
3(𝑎 + 𝑏𝐼) = 𝑓𝑐(𝑎) + 𝑓𝑛

3(𝑏𝐼) = 𝑓𝑐(𝑎) + 𝑓𝑐(𝑏)𝑓𝑛
3(𝐼)  = 1 + 2𝐼,  

𝑓𝑛
3(𝑏) = 𝑓𝑐(𝑏) = 2, 𝑓𝑛

3(𝑏 + 𝑎𝐼) = 𝑓𝑐(𝑏) + 𝑓𝑛
3(𝑎𝐼) = 𝑓𝑐(𝑏) + 𝑓𝑐(𝑎)𝑓𝑛

3(𝐼)  = 2 + 1𝐼,  and 

𝑓𝑛
3(𝑏 + 𝑏𝐼) = 𝑓𝑐(𝑏) + 𝑓𝑛

3(𝑏𝐼) = 𝑓𝑐(𝑏) + 𝑓𝑐(𝑏)𝑓𝑛
3(𝐼)  = 2 + 2𝐼, the neutrosophic graph of the 

neutrosophic function 𝑓𝑛
3 can be represented by a similar previous method.  

 

Definition 2.2 Let 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] be the neutrosophic function of three types generated by a classical 

function 𝑓𝑐: 𝑋 ⟼ 𝑌 and 𝐴𝑖
𝑡[𝐼] ⊆ 𝑋𝑖

𝑡[𝐼]; the function 𝑓𝑛
𝑖 considered only on 𝐴𝑖

𝑡[𝐼] is called the neutrosophic 

restriction of 𝑓𝑛
𝑖 to 𝐴𝑖

𝑡[𝐼], written 𝑓𝑛
𝑖|𝐴𝑖

𝑡[𝐼], if 𝑓𝑛
𝑖|𝐴𝑖

𝑡[𝐼] = 𝑓𝑛
𝑖 ∩ (𝐴𝑖

𝑡[𝐼] × 𝑌𝑖
𝑡[𝐼]). 

 

Definition 3.2 Consider 𝐴𝑖
𝑡[𝐼] ⊆ 𝑋𝑖

𝑡[𝐼]  with 𝑔𝑛
𝑖 : 𝐴𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] is a given neutrosophic function, then 

𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] is called the neutrosophic extension function of three types of 𝑔𝑛

𝑖  over 𝑋𝑖
𝑡[𝐼], if  

𝑓𝑛
𝑖|𝐴𝑖

𝑡[𝐼] = 𝑔𝑛
𝑖 , for all 𝑥 ∈ 𝐴𝑖

𝑡[𝐼]. 

 

𝑎  
𝑎𝐼  
𝑏  
𝑏𝐼  
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1𝐼 
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   3 
  3𝐼 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
𝑋1
𝑡[𝐼] 

𝑦1
𝑡[𝐼] 

a + a𝐼 a + 𝑏𝐼 b + a𝐼 b + b𝐼 

1 + 1𝐼  1 + 2𝐼 1 + 3𝐼  2 + 1𝐼 2 + 2𝐼 2 + 3𝐼 3 + 1𝐼 3 + 2𝐼 3 + 3𝐼  1

+ 1𝐼 

1

+ 1𝐼 

1

+ 1𝐼 

1

+ 1𝐼 

1

+ 1𝐼 

1

+ 1𝐼 

1

+ 1𝐼 

1

+ 1𝐼 
1

+ 1𝐼 

𝑓𝑛
1 
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Definition 4.2 A neutrosophic function of three types, 𝐼𝑑𝑛
i : 𝑋i

𝑡[𝐼] ⟼ 𝑋i
𝑡[𝐼] is called a neutrosophic identity 

function, if 𝐼𝑑𝑛
i (𝑥) = 𝑥,  for all 𝑥 ∈ 𝑋1

𝑡[𝐼 ], 𝑥1 , 𝑥2 ∈ 𝑋, and an indeterminacy 𝐼. 

 

Definition 5.2 Let 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] be the neutrosophic function of three types generated by a classical 

function 𝑓𝑐: 𝑋 ⟼ 𝑌, then 𝑓𝑛
𝑖 is called a neutrosophic constant function, if there exists a neutrosophic element  

𝑦0 ∈ 𝑌𝑖
𝑡[𝐼] such that 𝑓𝑛

𝑖(𝑥) = 𝑦0, for all 𝑥 ∈ 𝑋𝑖
𝑡[𝐼]. 

Theorem 1.2 Let 𝑓𝑐: 𝑋 ⟼ 𝑌 be a one-to-one (injective) function, then 𝑓𝑛
1: 𝑋1

𝑡[𝐼] ⟼ 𝑌1
𝑡[𝐼] be a one-to-one 

neutrosophic function. 

Proof. Suppose that 𝑓𝑐: 𝑋 ⟼ 𝑌 is a one-to-one function, andconsider 𝑥, 𝑦 ∈ 𝑋1
𝑡[𝐼] such that 

𝑓𝑛
1(𝑥) = 𝑓𝑛

1(𝑦).  

