
Neutrosophic Optimization and
Intelligent Systems

Journal Homepage:https://sciencesforce.com/index.php/nois

Neutrosophic Opt. Int. Syst. Vol. 5 (2024) 29-37.

Paper Type: Original Article

A Compact Exploration of Turiyam Neutrosophic Competition
Graphs

Takaaki Fujita1∗ , Florentin Smarandache2

1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan; t171d603@gunma-u.ac.jp.,
2 Department of Mathematics & Sciences, University of New Mexico, Gallup, NM 87301, USA; smarand@unm.edu. ,

Received: 09 Jun 2024 Revised: 14 Dec 2024 Accepted: 11 Jan 2025 Published: 13 Jan 2025

Abstract

Graph theory, a branch of mathematics, examines relationships between entities using vertices and edges.
Within this field, Uncertain Graph Theory has emerged to model uncertainties in real-world networks. A
notable concept in this area is the competition graph, which captures interactions by connecting vertices
that ”compete” for the same neighbor, represented by directed edges indicating common neighbors in a
digraph. This brief paper introduces the concept of the Generalized Turiyam Neutrosophic Competition
Graph and explores its relationships with other graph classes.

Keywords: Neutrosophic graph, Fuzzy graph, Turiyam Neutrosophic Graph, Competition Graph, Fuzzy
Set

1 | Introduction

1.1 | Uncertain Competition Graph
Graph theory is a fundamental branch of mathematics that models networks through vertices (nodes) and edges
(connections), capturing relationships within various systems [10, 48, 34, 15]. Various classes of graphs have
been proposed to suit specific mathematical structures and applications [11].

This paper explores different uncertain graph models, including Fuzzy, Intuitionistic Fuzzy, Neutrosophic,
Turiyam, and Plithogenic Graphs. These models extend classical graph theory by introducing varying degrees of
uncertainty, allowing for a more flexible analysis of complex and ambiguous relationships. Such uncertain graph
models have numerous real-world applications, prompting the development of related graph classes [17, 20, 22].
Fundamental concepts such as Fuzzy Sets and Neutrosophic Sets serve as the foundation for these uncertain
graph models and are extensively documented in the literature [42, 33, 16].
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In the realm of Uncertain Graph Theory, the concept of a Competition Graph has emerged as significant.
A competition graph represents interactions where directed edges in a digraph indicate common neighbors,
connecting vertices that ”compete” for the same neighbor. Notable examples include Fuzzy Competition Graphs
[5, 35, 7] and Neutrosophic Competition Graphs [8, 6, 5], which are studied for their intriguing mathematical
properties and potential applications.

Given the extensive body of literature and the diverse applications, the study of uncertain graphs holds
considerable significance. For a comprehensive overview, readers are encouraged to consult existing survey papers
[21, 17, 22].

1.2 | Our Contribution in This Paper
This paper introduces the concept of the Generalized Turiyam Neutrosophic Competition Graph. This model
expands the traditional graph framework by assigning four membership values—truth, indeterminacy, falsity,
and liberal state—to each vertex and edge, enabling a richer representation of complex relationships [23, 17, 21].
Note that Turiyam Neutrosophic Set is actually a particular case of the quadripartitioned Neutrosophic Set, by
replacing ”Contradiction” with ”Liberal” [41]. The corresponding graph concept known as quadripartitioned
neutrosophic graphs is well-documented [29, 30].

2 | Preliminaries and Definitions

This section provides an overview of the fundamental definitions and notations used throughout the paper.

2.1 | Basic Graph Concepts
Below are some of the foundational concepts in graph theory. For more comprehensive information on graph
theory and its notations, refer to [15, 26, 47].

Definition 1 (Graph). [15] A graph 𝐺 is a mathematical structure that represents relationships between objects.
It consists of a set of vertices 𝑉 (𝐺) and a set of edges 𝐸(𝐺), where each edge connects a pair of vertices. Formally,
a graph is represented as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of edges.

