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Abstract

Graph theory, a fundamental branch of mathematics, examines relationships between entities through
the use of vertices and edges. Within this field, Uncertain Graph Theory has developed as a powerful
framework to represent the uncertainties found in real-world networks.
Among the various uncertain graph models, Turiyam Neutrosophic Graphs and Pentapartitioned Neu-
trosophic Graphs are well-established. However, their extension to Directed Graphs remains relatively
unexplored. To address this gap, this paper presents the concepts of the Turiyam Neutrosophic Directed
Graph and the Pentapartitioned Neutrosophic Directed Graph, thereby broadening the scope of uncertain
graph theory.

Keywords: Neutrosophic graph, Fuzzy graph, Plithogenic graph, Turiyam Neutrosophic Graph, Directed
Graph

1 | Introduction

1.1 | Directed Graph Theory
Graph theory is a fundamental branch of mathematics that models networks using vertices (nodes) and edges
(connections), representing relationships within various systems [18, 126, 133, 88, 29].

Graphs are generally classified into three main categories: undirected graphs, where edges have no orientation,
directed graphs, where edges have specific directions [20, 17, 74, 58, 73, 100], and mixed graphs, which combine
both undirected and directed edges [104, 48, 105]. Each of these categories has been widely studied in terms of
algorithms and mathematical structures.
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1.2 | Uncertain Graph Theory
This paper delves into various uncertain graph models, including Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and
Plithogenic Graphs. These models extend classical graph theory by incorporating varying degrees of uncertainty,
providing a more nuanced analysis of complex and ambiguous relationships. The versatility of uncertain graph
models has broad real-world applications, leading to the development of diverse classes of uncertain graphs
[41, 37, 54, 46, 49, 43, 51, 42, 38, 50].

Fundamental concepts such as Fuzzy Sets and Neutrosophic Sets underpin these uncertain graph models and are
thoroughly documented in the literature [114, 96, 30, 24, 31, 11, 13, 12].

Within the context of Uncertain Graph Theory, the concept of a Directed Graph has become increasingly
significant. Prominent examples include Fuzzy Digraphs [78, 82, 16, 80, 21, 32], Intuitionistic Fuzzy Digraphs
[84, 77, 111, 112], and Neutrosophic Digraphs [22]. Additionally, researchers have explored extensions of concepts
like Rough Graphs [66, 124, 86], Rough Directed Graphs [129, 3], and Rough Soft Graphs [87, 33] to the uncertain
graph framework.

As evident from the extensive research mentioned above, studies on Uncertain Graph Theory are of significant
importance. For a comprehensive understanding, readers are encouraged to consult existing survey papers
[49, 41, 54].

1.3 | Our Contribution in This Paper
Among the uncertain graph models, the Turiyam Neutrosophic Graph and the Pentapartitioned Neutrosophic
Graph are well-known. However, their application to Directed Graphs has received limited attention. Therefore,
this paper introduces the concepts of the Turiyam Neutrosophic Directed Graph and the Pentapartitioned
Neutrosophic Directed Graphs, expanding the scope of uncertain graph theory.

2 | Preliminaries and Definitions

This section provides an overview of the fundamental definitions and notations used throughout the paper.

2.1 | Basic Graph Concepts
Below are some of the foundational concepts in graph theory. For more comprehensive information on graph
theory and its notations, refer to [29, 27, 28, 64, 133].

Definition 1 (Graph). [29] A graph 𝐺 is a mathematical structure that represents relationships between objects.
It consists of a set of vertices 𝑉 (𝐺) and a set of edges 𝐸(𝐺), where each edge connects a pair of vertices. Formally,
a graph is represented as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of edges.

Definition 2 (Subgraph). [29] A graph 𝐻 = (𝑉𝐻, 𝐸𝐻) is called a subgraph of a graph 𝐺 = (𝑉 , 𝐸) if:

• 𝑉𝐻 ⊆ 𝑉, i.e., the vertex set of 𝐻 is a subset of the vertex set of 𝐺,

• 𝐸𝐻 ⊆ 𝐸, i.e., the edge set of 𝐻 is a subset of the edge set of 𝐺,

• For each edge 𝑒 ∈ 𝐸𝐻, if 𝑒 = {𝑢, 𝑣}, then 𝑢, 𝑣 ∈ 𝑉𝐻.

In other words, a subgraph 𝐻 of 𝐺 consists of a subset of the vertices and edges of 𝐺, with the condition that
all edges in 𝐸𝐻 connect vertices in 𝑉𝐻.

Definition 3 (Digraph). [29] A digraph (directed graph) ⃗𝐺 is a mathematical structure that represents directed
relationships between objects. It consists of a set of vertices 𝑉 ( ⃗𝐺) and a set of directed edges ⃗𝐸( ⃗𝐺), where each
directed edge has an orientation from one vertex to another. Formally, a digraph is represented as ⃗𝐺 = (𝑉 , ⃗𝐸),
where 𝑉 is the set of vertices and ⃗𝐸 is the set of directed edges.

Definition 4 (Subdigraph). (cf.[109]) A subdigraph 𝑄 = (𝑉 (𝑄), 𝐸(𝑄)) of a directed graph 𝐷 = (𝑉 (𝐷), 𝐸(𝐷))
is defined as a directed graph where:
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(1) 𝑉 (𝑄) ⊆ 𝑉 (𝐷), meaning the vertex set of 𝑄 is a subset of the vertex set of 𝐷.

(2) 𝐸(𝑄) ⊆ 𝐸(𝐷), meaning the edge set of 𝑄 is a subset of the edge set of 𝐷.

In this case, we write 𝑄 ⊆ 𝐷 to denote that 𝑄 is a subdigraph of 𝐷.

Induced Subdigraph: If 𝑄 includes all edges from 𝐷 that connect the vertices in 𝑉 (𝑄), 𝑄 is called an induced
subdigraph of 𝐷.

Definition 5 (Degree). [29] Let 𝐺 = (𝑉 , 𝐸) be a graph. The degree of a vertex 𝑣 ∈ 𝑉, denoted deg(𝑣), is defined
as the number of edges connected to 𝑣. For undirected graphs, the degree is given by:

deg(𝑣) = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}|.
For directed graphs, the in-degree deg−(𝑣) refers to the number of edges directed towards 𝑣, while the out-degree
deg+(𝑣) represents the number of edges directed away from 𝑣.

2.2 | Uncertain Graph
This paper explores Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and Plithogenic concepts. Additionally, it
introduces the definition of the Single-Valued Pentapartitioned Neutrosophic Graph. The definitions are
presented as follows.

Definition 6 (Unified Uncertain Graphs Framework). (cf.[41]) Let 𝐺 = (𝑉 , 𝐸) be a classical graph with a set
of vertices 𝑉 and a set of edges 𝐸. Depending on the type of graph, each vertex 𝑣 ∈ 𝑉 and edge 𝑒 ∈ 𝐸 is assigned
membership values to represent various degrees of truth, indeterminacy, falsity, and other nuanced measures of
uncertainty.

(1) Fuzzy Graph [89, 103, 76, 122, 102]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a membership degree 𝜎(𝑣) ∈ [0, 1].

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a membership degree 𝜇(𝑢, 𝑣) ∈ [0, 1].

(2) Intuitionistic Fuzzy Graph (IFG) [71, 127, 134, 2]:

• Each vertex 𝑣 ∈ 𝑉 is assigned two values: 𝜇𝐴(𝑣) ∈ [0, 1] (degree of membership) and 𝜈𝐴(𝑣) ∈ [0, 1]
(degree of non-membership), such that 𝜇𝐴(𝑣) + 𝜈𝐴(𝑣) ≤ 1.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned two values: 𝜇𝐵(𝑢, 𝑣) ∈ [0, 1] and 𝜈𝐵(𝑢, 𝑣) ∈ [0, 1], with
𝜇𝐵(𝑢, 𝑣) + 𝜈𝐵(𝑢, 𝑣) ≤ 1.

(3) Neutrosophic Graph [75, 9, 106, 67, 19, 6]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a triplet 𝜎(𝑣) = (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)), where 𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣) ∈ [0, 1]
and 𝜎𝑇(𝑣) + 𝜎𝐼(𝑣) + 𝜎𝐹(𝑣) ≤ 3.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a triplet 𝜇(𝑒) = (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)).

(4) Turiyam Neutrosophic Graph [55, 57, 56]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a quadruple 𝜎(𝑣) = (𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣)), where each component
is in [0, 1] and 𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is similarly assigned a quadruple.

(5) Vague Graph [5, 107, 101, 4]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a pair (𝜏(𝑣), 𝜙(𝑣)), where 𝜏(𝑣) ∈ [0, 1] is the degree of truth-membership
and 𝜙(𝑣) ∈ [0, 1] is the degree of false-membership, with 𝜏(𝑣) + 𝜙(𝑣) ≤ 1.

• The grade of membership is characterized by the interval [𝜏(𝑣), 1 − 𝜙(𝑣)].

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a pair (𝜏(𝑒), 𝜙(𝑒)), satisfying:
𝜏(𝑒) ≤ min{𝜏(𝑢), 𝜏(𝑣)}, 𝜙(𝑒) ≥ max{𝜙(𝑢), 𝜙(𝑣)}.
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(6) Hesitant Fuzzy Graph [132, 62, 15, 90, 93]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a hesitant fuzzy set 𝜎(𝑣), represented by a finite subset of [0, 1],
denoted 𝜎(𝑣) ⊆ [0, 1].

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a hesitant fuzzy set 𝜇(𝑒) ⊆ [0, 1].

• Operations on hesitant fuzzy sets (e.g., intersection, union) are defined to handle the hesitation in
membership degrees.

(7) Single-Valued Pentapartitioned Neutrosophic Graph [23, 99, 68, 69]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a quintuple 𝜎(𝑣) = (𝑇 (𝑣), 𝐶(𝑣), 𝑅(𝑣), 𝑈(𝑣), 𝐹 (𝑣)), where:

– 𝑇 (𝑣) ∈ [0, 1] is the truth-membership degree.

– 𝐶(𝑣) ∈ [0, 1] is the contradiction-membership degree.

– 𝑅(𝑣) ∈ [0, 1] is the ignorance-membership degree.

– 𝑈(𝑣) ∈ [0, 1] is the unknown-membership degree.

– 𝐹(𝑣) ∈ [0, 1] is the false-membership degree.

– 𝑇 (𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a quintuple 𝜇(𝑒) = (𝑇 (𝑒), 𝐶(𝑒), 𝑅(𝑒), 𝑈(𝑒), 𝐹 (𝑒)), satisfying:

⎧{{{
⎨{{{⎩

𝑇 (𝑒) ≤ min{𝑇 (𝑢), 𝑇 (𝑣)},
𝐶(𝑒) ≤ min{𝐶(𝑢), 𝐶(𝑣)},
𝑅(𝑒) ≥ max{𝑅(𝑢), 𝑅(𝑣)},
𝑈(𝑒) ≥ max{𝑈(𝑢), 𝑈(𝑣)},
𝐹(𝑒) ≥ max{𝐹(𝑢), 𝐹(𝑣)}.

2.3 | Bipolar Neutrosophic Digraph
A Bipolar Neutrosophic Digraph assigns positive and negative truth, indeterminacy, and falsity memberships to
vertices and directed edges, effectively modeling complex uncertainties. It can also be viewed as an extension of
a Neutrosophic Digraph with positive and negative values. The definition of the Bipolar Neutrosophic Digraph
is provided below [1, 8, 7]. Related concepts include the Bipolar Intuitionistic Fuzzy Digraph [25, 85] and the
Bipolar Fuzzy Soft Digraph [108].

Definition 7 (Neutrosophic Digraph). (cf.[113]) A Neutrosophic Digraph 𝐺 = (𝑉 , 𝐴, 𝑇𝑉, 𝐼𝑉, 𝐹𝑉, 𝑇𝐴, 𝐼𝐴, 𝐹𝐴) is
defined as follows:

• 𝑉: the set of vertices.

• 𝐴: the set of directed edges (arcs), where each arc (𝑢, 𝑣) ∈ 𝐴 represents a directed connection from
vertex 𝑢 to vertex 𝑣.

• 𝑇𝑉, 𝐼𝑉, 𝐹𝑉 ∶ 𝑉 → [0, 1]: the truth-membership, indeterminacy-membership, and falsity-membership
functions for vertices, satisfying:

0 ≤ 𝑇𝑉(𝑣) + 𝐼𝑉(𝑣) + 𝐹𝑉(𝑣) ≤ 3, ∀𝑣 ∈ 𝑉 .

• 𝑇𝐴, 𝐼𝐴, 𝐹𝐴 ∶ 𝐴 → [0, 1]: the truth-membership, indeterminacy-membership, and falsity-membership
functions for arcs, satisfying:

0 ≤ 𝑇𝐴(𝑢, 𝑣) + 𝐼𝐴(𝑢, 𝑣) + 𝐹𝐴(𝑢, 𝑣) ≤ 3, ∀(𝑢, 𝑣) ∈ 𝐴.

• The arc membership functions satisfy the following conditions:
𝑇𝐴(𝑢, 𝑣) ≤ min(𝑇𝑉(𝑢), 𝑇𝑉(𝑣)),
𝐼𝐴(𝑢, 𝑣) ≥ max(𝐼𝑉(𝑢), 𝐼𝑉(𝑣)),
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𝐹𝐴(𝑢, 𝑣) ≥ max(𝐹𝑉(𝑢), 𝐹𝑉(𝑣)), ∀(𝑢, 𝑣) ∈ 𝐴.

Proposition 8. A Neutrosophic Digraph becomes a Neutrosophic Graph when the directed arcs are replaced
with undirected edges.