 ⟹ 𝑓𝑐(𝑥1) + 𝑓𝑛
1(𝑥2𝐼) = 𝑓𝑐(𝑦1) + 𝑓𝑛

1(𝑦2𝐼) 

 ⟹ 𝑓𝑐(𝑥1) + 𝑓𝑐(𝑥2)𝑓𝑛
1(𝐼) = 𝑓𝑐(𝑦1) + 𝑓𝑐(𝑦2)𝑓𝑛

1(𝐼) 

 ⟹ 𝑓𝑐(𝑥1) + 𝑓𝑐(𝑥2)𝐼 = 𝑓𝑐(𝑦1) + 𝑓𝑐(𝑦2)𝐼 

 ⟹ (𝑓𝑐(𝑥1) = 𝑓𝑐(𝑦1)) ∧ (𝑓𝑐(𝑥2) = 𝑓𝑐(𝑦2)), because 𝑓𝑐 is a one-to-one. 

 ⟹ (𝑥1 = 𝑦1) ∧ (𝑥2 = 𝑦2) 

  ⟹ (𝑥1 + 𝑥2𝐼) = (𝑦1 + 𝑦2𝐼) 

  ⟹ 𝑥 = 𝑦. Hence 𝑓𝑛
1 is a one-to-one neutrosophic function. 

Theorem 2.2 Let 𝑓𝑐: 𝑋 ⟼ 𝑌 be a one-to-one function, then 𝑓𝑛
3: 𝑋3

𝑡[𝐼] ⟼ 𝑌3
𝑡[𝐼] be a one-to-one 

neutrosophic function. 

Proof. In a similar manner to theorem 1.2. 

Theorem 3.2 Let 𝑓𝑐: 𝑋 ⟼ 𝑌 be a one-to-one function, then 𝑓𝑛
2: 𝑋2

𝑡[𝐼] ⟼ 𝑌2
𝑡[𝐼] be a one-to-one 

neutrosophic function. 

Proof. Consider𝑓𝑐: 𝑋 ⟼ 𝑌 is a one-to-one function. Suppose that 𝑥, 𝑦 ∈ 𝑋2
𝑡[𝐼] such that 

𝑓𝑛
2(𝑥) = 𝑓𝑛

2(𝑦). Since,  

  𝑓𝑛
2(𝑥) = 𝑓𝑛

2(𝑦) 

⟹ {
𝑓𝑐(𝑥1) = 𝑓𝑐(𝑦1), 𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡                                                                                  

𝑓𝑛
2(𝑥1𝐼) = 𝑓𝑛

2(𝑦1𝐼) ⇔ 𝑓𝑐(𝑥1)𝑓𝑛
2(𝐼) = 𝑓𝑐(𝑦1)𝑓𝑛

2(𝐼), 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡                 
 

               ⟹ {
𝑥1 = 𝑦1, 𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡                                                       
𝑥1𝐼 = 𝑦1𝐼, 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡                                                

 

               ⟹ {
𝑥 = 𝑦, 𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡                                                       
𝑥𝐼 = 𝑦𝐼, 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡                                                

 

Hence 𝑓𝑛
2 is a one-to-one neutrosophic function. 

 

Theorem 4.2 Let𝑓𝑐: 𝑋 ⟼ 𝑌 be an onto (surjective) function, then 𝑓𝑛
1: 𝑋1

𝑡[𝐼] ⟼ 𝑌1
𝑡[𝐼] be an onto 

neutrosophic function. 

Proof. Suppose that 𝑓𝑐: 𝑋 ⟼ 𝑌 is a onto function, and consider 𝑦 ∈ 𝑌1
𝑡[𝐼] ⟹ ∃ 𝑦1, 𝑦2 ∈ 𝑌, and 

indeterminacy I such that 𝑦 = 𝑦1 + 𝑦2𝐼 ⟹ ∃𝑥1, 𝑥2 ∈ 𝑋, and indeterminacy I such that 𝑓𝑐(𝑥1) =

𝑦1, 𝑓𝑐(𝑥2) = 𝑦2, and 𝑓𝑛
1(𝐼) = 𝐼. Therefore,  𝑓𝑛

1(𝑥) = 𝑓𝑐(𝑥1) + 𝑓𝑛
1(𝑥2𝐼) = 𝑓𝑐(𝑥1) + 𝑓𝑐(𝑥2)𝑓𝑛

1(𝐼) = 𝑦1 +

𝑦2𝐼 = 𝑦. Hence Hence 𝑓𝑛
1 is an onto neutrosophic function. 

Theorem 5.2 Let 𝑓𝑐: 𝑋 ⟼ 𝑌 be an onto (surjective) function, then 𝑓𝑛
3: 𝑋3

𝑡[𝐼] ⟼ 𝑌3
𝑡[𝐼] be an onto 

neutrosophic function. 

Proof. By the similar argument of theorem 4.2. 
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Theorem 6.2 Let 𝑓𝑐: 𝑋 ⟼ 𝑌 be an onto (surjective) function, then 𝑓𝑛

2: 𝑋2
𝑡[𝐼] ⟼ 𝑌2

𝑡[𝐼] be an onto 

neutrosophic function. 