Definition 2 (Degree). [15] Let 𝐺 = (𝑉 , 𝐸) be a graph. The degree of a vertex 𝑣 ∈ 𝑉, denoted deg(𝑣), is defined
as the number of edges connected to 𝑣. For undirected graphs, the degree is given by:

deg(𝑣) = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}|.
For directed graphs, the in-degree deg−(𝑣) refers to the number of edges directed towards 𝑣, while the out-degree
deg+(𝑣) represents the number of edges directed away from 𝑣.

2.2 | Uncertain Graph
This paper addresses Fuzzy, Intuitionistic Fuzzy, Neutrosophic, Turiyam, and Plithogenic concepts. Note
that Turiyam Neutrosophic Set is actually a particular case of the Quadruple Neutrosophic Set, by replacing
”Contradiction” with ”Liberal” [41].

Definition 3 (Unified Uncertain Graphs Framework). (cf.[17]) Let 𝐺 = (𝑉 , 𝐸) be a classical graph with a set
of vertices 𝑉 and a set of edges 𝐸. Depending on the type of graph, each vertex 𝑣 ∈ 𝑉 and edge 𝑒 ∈ 𝐸 is assigned
membership values to represent various degrees of truth, indeterminacy, falsity, and other nuanced measures of
uncertainty.

(1) Fuzzy Graph [37, 46]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a membership degree 𝜎(𝑣) ∈ [0, 1].

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a membership degree 𝜇(𝑢, 𝑣) ∈ [0, 1].

(2) Intuitionistic Fuzzy Graph (IFG) [45, 49, 1]:

• Each vertex 𝑣 ∈ 𝑉 is assigned two values: 𝜇𝐴(𝑣) ∈ [0, 1] (degree of membership) and 𝜈𝐴(𝑣) ∈ [0, 1]
(degree of non-membership), such that 𝜇𝐴(𝑣) + 𝜈𝐴(𝑣) ≤ 1.
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• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned two values: 𝜇𝐵(𝑢, 𝑣) ∈ [0, 1] and 𝜈𝐵(𝑢, 𝑣) ∈ [0, 1], with
𝜇𝐵(𝑢, 𝑣) + 𝜈𝐵(𝑢, 𝑣) ≤ 1.

(3) Neutrosophic Graph [27, 12, 4, 21]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a triplet 𝜎(𝑣) = (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)), where 𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣) ∈ [0, 1]
and 𝜎𝑇(𝑣) + 𝜎𝐼(𝑣) + 𝜎𝐹(𝑣) ≤ 3.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a triplet 𝜇(𝑒) = (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)).

(4) Turiyam Neutrosophic Graph [23, 25, 24]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a quadruple 𝜎(𝑣) = (𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣)), where each component
is in [0, 1] and 𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is similarly assigned a quadruple.

(5) Vague Graph [3, 38, 2]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a pair (𝜏(𝑣), 𝜙(𝑣)), where 𝜏(𝑣) ∈ [0, 1] is the degree of truth-membership
and 𝜙(𝑣) ∈ [0, 1] is the degree of false-membership, with 𝜏(𝑣) + 𝜙(𝑣) ≤ 1.

• The grade of membership is characterized by the interval [𝜏(𝑣), 1 − 𝜙(𝑣)].

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a pair (𝜏(𝑒), 𝜙(𝑒)), satisfying:

𝜏(𝑒) ≤ min{𝜏(𝑢), 𝜏(𝑣)}, 𝜙(𝑒) ≥ max{𝜙(𝑢), 𝜙(𝑣)}.

(6) Hesitant Fuzzy Graph [9, 31, 32]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a hesitant fuzzy set 𝜎(𝑣), represented by a finite subset of [0, 1],
denoted 𝜎(𝑣) ⊆ [0, 1].

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a hesitant fuzzy set 𝜇(𝑒) ⊆ [0, 1].

• Operations on hesitant fuzzy sets (e.g., intersection, union) are defined to handle the hesitation in
membership degrees.

(7) Single-Valued Pentapartitioned Neutrosophic Graph [14, 36, 29]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a quintuple 𝜎(𝑣) = (𝑇 (𝑣), 𝐶(𝑣), 𝑅(𝑣), 𝑈(𝑣), 𝐹 (𝑣)), where:

– 𝑇 (𝑣) ∈ [0, 1] is the truth-membership degree.