Proof : Let 𝐺𝐷 = (𝑉 , 𝐴, 𝑇𝑉, 𝐼𝑉, 𝐹𝑉, 𝑇𝐴, 𝐼𝐴, 𝐹𝐴) be a Neutrosophic Digraph. The key components of 𝐺𝐷 are:

• 𝑉: the set of vertices.

• 𝐴: the set of directed arcs, where (𝑢, 𝑣) ∈ 𝐴 represents a directed connection from vertex 𝑢 to vertex 𝑣.

• 𝑇𝑉, 𝐼𝑉, 𝐹𝑉 ∶ 𝑉 → [0, 1]: the truth-membership, indeterminacy-membership, and falsity-membership
functions for vertices.

• 𝑇𝐴, 𝐼𝐴, 𝐹𝐴 ∶ 𝐴 → [0, 1]: the truth-membership, indeterminacy-membership, and falsity-membership
functions for arcs.

To convert 𝐺𝐷 into an undirected Neutrosophic Graph 𝐺𝑈 = (𝑉 , 𝐸, 𝑇𝑉, 𝐼𝑉, 𝐹𝑉, 𝑇𝐸, 𝐼𝐸, 𝐹𝐸), perform the following
steps:

Replace every directed arc (𝑢, 𝑣) ∈ 𝐴 with an undirected edge {𝑢, 𝑣} ∈ 𝐸. The new edge set 𝐸 satisfies
𝐸 = {{𝑢, 𝑣} ∣ (𝑢, 𝑣) ∈ 𝐴 or (𝑣, 𝑢) ∈ 𝐴}.

Define the membership functions for the undirected edges 𝑇𝐸, 𝐼𝐸, 𝐹𝐸 ∶ 𝐸 → [0, 1] based on the arc membership
functions as follows:

𝑇𝐸({𝑢, 𝑣}) = max(𝑇𝐴(𝑢, 𝑣), 𝑇𝐴(𝑣, 𝑢)),
𝐼𝐸({𝑢, 𝑣}) = min(𝐼𝐴(𝑢, 𝑣), 𝐼𝐴(𝑣, 𝑢)),

𝐹𝐸({𝑢, 𝑣}) = max(𝐹𝐴(𝑢, 𝑣), 𝐹𝐴(𝑣, 𝑢)).

The relationships between the edge and vertex membership functions remain consistent:
𝑇𝐸({𝑢, 𝑣}) ≤ min(𝑇𝑉(𝑢), 𝑇𝑉(𝑣)),

𝐼𝐸({𝑢, 𝑣}) ≥ max(𝐼𝑉(𝑢), 𝐼𝑉(𝑣)),
𝐹𝐸({𝑢, 𝑣}) ≥ max(𝐹𝑉(𝑢), 𝐹𝑉(𝑣)).

The resulting graph 𝐺𝑈 = (𝑉 , 𝐸, 𝑇𝑉, 𝐼𝑉, 𝐹𝑉, 𝑇𝐸, 𝐼𝐸, 𝐹𝐸) is an undirected Neutrosophic Graph with the same
vertex set and updated edge set and membership functions. The directed structure of the digraph has been
replaced by an undirected one, and all membership functions are adjusted accordingly.

Thus, the Neutrosophic Digraph 𝐺𝐷 is transformed into a Neutrosophic Graph 𝐺𝑈, completing the proof. �

Definition 9 (Bipolar Neutrosophic Digraph). (cf.[1, 8, 7]) A Bipolar Neutrosophic Digraph ⃗𝐺 = (𝑉 , ⃗𝐸) is
defined over a non-empty set of vertices 𝑉 and a set of directed edges ⃗𝐸 ⊆ 𝑉 × 𝑉. Each vertex 𝑥 ∈ 𝑉 and each
directed edge ⃗𝑒 = (𝑥, 𝑦) ∈ ⃗𝐸 are characterized by seven membership functions.

Vertex Membership Functions:

• 𝑡𝑃(𝑥): Positive truth-membership, 𝑡𝑃 ∶ 𝑉 → [0, 1].

• 𝑖𝑃(𝑥): Positive indeterminacy-membership, 𝑖𝑃 ∶ 𝑉 → [0, 1].

• 𝑓𝑃(𝑥): Positive falsity-membership, 𝑓𝑃 ∶ 𝑉 → [0, 1].

• 𝑡𝑁(𝑥): Negative truth-membership, 𝑡𝑁 ∶ 𝑉 → [−1, 0].

• 𝑖𝑁(𝑥): Negative indeterminacy-membership, 𝑖𝑁 ∶ 𝑉 → [−1, 0].

• 𝑓𝑁(𝑥): Negative falsity-membership, 𝑓𝑁 ∶ 𝑉 → [−1, 0].

Edge Membership Functions:

• 𝜇𝑡
𝑃( ⃗𝑒): Positive truth-membership of the edge, 𝜇𝑡

𝑃 ∶ ⃗𝐸 → [0, 1].
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• 𝜇𝑖
𝑃( ⃗𝑒): Positive indeterminacy-membership of the edge, 𝜇𝑖

𝑃 ∶ ⃗𝐸 → [0, 1].

• 𝜇𝑓
𝑃( ⃗𝑒): Positive falsity-membership of the edge, 𝜇𝑓

𝑃 ∶ ⃗𝐸 → [0, 1].

• 𝜇𝑡
𝑁( ⃗𝑒): Negative truth-membership of the edge, 𝜇𝑡

𝑁 ∶ ⃗𝐸 → [−1, 0].

• 𝜇𝑖
𝑁( ⃗𝑒): Negative indeterminacy-membership of the edge, 𝜇𝑖

𝑁 ∶ ⃗𝐸 → [−1, 0].

• 𝜇𝑓
𝑁( ⃗𝑒): Negative falsity-membership of the edge, 𝜇𝑓

𝑁 ∶ ⃗𝐸 → [−1, 0].

The edge membership functions must satisfy the following conditions:

𝜇𝑡
𝑃(𝑥, 𝑦) ≤ 𝑡𝑃(𝑥) ∧ 𝑡𝑃(𝑦), 𝜇𝑖

𝑃(𝑥, 𝑦) ≤ 𝑖𝑃(𝑥) ∧ 𝑖𝑃(𝑦), 𝜇𝑓
𝑃(𝑥, 𝑦) ≥ 𝑓𝑃(𝑥) ∨ 𝑓𝑃(𝑦),

𝜇𝑡
𝑁(𝑥, 𝑦) ≥ 𝑡𝑁(𝑥) ∨ 𝑡𝑁(𝑦), 𝜇𝑖

𝑁(𝑥, 𝑦) ≥ 𝑖𝑁(𝑥) ∨ 𝑖𝑁(𝑦), 𝜇𝑓
𝑁(𝑥, 𝑦) ≤ 𝑓𝑁(𝑥) ∧ 𝑓𝑁(𝑦),

for all 𝑥, 𝑦 ∈ 𝑉.

Proposition 10. A Bipolar Neutrosophic Digraph generalizes both Neutrosophic Digraphs and classical directed
graphs (digraphs).

Proof : Let ⃗𝐺 = (𝑉 , ⃗𝐸) be a Bipolar Neutrosophic Digraph with vertex membership functions 𝑡𝑃, 𝑖𝑃, 𝑓𝑃, 𝑡𝑁, 𝑖𝑁, 𝑓𝑁
and edge membership functions 𝜇𝑡

𝑃, 𝜇𝑖
𝑃, 𝜇𝑓

𝑃, 𝜇𝑡
𝑁, 𝜇𝑖

𝑁, 𝜇𝑓
𝑁. We analyze its relationships with Neutrosophic Digraphs

and classical digraphs:

A Neutrosophic Digraph 𝐺 = (𝑉 , 𝐴, 𝑇𝑉, 𝐼𝑉, 𝐹𝑉, 𝑇𝐴, 𝐼𝐴, 𝐹𝐴) is obtained by restricting the membership functions
of ⃗𝐺 as follows:

𝑇𝑉(𝑣) = 𝑡𝑃(𝑣), 𝐼𝑉(𝑣) = 𝑖𝑃(𝑣), 𝐹𝑉(𝑣) = 𝑓𝑃(𝑣),
𝑇𝐴(𝑥, 𝑦) = 𝜇𝑡

𝑃(𝑥, 𝑦), 𝐼𝐴(𝑥, 𝑦) = 𝜇𝑖
𝑃(𝑥, 𝑦), 𝐹𝐴(𝑥, 𝑦) = 𝜇𝑓

𝑃(𝑥, 𝑦).
This restriction maps the positive components of the Bipolar Neutrosophic Digraph onto the membership
functions of the Neutrosophic Digraph. The negative components 𝑡𝑁, 𝑖𝑁, 𝑓𝑁 and 𝜇𝑡

𝑁, 𝜇𝑖
𝑁, 𝜇𝑓

𝑁 are omitted, thus
reducing the structure to a standard Neutrosophic Digraph.

A classical digraph ⃗𝐺𝐶 = (𝑉 , 𝐴) is obtained by further restricting the membership functions:
𝑡𝑃(𝑣) = 1, 𝑖𝑃(𝑣) = 0, 𝑓𝑃(𝑣) = 0, 𝑡𝑁(𝑣) = 0, 𝑖𝑁(𝑣) = 0, 𝑓𝑁(𝑣) = 0,

𝜇𝑡
𝑃(𝑥, 𝑦) = 1, 𝜇𝑖

𝑃(𝑥, 𝑦) = 0, 𝜇𝑓
𝑃(𝑥, 𝑦) = 0, 𝜇𝑡

𝑁(𝑥, 𝑦) = 0, 𝜇𝑖
𝑁(𝑥, 𝑦) = 0, 𝜇𝑓

𝑁(𝑥, 𝑦) = 0,
for all vertices 𝑣 ∈ 𝑉 and arcs (𝑥, 𝑦) ∈ 𝐴. This ensures that every arc (𝑥, 𝑦) ∈ ⃗𝐸 has maximum truth-membership
and no indeterminacy or falsity, reducing the Bipolar Neutrosophic Digraph to a classical directed graph.

The Bipolar Neutrosophic Digraph includes both positive and negative components, which can independently
represent truth, indeterminacy, and falsity across the range [0, 1] (positive) and [−1, 0] (negative). By allowing
both positive and negative evaluations, the Bipolar Neutrosophic Digraph extends the expressive power of the
Neutrosophic Digraph and classical digraphs.

Hence, the Bipolar Neutrosophic Digraph generalizes both Neutrosophic Digraphs and classical digraphs. �

2.4 | Rough Neutrosophic Digraph
The definition of the Rough Neutrosophic Digraph is presented below. This graph concept extends the principles
of Rough Graphs to Neutrosophic Digraphs [110, 70].

Definition 11. [95] Let 𝑋 be the universe of discourse, and let 𝑅 ⊆ 𝑋 × 𝑋 be an equivalence relation (or
an indiscernibility relation) on 𝑋, partitioning 𝑋 into equivalence classes. For any subset 𝑈 ⊆ 𝑋, the lower
approximation 𝑈 and the upper approximation 𝑈 are defined as follows:

1. Lower Approximation 𝑈:
𝑈 = {𝑥 ∈ 𝑋 ∣ 𝑅(𝑥) ⊆ 𝑈}

This is the set of all elements in 𝑋 that certainly belong to 𝑈 based on the equivalence classes defined by 𝑅.
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2. Upper Approximation 𝑈:
𝑈 = {𝑥 ∈ 𝑋 ∣ 𝑅(𝑥) ∩ 𝑈 ≠ ∅}

This set contains all elements in 𝑋 that possibly belong to 𝑈.

The pair (𝑈, 𝑈) constitutes a rough set representation of 𝑈, where 𝑈 ⊆ 𝑈 ⊆ 𝑈.

Definition 12 (Rough Neutrosophic Digraph). [110, 70] A Rough Neutrosophic Digraph is defined on a non-empty
set of vertices 𝑉 ∗ as a 4-tuple 𝐺 = (𝑅, 𝑅𝑉, 𝑆, 𝑆𝐸), where:

• 𝑅 is an equivalence relation on the set 𝑉 ∗.

• 𝑆 is an equivalence relation on the set of directed edges 𝐸∗ ⊆ 𝑉 ∗ × 𝑉 ∗.

• 𝑅𝑉 = (𝑅𝑉, 𝑅𝑉) is a rough neutrosophic set over 𝑉 ∗, where:

– 𝑅𝑉 is the lower approximation of the neutrosophic set,

– 𝑅𝑉 is the upper approximation of the neutrosophic set.

• 𝑆𝐸 = (𝑆𝐸, 𝑆𝐸) is a rough neutrosophic relation over 𝐸∗, where:

– 𝑆𝐸 is the lower approximation of the neutrosophic relation,

– 𝑆𝐸 is the upper approximation of the neutrosophic relation.

The rough neutrosophic digraph is represented as two digraphs:

• 𝐺 = (𝑅𝑉, 𝑆𝐸): The lower approximate neutrosophic digraph,

• 𝐺 = (𝑅𝑉, 𝑆𝐸): The upper approximate neutrosophic digraph.

Conditions for Membership Functions: For all 𝑥, 𝑦 ∈ 𝑉 ∗, the membership functions must satisfy:

𝜇𝑆𝐸
(𝑥, 𝑦) ≤ min{𝜇𝑅𝑉

(𝑥), 𝜇𝑅𝑉
(𝑦)},

𝜎𝑆𝐸
(𝑥, 𝑦) ≤ min{𝜎𝑅𝑉

(𝑥), 𝜎𝑅𝑉
(𝑦)},

𝜆𝑆𝐸
(𝑥, 𝑦) ≤ max{𝜆𝑅𝑉

(𝑥), 𝜆𝑅𝑉
(𝑦)},

where 𝜇, 𝜎, and 𝜆 represent the degree of membership, the degree of indeterminacy, and the degree of falsity,
respectively.