Proof. Assume that 𝑓𝑐: 𝑋 ⟼ 𝑌 is a onto function. Let 𝑦 ∈ 𝑌1
𝑡[𝐼] ⟹ ∃ 𝑦1 ∈ 𝑌, and indeterminacy I such 

that  𝑦 = {
𝑦1, 𝑑𝑒𝑡 −  𝑝𝑎𝑟𝑡     
𝑦1𝐼, 𝑖𝑛𝑑 −  𝑝𝑎𝑟𝑡  

⟹ ∃𝑥1 ∈ 𝑋 and indeterminacy I such that 𝑓𝑐(𝑥1) = 𝑦1 or 

 𝑓𝑛
2(𝑥1𝐼) = 𝑓𝑐(𝑥1)𝑓𝑛

2(𝐼) = 𝑦1𝐼 ⟹ 𝑓𝑛(𝑥) = {
𝑓𝑐(𝑥1) = 𝑦1, 𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡                                

𝑓𝑛
2(𝑥1𝐼) = 𝑓𝑐(𝑥1)𝑓𝑛

2(𝐼) = 𝑦1𝐼, 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡  
 

⟹ 𝑓𝑛
2(𝑥) = {

𝑦, 𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡       
𝑦𝐼, 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑡  

⟹ 𝑓𝑛
2 is an onto neutrosophic function. 

Theorem 7.2 Let 𝑓𝑐: 𝑋 ⟼ 𝑌 be a bijective (injective & surjective) function, then 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼], 𝑖 =

1,2,3 is a neutrosophic bijective function. 

Proof. By theorems 1.2 into 6.2. 

Theorem 8.2 Let 𝐼𝑑𝑐 : 𝑋 ⟼ 𝑋 be a bijective(injective+surjective) identity function, then 

 𝐼𝑑𝑛
1 : 𝑋1

𝑡[𝐼] ⟼ 𝑌1
𝑡[𝐼] is a bijective neutrosophic identity function.  

Proof. Let 𝐼𝑑𝑐: 𝑋 ⟼ 𝑋 be a bijective identity function. Assume that 𝑥, 𝑦 ∈ 𝑋1
𝑡[𝐼] such that 

 𝐼𝑑𝑛
1 (𝑥) = 𝐼𝑑𝑛

1 (𝑦) ⇔ 𝐼𝑑𝑐(𝑥1) + 𝐼𝑑𝑛
1 (𝑥2𝐼) = 𝐼𝑑𝑐(𝑦1) + 𝐼𝑑𝑛

1 (𝑦2𝐼) 

                              ⇔ 𝐼𝑑𝑐(𝑥1) + 𝐼𝑑𝑐(𝑥2)𝐼𝑑𝑛
1 (𝐼) =  𝐼𝑑𝑐(𝑦1) + 𝐼𝑑𝑐(𝑦2)𝐼𝑑𝑛

1 (𝐼) 

                              ⇔ 𝑥1 + 𝑥2𝐼 = 𝑦1 + 𝑦2𝐼. 

 ⟹ 𝑥 = 𝑦. Hence 𝑖𝑑𝑛
1  is a one-to-one neutrosophic identity function. In addition, suppose that  𝑦 ∈ 𝑋1

𝑡[𝐼] ⟹

∃ 𝑦1, 𝑦2 ∈ 𝑋, and indeterminacy I such that 𝑦 = 𝑦1 + 𝑥2𝐼 ⟹ ∃𝑥1, 𝑥2 ∈ 𝑋, and indeterminacy I such that 

𝐼𝑑𝑐(𝑥1) = 𝑦1, 𝐼𝑑𝑐(𝑥2) = 𝑦2, and 𝐼𝑑𝑛
1 (𝐼) = 𝐼. Therefore, 𝑥1 = 𝑦1, 𝑥2 = 𝑦2, and 𝐼 = 𝐼 Hence,  

 𝐼𝑑𝑛
1 (𝑥) = 𝐼𝑑𝑐(𝑥1) + 𝐼𝑑𝑐(𝑥2)𝐼𝑑𝑛

1 (𝐼) = 𝑦1 + 𝑦2𝐼 = 𝑦. Hence,  𝐼𝑑𝑛
1  is an onto neutrosophic identity function, 

and consequently,  𝐼𝑑𝑛
1  is a bijective neutrosophic identity function.  

Theorem 9.2 Let 𝜄𝑑𝑐: 𝑋 ⟼ 𝑋 be a bijective(injective+surjective) identity function, then 

 𝐼𝑑𝑛
3 : 𝑋3

𝑡[𝐼] ⟼ 𝑋3
𝑡[𝐼] is a bijective neutrosophic identity function.  

Proof. The same argument is in theorem 8.2. 

Theorem 10.2 Let 𝜄𝑑𝑐: 𝑋 ⟼ 𝑋 be a bijective(injective+surjective) identity function, then 

 𝐼𝑑𝑛
2 : 𝑋2

𝑡[𝐼] ⟼ 𝑋2
𝑡[𝐼] is a bijective neutrosophic identity function. 