– 𝐶(𝑣) ∈ [0, 1] is the contradiction-membership degree.

– 𝑅(𝑣) ∈ [0, 1] is the ignorance-membership degree.

– 𝑈(𝑣) ∈ [0, 1] is the unknown-membership degree.

– 𝐹(𝑣) ∈ [0, 1] is the false-membership degree.

– 𝑇 (𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a quintuple 𝜇(𝑒) = (𝑇 (𝑒), 𝐶(𝑒), 𝑅(𝑒), 𝑈(𝑒), 𝐹 (𝑒)), satisfying:

⎧{{{
⎨{{{⎩

𝑇 (𝑒) ≤ min{𝑇 (𝑢), 𝑇 (𝑣)},
𝐶(𝑒) ≤ min{𝐶(𝑢), 𝐶(𝑣)},
𝑅(𝑒) ≥ max{𝑅(𝑢), 𝑅(𝑣)},
𝑈(𝑒) ≥ max{𝑈(𝑢), 𝑈(𝑣)},
𝐹(𝑒) ≥ max{𝐹(𝑢), 𝐹(𝑣)}.
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2.3 | Generalized Neutrosophic Competition Graph
The definition of the Generalized Neutrosophic Competition Graph is presented below.

Definition 4 (Generalized Neutrosophic Digraph). [13] A directed graph ⃗𝐺′ = (𝑉 , ⃗𝐸), where ⃗𝐸 ⊆ 𝑉 × 𝑉, is
called a generalized neutrosophic digraph if it includes three membership functions for vertices and edges, as well
as transformation functions, defined as follows:

• For each vertex 𝑣𝑖 ∈ 𝑉, there exist functions:

𝜌𝑇 ∶ 𝑉 → [0, 1], 𝜌𝐹 ∶ 𝑉 → [0, 1], 𝜌𝐼 ∶ 𝑉 → [0, 1],

where 𝜌𝑇(𝑣𝑖), 𝜌𝐹(𝑣𝑖), 𝜌𝐼(𝑣𝑖) denote the degrees of true membership, falsity membership, and indeterminacy
membership of the vertex 𝑣𝑖, respectively. These functions satisfy:

0 ≤ 𝜌𝑇(𝑣𝑖) + 𝜌𝐹(𝑣𝑖) + 𝜌𝐼(𝑣𝑖) ≤ 3, for all 𝑣𝑖 ∈ 𝑉 .

• For each directed edge ⃗𝑒 = (𝑣𝑖, 𝑣𝑗) ∈ ⃗𝐸, there exist functions:

𝜇𝑇 ∶ ⃗𝐸 → [0, 1], 𝜇𝐹 ∶ ⃗𝐸 → [0, 1], 𝜇𝐼 ∶ ⃗𝐸 → [0, 1],

where 𝜇𝑇(𝑣𝑖, 𝑣𝑗), 𝜇𝐹(𝑣𝑖, 𝑣𝑗), 𝜇𝐼(𝑣𝑖, 𝑣𝑗) denote the degrees of true membership, falsity membership, and
indeterminacy membership of the directed edge (𝑣𝑖, 𝑣𝑗), respectively. These functions are defined as:

𝜇𝑇(𝑣𝑖, 𝑣𝑗) = 𝜑𝑇(𝜌𝑇(𝑣𝑖), 𝜌𝑇(𝑣𝑗)),

𝜇𝐹(𝑣𝑖, 𝑣𝑗) = 𝜑𝐹(𝜌𝐹(𝑣𝑖), 𝜌𝐹(𝑣𝑗)),

𝜇𝐼(𝑣𝑖, 𝑣𝑗) = 𝜑𝐼(𝜌𝐼(𝑣𝑖), 𝜌𝐼(𝑣𝑗)),

where 𝜑𝑇, 𝜑𝐹, 𝜑𝐼 are transformation functions such that:

𝐸𝑇 = {(𝜌𝑇(𝑣𝑖), 𝜌𝑇(𝑣𝑗)) ∶ 𝜇𝑇(𝑣𝑖, 𝑣𝑗) ≥ 0}, 𝐸𝐹 = {(𝜌𝐹(𝑣𝑖), 𝜌𝐹(𝑣𝑗)) ∶ 𝜇𝐹(𝑣𝑖, 𝑣𝑗) ≥ 0},

𝐸𝐼 = {(𝜌𝐼(𝑣𝑖), 𝜌𝐼(𝑣𝑗)) ∶ 𝜇𝐼(𝑣𝑖, 𝑣𝑗) ≥ 0}.

Definition 5 (Generalized Neutrosophic Competition Graph). [13] Let ⃗𝐺′ = (𝑉 , ⃗𝐸) be a generalized neutrosophic
digraph. The generalized neutrosophic competition graph 𝐶( ⃗𝐺′) of ⃗𝐺′ is a generalized neutrosophic graph that
has the same vertex set 𝑉. It includes a neutrosophic edge between vertices 𝑢, 𝑣 ∈ 𝑉 if and only if:

𝑁+(𝑢) ∩ 𝑁+(𝑣) ≠ ∅,

where 𝑁+(𝑢) is the out-neighborhood of vertex 𝑢, defined as:

𝑁+(𝑢) = {(𝑣𝑗, (𝜇𝑇(𝑣𝑖, 𝑣𝑗), 𝜇𝐹(𝑣𝑖, 𝑣𝑗), 𝜇𝐼(𝑣𝑖, 𝑣𝑗))) ∶ (𝑣𝑖, 𝑣𝑗) ∈ ⃗𝐸}.

Moreover, there exist sets 𝑆1 = {𝛾𝑢
𝑇 ∶ 𝑢 ∈ 𝑉 }, 𝑆2 = {𝛾𝑢

𝐹 ∶ 𝑢 ∈ 𝑉 }, 𝑆3 = {𝛾𝑢
𝐼 ∶ 𝑢 ∈ 𝑉 } and functions:

𝜑1 ∶ 𝑆1 × 𝑆1 → [0, 1], 𝜑2 ∶ 𝑆2 × 𝑆2 → [0, 1], 𝜑3 ∶ 𝑆3 × 𝑆3 → [0, 1].

The edge-membership values of an edge (𝑢, 𝑣) ∈ 𝐸′ are defined as:

𝜇𝑇(𝑢, 𝑣) = 𝜑1(𝛾𝑢
𝑇 , 𝛾𝑣

𝑇), 𝜇𝐹(𝑢, 𝑣) = 𝜑2(𝛾𝑢
𝐹, 𝛾𝑣

𝐹), 𝜇𝐼(𝑢, 𝑣) = 𝜑3(𝛾𝑢
𝐼 , 𝛾𝑣

𝐼 ),

where:
𝛾𝑢

𝑇 = min{𝜇𝑇(𝑢, 𝑤) ∶ 𝑤 ∈ 𝑁+(𝑢) ∩ 𝑁+(𝑣)}, 𝛾𝑢
𝐹 = max{𝜇𝐹(𝑢, 𝑤) ∶ 𝑤 ∈ 𝑁+(𝑢) ∩ 𝑁+(𝑣)},

𝛾𝑢
𝐼 = max{𝜇𝐼(𝑢, 𝑤) ∶ 𝑤 ∈ 𝑁+(𝑢) ∩ 𝑁+(𝑣)}.
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3 | Result: Generalized Turiyam Neutrosophic Competition Graph

The definition and mathematical properties of the Generalized Turiyam Neutrosophic Competition Graph are
presented below[13].