Proposition 13. The Rough Neutrosophic Digraph can be transformed into a Neutrosophic Digraph.

Proof : Let 𝐺 = (𝑅, 𝑅𝑉, 𝑆, 𝑆𝐸) be a Rough Neutrosophic Digraph, where:

• 𝑅 is an equivalence relation on the vertex set 𝑉 ∗.

• 𝑆 is an equivalence relation on the edge set 𝐸∗ ⊆ 𝑉 ∗ × 𝑉 ∗.

• 𝑅𝑉 = (𝑅𝑉, 𝑅𝑉) is a rough neutrosophic set over 𝑉 ∗, with 𝑅𝑉 and 𝑅𝑉 representing the lower and upper
approximations, respectively.

• 𝑆𝐸 = (𝑆𝐸, 𝑆𝐸) is a rough neutrosophic relation over 𝐸∗, with 𝑆𝐸 and 𝑆𝐸 representing the lower and
upper approximations, respectively.

Define a mapping that consolidates the rough neutrosophic structure into a neutrosophic structure. For each
vertex 𝑥 ∈ 𝑉 ∗, let:

𝑇𝑉(𝑥) =
𝑇𝑅𝑉

(𝑥) + 𝑇𝑅𝑉
(𝑥)

2
, 𝐼𝑉(𝑥) =

𝐼𝑅𝑉
(𝑥) + 𝐼𝑅𝑉

(𝑥)
2

, 𝐹𝑉(𝑥) =
𝐹𝑅𝑉

(𝑥) + 𝐹𝑅𝑉
(𝑥)

2
.

For each directed edge (𝑥, 𝑦) ∈ 𝐸∗, let:

𝑇𝐴(𝑥, 𝑦) =
𝑇𝑆𝐸

(𝑥, 𝑦) + 𝑇𝑆𝐸
(𝑥, 𝑦)

2
, 𝐼𝐴(𝑥, 𝑦) =

𝐼𝑆𝐸
(𝑥, 𝑦) + 𝐼𝑆𝐸

(𝑥, 𝑦)
2

, 𝐹𝐴(𝑥, 𝑦) =
𝐹𝑆𝐸

(𝑥, 𝑦) + 𝐹𝑆𝐸
(𝑥, 𝑦)

2
.
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This mapping ensures that each vertex and edge in the Rough Neutrosophic Digraph is assigned a single
membership degree in the neutrosophic framework.

For vertices 𝑥 ∈ 𝑉 ∗:

𝑇𝑉(𝑥) + 𝐼𝑉(𝑥) + 𝐹𝑉(𝑥) =
𝑇𝑅𝑉

(𝑥) + 𝑇𝑅𝑉
(𝑥)

2
+

𝐼𝑅𝑉
(𝑥) + 𝐼𝑅𝑉

(𝑥)
2

+
𝐹𝑅𝑉

(𝑥) + 𝐹𝑅𝑉
(𝑥)

2
.

Since 𝑇𝑅𝑉
(𝑥) + 𝐼𝑅𝑉

(𝑥) + 𝐹𝑅𝑉
(𝑥) ≤ 3 and 𝑇𝑅𝑉

(𝑥) + 𝐼𝑅𝑉
(𝑥) + 𝐹𝑅𝑉

(𝑥) ≤ 3, it follows that:

𝑇𝑉(𝑥) + 𝐼𝑉(𝑥) + 𝐹𝑉(𝑥) ≤ 3.

For edges (𝑥, 𝑦) ∈ 𝐸∗:
𝑇𝐴(𝑥, 𝑦) ≤ min(𝑇𝑉(𝑥), 𝑇𝑉(𝑦)),

𝐼𝐴(𝑥, 𝑦) ≥ max(𝐼𝑉(𝑥), 𝐼𝑉(𝑦)),

𝐹𝐴(𝑥, 𝑦) ≥ max(𝐹𝑉(𝑥), 𝐹𝑉(𝑦)).

These conditions hold due to the definitions of 𝑆𝐸 and 𝑆𝐸 in the rough neutrosophic framework.

Thus, the Rough Neutrosophic Digraph 𝐺 is transformed into a Neutrosophic Digraph

𝐺′ = (𝑉 , 𝐴, 𝑇𝑉, 𝐼𝑉, 𝐹𝑉, 𝑇𝐴, 𝐼𝐴, 𝐹𝐴)

. �

3 | Result: Some Graph of Turiyam Neutrosophic Directed Graphs and Penta-
partitioned Neutrosophic Directed Graphs

In this section, the results of this paper and the definitions of related concepts are presented.

3.1 | Basic Uncertain Digraph (with Review)
The definitions of the base Turiyam Neutrosophic Directed Graph and Pentapartitioned Neutrosophic Directed
Graph are presented below. These graphs will be extended using the concepts of bipolar graphs and rough
graphs.

Definition 14. A Turiyam Neutrosophic Directed Graph is an extension of the Turiyam Neutrosophic Graph con-
cept to directed graphs, incorporating four membership degrees—truth, indeterminacy, falsity, and liberation—for
each vertex and directed edge.

Let ⃗𝐺 = (𝑉 , 𝐸) be a directed graph, where:

• 𝑉 is a non-empty finite set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of directed edges.
Vertex Membership Functions Each vertex 𝑣 ∈ 𝑉 is associated with a quadruple of membership degrees:

• 𝑡(𝑣) ∈ [0, 1]: truth-membership degree.

• 𝑖𝑣(𝑣) ∈ [0, 1]: indeterminacy-membership degree.

• 𝑓𝑣(𝑣) ∈ [0, 1]: falsity-membership degree.

• 𝑙𝑣(𝑣) ∈ [0, 1]: liberation-membership degree.

These degrees satisfy:

𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4, ∀𝑣 ∈ 𝑉 .
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Edge Membership Functions Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is associated with a quadruple of membership
degrees:

• 𝑡(𝑒) ∈ [0, 1]: truth-membership degree.

• 𝑖𝑣(𝑒) ∈ [0, 1]: indeterminacy-membership degree.

• 𝑓𝑣(𝑒) ∈ [0, 1]: falsity-membership degree.

• 𝑙𝑣(𝑒) ∈ [0, 1]: liberation-membership degree.

These degrees satisfy the following conditions:

(1) Truth-Membership Degree:
𝑡(𝑒) ≤ min{𝑡(𝑢), 𝑡(𝑣)}.

(2) Indeterminacy-Membership Degree:

𝑖𝑣(𝑒) ≥ max{𝑖𝑣(𝑢), 𝑖𝑣(𝑣)}.

(3) Falsity-Membership Degree:
𝑓𝑣(𝑒) ≥ max{𝑓𝑣(𝑢), 𝑓𝑣(𝑣)}.

(4) Liberation-Membership Degree:

𝑙𝑣(𝑒) ≥ max{𝑙𝑣(𝑢), 𝑙𝑣(𝑣)}.

Additionally, the sum of the membership degrees for each edge satisfies:

𝑡(𝑒) + 𝑖𝑣(𝑒) + 𝑓𝑣(𝑒) + 𝑙𝑣(𝑒) ≤ 4, ∀𝑒 ∈ 𝐸.

Theorem 15. The Turiyam Neutrosophic Digraph generalizes the Neutrosophic Digraph.

Proof : Let 𝐺 = (𝑉 , 𝐴, 𝑇𝑉, 𝐼𝑉, 𝐹𝑉, 𝑇𝐴, 𝐼𝐴, 𝐹𝐴) be a Neutrosophic Digraph, where each vertex 𝑣 ∈ 𝑉 and each arc
𝑎 ∈ 𝐴 are characterized by the membership degrees (𝑇 , 𝐼, 𝐹 ) satisfying:

𝑇 (𝑣) + 𝐼(𝑣) + 𝐹(𝑣) ≤ 3, 𝑇 (𝑎) + 𝐼(𝑎) + 𝐹(𝑎) ≤ 3.

Now consider a Turiyam Neutrosophic Digraph 𝐺′ = (𝑉 , 𝐴, 𝑡𝑉, 𝑖𝑣𝑉, 𝑓𝑣𝑉, 𝑙𝑣𝑉, 𝑡𝐴, 𝑖𝑣𝐴, 𝑓𝑣𝐴, 𝑙𝑣𝐴), where each vertex
𝑣 ∈ 𝑉 and each arc 𝑎 ∈ 𝐴 are characterized by the membership degrees (𝑡, 𝑖𝑣, 𝑓𝑣, 𝑙𝑣) satisfying:

𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4, 𝑡(𝑎) + 𝑖𝑣(𝑎) + 𝑓𝑣(𝑎) + 𝑙𝑣(𝑎) ≤ 4.

The Neutrosophic Digraph can be obtained as a special case of the Turiyam Neutrosophic Digraph by setting
𝑙𝑣(𝑣) = 𝑙𝑣(𝑎) = 0, thus reducing the Turiyam membership functions to the Neutrosophic membership functions.
Therefore, the Turiyam Neutrosophic Digraph is a generalization of the Neutrosophic Digraph. �

Theorem 16. A Turiyam Neutrosophic Directed Graph reduces to a Turiyam Neutrosophic Graph when made
undirected.

Proof : Let ⃗𝐺 = (𝑉 , 𝐸) be a Turiyam Neutrosophic Directed Graph, where:

• Each vertex 𝑣 ∈ 𝑉 has membership degrees 𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣) satisfying:

𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4.

• Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 has membership degrees 𝑡(𝑒), 𝑖𝑣(𝑒), 𝑓𝑣(𝑒), 𝑙𝑣(𝑒) satisfying:

𝑡(𝑒) + 𝑖𝑣(𝑒) + 𝑓𝑣(𝑒) + 𝑙𝑣(𝑒) ≤ 4.
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To construct an undirected graph 𝐺 = (𝑉 , 𝐸′), define 𝐸′ such that:
(𝑢, 𝑣) ∈ 𝐸′ ⟺ (𝑢, 𝑣) ∈ 𝐸 or (𝑣, 𝑢) ∈ 𝐸.

For each edge {𝑢, 𝑣} ∈ 𝐸′, the membership degrees are given by:
𝑡({𝑢, 𝑣}) = max{𝑡((𝑢, 𝑣)), 𝑡((𝑣, 𝑢))},

𝑖𝑣({𝑢, 𝑣}) = min{𝑖𝑣((𝑢, 𝑣)), 𝑖𝑣((𝑣, 𝑢))},
𝑓𝑣({𝑢, 𝑣}) = max{𝑓𝑣((𝑢, 𝑣)), 𝑓𝑣((𝑣, 𝑢))},
𝑙𝑣({𝑢, 𝑣}) = max{𝑙𝑣((𝑢, 𝑣)), 𝑙𝑣((𝑣, 𝑢))}.

These degrees satisfy:
𝑡({𝑢, 𝑣}) + 𝑖𝑣({𝑢, 𝑣}) + 𝑓𝑣({𝑢, 𝑣}) + 𝑙𝑣({𝑢, 𝑣}) ≤ 4.

The resulting graph 𝐺 is a Turiyam Neutrosophic Graph. Thus, a Turiyam Neutrosophic Directed Graph reduces
to a Turiyam Neutrosophic Graph when made undirected. �

Theorem 17. A Turiyam Neutrosophic Directed Graph generalizes a Directed Graph.

Proof : Let ⃗𝐺 = (𝑉 , 𝐸) be a directed graph where:

• 𝑉 is the set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of directed edges.

Now consider a Turiyam Neutrosophic Directed Graph ⃗𝐺′ = (𝑉 , 𝐸), where:

• Each vertex 𝑣 ∈ 𝑉 is assigned membership degrees 𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣) such that:
𝑡(𝑣) = 1, 𝑖𝑣(𝑣) = 𝑓𝑣(𝑣) = 𝑙𝑣(𝑣) = 0.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned membership degrees 𝑡(𝑒), 𝑖𝑣(𝑒), 𝑓𝑣(𝑒), 𝑙𝑣(𝑒) such that:
𝑡(𝑒) = 1, 𝑖𝑣(𝑒) = 𝑓𝑣(𝑒) = 𝑙𝑣(𝑒) = 0.

Under these assignments, the Turiyam Neutrosophic Directed Graph ⃗𝐺′ becomes equivalent to the original
directed graph ⃗𝐺. Thus, the Turiyam Neutrosophic Directed Graph generalizes a Directed Graph. �

Definition 18. A Pentapartitioned Neutrosophic Directed Graph extends the neutrosophic graph framework to
directed graphs with five membership degrees—truth, contradiction, ignorance, unknown, and falsity—for each
vertex and directed edge.

Let ⃗𝐺 = (𝑉 , 𝐸) be a directed graph, where:

• 𝑉 is a non-empty finite set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of directed edges.
Vertex Membership Functions Each vertex 𝑣 ∈ 𝑉 is associated with a quintuple of membership degrees:

• 𝑇 (𝑣) ∈ [0, 1]: truth-membership degree.

• 𝐶(𝑣) ∈ [0, 1]: contradiction-membership degree.

• 𝑅(𝑣) ∈ [0, 1]: ignorance-membership degree.

• 𝑈(𝑣) ∈ [0, 1]: unknown-membership degree.

• 𝐹(𝑣) ∈ [0, 1]: falsity-membership degree.

These degrees satisfy:

𝑇 (𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5, ∀𝑣 ∈ 𝑉 .
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Edge Membership Functions Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is associated with a quintuple of membership
degrees:

• 𝑇 (𝑒) ∈ [0, 1]: truth-membership degree.

• 𝐶(𝑒) ∈ [0, 1]: contradiction-membership degree.

• 𝑅(𝑒) ∈ [0, 1]: ignorance-membership degree.

• 𝑈(𝑒) ∈ [0, 1]: unknown-membership degree.