Proof. Consider 𝜄𝑑𝑐: 𝑋 ⟼ 𝑋 is a one-to-one function. Suppose that 𝑥, 𝑦 ∈ 𝑋2
𝑡[𝐼] such that 

 𝐼𝑑𝑛
2 (𝑥) = 𝐼𝑑𝑛

2 (𝑦). Since, 

 𝐼𝑑𝑛
2 (𝑥) = 𝐼𝑑𝑛

2 (𝑦) ⟹ {
𝐼𝑑𝑐(𝑥1) = 𝐼𝑑𝑐(𝑦1), 𝑑𝑒𝑡 − 𝑝𝑎𝑟𝑡                                                                                 

𝐼𝑑𝑛
2 (𝑥1𝐼) = 𝐼𝑑𝑛

2 (𝑦1𝐼) ⇔ 𝐼𝑑𝑐(𝑥1)𝐼𝑑𝑛
2 (𝐼) = 𝐼𝑑𝑐(𝑦1)𝐼𝑑𝑛

2 (𝐼), 𝑖𝑛𝑑 − 𝑝𝑎𝑟𝑡             
 

                             ⟹ {
𝑥1 = 𝑦1, 𝑑𝑒𝑡 − 𝑝𝑎𝑟𝑡       
𝑥1𝐼 = 𝑦1𝐼, 𝑖𝑛𝑑 − 𝑝𝑎𝑟𝑡  

 

                             ⟹ {
𝑥 = 𝑦, 𝑑𝑒𝑡 − 𝑝𝑎𝑟𝑡                                                       
𝑥𝐼 = 𝑦𝐼, 𝑖𝑛𝑑 − 𝑝𝑎𝑟𝑡                                                    

 

Hence 𝐼𝑑𝑛
2  is a one-to-one neutrosophic identity function, and 𝐼𝑑𝑛

2  is obvious is an onto identity function, 

hence 𝐼𝑑𝑛
2  is a bijective neutrosophic identity function. 

 

Definition 6.2 Let 𝑓𝑛
𝑖, 𝑔𝑛

𝑖 : 𝑋𝑖
𝑡[𝐼] ⟼ 𝑌𝑖

𝑡[𝐼] , 𝑖 = 1,2,3  be two neutrosophic functions, where  

 𝑓𝑐 , 𝑔𝑐: 𝑋 ⟼ 𝑌 be two  classical functions, then 𝑓𝑛
𝑖 are neutrosophic equal to 𝑔𝑛

𝑖  , written 𝑓𝑛
𝑖 = 𝑔𝑛

𝑖 , iff 

𝑓𝑛
𝑖(𝑥) = 𝑔𝑛

𝑖 (𝑥), for all 𝑥 ∈ 𝑋𝑖
𝑡[𝐼] And, 𝑖 = 1,2,3. 
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Definition 7.2  Let 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] and 𝑔𝑛

𝑖 : 𝑌𝑖
𝑡[𝐼] ⟼ 𝑍𝑖

𝑡[𝐼], 𝑖 = 1,2,3  be two neutrosophic functions, 

where  𝑓𝑐: 𝑋 ⟼ 𝑌 and 𝑔𝑐: 𝑋 ⟼ 𝑌 are two classical functions, the composite of 𝑓𝑛
𝑖 and 𝑔𝑛

𝑖  is defined by: 

(𝑔𝑛
𝑖 ∘ 𝑓𝑛

𝑖)(𝑥) = 𝑔𝑛
𝑖 (𝑓𝑛

𝑖(𝑥)), for all 𝑥 ∈ 𝑋𝑖
𝑡[𝐼]and , 𝑖 = 1,2,3.  

Example 3.2 Let ℝ be a set of classical real numbers and ℝ𝑖
𝑡[𝐼] be a set of neutrosophic real numbers of three 

types. Consider two classical functions  𝑓𝑐  , 𝑔𝑐: ℝ ⟼ ℝ such that 𝑓𝑐(𝑥) = 𝑥
2 and 𝑔𝑐(𝑥) = 𝑥 + 1, ∀𝑥 ∈ ℝ. 

We can generate two neutrosophic functions 𝑓𝑛
𝑖 , 𝑔𝑛

𝑖 : ℝ𝑖
𝑡[𝐼] ⟼ ℝ𝑖

𝑡[𝐼] induced from 𝑓𝑐 and 𝑔𝑐 , respectively. 

Suppose that  𝑥 ∈ ℝ𝑖
𝑡[𝐼], the neutrosophic composite is given by: 

(𝑔𝑛
1 ∘ 𝑓𝑛

1)(𝑥)  = 𝑔𝑛
1(𝑓𝑛

1(𝑥)) 

                       = 𝑔𝑛
1(𝑓𝑐(𝑥1) + 𝑓𝑐(𝑥2)𝐼) 

                       = 𝑔𝑛
1(𝑥1

2 + 𝑥𝐼
2𝐼) 

                       = 𝑔𝑐(𝑥1
2) + 𝑔𝑐(𝑥2

2)𝐼 

                       = (𝑥1
2 + 1) + (𝑥2

2 + 1)𝐼, for instance, the neutrosophic image of the neutrosophic element  

(𝑔𝑛
1 ∘ 𝑓𝑛

1)(2 + 3𝐼) = 5 + 10𝐼. While,  

(𝑓𝑛
1 ∘ 𝑔𝑛

1)(𝑥)  = 𝑓𝑛
1(𝑔𝑛

1(𝑥)) 