Definition 6 (Generalized Turiyam Neutrosophic Digraph). A directed graph ⃗𝐺′ = (𝑉 , ⃗𝐸), where ⃗𝐸 ⊆ 𝑉 × 𝑉,
is called a Generalized Turiyam Neutrosophic Digraph if it includes four membership functions for vertices and
edges, along with transformation functions, defined as follows:

• For each vertex 𝑣𝑖 ∈ 𝑉, there exist functions:
𝜌𝑇 ∶ 𝑉 → [0, 1], 𝜌𝐼 ∶ 𝑉 → [0, 1], 𝜌𝐹 ∶ 𝑉 → [0, 1], 𝜌𝐿 ∶ 𝑉 → [0, 1],

where 𝜌𝑇(𝑣𝑖), 𝜌𝐼(𝑣𝑖), 𝜌𝐹(𝑣𝑖), 𝜌𝐿(𝑣𝑖) denote the degrees of truth-membership, indeterminacy-membership,
falsity-membership, and liberal-membership of the vertex 𝑣𝑖, respectively. These functions satisfy:

0 ≤ 𝜌𝑇(𝑣𝑖) + 𝜌𝐼(𝑣𝑖) + 𝜌𝐹(𝑣𝑖) + 𝜌𝐿(𝑣𝑖) ≤ 4, for all 𝑣𝑖 ∈ 𝑉 .

• For each directed edge ⃗𝑒 = (𝑣𝑖, 𝑣𝑗) ∈ ⃗𝐸, there exist functions:

𝜇𝑇 ∶ ⃗𝐸 → [0, 1], 𝜇𝐼 ∶ ⃗𝐸 → [0, 1], 𝜇𝐹 ∶ ⃗𝐸 → [0, 1], 𝜇𝐿 ∶ ⃗𝐸 → [0, 1],
where 𝜇𝑇(𝑣𝑖, 𝑣𝑗), 𝜇𝐼(𝑣𝑖, 𝑣𝑗), 𝜇𝐹(𝑣𝑖, 𝑣𝑗), 𝜇𝐿(𝑣𝑖, 𝑣𝑗) denote the degrees of truth-membership, indeterminacy-
membership, falsity-membership, and liberal-membership of the directed edge (𝑣𝑖, 𝑣𝑗), respectively. These
functions are defined as:

𝜇𝑇(𝑣𝑖, 𝑣𝑗) = 𝜑𝑇(𝜌𝑇(𝑣𝑖), 𝜌𝑇(𝑣𝑗)),
𝜇𝐼(𝑣𝑖, 𝑣𝑗) = 𝜑𝐼(𝜌𝐼(𝑣𝑖), 𝜌𝐼(𝑣𝑗)),

𝜇𝐹(𝑣𝑖, 𝑣𝑗) = 𝜑𝐹(𝜌𝐹(𝑣𝑖), 𝜌𝐹(𝑣𝑗)),
𝜇𝐿(𝑣𝑖, 𝑣𝑗) = 𝜑𝐿(𝜌𝐿(𝑣𝑖), 𝜌𝐿(𝑣𝑗)),

where 𝜑𝑇, 𝜑𝐼, 𝜑𝐹, 𝜑𝐿 are transformation functions such that:
𝐸𝑇 = {(𝜌𝑇(𝑣𝑖), 𝜌𝑇(𝑣𝑗)) ∶ 𝜇𝑇(𝑣𝑖, 𝑣𝑗) ≥ 0}, 𝐸𝐼 = {(𝜌𝐼(𝑣𝑖), 𝜌𝐼(𝑣𝑗)) ∶ 𝜇𝐼(𝑣𝑖, 𝑣𝑗) ≥ 0},

𝐸𝐹 = {(𝜌𝐹(𝑣𝑖), 𝜌𝐹(𝑣𝑗)) ∶ 𝜇𝐹(𝑣𝑖, 𝑣𝑗) ≥ 0}, 𝐸𝐿 = {(𝜌𝐿(𝑣𝑖), 𝜌𝐿(𝑣𝑗)) ∶ 𝜇𝐿(𝑣𝑖, 𝑣𝑗) ≥ 0}.