• 𝐹(𝑒) ∈ [0, 1]: falsity-membership degree.

These degrees satisfy the following conditions:

(1) Truth-Membership Degree:
𝑇 (𝑒) ≤ min{𝑇 (𝑢), 𝑇 (𝑣)}.

(2) Contradiction-Membership Degree:

𝐶(𝑒) ≤ min{𝐶(𝑢), 𝐶(𝑣)}.

(3) Ignorance-Membership Degree:

𝑅(𝑒) ≥ max{𝑅(𝑢), 𝑅(𝑣)}.

(4) Unknown-Membership Degree:
𝑈(𝑒) ≥ max{𝑈(𝑢), 𝑈(𝑣)}.

(5) Falsity-Membership Degree:
𝐹(𝑒) ≥ max{𝐹(𝑢), 𝐹(𝑣)}.

Additionally, the sum of the membership degrees for each edge satisfies:

𝑇 (𝑒) + 𝐶(𝑒) + 𝑅(𝑒) + 𝑈(𝑒) + 𝐹(𝑒) ≤ 5, ∀𝑒 ∈ 𝐸.

Theorem 19. The Pentapartitioned Neutrosophic Directed Graph generalizes both the Turiyam Neutrosophic
Digraph and the Neutrosophic Digraph.

Proof : Let 𝐺 = (𝑉 , 𝐴, 𝑡𝑉, 𝑖𝑣𝑉, 𝑓𝑣𝑉, 𝑙𝑣𝑉, 𝑡𝐴, 𝑖𝑣𝐴, 𝑓𝑣𝐴, 𝑙𝑣𝐴) be a Turiyam Neutrosophic Digraph, where:

𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4, 𝑡(𝑎) + 𝑖𝑣(𝑎) + 𝑓𝑣(𝑎) + 𝑙𝑣(𝑎) ≤ 4.

Now consider a Pentapartitioned Neutrosophic Directed Graph

𝐺′ = (𝑉 , 𝐴, 𝑇𝑉, 𝐶𝑉, 𝑅𝑉, 𝑈𝑉, 𝐹𝑉, 𝑇𝐴, 𝐶𝐴, 𝑅𝐴, 𝑈𝐴, 𝐹𝐴)

, where:
𝑇 (𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5, 𝑇 (𝑎) + 𝐶(𝑎) + 𝑅(𝑎) + 𝑈(𝑎) + 𝐹(𝑎) ≤ 5.

By setting 𝐶(𝑣) = 𝑅(𝑣) = 𝑈(𝑣) = 0 and 𝐶(𝑎) = 𝑅(𝑎) = 𝑈(𝑎) = 0, the membership functions of 𝐺′ reduce
to those of 𝐺, thus proving that the Pentapartitioned Neutrosophic Directed Graph generalizes the Turiyam
Neutrosophic Digraph.

Additionally, by setting 𝑙𝑣(𝑣) = 𝑙𝑣(𝑎) = 0 and 𝐶(𝑣) = 𝑅(𝑣) = 𝑈(𝑣) = 0, the membership functions of 𝐺′ reduce
to those of the Neutrosophic Digraph. Hence, the Pentapartitioned Neutrosophic Directed Graph generalizes
both the Turiyam Neutrosophic Digraph and the Neutrosophic Digraph. �
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3.2 | Bipolar Turiyam Neutrosophic Digraph
The definitions of the Bipolar Turiyam Neutrosophic Digraph and the Bipolar Pentapartitioned Neutrosophic
Directed Graph are presented below.

Definition 20 (Bipolar Turiyam Neutrosophic Digraph). A Bipolar Turiyam Neutrosophic Digraph is a directed
graph where each vertex and directed edge is characterized by both positive and negative membership degrees
across four aspects: truth, indeterminacy, falsity, and liberation.

Let ⃗𝐺 = (𝑉 , 𝐸) be a directed graph, where:

• 𝑉 is a non-empty finite set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of directed edges.
Vertex Membership Functions Each vertex 𝑣 ∈ 𝑉 is associated with eight membership degrees:

• Positive Membership Degrees:

– 𝑡𝑃(𝑣) ∈ [0, 1]: Positive truth-membership degree.

– 𝑖𝑣𝑃(𝑣) ∈ [0, 1]: Positive indeterminacy-membership degree.

– 𝑓𝑣𝑃(𝑣) ∈ [0, 1]: Positive falsity-membership degree.

– 𝑙𝑣𝑃(𝑣) ∈ [0, 1]: Positive liberation-membership degree.

• Negative Membership Degrees:

– 𝑡𝑁(𝑣) ∈ [−1, 0]: Negative truth-membership degree.

– 𝑖𝑣𝑁(𝑣) ∈ [−1, 0]: Negative indeterminacy-membership degree.

– 𝑓𝑣𝑁(𝑣) ∈ [−1, 0]: Negative falsity-membership degree.

– 𝑙𝑣𝑁(𝑣) ∈ [−1, 0]: Negative liberation-membership degree.

These degrees satisfy:

𝑡𝑃(𝑣) + 𝑖𝑣𝑃(𝑣) + 𝑓𝑣𝑃(𝑣) + 𝑙𝑣𝑃(𝑣) ≤ 4,

𝑡𝑁(𝑣) + 𝑖𝑣𝑁(𝑣) + 𝑓𝑣𝑁(𝑣) + 𝑙𝑣𝑁(𝑣) ≥ −4.
Edge Membership Functions Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is associated with eight membership degrees:

• Positive Membership Degrees:

– 𝑡𝑃(𝑒) ∈ [0, 1]: Positive truth-membership degree.

– 𝑖𝑣𝑃(𝑒) ∈ [0, 1]: Positive indeterminacy-membership degree.

– 𝑓𝑣𝑃(𝑒) ∈ [0, 1]: Positive falsity-membership degree.

– 𝑙𝑣𝑃(𝑒) ∈ [0, 1]: Positive liberation-membership degree.

• Negative Membership Degrees:

– 𝑡𝑁(𝑒) ∈ [−1, 0]: Negative truth-membership degree.

– 𝑖𝑣𝑁(𝑒) ∈ [−1, 0]: Negative indeterminacy-membership degree.

– 𝑓𝑣𝑁(𝑒) ∈ [−1, 0]: Negative falsity-membership degree.

– 𝑙𝑣𝑁(𝑒) ∈ [−1, 0]: Negative liberation-membership degree.

These degrees satisfy the following conditions:
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(1) For Positive Membership Degrees:

𝑡𝑃(𝑒) ≤ min{𝑡𝑃(𝑢), 𝑡𝑃(𝑣)},
𝑖𝑣𝑃(𝑒) ≤ min{𝑖𝑣𝑃(𝑢), 𝑖𝑣𝑃(𝑣)},
𝑓𝑣𝑃(𝑒) ≥ max{𝑓𝑣𝑃(𝑢), 𝑓𝑣𝑃(𝑣)},
𝑙𝑣𝑃(𝑒) ≥ max{𝑙𝑣𝑃(𝑢), 𝑙𝑣𝑃(𝑣)}.

(2) For Negative Membership Degrees:

𝑡𝑁(𝑒) ≥ max{𝑡𝑁(𝑢), 𝑡𝑁(𝑣)},
𝑖𝑣𝑁(𝑒) ≥ max{𝑖𝑣𝑁(𝑢), 𝑖𝑣𝑁(𝑣)},
𝑓𝑣𝑁(𝑒) ≤ min{𝑓𝑣𝑁(𝑢), 𝑓𝑣𝑁(𝑣)},
𝑙𝑣𝑁(𝑒) ≤ min{𝑙𝑣𝑁(𝑢), 𝑙𝑣𝑁(𝑣)}.

Additionally, the sums of the membership degrees satisfy:

𝑡𝑃(𝑒) + 𝑖𝑣𝑃(𝑒) + 𝑓𝑣𝑃(𝑒) + 𝑙𝑣𝑃(𝑒) ≤ 4,

𝑡𝑁(𝑒) + 𝑖𝑣𝑁(𝑒) + 𝑓𝑣𝑁(𝑒) + 𝑙𝑣𝑁(𝑒) ≥ −4.

Theorem 21. A Bipolar Neutrosophic Turiyam Digraph generalizes a Bipolar Neutrosophic Digraph.

Proof : Let ⃗𝐺 = (𝑉 , 𝐸, 𝑡𝑃, 𝑖𝑣𝑃, 𝑓𝑣𝑃, 𝑡𝑁, 𝑖𝑣𝑁, 𝑓𝑣𝑁) be a Bipolar Neutrosophic Digraph, where:

𝑡𝑃(𝑣) + 𝑖𝑣𝑃(𝑣) + 𝑓𝑣𝑃(𝑣) ≤ 3, 𝑡𝑁(𝑣) + 𝑖𝑣𝑁(𝑣) + 𝑓𝑣𝑁(𝑣) ≥ −3, ∀𝑣 ∈ 𝑉 ,

and similar conditions hold for edges.

Consider a Bipolar Neutrosophic Turiyam Digraph ⃗𝐺′ = (𝑉 , 𝐸, 𝑡𝑃, 𝑖𝑣𝑃, 𝑓𝑣𝑃, 𝑙𝑣𝑃, 𝑡𝑁, 𝑖𝑣𝑁, 𝑓𝑣𝑁, 𝑙𝑣𝑁), where:

𝑡𝑃(𝑣) + 𝑖𝑣𝑃(𝑣) + 𝑓𝑣𝑃(𝑣) + 𝑙𝑣𝑃(𝑣) ≤ 4, 𝑡𝑁(𝑣) + 𝑖𝑣𝑁(𝑣) + 𝑓𝑣𝑁(𝑣) + 𝑙𝑣𝑁(𝑣) ≥ −4, ∀𝑣 ∈ 𝑉 .

By setting 𝑙𝑣𝑃(𝑣) = 𝑙𝑣𝑁(𝑣) = 0, the Bipolar Neutrosophic Turiyam Digraph reduces to a Bipolar Neutrosophic
Digraph. Hence, it generalizes the Bipolar Neutrosophic Digraph. �

Theorem 22. A Bipolar Neutrosophic Turiyam Digraph generalizes a Neutrosophic Turiyam Digraph.

Proof : Let ⃗𝐺 = (𝑉 , 𝐸, 𝑡, 𝑖𝑣, 𝑓𝑣, 𝑙𝑣) be a Neutrosophic Turiyam Digraph, where:

𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4, ∀𝑣 ∈ 𝑉 ,

and similar conditions hold for edges.

Consider a Bipolar Neutrosophic Turiyam Digraph ⃗𝐺′ = (𝑉 , 𝐸, 𝑡𝑃, 𝑖𝑣𝑃, 𝑓𝑣𝑃, 𝑙𝑣𝑃, 𝑡𝑁, 𝑖𝑣𝑁, 𝑓𝑣𝑁, 𝑙𝑣𝑁), where:

𝑡𝑃(𝑣) + 𝑖𝑣𝑃(𝑣) + 𝑓𝑣𝑃(𝑣) + 𝑙𝑣𝑃(𝑣) ≤ 4, 𝑡𝑁(𝑣) + 𝑖𝑣𝑁(𝑣) + 𝑓𝑣𝑁(𝑣) + 𝑙𝑣𝑁(𝑣) ≥ −4, ∀𝑣 ∈ 𝑉 .

By setting 𝑡𝑁(𝑣) = 𝑖𝑣𝑁(𝑣) = 𝑓𝑣𝑁(𝑣) = 𝑙𝑣𝑁(𝑣) = 0, the Bipolar Neutrosophic Turiyam Digraph reduces to a
Neutrosophic Turiyam Digraph. Hence, it generalizes the Neutrosophic Turiyam Digraph. �

Theorem 23. A Bipolar Neutrosophic Turiyam Digraph generalizes a Directed Graph.
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Proof : Let ⃗𝐺 = (𝑉 , 𝐸) be a directed graph where each vertex and edge is unweighted. Consider a Bipolar
Neutrosophic Turiyam Digraph ⃗𝐺′ = (𝑉 , 𝐸, 𝑡𝑃, 𝑖𝑣𝑃, 𝑓𝑣𝑃, 𝑙𝑣𝑃, 𝑡𝑁, 𝑖𝑣𝑁, 𝑓𝑣𝑁, 𝑙𝑣𝑁), where:

𝑡𝑃(𝑣) = 1, 𝑖𝑣𝑃(𝑣) = 𝑓𝑣𝑃(𝑣) = 𝑙𝑣𝑃(𝑣) = 0, 𝑡𝑁(𝑣) = 𝑖𝑣𝑁(𝑣) = 𝑓𝑣𝑁(𝑣) = 𝑙𝑣𝑁(𝑣) = 0, ∀𝑣 ∈ 𝑉 ,
and similar conditions hold for edges.

Under these assignments, ⃗𝐺′ is equivalent to ⃗𝐺. Hence, the Bipolar Neutrosophic Turiyam Digraph generalizes a
Directed Graph. �

Definition 24. A Bipolar Pentapartitioned Neutrosophic Directed Graph (BPNDG) extends the framework
of directed graphs by associating both positive and negative membership degrees across five aspects: truth,
contradiction, ignorance, unknown, and falsity.

Let ⃗𝐺 = (𝑉 , 𝐸) be a directed graph, where:

• 𝑉: A non-empty finite set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉: The set of directed edges.
Vertex Membership Functions Each vertex 𝑣 ∈ 𝑉 is associated with 10 membership degrees:

• Positive Membership Degrees:
𝑇𝑃(𝑣), 𝐶𝑃(𝑣), 𝑅𝑃(𝑣), 𝑈𝑃(𝑣), 𝐹𝑃(𝑣) ∈ [0, 1],

where:

– 𝑇𝑃(𝑣): Positive truth-membership.