                       = 𝑓𝑛
1(𝑔𝑐(𝑥1) + 𝑔𝑐(𝑥2)𝐼) 

                       = 𝑓𝑛
1((𝑥1 + 1) + (𝑥2 + 1)𝐼) 

                       = 𝑓𝑐((𝑥1 + 1)) + 𝑓𝑐(𝑥2 + 1)𝐼 

                       = (𝑥1 + 1)
2 + (𝑥2 + 1)

2𝐼 

                       = (𝑥1
2 + 2𝑥1 + 1) + (𝑥2

2 + 2𝑥2 + 1)𝐼. So the neutrosophic image of neutrosophic 

element, (𝑓𝑛
1 ∘ 𝑔𝑛

1)(2 + 3𝐼) = (4 + 2.2 + 1) + (9 + 2.3 + 1)𝐼 = 9 + 16𝐼. We see that the composition 

of the neutrosophic function is not commutative. i.e. (𝑔𝑛
1 ∘ 𝑓𝑛

1)(𝑥) ≠ (𝑓𝑛
1 ∘ 𝑔𝑛

1)(𝑥).  

 

3 |Properties of Neutrosophic Functions on Neutrosophic Sets of 
Three Types 
 
This section includes the properties of neutrosophic functions on some neutrosophic subsets of the 

neutrosophic domain with the operator's union, intersection, difference, and on generalization of union and 

intersection.   

 

Definition 1.3  Let 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] Be the neutrosophic function of three types generated from a classical 

function. 𝑓𝑐: 𝑋 ⟼ 𝑌 and classical sets 𝑋 and 𝑌 respectively.  

Let 𝐶𝑖
𝑡[𝐼] Be a neutrosophic subset of 𝑋𝑖

𝑡[𝐼] Generated by 𝐶 ⊂ 𝑋. Define a neutrosophic direct image of 𝐶𝑖
𝑡[𝐼] 

under 𝑓𝑛
𝑖 , written 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]), as follows: 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) = {𝑦 ∈ 𝑌𝑖

𝑡[𝐼]: ∃𝑥 ∈ 𝐶𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦}.  

 

Theorem 1.3  Let 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] Be the neutrosophic function of three types generated from a classical 

function. 𝑓𝑐: 𝑋 ⟼ 𝑌 and classical sets 𝑋 and 𝑌 respectively, and  Let  𝐶𝑖
𝑡[𝐼] ⊂ 𝑋𝑖

𝑡[𝐼] and 

 𝐵𝑖
𝑡[𝐼] ⊂ 𝑋𝑖

𝑡[𝐼], if 𝐶𝑖
𝑡[𝐼] = 𝐵𝑖

𝑡[𝐼], then 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) = 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]). 

 

Proof. Suppose that 𝐶𝑖
𝑡[𝐼] = 𝐵𝑖

𝑡[𝐼], and let 𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]), then there exists a neutrosophic element 𝑥 ∈

𝐶𝑖
𝑡[𝐼] such that 𝑓𝑛

𝑖(𝑥) = 𝑦, for any 𝑖 = 1,2,3. Since 𝐶𝑖
𝑡[𝐼] = 𝐵𝑖

𝑡[𝐼], implies that 𝑥 ∈ 𝐵𝑖
𝑡[𝐼], hence 

𝑓𝑛
𝑖(𝑥) ∈ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]), therefore 𝑦 ∈ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]), and consequently,𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ⊂ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]). By a similar method, 

we can prove the second part.  𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]) ⊂ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]), to get the conclusion, 

𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) = 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]). The converse of the theorem is not true, by the following example.  
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Example 1.3 Let 𝑓𝑛

1: 𝑍1
𝑡[𝐼] ⟼ 𝑅1

𝑡[𝐼] be a neutrosophic function of type-1 from the neutrosophic set of 

integers to the neutrosophic set of real numbers defined by  𝑓𝑛
1(𝑥) = 𝑥1

2 + 𝑥2
2𝐼 . Consider  

𝐶1
𝑡[𝐼] = {

−2 − 2𝐼, −2 + 3𝐼,
3 − 2𝐼, 3 + 3𝐼

}, and 𝐵1
𝑡[𝐼] = {

2 + 2𝐼, 2 − 3𝐼
−3 + 2𝐼, −3 − 3𝐼

}, 𝑓𝑛
1(𝐶1

𝑡[𝐼]) = {
4 + 4𝐼, 4 + 9𝐼,
9 + 4𝐼, 9 + 9𝐼

} and 

𝑓𝑛
1(𝐵1

𝑡[𝐼]) = {
4 + 4𝐼, 4 + 9𝐼,
9 + 4𝐼, 9 + 9𝐼

}, we say that (𝑓𝑛
1(𝐵1

𝑡[𝐼]) = 𝑓𝑛
1(𝐶1

𝑡[𝐼])), but 𝐶1
𝑡[𝐼] ≠ 𝐵1

𝑡[𝐼]. 