Definition 7 (Generalized Turiyam Neutrosophic Competition Graph). Let ⃗𝐺′ = (𝑉 , ⃗𝐸) be a Generalized
Turiyam Neutrosophic Digraph. The Generalized Turiyam Neutrosophic Competition Graph 𝐶( ⃗𝐺′) of ⃗𝐺′ is a
Generalized Turiyam Neutrosophic Graph that has the same vertex set 𝑉. It includes a Turiyam Neutrosophic
edge between vertices 𝑢, 𝑣 ∈ 𝑉 if and only if:

𝑁+(𝑢) ∩ 𝑁+(𝑣) ≠ ∅,
where 𝑁+(𝑢) is the out-neighborhood of vertex 𝑢, defined as:

𝑁+(𝑢) = {(𝑣𝑗, (𝜇𝑇(𝑣𝑢, 𝑣𝑗), 𝜇𝐼(𝑣𝑢, 𝑣𝑗), 𝜇𝐹(𝑣𝑢, 𝑣𝑗), 𝜇𝐿(𝑣𝑢, 𝑣𝑗))) ∶ (𝑣𝑢, 𝑣𝑗) ∈ ⃗𝐸}.
Moreover, there exist sets 𝑆𝑇 = {𝛾𝑢

𝑇 ∶ 𝑢 ∈ 𝑉 }, 𝑆𝐼 = {𝛾𝑢
𝐼 ∶ 𝑢 ∈ 𝑉 }, 𝑆𝐹 = {𝛾𝑢

𝐹 ∶ 𝑢 ∈ 𝑉 }, 𝑆𝐿 = {𝛾𝑢
𝐿 ∶ 𝑢 ∈ 𝑉 } and

functions:
𝜑′

𝑇 ∶ 𝑆𝑇 × 𝑆𝑇 → [0, 1], 𝜑′
𝐼 ∶ 𝑆𝐼 × 𝑆𝐼 → [0, 1], 𝜑′

𝐹 ∶ 𝑆𝐹 × 𝑆𝐹 → [0, 1], 𝜑′
𝐿 ∶ 𝑆𝐿 × 𝑆𝐿 → [0, 1].

The edge-membership values of an edge (𝑢, 𝑣) ∈ 𝐸′ are defined as:
𝜇𝑇(𝑢, 𝑣) = 𝜑′

𝑇(𝛾𝑢
𝑇 , 𝛾𝑣

𝑇), 𝜇𝐼(𝑢, 𝑣) = 𝜑′
𝐼(𝛾𝑢

𝐼 , 𝛾𝑣
𝐼 ), 𝜇𝐹(𝑢, 𝑣) = 𝜑′

𝐹(𝛾𝑢
𝐹, 𝛾𝑣

𝐹), 𝜇𝐿(𝑢, 𝑣) = 𝜑′
𝐿(𝛾𝑢

𝐿, 𝛾𝑣
𝐿),

where:
𝛾𝑢

𝑇 = min{𝜇𝑇(𝑢, 𝑤) ∶ 𝑤 ∈ 𝑁+(𝑢) ∩ 𝑁+(𝑣)},
𝛾𝑢

𝐼 = max{𝜇𝐼(𝑢, 𝑤) ∶ 𝑤 ∈ 𝑁+(𝑢) ∩ 𝑁+(𝑣)},
𝛾𝑢

𝐹 = max{𝜇𝐹(𝑢, 𝑤) ∶ 𝑤 ∈ 𝑁+(𝑢) ∩ 𝑁+(𝑣)},
𝛾𝑢

𝐿 = max{𝜇𝐿(𝑢, 𝑤) ∶ 𝑤 ∈ 𝑁+(𝑢) ∩ 𝑁+(𝑣)}.

Theorem 8. Any Generalized Turiyam Neutrosophic Digraph can be transformed into a Generalized Neutrosophic
Digraph by appropriate mappings of membership degrees.
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Proof : Given a Generalized Turiyam Neutrosophic Digraph ⃗𝐺′ = (𝑉 , ⃗𝐸) with vertex membership functions
𝜌𝑇, 𝜌𝐼, 𝜌𝐹, 𝜌𝐿 and edge membership functions 𝜇𝑇, 𝜇𝐼, 𝜇𝐹, 𝜇𝐿, we can construct a Generalized Neutrosophic Digraph

⃗𝐺″ = (𝑉 , ⃗𝐸) by mapping the Turiyam Neutrosophic membership degrees to Neutrosophic membership degrees
as follows:

For each vertex 𝑣𝑖 ∈ 𝑉:
𝜌′

𝑇(𝑣𝑖) = 𝜌𝑇(𝑣𝑖) + 𝜌𝐿(𝑣𝑖),

𝜌′
𝐼(𝑣𝑖) = 𝜌𝐼(𝑣𝑖),

𝜌′
𝐹(𝑣𝑖) = 𝜌𝐹(𝑣𝑖).