– 𝐶𝑃(𝑣): Positive contradiction-membership.

– 𝑅𝑃(𝑣): Positive ignorance-membership.

– 𝑈𝑃(𝑣): Positive unknown-membership.

– 𝐹𝑃(𝑣): Positive falsity-membership.

• Negative Membership Degrees:
𝑇𝑁(𝑣), 𝐶𝑁(𝑣), 𝑅𝑁(𝑣), 𝑈𝑁(𝑣), 𝐹𝑁(𝑣) ∈ [−1, 0],

where:

– 𝑇𝑁(𝑣): Negative truth-membership.

– 𝐶𝑁(𝑣): Negative contradiction-membership.

– 𝑅𝑁(𝑣): Negative ignorance-membership.

– 𝑈𝑁(𝑣): Negative unknown-membership.

– 𝐹𝑁(𝑣): Negative falsity-membership.

These degrees satisfy:
𝑇𝑃(𝑣) + 𝐶𝑃(𝑣) + 𝑅𝑃(𝑣) + 𝑈𝑃(𝑣) + 𝐹𝑃(𝑣) ≤ 5,
𝑇𝑁(𝑣) + 𝐶𝑁(𝑣) + 𝑅𝑁(𝑣) + 𝑈𝑁(𝑣) + 𝐹𝑁(𝑣) ≥ −5.

Edge Membership Functions Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is associated with 10 membership degrees:

• Positive Membership Degrees:
𝑇𝑃(𝑒), 𝐶𝑃(𝑒), 𝑅𝑃(𝑒), 𝑈𝑃(𝑒), 𝐹𝑃(𝑒) ∈ [0, 1],

where the definitions are analogous to the vertex membership functions.

• Negative Membership Degrees:
𝑇𝑁(𝑒), 𝐶𝑁(𝑒), 𝑅𝑁(𝑒), 𝑈𝑁(𝑒), 𝐹𝑁(𝑒) ∈ [−1, 0],

where the definitions are analogous to the vertex membership functions.
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These degrees satisfy:
𝑇𝑃(𝑒) + 𝐶𝑃(𝑒) + 𝑅𝑃(𝑒) + 𝑈𝑃(𝑒) + 𝐹𝑃(𝑒) ≤ 5,
𝑇𝑁(𝑒) + 𝐶𝑁(𝑒) + 𝑅𝑁(𝑒) + 𝑈𝑁(𝑒) + 𝐹𝑁(𝑒) ≥ −5.

Theorem 25. A Bipolar Pentapartitioned Neutrosophic Directed Graph (BPNDG) can be transformed into:

(1) A Bipolar Neutrosophic Directed Graph (BNDG) by setting certain membership degrees to zero and
reinterpreting others.

(2) A Bipolar Turiyam Neutrosophic Directed Graph (BTDG) by merging specific membership degrees and
adjusting the sum conditions accordingly.

Proof : 1. Transformation from BPNDG to BNDG

Let 𝐺 = (𝑉 , 𝐸) be a Bipolar Pentapartitioned Neutrosophic Directed Graph. Each vertex 𝑣 ∈ 𝑉 has positive
and negative membership degrees:

• Positive Membership Degrees:

– 𝑇𝑃(𝑣) ∈ [0, 1]: Positive truth-membership degree.

– 𝐶𝑃(𝑣) ∈ [0, 1]: Positive contradiction-membership degree.

– 𝑅𝑃(𝑣) ∈ [0, 1]: Positive ignorance-membership degree.

– 𝑈𝑃(𝑣) ∈ [0, 1]: Positive unknown-membership degree.

– 𝐹𝑃(𝑣) ∈ [0, 1]: Positive falsity-membership degree.

• Negative Membership Degrees:

– 𝑇𝑁(𝑣) ∈ [−1, 0]: Negative truth-membership degree.

– 𝐶𝑁(𝑣) ∈ [−1, 0]: Negative contradiction-membership degree.

– 𝑅𝑁(𝑣) ∈ [−1, 0]: Negative ignorance-membership degree.

– 𝑈𝑁(𝑣) ∈ [−1, 0]: Negative unknown-membership degree.

– 𝐹𝑁(𝑣) ∈ [−1, 0]: Negative falsity-membership degree.

These degrees satisfy:

𝑇𝑃(𝑣) + 𝐶𝑃(𝑣) + 𝑅𝑃(𝑣) + 𝑈𝑃(𝑣) + 𝐹𝑃(𝑣) ≤ 5,
𝑇𝑁(𝑣) + 𝐶𝑁(𝑣) + 𝑅𝑁(𝑣) + 𝑈𝑁(𝑣) + 𝐹𝑁(𝑣) ≥ −5.

Similarly for edges.

To transform 𝐺 into a Bipolar Neutrosophic Directed Graph, proceed as follows:

• Set Contradiction and Unknown Membership Degrees to Zero:
𝐶𝑃(𝑣) = 𝑈𝑃(𝑣) = 0, 𝐶𝑁(𝑣) = 𝑈𝑁(𝑣) = 0, ∀𝑣 ∈ 𝑉 .

Similarly for edges:
𝐶𝑃(𝑒) = 𝑈𝑃(𝑒) = 0, 𝐶𝑁(𝑒) = 𝑈𝑁(𝑒) = 0, ∀𝑒 ∈ 𝐸.

• Rename Ignorance Membership Degrees as Indeterminacy Membership Degrees:
𝑖𝑃(𝑣) = 𝑅𝑃(𝑣), 𝑖𝑁(𝑣) = 𝑅𝑁(𝑣), ∀𝑣 ∈ 𝑉 .

Similarly for edges:
𝑖𝑃(𝑒) = 𝑅𝑃(𝑒), 𝑖𝑁(𝑒) = 𝑅𝑁(𝑒), ∀𝑒 ∈ 𝐸.

• Define the Remaining Membership Degrees:
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– Positive degrees: 𝑡𝑃(𝑣), 𝑖𝑃(𝑣), 𝑓𝑃(𝑣).

– Negative degrees: 𝑡𝑁(𝑣), 𝑖𝑁(𝑣), 𝑓𝑁(𝑣).

• Sum Conditions:
𝑡𝑃(𝑣) + 𝑖𝑃(𝑣) + 𝑓𝑃(𝑣) = 𝑇𝑃(𝑣) + 𝑅𝑃(𝑣) + 𝐹𝑃(𝑣) ≤ 5,

𝑡𝑁(𝑣) + 𝑖𝑁(𝑣) + 𝑓𝑁(𝑣) = 𝑇𝑁(𝑣) + 𝑅𝑁(𝑣) + 𝐹𝑁(𝑣) ≥ −5.

• Normalization: To align with the standard Bipolar Neutrosophic Directed Graph, where the sum of
membership degrees is typically considered within [0, 3] for positive degrees and [−3, 0] for negative
degrees, we can normalize the membership degrees:

̃𝑡𝑃(𝑣) = 𝑡𝑃(𝑣)
5

× 3, ̃𝑖𝑃(𝑣) = 𝑖𝑃(𝑣)
5

× 3, ̃𝑓𝑃(𝑣) = 𝑓𝑃(𝑣)
5

× 3.

Similarly for negative degrees:

̃𝑡𝑁(𝑣) = 𝑡𝑁(𝑣)
5

× 3, ̃𝑖𝑁(𝑣) = 𝑖𝑁(𝑣)
5

× 3, ̃𝑓𝑁(𝑣) = 𝑓𝑁(𝑣)
5

× 3.

After normalization, the sum conditions become:
̃𝑡𝑃(𝑣) + ̃𝑖𝑃(𝑣) + ̃𝑓𝑃(𝑣) ≤ 3, ̃𝑡𝑁(𝑣) + ̃𝑖𝑁(𝑣) + ̃𝑓𝑁(𝑣) ≥ −3.

Thus, the Bipolar Pentapartitioned Neutrosophic Directed Graph reduces to a Bipolar Neutrosophic Directed
Graph under these transformations.

2. Transformation from BPNDG to BTDG

To transform 𝐺 into a Bipolar Turiyam Neutrosophic Directed Graph, proceed as follows:

• Merge Contradiction Membership Degrees with Truth Membership Degrees:
𝑡𝑃(𝑣) = 𝑇𝑃(𝑣) + 𝐶𝑃(𝑣), 𝑡𝑁(𝑣) = 𝑇𝑁(𝑣) + 𝐶𝑁(𝑣), ∀𝑣 ∈ 𝑉 .

Similarly for edges:
𝑡𝑃(𝑒) = 𝑇𝑃(𝑒) + 𝐶𝑃(𝑒), 𝑡𝑁(𝑒) = 𝑇𝑁(𝑒) + 𝐶𝑁(𝑒), ∀𝑒 ∈ 𝐸.

• Rename Ignorance and Unknown Membership Degrees:
𝑖𝑣𝑃(𝑣) = 𝑅𝑃(𝑣), 𝑖𝑣𝑁(𝑣) = 𝑅𝑁(𝑣), ∀𝑣 ∈ 𝑉 .

𝑙𝑣𝑃(𝑣) = 𝑈𝑃(𝑣), 𝑙𝑣𝑁(𝑣) = 𝑈𝑁(𝑣), ∀𝑣 ∈ 𝑉 .
Similarly for edges.

• Keep Falsity Membership Degrees Unchanged:
𝑓𝑣𝑃(𝑣) = 𝐹𝑃(𝑣), 𝑓𝑣𝑁(𝑣) = 𝐹𝑁(𝑣), ∀𝑣 ∈ 𝑉 .

Similarly for edges.

• Sum Conditions:
𝑡𝑃(𝑣) + 𝑖𝑣𝑃(𝑣) + 𝑓𝑣𝑃(𝑣) + 𝑙𝑣𝑃(𝑣) = 𝑇𝑃(𝑣) + 𝐶𝑃(𝑣) + 𝑅𝑃(𝑣) + 𝐹𝑃(𝑣) + 𝑈𝑃(𝑣) ≤ 5,

𝑡𝑁(𝑣) + 𝑖𝑣𝑁(𝑣) + 𝑓𝑣𝑁(𝑣) + 𝑙𝑣𝑁(𝑣) = 𝑇𝑁(𝑣) + 𝐶𝑁(𝑣) + 𝑅𝑁(𝑣) + 𝐹𝑁(𝑣) + 𝑈𝑁(𝑣) ≥ −5.

• Normalization: To conform to the Bipolar Turiyam Neutrosophic Directed Graph, where the sums of
membership degrees are within [0, 4] and [−4, 0], normalize as:

̃𝑡𝑃(𝑣) = 𝑡𝑃(𝑣)
5

× 4, ̃𝑖𝑣𝑃(𝑣) = 𝑖𝑣𝑃(𝑣)
5

× 4, ̃𝑓𝑣𝑃(𝑣) = 𝑓𝑣𝑃(𝑣)
5

× 4, ̃𝑙𝑣𝑃(𝑣) = 𝑙𝑣𝑃(𝑣)
5

× 4.

Similarly for negative degrees.

After normalization, the sum conditions become:
̃𝑡𝑃(𝑣) + ̃𝑖𝑣𝑃(𝑣) + ̃𝑓𝑣𝑃(𝑣) + ̃𝑙𝑣𝑃(𝑣) ≤ 4, ̃𝑡𝑁(𝑣) + ̃𝑖𝑣𝑁(𝑣) + ̃𝑓𝑣𝑁(𝑣) + ̃𝑙𝑣𝑁(𝑣) ≥ −4.
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Thus, the Bipolar Pentapartitioned Neutrosophic Directed Graph reduces to a Bipolar Turiyam Neutrosophic
Directed Graph under these transformations. �

Theorem 26. A Bipolar Pentapartitioned Neutrosophic Directed Graph (BPNDG) generalizes a Pentapartitioned
Neutrosophic Directed Graph (PNDG).

Proof : Let ⃗𝐺 = (𝑉 , 𝐸, 𝑇𝑃, 𝐶𝑃, 𝑅𝑃, 𝑈𝑃, 𝐹𝑃) be a Pentapartitioned Neutrosophic Directed Graph (PNDG), where:

• Each vertex 𝑣 ∈ 𝑉 is characterized by the positive membership degrees:
𝑇𝑃(𝑣) + 𝐶𝑃(𝑣) + 𝑅𝑃(𝑣) + 𝑈𝑃(𝑣) + 𝐹𝑃(𝑣) ≤ 5, 𝑇𝑃(𝑣), 𝐶𝑃(𝑣), 𝑅𝑃(𝑣), 𝑈𝑃(𝑣), 𝐹𝑃(𝑣) ∈ [0, 1].

• Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 satisfies:
𝑇𝑃(𝑒) + 𝐶𝑃(𝑒) + 𝑅𝑃(𝑒) + 𝑈𝑃(𝑒) + 𝐹𝑃(𝑒) ≤ 5, 𝑇𝑃(𝑒), 𝐶𝑃(𝑒), 𝑅𝑃(𝑒), 𝑈𝑃(𝑒), 𝐹𝑃(𝑒) ∈ [0, 1].

Now, consider a Bipolar Pentapartitioned Neutrosophic Directed Graph
⃗𝐺′ = (𝑉 , 𝐸, 𝑇𝑃, 𝐶𝑃, 𝑅𝑃, 𝑈𝑃, 𝐹𝑃, 𝑇𝑁, 𝐶𝑁, 𝑅𝑁, 𝑈𝑁, 𝐹𝑁)

, where:

• Each vertex 𝑣 ∈ 𝑉 is characterized by both positive and negative membership degrees:
𝑇𝑃(𝑣) + 𝐶𝑃(𝑣) + 𝑅𝑃(𝑣) + 𝑈𝑃(𝑣) + 𝐹𝑃(𝑣) ≤ 5, 𝑇𝑃(𝑣), 𝐶𝑃(𝑣), 𝑅𝑃(𝑣), 𝑈𝑃(𝑣), 𝐹𝑃(𝑣) ∈ [0, 1],
𝑇𝑁(𝑣) + 𝐶𝑁(𝑣) + 𝑅𝑁(𝑣) + 𝑈𝑁(𝑣) + 𝐹𝑁(𝑣) ≥ −5, 𝑇𝑁(𝑣), 𝐶𝑁(𝑣), 𝑅𝑁(𝑣), 𝑈𝑁(𝑣), 𝐹𝑁(𝑣) ∈ [−1, 0].

• Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 satisfies:
𝑇𝑃(𝑒) + 𝐶𝑃(𝑒) + 𝑅𝑃(𝑒) + 𝑈𝑃(𝑒) + 𝐹𝑃(𝑒) ≤ 5, 𝑇𝑃(𝑒), 𝐶𝑃(𝑒), 𝑅𝑃(𝑒), 𝑈𝑃(𝑒), 𝐹𝑃(𝑒) ∈ [0, 1],
𝑇𝑁(𝑒) + 𝐶𝑁(𝑒) + 𝑅𝑁(𝑒) + 𝑈𝑁(𝑒) + 𝐹𝑁(𝑒) ≥ −5, 𝑇𝑁(𝑒), 𝐶𝑁(𝑒), 𝑅𝑁(𝑒), 𝑈𝑁(𝑒), 𝐹𝑁(𝑒) ∈ [−1, 0].

To reduce ⃗𝐺′ to ⃗𝐺, set all negative membership degrees to zero:
𝑇𝑁(𝑣) = 𝐶𝑁(𝑣) = 𝑅𝑁(𝑣) = 𝑈𝑁(𝑣) = 𝐹𝑁(𝑣) = 0, ∀𝑣 ∈ 𝑉 ,
𝑇𝑁(𝑒) = 𝐶𝑁(𝑒) = 𝑅𝑁(𝑒) = 𝑈𝑁(𝑒) = 𝐹𝑁(𝑒) = 0, ∀𝑒 ∈ 𝐸.

Under this transformation, the Bipolar Pentapartitioned Neutrosophic Directed Graph ⃗𝐺′ reduces to the
Pentapartitioned Neutrosophic Directed Graph ⃗𝐺, as the negative membership degrees are eliminated, leaving
only the positive membership degrees.

Thus, the Bipolar Pentapartitioned Neutrosophic Directed Graph generalizes the Pentapartitioned Neutrosophic
Directed Graph. �

3.3 | Rough Digraph
We consider the mathematical structures of the Rough Turiyam Neutrosophic Digraph and the Rough Penta-
partitioned Neutrosophic Directed Graph. The definitions are presented below.

Definition 27 (Rough Turiyam Neutrosophic Digraph). A Rough Turiyam Neutrosophic Digraph combines the
concepts of rough sets and Turiyam Neutrosophic digraphs. It is defined over a universe of discourse 𝑉 ∗ with
equivalence relations to form lower and upper approximations of Turiyam Neutrosophic sets.

Let 𝑉 ∗ be a non-empty finite set of vertices. A Rough Turiyam Neutrosophic Digraph is a quadruple 𝐺 =
(𝑅, 𝑅𝑉, 𝑆, 𝑆𝐸), where:

• 𝑅 is an equivalence relation on 𝑉 ∗.

• 𝑆 is an equivalence relation on the set of directed edges 𝐸∗ ⊆ 𝑉 ∗ × 𝑉 ∗.

• 𝑅𝑉 = (𝑅𝐿, 𝑅𝑈) is a rough Turiyam Neutrosophic set over 𝑉 ∗, where:

– 𝑅𝐿 is the lower approximation of the Turiyam Neutrosophic set.
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– 𝑅𝑈 is the upper approximation of the Turiyam Neutrosophic set.

• 𝑆𝐸 = (𝑆𝐿, 𝑆𝑈) is a rough Turiyam Neutrosophic relation over 𝐸∗, where:

– 𝑆𝐿 is the lower approximation of the Turiyam Neutrosophic relation.

– 𝑆𝑈 is the upper approximation of the Turiyam Neutrosophic relation.
Vertex Membership Functions Each vertex 𝑥 ∈ 𝑉 ∗ has lower and upper approximation membership degrees:

• Lower Approximation Membership Degrees:

– 𝑡𝐿(𝑥) ∈ [0, 1]: Lower truth-membership degree.

– 𝑖𝑣𝐿(𝑥) ∈ [0, 1]: Lower indeterminacy-membership degree.

– 𝑓𝑣𝐿(𝑥) ∈ [0, 1]: Lower falsity-membership degree.

– 𝑙𝑣𝐿(𝑥) ∈ [0, 1]: Lower liberation-membership degree.

• Upper Approximation Membership Degrees:

– 𝑡𝑈(𝑥) ∈ [0, 1]: Upper truth-membership degree.

– 𝑖𝑣𝑈(𝑥) ∈ [0, 1]: Upper indeterminacy-membership degree.

– 𝑓𝑣𝑈(𝑥) ∈ [0, 1]: Upper falsity-membership degree.

– 𝑙𝑣𝑈(𝑥) ∈ [0, 1]: Upper liberation-membership degree.

These degrees satisfy:

𝑡𝐿(𝑥) ≤ 𝑡𝑈(𝑥), 𝑖𝑣𝐿(𝑥) ≤ 𝑖𝑣𝑈(𝑥),
𝑓𝑣𝐿(𝑥) ≤ 𝑓𝑣𝑈(𝑥), 𝑙𝑣𝐿(𝑥) ≤ 𝑙𝑣𝑈(𝑥),
𝑡𝐿(𝑥) + 𝑖𝑣𝐿(𝑥) + 𝑓𝑣𝐿(𝑥) + 𝑙𝑣𝐿(𝑥) ≤ 4,
𝑡𝑈(𝑥) + 𝑖𝑣𝑈(𝑥) + 𝑓𝑣𝑈(𝑥) + 𝑙𝑣𝑈(𝑥) ≤ 4.

Edge Membership Functions Each directed edge 𝑒 = (𝑥, 𝑦) ∈ 𝐸∗ has lower and upper approximation membership
degrees:

• Lower Approximation Membership Degrees:

– 𝑡𝐿(𝑒) ∈ [0, 1]: Lower truth-membership degree.

– 𝑖𝑣𝐿(𝑒) ∈ [0, 1]: Lower indeterminacy-membership degree.

– 𝑓𝑣𝐿(𝑒) ∈ [0, 1]: Lower falsity-membership degree.

– 𝑙𝑣𝐿(𝑒) ∈ [0, 1]: Lower liberation-membership degree.

• Upper Approximation Membership Degrees:

– 𝑡𝑈(𝑒) ∈ [0, 1]: Upper truth-membership degree.

– 𝑖𝑣𝑈(𝑒) ∈ [0, 1]: Upper indeterminacy-membership degree.

– 𝑓𝑣𝑈(𝑒) ∈ [0, 1]: Upper falsity-membership degree.

– 𝑙𝑣𝑈(𝑒) ∈ [0, 1]: Upper liberation-membership degree.

These degrees satisfy:

(1) For Lower Approximations:
𝑡𝐿(𝑒) ≤ min{𝑡𝐿(𝑥), 𝑡𝐿(𝑦)},

𝑖𝑣𝐿(𝑒) ≥ max{𝑖𝑣𝐿(𝑥), 𝑖𝑣𝐿(𝑦)},
𝑓𝑣𝐿(𝑒) ≥ max{𝑓𝑣𝐿(𝑥), 𝑓𝑣𝐿(𝑦)},
𝑙𝑣𝐿(𝑒) ≥ max{𝑙𝑣𝐿(𝑥), 𝑙𝑣𝐿(𝑦)}.
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(2) For Upper Approximations:
𝑡𝑈(𝑒) ≤ min{𝑡𝑈(𝑥), 𝑡𝑈(𝑦)},

𝑖𝑣𝑈(𝑒) ≥ max{𝑖𝑣𝑈(𝑥), 𝑖𝑣𝑈(𝑦)},
𝑓𝑣𝑈(𝑒) ≥ max{𝑓𝑣𝑈(𝑥), 𝑓𝑣𝑈(𝑦)},
𝑙𝑣𝑈(𝑒) ≥ max{𝑙𝑣𝑈(𝑥), 𝑙𝑣𝑈(𝑦)}.

Additionally, the sums of the membership degrees satisfy:

𝑡𝐿(𝑒) + 𝑖𝑣𝐿(𝑒) + 𝑓𝑣𝐿(𝑒) + 𝑙𝑣𝐿(𝑒) ≤ 4,
𝑡𝑈(𝑒) + 𝑖𝑣𝑈(𝑒) + 𝑓𝑣𝑈(𝑒) + 𝑙𝑣𝑈(𝑒) ≤ 4.

Theorem 28. The Rough Turiyam Neutrosophic Digraph generalizes the Rough Neutrosophic Digraph.

Proof : Let 𝐺 = (𝑅, 𝑅𝑉, 𝑆, 𝑆𝐸) be a Rough Turiyam Neutrosophic Digraph, where:

• 𝑅𝑉 = (𝑅𝐿, 𝑅𝑈) consists of lower and upper approximations of Turiyam Neutrosophic sets.

• 𝑆𝐸 = (𝑆𝐿, 𝑆𝑈) consists of lower and upper approximations of Turiyam Neutrosophic relations.

For any vertex 𝑥 ∈ 𝑉 ∗, define:
𝑡𝐿(𝑥) = 𝑇𝐿(𝑥), 𝑡𝑈(𝑥) = 𝑇𝑈(𝑥),

𝑖𝑣𝐿(𝑥) = 𝐼𝐿(𝑥), 𝑖𝑣𝑈(𝑥) = 𝐼𝑈(𝑥),
𝑓𝑣𝐿(𝑥) = 𝐹𝐿(𝑥), 𝑓𝑣𝑈(𝑥) = 𝐹𝑈(𝑥),
𝑙𝑣𝐿(𝑥) = 0, 𝑙𝑣𝑈(𝑥) = 0.

Similarly, for any edge 𝑒 = (𝑥, 𝑦) ∈ 𝐸∗, set:
𝑡𝐿(𝑒) = 𝑇𝐿(𝑒), 𝑡𝑈(𝑒) = 𝑇𝑈(𝑒),

𝑖𝑣𝐿(𝑒) = 𝐼𝐿(𝑒), 𝑖𝑣𝑈(𝑒) = 𝐼𝑈(𝑒),
𝑓𝑣𝐿(𝑒) = 𝐹𝐿(𝑒), 𝑓𝑣𝑈(𝑒) = 𝐹𝑈(𝑒),
𝑙𝑣𝐿(𝑒) = 0, 𝑙𝑣𝑈(𝑒) = 0.

Under this mapping, the Rough Turiyam Neutrosophic Digraph reduces to a Rough Neutrosophic Digraph,
satisfying the constraints and properties of a Rough Neutrosophic framework. Thus, 𝐺 generalizes the Rough
Neutrosophic Digraph. �

Theorem 29. The Rough Turiyam Neutrosophic Digraph can be transformed into:

• A Turiyam Neutrosophic Digraph.

• A Neutrosophic Digraph.

Proof : Let 𝐺 = (𝑅, 𝑅𝑉, 𝑆, 𝑆𝐸) be a Rough Turiyam Neutrosophic Digraph. For each vertex 𝑥 ∈ 𝑉 ∗, define:

𝑡(𝑥) = 𝑡𝐿(𝑥) + 𝑡𝑈(𝑥)
2

, 𝑖𝑣(𝑥) = 𝑖𝑣𝐿(𝑥) + 𝑖𝑣𝑈(𝑥)
2

, 𝑓𝑣(𝑥) = 𝑓𝑣𝐿(𝑥) + 𝑓𝑣𝑈(𝑥)
2

, 𝑙𝑣(𝑥) = 𝑙𝑣𝐿(𝑥) + 𝑙𝑣𝑈(𝑥)
2

.

Similarly, for each edge 𝑒 = (𝑥, 𝑦) ∈ 𝐸∗, define:

𝑡(𝑒) = 𝑡𝐿(𝑒) + 𝑡𝑈(𝑒)
2

, 𝑖𝑣(𝑒) = 𝑖𝑣𝐿(𝑒) + 𝑖𝑣𝑈(𝑒)
2

, 𝑓𝑣(𝑒) = 𝑓𝑣𝐿(𝑒) + 𝑓𝑣𝑈(𝑒)
2

, 𝑙𝑣(𝑒) = 𝑙𝑣𝐿(𝑒) + 𝑙𝑣𝑈(𝑒)
2

.

The resulting digraph 𝐺′ = (𝑉 , 𝐸), with these membership degrees, satisfies the conditions of a Turiyam
Neutrosophic Digraph:

𝑡(𝑥) + 𝑖𝑣(𝑥) + 𝑓𝑣(𝑥) + 𝑙𝑣(𝑥) ≤ 4, 𝑡(𝑒) + 𝑖𝑣(𝑒) + 𝑓𝑣(𝑒) + 𝑙𝑣(𝑒) ≤ 4.
Thus, 𝐺 transforms into a Turiyam Neutrosophic Digraph.
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To further transform 𝐺′ into a Neutrosophic Digraph, set:

𝑙𝑣(𝑥) = 0, 𝑙𝑣(𝑒) = 0, ∀𝑥 ∈ 𝑉 , 𝑒 ∈ 𝐸.

The resulting digraph 𝐺″ = (𝑉 , 𝐸) satisfies:

𝑡(𝑥) + 𝑖𝑣(𝑥) + 𝑓𝑣(𝑥) ≤ 3, 𝑡(𝑒) + 𝑖𝑣(𝑒) + 𝑓𝑣(𝑒) ≤ 3.