 

Theorem 2.3  Let 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] be a neutrosophic function of three types generated from a classical 

function 𝑓𝑐: 𝑋 ⟼ 𝑌, and classical sets 𝑋 and 𝑌 respectively, and  Let  𝐶𝑖
𝑡[𝐼] ⊂ 𝑋𝑖

𝑡[𝐼] and 

 𝐵𝑖
𝑡[𝐼] ⊂ 𝑋𝑖

𝑡[𝐼], then: 

1. 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]) = 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ∪ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]), 

2. 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⊆ 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ∩ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]), and 

3. 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) − 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]) ⊆ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] − 𝐵𝑖
𝑡[𝐼]). 

 

Proof. (1). Let 𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]). 

Since 𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]). 

⟹ ∃𝑥 ∈ (𝐶𝑖
𝑡[𝐼] ∪ 𝐵𝑖

𝑡[𝐼]) ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦 

           ⟹ ∃𝑥 ∈ 𝐶𝑖
𝑡[𝐼] ∨ ∃𝑥 ∈ 𝐵𝑖

𝑡[𝐼] ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦 

           ⟹ (∃𝑥 ∈ 𝐶𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦) ∨ (∃𝑥 ∈ 𝐵𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦) 

           ⟹ (𝑓𝑛
𝑖(𝑥) ∈ 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼])) ∨ (𝑓𝑛

𝑖(𝑥) ∈ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼])) 

           ⟹ (𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼])) ∨ (𝑦 ∈ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼])) 

           ⟹ (𝑦 ∈ (𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) ∪ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]) 

  ⟹ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]) ⊆ 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ∪ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼])  (1). By similar way, let 𝑦 ∈ (𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ∪ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼])), 

⟹ 𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) ∨  𝑦 ∈ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]) 

⟹ (∃𝑥 ∈ 𝐶𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦) ∨ (∃𝑧 ∈ 𝐵𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑧) = 𝑦) 

          ⟹ (∃𝑥 ∈ (𝐶𝑖
𝑡[𝐼] ∪ 𝐵𝑖

𝑡[𝐼]) ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦) ∨ (∃𝑧 ∈ (𝐶𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]) ∋ 𝑓𝑛

𝑖(𝑧) = 𝑦) 

          ⟹ (𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼])) 

          ⟹ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]) ⊆ 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼] ∪ 𝐵𝑖

𝑡[𝐼])    (2). 

⟹ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]) = 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ∪ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]). 

 (2). Let  𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼])  

⟹ ∃𝑥 ∈ (𝐶𝑖
𝑡[𝐼] ∩ 𝐵𝑖

𝑡[𝐼]) ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦 

          ⟹ ∃𝑥 ∈ 𝐶𝑖
𝑡[𝐼] ∧ ∃𝑥 ∈ 𝐵𝑖

𝑡[𝐼] ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦 

          ⟹ (∃𝑥 ∈ 𝐶𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦) ∧ (∃𝑥 ∈ 𝐵𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦) 

⟹ (𝑓𝑛
𝑖(𝑥) ∈ 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼])) ∧ (𝑓𝑛

𝑖(𝑥) ∈ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼])) 

           ⟹ (𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼])) ∧ (𝑦 ∈ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼])) 

           ⟹ (𝑦 ∈ (𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) ∩ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]) 

 ⟹ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⊆ 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ∩ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]). 

(3). Let 𝑦 ∈ (𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) − 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼])), 

⟹ 𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼])  ∧ 𝑦 ∉ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]) 

∵ 𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) ⟹ (∃𝑥 ∈ 𝐶𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦) 

∵ 𝑦 ∉ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]) ⟹ 𝑓𝑛
𝑖(𝑥) ∉ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]) ⟹ 𝑥 ∉ 𝐵𝑖

𝑡[𝐼]  

 ⟹ ∃𝑥 ∈ 𝐶𝑖
𝑡[𝐼] ∧ ∃𝑥 ∉ 𝐵𝑖

𝑡[𝐼] ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦 

          ⟹ (∃𝑥 ∈ (𝐶𝑖
𝑡[𝐼] − 𝐵𝑖

𝑡[𝐼]) ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦) 



   Al-Odhari, A. | Neutrosophic Opt. Int. Syst. 5 (2025) 38-47 

 

04 

⟹ (𝑓𝑛
𝑖(𝑥) ∈ 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) − (𝐵𝑖

𝑡[𝐼]) 

⟹ (𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) − (𝐵𝑖
𝑡[𝐼]) 

⟹ (𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) − 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼])) ⊆ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) − (𝐵𝑖
𝑡[𝐼]. The following examples illustrate that the equality in 

part 2 of the previous theorem does not hold.  

 