Since in Turiyam Neutrosophic graphs 𝜌𝑇(𝑣𝑖) + 𝜌𝐼(𝑣𝑖) + 𝜌𝐹(𝑣𝑖) + 𝜌𝐿(𝑣𝑖) ≤ 4, it follows that:

𝜌′
𝑇(𝑣𝑖) + 𝜌′

𝐼(𝑣𝑖) + 𝜌′
𝐹(𝑣𝑖) = (𝜌𝑇(𝑣𝑖) + 𝜌𝐿(𝑣𝑖)) + 𝜌𝐼(𝑣𝑖) + 𝜌𝐹(𝑣𝑖) ≤ 4.

Similarly, for each edge (𝑣𝑖, 𝑣𝑗) ∈ ⃗𝐸:

𝜇′
𝑇(𝑣𝑖, 𝑣𝑗) = 𝜇𝑇(𝑣𝑖, 𝑣𝑗) + 𝜇𝐿(𝑣𝑖, 𝑣𝑗),

𝜇′
𝐼(𝑣𝑖, 𝑣𝑗) = 𝜇𝐼(𝑣𝑖, 𝑣𝑗),

𝜇′
𝐹(𝑣𝑖, 𝑣𝑗) = 𝜇𝐹(𝑣𝑖, 𝑣𝑗).

The transformation functions 𝜑′
𝑇, 𝜑′

𝐼, 𝜑′
𝐹 for the Neutrosophic digraph are defined accordingly, ensuring the

relationships hold.

This mapping effectively combines the truth and liberal membership degrees of the Turiyam Neutrosophic graph
into the truth membership degree of the Neutrosophic graph. The conditions of the Generalized Neutrosophic
Digraph are satisfied under this transformation. �

Theorem 9. Any Generalized Turiyam Neutrosophic Competition Graph can be transformed into a Generalized
Neutrosophic Competition Graph via the same mapping of membership degrees.

Proof : From the previous theorem, the Generalized Turiyam Neutrosophic Digraph ⃗𝐺′ can be transformed into
a Generalized Neutrosophic Digraph ⃗𝐺″. Since the competition graph is derived from the digraph by considering
the out-neighborhoods 𝑁+(𝑢), the same mapping of membership degrees can be applied.

For each vertex 𝑢 ∈ 𝑉, the values 𝛾𝑢
𝑇 , 𝛾𝑢

𝐼 , 𝛾𝑢
𝐹 in the Turiyam Neutrosophic Competition Graph are transformed to

𝛾′𝑢
𝑇 , 𝛾′𝑢

𝐼 , 𝛾′𝑢
𝐹 in the Neutrosophic Competition Graph as:

𝛾′𝑢
𝑇 = 𝛾𝑢

𝑇 + 𝛾𝑢
𝐿,

𝛾′𝑢
𝐼 = 𝛾𝑢

𝐼 ,

𝛾′𝑢
𝐹 = 𝛾𝑢

𝐹.
The edge membership values in the competition graph are then computed using the transformed 𝛾 values and
the appropriate transformation functions 𝜑1, 𝜑2, 𝜑3. This ensures that the Generalized Turiyam Neutrosophic
Competition Graph is transformed into a Generalized Neutrosophic Competition Graph. �

4 | Future tasks:Competition hypergraphs

We outline future research directions. Our goal is to extend the above graph to Competition Hypergraphs,
investigating their mathematical properties and potential applications [39, 40, 44]. Additionally, we con-
sider Competition Superhypergraphs—a graph concept that integrates the ideas of Competition Graphs and
Superhypergraphs [28, 18, 19, 43].
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