Thus, 𝐺 reduces to a Neutrosophic Digraph. �

Definition 30 (Rough Pentapartitioned Neutrosophic Directed Graph). A Rough Pentapartitioned Neutrosophic
Directed Graph is defined over a non-empty finite set of vertices 𝑉 and a set of directed edges 𝐸 ⊆ 𝑉 × 𝑉.
Components

• Equivalence Relations:

– 𝑅 ⊆ 𝑉 × 𝑉: An equivalence relation on 𝑉.

– 𝑆 ⊆ 𝐸 × 𝐸: An equivalence relation on 𝐸.

• Lower and Upper Approximations:

– Vertices:

∗ Lower approximation: 𝑅𝑉 ⊆ 𝑉.

∗ Upper approximation: 𝑅𝑉 ⊆ 𝑉.

– Edges:

∗ Lower approximation: 𝑆𝐸 ⊆ 𝐸.

∗ Upper approximation: 𝑆𝐸 ⊆ 𝐸.

Each vertex and edge is characterized by membership degrees in terms of lower and upper approximations.
Vertex Membership Functions For each vertex 𝑣 ∈ 𝑉:

• Lower Approximation Membership Degrees:

– 𝑇𝐿(𝑣) ∈ [0, 1]: Truth-membership degree.

– 𝐶𝐿(𝑣) ∈ [0, 1]: Contradiction-membership degree.

– 𝑅𝐿(𝑣) ∈ [0, 1]: Ignorance-membership degree.

– 𝑈𝐿(𝑣) ∈ [0, 1]: Unknown-membership degree.

– 𝐹𝐿(𝑣) ∈ [0, 1]: Falsity-membership degree.

• Upper Approximation Membership Degrees:

– 𝑇𝑈(𝑣) ∈ [0, 1].

– 𝐶𝑈(𝑣) ∈ [0, 1].

– 𝑅𝑈(𝑣) ∈ [0, 1].

– 𝑈𝑈(𝑣) ∈ [0, 1].

– 𝐹𝑈(𝑣) ∈ [0, 1].

These degrees satisfy:
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𝑇𝐿(𝑣) ≤ 𝑇𝑈(𝑣),
𝐶𝐿(𝑣) ≤ 𝐶𝑈(𝑣),
𝑅𝐿(𝑣) ≤ 𝑅𝑈(𝑣),
𝑈𝐿(𝑣) ≤ 𝑈𝑈(𝑣),
𝐹𝐿(𝑣) ≤ 𝐹𝑈(𝑣).

And:

𝑇𝐿(𝑣) + 𝐶𝐿(𝑣) + 𝑅𝐿(𝑣) + 𝑈𝐿(𝑣) + 𝐹𝐿(𝑣) ≤ 5,

𝑇𝑈(𝑣) + 𝐶𝑈(𝑣) + 𝑅𝑈(𝑣) + 𝑈𝑈(𝑣) + 𝐹𝑈(𝑣) ≤ 5.

Edge Membership Functions For each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸:

• Lower Approximation Membership Degrees:

– 𝑇𝐿(𝑒) ∈ [0, 1].

– 𝐶𝐿(𝑒) ∈ [0, 1].

– 𝑅𝐿(𝑒) ∈ [0, 1].

– 𝑈𝐿(𝑒) ∈ [0, 1].

– 𝐹𝐿(𝑒) ∈ [0, 1].

• Upper Approximation Membership Degrees:

– 𝑇𝑈(𝑒) ∈ [0, 1].

– 𝐶𝑈(𝑒) ∈ [0, 1].

– 𝑅𝑈(𝑒) ∈ [0, 1].

– 𝑈𝑈(𝑒) ∈ [0, 1].

– 𝐹𝑈(𝑒) ∈ [0, 1].

These degrees satisfy:

𝑇𝐿(𝑒) ≤ 𝑇𝑈(𝑒),
𝐶𝐿(𝑒) ≤ 𝐶𝑈(𝑒),
𝑅𝐿(𝑒) ≤ 𝑅𝑈(𝑒),
𝑈𝐿(𝑒) ≤ 𝑈𝑈(𝑒),
𝐹𝐿(𝑒) ≤ 𝐹𝑈(𝑒).

And:

𝑇𝐿(𝑒) + 𝐶𝐿(𝑒) + 𝑅𝐿(𝑒) + 𝑈𝐿(𝑒) + 𝐹𝐿(𝑒) ≤ 5,

𝑇𝑈(𝑒) + 𝐶𝑈(𝑒) + 𝑅𝑈(𝑒) + 𝑈𝑈(𝑒) + 𝐹𝑈(𝑒) ≤ 5.
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Conditions For all 𝑣 ∈ 𝑉 and 𝑒 = (𝑢, 𝑣) ∈ 𝐸:

𝑇𝐿(𝑒) ≤ min{𝑇𝐿(𝑢), 𝑇𝐿(𝑣)}, 𝑇𝑈(𝑒) ≤ min{𝑇𝑈(𝑢), 𝑇𝑈(𝑣)},
𝐶𝐿(𝑒) ≤ min{𝐶𝐿(𝑢), 𝐶𝐿(𝑣)}, 𝐶𝑈(𝑒) ≤ min{𝐶𝑈(𝑢), 𝐶𝑈(𝑣)},
𝑅𝐿(𝑒) ≥ max{𝑅𝐿(𝑢), 𝑅𝐿(𝑣)}, 𝑅𝑈(𝑒) ≥ max{𝑅𝑈(𝑢), 𝑅𝑈(𝑣)},
𝑈𝐿(𝑒) ≥ max{𝑈𝐿(𝑢), 𝑈𝐿(𝑣)}, 𝑈𝑈(𝑒) ≥ max{𝑈𝑈(𝑢), 𝑈𝑈(𝑣)},
𝐹𝐿(𝑒) ≥ max{𝐹𝐿(𝑢), 𝐹𝐿(𝑣)}, 𝐹𝑈(𝑒) ≥ max{𝐹𝑈(𝑢), 𝐹𝑈(𝑣)}.

Theorem 31. A Rough Pentapartitioned Neutrosophic Directed Graph (RPNDG) can be transformed into:

(1) A Rough Neutrosophic Directed Graph (RNDG) by appropriately setting certain membership degrees to
zero and reinterpreting others.

(2) A Rough Turiyam Neutrosophic Directed Graph (RTDG) by merging specific membership degrees and
adjusting the sum conditions accordingly.

Proof : Let 𝐺 = (𝑉 , 𝐸) be a Rough Pentapartitioned Neutrosophic Directed Graph. Each vertex 𝑣 ∈ 𝑉 has lower
and upper approximation membership degrees:

• Lower approximation: 𝑇𝐿(𝑣), 𝐶𝐿(𝑣), 𝑅𝐿(𝑣), 𝑈𝐿(𝑣), 𝐹𝐿(𝑣).

• Upper approximation: 𝑇𝑈(𝑣), 𝐶𝑈(𝑣), 𝑅𝑈(𝑣), 𝑈𝑈(𝑣), 𝐹𝑈(𝑣).

Similarly for each edge 𝑒 ∈ 𝐸.

To transform 𝐺 into a Rough Neutrosophic Directed Graph, we proceed as follows:

• Set the contradiction-membership degrees and unknown-membership degrees to zero:
𝐶𝐿(𝑣) = 𝐶𝑈(𝑣) = 0, 𝑈𝐿(𝑣) = 𝑈𝑈(𝑣) = 0, ∀𝑣 ∈ 𝑉 ,
𝐶𝐿(𝑒) = 𝐶𝑈(𝑒) = 0, 𝑈𝐿(𝑒) = 𝑈𝑈(𝑒) = 0, ∀𝑒 ∈ 𝐸.

• Rename the ignorance-membership degrees as indeterminacy-membership degrees:
𝐼𝐿(𝑣) = 𝑅𝐿(𝑣), 𝐼𝑈(𝑣) = 𝑅𝑈(𝑣), ∀𝑣 ∈ 𝑉 ,
𝐼𝐿(𝑒) = 𝑅𝐿(𝑒), 𝐼𝑈(𝑒) = 𝑅𝑈(𝑒), ∀𝑒 ∈ 𝐸.

• The sum conditions become:
𝑇𝐿(𝑣) + 𝐼𝐿(𝑣) + 𝐹𝐿(𝑣) ≤ 5, 𝑇𝑈(𝑣) + 𝐼𝑈(𝑣) + 𝐹𝑈(𝑣) ≤ 5.

• Normalize the membership degrees to ensure that their sums are less than or equal to 3:

̃𝑇𝐿(𝑣) = 𝑇𝐿(𝑣)
5

× 3, ̃𝐼𝐿(𝑣) = 𝐼𝐿(𝑣)
5

× 3, ̃𝐹𝐿(𝑣) = 𝐹𝐿(𝑣)
5

× 3.

Similar definitions apply for upper approximations and edges.

• The sum conditions now satisfy:
̃𝑇𝐿(𝑣) + ̃𝐼𝐿(𝑣) + ̃𝐹𝐿(𝑣) ≤ 3.

Thus, the RPNDG reduces to an RNDG under these transformations.

Next, to transform 𝐺 into a Rough Turiyam Neutrosophic Directed Graph, we proceed as follows:

• Merge the contradiction-membership degree with the truth-membership degree, and the unknown-
membership degree with the liberation-membership degree:

𝑡𝐿(𝑣) = 𝑇𝐿(𝑣) + 𝐶𝐿(𝑣), 𝑖𝑣𝐿(𝑣) = 𝑅𝐿(𝑣), 𝑓𝑣𝐿(𝑣) = 𝐹𝐿(𝑣), 𝑙𝑣𝐿(𝑣) = 𝑈𝐿(𝑣), ∀𝑣 ∈ 𝑉 ,
𝑡𝑈(𝑣) = 𝑇𝑈(𝑣) + 𝐶𝑈(𝑣), 𝑖𝑣𝑈(𝑣) = 𝑅𝑈(𝑣), 𝑓𝑣𝑈(𝑣) = 𝐹𝑈(𝑣), 𝑙𝑣𝑈(𝑣) = 𝑈𝑈(𝑣), ∀𝑣 ∈ 𝑉 .

Similarly for edges.
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• The sum conditions become:

𝑡𝐿(𝑣) + 𝑖𝑣𝐿(𝑣) + 𝑓𝑣𝐿(𝑣) + 𝑙𝑣𝐿(𝑣) = 𝑇𝐿(𝑣) + 𝐶𝐿(𝑣) + 𝑅𝐿(𝑣) + 𝐹𝐿(𝑣) + 𝑈𝐿(𝑣) ≤ 5.

• Normalize the membership degrees to ensure that their sums are less than or equal to 4:

̃𝑡𝐿(𝑣) = 𝑡𝐿(𝑣)
5

× 4, ̃𝑖𝑣𝐿(𝑣) = 𝑖𝑣𝐿(𝑣)
5

× 4, ̃𝑓𝑣𝐿(𝑣) = 𝑓𝑣𝐿(𝑣)
5

× 4, ̃𝑙𝑣𝐿(𝑣) = 𝑙𝑣𝐿(𝑣)
5

× 4.

• The sum conditions now satisfy:
̃𝑡𝐿(𝑣) + ̃𝑖𝑣𝐿(𝑣) + ̃𝑓𝑣𝐿(𝑣) + ̃𝑙𝑣𝐿(𝑣) ≤ 4.

Thus, the RPNDG reduces to an RTDG under these transformations. �

Theorem 32. A Rough Pentapartitioned Neutrosophic Directed Graph (RPNDG) can be transformed into a
Pentapartitioned Neutrosophic Directed Graph (PNDG).

Proof : Let ⃗𝐺 = (𝑉 , 𝐸, 𝑇𝐿, 𝐶𝐿, 𝑅𝐿, 𝑈𝐿, 𝐹𝐿, 𝑇𝑈, 𝐶𝑈, 𝑅𝑈, 𝑈𝑈, 𝐹𝑈) be a Rough Pentapartitioned Neutrosophic Di-
rected Graph, where:

• Each vertex 𝑣 ∈ 𝑉 has lower and upper membership degrees satisfying:
𝑇𝐿(𝑣) ≤ 𝑇𝑈(𝑣), 𝐶𝐿(𝑣) ≤ 𝐶𝑈(𝑣), 𝑅𝐿(𝑣) ≤ 𝑅𝑈(𝑣),
𝑈𝐿(𝑣) ≤ 𝑈𝑈(𝑣), 𝐹𝐿(𝑣) ≤ 𝐹𝑈(𝑣),

and:
𝑇𝐿(𝑣) + 𝐶𝐿(𝑣) + 𝑅𝐿(𝑣) + 𝑈𝐿(𝑣) + 𝐹𝐿(𝑣) ≤ 5,

𝑇𝑈(𝑣) + 𝐶𝑈(𝑣) + 𝑅𝑈(𝑣) + 𝑈𝑈(𝑣) + 𝐹𝑈(𝑣) ≤ 5.

• Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 has lower and upper membership degrees satisfying:
𝑇𝐿(𝑒) ≤ 𝑇𝑈(𝑒), 𝐶𝐿(𝑒) ≤ 𝐶𝑈(𝑒), 𝑅𝐿(𝑒) ≤ 𝑅𝑈(𝑒),
𝑈𝐿(𝑒) ≤ 𝑈𝑈(𝑒), 𝐹𝐿(𝑒) ≤ 𝐹𝑈(𝑒),

and:
𝑇𝐿(𝑒) + 𝐶𝐿(𝑒) + 𝑅𝐿(𝑒) + 𝑈𝐿(𝑒) + 𝐹𝐿(𝑒) ≤ 5,

𝑇𝑈(𝑒) + 𝐶𝑈(𝑒) + 𝑅𝑈(𝑒) + 𝑈𝑈(𝑒) + 𝐹𝑈(𝑒) ≤ 5.