Example 2.3 Let 𝑓𝑛
1: 𝑋1

𝑡[𝐼] ⟼ 𝑌1
𝑡[𝐼] be a constant neutrosophic function of type-1, where  

𝑋1
𝑡[𝐼] = {

2 + 2𝐼, 2 + 7𝐼,
7 + 2𝐼, 7 + 7𝐼

}, and 𝑌1
𝑡[𝐼] = {4 + 4𝐼}, take 𝐶1

𝑡[𝐼] = {2 + 2𝐼, 2 + 7𝐼, 7 + 2𝐼}, and 

𝐵1
𝑡[𝐼] = { 7 + 7𝐼},  𝐶1

𝑡[𝐼] ∩ 𝐵1
𝑡[𝐼] = ∅1

𝑡 [𝐼], , we hav 𝑓𝑛
1(𝐶1

𝑡[𝐼] ∩ 𝐵1
𝑡[𝐼]) = 𝑓𝑛

1(∅1
𝑡 [𝐼]) = ∅1

𝑡 [𝐼], 

 𝑓𝑛
1(𝐶1

𝑡[𝐼]) = 𝑓𝑛
1({2 + 2𝐼, 2 + 7𝐼, 7 + 2𝐼}) = 4 + 4𝐼, and 

𝑓𝑛
1(𝐵1

𝑡[𝐼]) = 𝑓𝑛
1({ 7 + 7𝐼}) = 4 + 4𝐼, so 𝑓𝑛

1(𝐶1
𝑡[𝐼]) ∩ 𝑓𝑛

1(𝐵1
𝑡[𝐼]) = 4 + 4𝐼, we see that  

𝑓𝑛
1(𝐶1

𝑡[𝐼]) ∩ 𝑓𝑛
1(𝐵1

𝑡[𝐼]) ⊈ 𝑓𝑛
1(𝐶1

𝑡[𝐼] ∩ 𝐵1
𝑡[𝐼]).  

 

Example 3.3 Let 𝑓𝑛
1: ℝ1

𝑡 [𝐼] ⟼ ℝ1
𝑡 [𝐼] be a neutrosophic function from the neutrosophic set of real numbers 

to itself such that 𝑓𝑛
1(𝑥) = 𝑓𝑐(𝑥1) + 𝑓𝑛

1(𝑥2𝐼) = 𝑓𝑐(𝑥1) + 𝑓𝑐(𝑥2)𝑓𝑛
1(𝐼), where 𝑓𝑐(𝑥) = 𝑥

2. Let  𝐶1
𝑡[𝐼] =

{𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝐶 = [−2,0]} and 𝐵1
𝑡[𝐼] = {𝑐 + 𝑑𝐼: 𝑐, 𝑑 ∈ 𝐵 = [0,2]}be two neutrosophic sets of type-1 

generated by 𝐶 and 𝐵, then the intersection of 𝐶1
𝑡[𝐼] ∩ 𝐵1

𝑡[𝐼] = 0 + 0𝐼, and  

𝑓𝑛
1(𝐶1

𝑡[𝐼] ∩ 𝐵1
𝑡[𝐼]) = 𝑓𝑛

1(0 + 0𝐼) = 0 + 0𝐼, while  𝑓𝑛
1(𝐶1

𝑡[𝐼]) = 𝑓𝑛
1([−2,−2𝐼]) = 4 + 4𝐼, and  

𝑓𝑛
1(𝐵1

𝑡[𝐼]) = 𝑓𝑛
1([2, 2𝐼]) = 4 + 4𝐼, hence 𝑓𝑛

1(𝐶1
𝑡[𝐼]) ∩ 𝑓𝑛

1(𝐵1
𝑡[𝐼]) = 4 + 4𝐼 ≠ 

𝑓𝑛
1(𝐶1

𝑡[𝐼] ∩ 𝐵1
𝑡[𝐼]) = 0 + 0𝐼.  

 

Theorem 3.2.  Let 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] be a neutrosophic function of three types generated from a classical 

one-to-one function 𝑓𝑐: 𝑋 ⟼ 𝑌, and classical sets 𝑋 and 𝑌 respectively, 𝐶𝑖
𝑡[𝐼] ⊂ 𝑋𝑖

𝑡[𝐼] and 

 𝐵𝑖
𝑡[𝐼] ⊂ 𝑋𝑖

𝑡[𝐼], then:  

𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) = 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ∩ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]), if and only if 𝑓𝑛

𝑖: 𝑋𝑖
𝑡[𝐼] ⟼ 𝑌𝑖

𝑡[𝐼] is a one-to-one neutrosophic 

function. 

Proof. Suppose that 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] is a one-to-one neutrosophic function, 𝐶𝑖

𝑡[𝐼] ⊂ 𝑋𝑖
𝑡[𝐼] and 

 𝐵𝑖
𝑡[𝐼] ⊂ 𝑋𝑖

𝑡[𝐼]. Let 𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) 

⇔ ∃𝑥 ∈  (𝐶𝑖
𝑡[𝐼] ∩ 𝐵𝑖

𝑡[𝐼]) ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦  

⇔ ∃𝑥 ∈ (𝐶𝑖
𝑡[𝐼] ∩ 𝐵𝑖

𝑡[𝐼]) ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦 

⇔ (∃𝑥 ∈ 𝐶𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦) ∧ (∃𝑥 ∈ 𝐵𝑖
𝑡[𝐼] ∋ 𝑓𝑛

𝑖(𝑥) = 𝑦) 

⇔ (𝑦 ∈ 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼])) ∧ (𝑦 ∈ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼])) 

⇔ 𝑦 ∈ (𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) ∩ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼])). Hence 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) = 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ∩ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]). Conversely, 

Suppose that 𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) = 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼]) ∩ 𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]), where 𝐶𝑖

𝑡[𝐼] ⊂ 𝑋𝑖
𝑡[𝐼] and 𝐵𝑖

𝑡[𝐼] ⊂ 𝑋𝑖
𝑡[𝐼]. 

To show that  𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] is a one-to-one neutrosophic function, consider 𝑥, 𝑧 ∈ 𝑋𝑖

𝑡[𝐼], 𝑥 ≠ 𝑧 such 

that 𝑓𝑛
𝑖(𝑥) = 𝑓𝑛

𝑖(𝑧) = 𝑦. Consider 𝐶𝑖
𝑡[𝐼] = {𝑥}, and 𝐵𝑖

𝑡[𝐼] = {𝑧} Are two neutrosophic of type-1, we have  

𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) = 𝑓𝑛
𝑖(𝑥) = 𝑦 and  𝑓𝑛

𝑖(𝐵𝑖
𝑡[𝐼]) = 𝑓𝑛

𝑖(𝑧) = 𝑦. So,  𝑓𝑛
𝑖(𝐶𝑖

𝑡[𝐼]) ∩ 𝑓𝑛
𝑖(𝐵𝑖

𝑡[𝐼]) = 𝑦, but  

 𝐶𝑖
𝑡[𝐼] ∩ 𝐵𝑖

𝑡[𝐼] = ∅𝑖
𝑡[𝐼], and 𝑓𝑛

𝑖(𝐶𝑖
𝑡[𝐼] ∩ 𝐵𝑖

𝑡[𝐼]) = 𝑓𝑛
𝑖(∅𝑖

𝑡[𝐼]) = ∅𝑖
𝑡[𝐼]. Therefore, 𝑓𝑛

𝑖 is a one-to-one 

neutrosophic function. 

 

Theorem 4.2.  Let 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼] ⟼ 𝑌𝑖
𝑡[𝐼] be a neutrosophic function of three types generated from a classical 

function 𝑓𝑐: 𝑋 ⟼ 𝑌 and classical sets 𝑋 and 𝑌 respectively, and  Let 𝐻𝑖
𝑡[𝐼 ]⏟  
𝛼

: 𝛼 ∈ 𝕚 ∈ ℤ+ be a family of 

neutrosophic subsets of 𝑋𝑖
𝑡[𝐼], then: 
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1. 𝑓𝑛
𝑖 (⋃ 𝐻𝑖

𝑡[𝐼]⏟  
𝛼

𝛼 ) = ⋃ 𝑓𝑛
𝑖 (𝐻𝑖

𝑡[𝐼]⏟  
𝛼

)𝛼 , and 

2. 𝑓𝑛
𝑖 (⋂ 𝐻𝑖

𝑡[𝐼]⏟  
𝛼

𝛼 ) ⊂ ⋂ 𝑓𝑛
𝑖 (𝐻𝑖

𝑡[𝐼]⏟  
𝛼

)𝛼 . 

Proof. (1).Suppose that 𝑦 ∈ ⋃ 𝑓𝑛
𝑖 (𝐻𝑖

𝑡[𝐼]⏟  
𝛼

) ⇔ ∃𝛼𝛼 ∈ 𝕚 ∋ 𝑦 ∈ 𝑓𝑛
𝑖 (𝐻𝑖

𝑡[𝐼]⏟  
𝛼

) 

                                                                ⇔ ∃ 𝑥 ∈ 𝐻𝑖
𝑡[𝐼]⏟  
𝛼

∋ 𝑓𝑛
𝑖(𝑥) = 𝑦, 

                                                                ⇔ ∃ 𝑥 ∈ ⋃ 𝐻𝑖
𝑡[𝐼]⏟  
𝛼

𝛼 ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦, 

                                                                ⇔ 𝑦 = 𝑓𝑛
𝑖(𝑥) ∈ 𝑓𝑛

𝑖 (⋃ 𝐻𝑖
𝑡[𝐼]⏟  
𝛼

𝛼 ). 

(2). Suppose that 𝑦 ∈ 𝑓𝑛
𝑖 (⋂ 𝐻𝑖

𝑡[𝐼]⏟  
𝛼

𝛼 )⟹ ∃𝑥 ∈ ⋂ 𝐻𝑖
𝑡[𝐼]⏟  
𝛼

𝛼 ∋ 𝑓𝑛
𝑖(𝑥) = 𝑦 

                                                                     ⟹ ∃𝑥 ∈ 𝐻𝑖
𝑡[𝐼]⏟  
𝛼

∋ 𝑓𝑛
𝑖(𝑥) = 𝑦, ∀𝛼 ∈ 𝕚 

                                                                     ⟹ 𝑦 = 𝑓𝑛
𝑖(𝑥) ∈ 𝑓𝑛

𝑖 (𝐻𝑖
𝑡[𝐼]⏟  
𝛼

) , ∀𝛼 ∈ 𝕚 

                                                                    ⟹ 𝑦 = 𝑓𝑛
𝑖(𝑥) ∈ ⋂ 𝑓𝑛

𝑖 (𝐻𝑖
𝑡[𝐼]⏟  
𝛼

)𝛼  

                                                                    ⟹ 𝑓𝑛
𝑖 (⋂ 𝐻𝑖

𝑡[𝐼]⏟  
𝛼

𝛼 ) ⊂ ⋂ 𝑓𝑛
𝑖 (𝐻𝑖

𝑡[𝐼]⏟  
𝛼

)𝛼 . 
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