To transform ⃗𝐺 into a Pentapartitioned Neutrosophic Directed Graph, proceed as follows:

For each vertex 𝑣 ∈ 𝑉, set:

𝑇𝑃(𝑣) = 𝑇𝐿(𝑣) = 𝑇𝑈(𝑣), 𝐶𝑃(𝑣) = 𝐶𝐿(𝑣) = 𝐶𝑈(𝑣),

𝑅𝑃(𝑣) = 𝑅𝐿(𝑣) = 𝑅𝑈(𝑣), 𝑈𝑃(𝑣) = 𝑈𝐿(𝑣) = 𝑈𝑈(𝑣), 𝐹𝑃(𝑣) = 𝐹𝐿(𝑣) = 𝐹𝑈(𝑣).
Similarly, for each directed edge 𝑒 ∈ 𝐸, set:

𝑇𝑃(𝑒) = 𝑇𝐿(𝑒) = 𝑇𝑈(𝑒), 𝐶𝑃(𝑒) = 𝐶𝐿(𝑒) = 𝐶𝑈(𝑒),

𝑅𝑃(𝑒) = 𝑅𝐿(𝑒) = 𝑅𝑈(𝑒), 𝑈𝑃(𝑒) = 𝑈𝐿(𝑒) = 𝑈𝑈(𝑒), 𝐹𝑃(𝑒) = 𝐹𝐿(𝑒) = 𝐹𝑈(𝑒).

The resulting membership degrees satisfy the following conditions for all 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸:

𝑇𝑃(𝑣) + 𝐶𝑃(𝑣) + 𝑅𝑃(𝑣) + 𝑈𝑃(𝑣) + 𝐹𝑃(𝑣) ≤ 5,

𝑇𝑃(𝑒) + 𝐶𝑃(𝑒) + 𝑅𝑃(𝑒) + 𝑈𝑃(𝑒) + 𝐹𝑃(𝑒) ≤ 5.

The transformed graph ⃗𝐺′ = (𝑉 , 𝐸, 𝑇𝑃, 𝐶𝑃, 𝑅𝑃, 𝑈𝑃, 𝐹𝑃) is a Pentapartitioned Neutrosophic Directed Graph, as
it satisfies all the required conditions for vertices and edges with single-valued membership degrees. �
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4 | Result: Extension of Plithogenic graphs

We explore the directed graph version of Plithogenic Graphs. The following sections provide the definition and
its relationships with other graph classes.

Definition 33. [123, 61, 116, 115, 121] Let 𝐺 = (𝑉 , 𝐸) be a crisp graph where 𝑉 is the set of vertices and
𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. A Plithogenic Graph 𝑃𝐺 is defined as:

𝑃𝐺 = (𝑃𝑀, 𝑃𝑁)

where:

(1) Plithogenic Vertex Set 𝑃𝑀 = (𝑀, 𝑙, 𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓):

• 𝑀 ⊆ 𝑉 is the set of vertices.

• 𝑙 is an attribute associated with the vertices.

• 𝑀𝑙 is the range of possible attribute values.

• 𝑎𝑑𝑓 ∶ 𝑀 × 𝑀𝑙 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) for vertices.

• 𝑎𝐶𝑓 ∶ 𝑀𝑙 × 𝑀𝑙 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF) for vertices.

(2) Plithogenic Edge Set 𝑃𝑁 = (𝑁, 𝑚, 𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓):

• 𝑁 ⊆ 𝐸 is the set of edges.

• 𝑚 is an attribute associated with the edges.

• 𝑁𝑚 is the range of possible attribute values.

• 𝑏𝑑𝑓 ∶ 𝑁 × 𝑁𝑚 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) for edges.

• 𝑏𝐶𝑓 ∶ 𝑁𝑚 × 𝑁𝑚 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF) for edges.

The Plithogenic Graph 𝑃𝐺 must satisfy the following conditions:

(1) Edge Appurtenance Constraint: For all (𝑥, 𝑎), (𝑦, 𝑏) ∈ 𝑀 × 𝑀𝑙:
𝑏𝑑𝑓 ((𝑥𝑦), (𝑎, 𝑏)) ≤ min{𝑎𝑑𝑓(𝑥, 𝑎), 𝑎𝑑𝑓(𝑦, 𝑏)}

where 𝑥𝑦 ∈ 𝑁 is an edge between vertices 𝑥 and 𝑦, and (𝑎, 𝑏) ∈ 𝑁𝑚 × 𝑁𝑚 are the corresponding
attribute values.

(2) Contradiction Function Constraint: For all (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑁𝑚 × 𝑁𝑚:
𝑏𝐶𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) ≤ min{𝑎𝐶𝑓(𝑎, 𝑐), 𝑎𝐶𝑓(𝑏, 𝑑)}

(3) Reflexivity and Symmetry of Contradiction Functions:
𝑎𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙
𝑎𝐶𝑓(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙
𝑏𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚
𝑏𝐶𝑓(𝑎, 𝑏) = 𝑏𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

Example 34. (cf.[49]) The following examples are provided.

• When 𝑠 = 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Fuzzy Graph.

• When 𝑠 = 2, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Intuitionistic Fuzzy Graph.

• When 𝑠 = 3, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Neutrosophic Graph.

• When 𝑠 = 4, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Turiyam Neutrosophic Graph.
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The General Plithogenic Graph is a relax definition of the Plithogenic Graph (cf.[49, 83, 35]).

Definition 35 (General Plithogenic Graph). [49] Let 𝐺 = (𝑉 , 𝐸) be a classical graph, where 𝑉 is a finite set of
vertices, and 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

A General Plithogenic Graph 𝐺𝐺𝑃 = (𝑃𝑀, 𝑃𝑁) consists of:

(1) General Plithogenic Vertex Set 𝑃𝑀:
𝑃𝑀 = (𝑀, 𝑙, 𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓)

where:

• 𝑀 ⊆ 𝑉: Set of vertices.

• 𝑙: Attribute associated with the vertices.

• 𝑀𝑙: Range of possible attribute values.

• 𝑎𝑑𝑓 ∶ 𝑀 × 𝑀𝑙 → [0, 1]𝑠: Degree of Appurtenance Function (DAF) for vertices.

• 𝑎𝐶𝑓 ∶ 𝑀𝑙 × 𝑀𝑙 → [0, 1]𝑡: Degree of Contradiction Function (DCF) for vertices.

(2) General Plithogenic Edge Set 𝑃𝑁:
𝑃𝑁 = (𝑁, 𝑚, 𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓)

where:

• 𝑁 ⊆ 𝐸: Set of edges.

• 𝑚: Attribute associated with the edges.

• 𝑁𝑚: Range of possible attribute values.

• 𝑏𝑑𝑓 ∶ 𝑁 × 𝑁𝑚 → [0, 1]𝑠: Degree of Appurtenance Function (DAF) for edges.

• 𝑏𝐶𝑓 ∶ 𝑁𝑚 × 𝑁𝑚 → [0, 1]𝑡: Degree of Contradiction Function (DCF) for edges.

The General Plithogenic Graph 𝐺𝐺𝑃 only needs to satisfy the following Reflexivity and Symmetry properties of
the Contradiction Functions:

• Reflexivity and Symmetry of Contradiction Functions:
𝑎𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙
𝑎𝐶𝑓(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙
𝑏𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚
𝑏𝐶𝑓(𝑎, 𝑏) = 𝑏𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

Definition 36. A General Plithogenic Directed Graph extends the concept of plithogenic graphs to directed
graphs, incorporating multiple attributes and degrees of appurtenance and contradiction for both vertices and
directed edges.

Let 𝐺 = (𝑉 , 𝐸) be a crisp directed graph, where:

• 𝑉 is a finite set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of directed edges.

The General Plithogenic Directed Graph 𝐺𝐺𝑃 = (𝑃𝑀, 𝑃𝑁) consists of:

(1) General Plithogenic Vertex Set 𝑃𝑀 = (𝑀, 𝑙, 𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓):

• 𝑀 ⊆ 𝑉: Set of vertices.

• 𝑙: Attribute associated with the vertices.

• 𝑀𝑙: Range of possible attribute values for 𝑙.
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• 𝑎𝑑𝑓 ∶ 𝑀 × 𝑀𝑙 → [0, 1]𝑠: Degree of Appurtenance Function (DAF) for vertices.

• 𝑎𝐶𝑓 ∶ 𝑀𝑙 × 𝑀𝑙 → [0, 1]𝑡: Degree of Contradiction Function (DCF) for vertices.

(2) General Plithogenic Edge Set 𝑃𝑁 = (𝑁, 𝑚, 𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓):

• 𝑁 ⊆ 𝐸: Set of directed edges.

• 𝑚: Attribute associated with the edges.

• 𝑁𝑚: Range of possible attribute values for 𝑚.

• 𝑏𝑑𝑓 ∶ 𝑁 × 𝑁𝑚 → [0, 1]𝑠: Degree of Appurtenance Function (DAF) for edges.

• 𝑏𝐶𝑓 ∶ 𝑁𝑚 × 𝑁𝑚 → [0, 1]𝑡: Degree of Contradiction Function (DCF) for edges.

The General Plithogenic Directed Graph 𝐺𝐺𝑃 must satisfy the following properties:

• Reflexivity and Symmetry of Contradiction Functions:
𝑎𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙,
𝑎𝐶𝑓(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙,
𝑏𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚,
𝑏𝐶𝑓(𝑎, 𝑏) = 𝑏𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚.

Theorem 37. The General Plithogenic Directed Graph 𝐺𝐺𝑃 can be transformed into:

(1) A Fuzzy Directed Graph when 𝑠 = 𝑡 = 1.

(2) A Neutrosophic Directed Graph when 𝑠 = 3, 𝑡 = 1.

(3) A Turiyam Neutrosophic Directed Graph when 𝑠 = 4, 𝑡 = 1.

(4) A Pentapartitioned Neutrosophic Directed Graph when 𝑠 = 5, 𝑡 = 1.

Proof : (1) Fuzzy Directed Graph:

• Parameters: Set 𝑠 = 𝑡 = 1.

• Degree of Appurtenance Function:
𝑎𝑑𝑓 ∶ 𝑀 × 𝑀𝑙 → [0, 1], 𝑏𝑑𝑓 ∶ 𝑁 × 𝑁𝑚 → [0, 1].

• Interpretation:

– Each vertex 𝑣 ∈ 𝑉 is assigned a membership degree 𝜎(𝑣) ∈ [0, 1].

– Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a membership degree 𝜇(𝑢, 𝑣) ∈ [0, 1].

• Conclusion: The General Plithogenic Directed Graph reduces to a Fuzzy Directed Graph.

(2) Neutrosophic Directed Graph:

• Parameters: Set 𝑠 = 3, 𝑡 = 1.

• Degree of Appurtenance Function:
𝑎𝑑𝑓 ∶ 𝑀 × 𝑀𝑙 → [0, 1]3.

• Interpretation:

– Each vertex 𝑣 ∈ 𝑉 is assigned a triplet (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)) ∈ [0, 1]3, representing truth,
indeterminacy, and falsity membership degrees.

– Similarly for edges.

• Conclusion: The General Plithogenic Directed Graph reduces to a Neutrosophic Directed Graph.
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(3) Turiyam Neutrosophic Directed Graph:

• Parameters: Set 𝑠 = 4, 𝑡 = 1.

• Degree of Appurtenance Function:
𝑎𝑑𝑓 ∶ 𝑀 × 𝑀𝑙 → [0, 1]4.

• Interpretation:

– Each vertex 𝑣 ∈ 𝑉 is assigned a quadruple (𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣)) ∈ [0, 1]4, representing
truth, indeterminacy, falsity, and liberation membership degrees.

– Similarly for edges.

• Conclusion: The General Plithogenic Directed Graph reduces to a Turiyam Neutrosophic Directed
Graph.

(4) Pentapartitioned Neutrosophic Directed Graph:

• Parameters: Set 𝑠 = 5, 𝑡 = 1.

• Degree of Appurtenance Function:
𝑎𝑑𝑓 ∶ 𝑀 × 𝑀𝑙 → [0, 1]5.

• Interpretation:

– Each vertex 𝑣 ∈ 𝑉 is assigned a quintuple (𝑇 (𝑣), 𝐶(𝑣), 𝑅(𝑣), 𝑈(𝑣), 𝐹 (𝑣)) ∈ [0, 1]5, representing
truth, contradiction, ignorance, unknown, and falsity membership degrees.

– Similarly for edges.

• Conclusion: The General Plithogenic Directed Graph reduces to a Pentapartitioned Neutrosophic
Directed Graph.

�

Theorem 38. A General Plithogenic Directed Graph 𝐺𝐺𝑃 reduces to a General Plithogenic Graph when made
undirected.

Proof : Let 𝐺𝐺𝑃 = (𝑃𝑀, 𝑃𝑁), where:

• 𝑃𝑀 = (𝑀, 𝑙, 𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓): General Plithogenic Vertex Set.

• 𝑃𝑁 = (𝑁, 𝑚, 𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓): General Plithogenic Edge Set.

To transform 𝐺𝐺𝑃 into a General Plithogenic Graph 𝐺𝐺𝑃
𝑢 :

(1) Define the undirected edge set:
(𝑢, 𝑣) ∈ 𝑁𝑢 ⟺ (𝑢, 𝑣) ∈ 𝑁 or (𝑣, 𝑢) ∈ 𝑁.

(2) For each undirected edge {𝑢, 𝑣} ∈ 𝑁𝑢, combine attributes as:
𝑏𝑑𝑓𝑢({𝑢, 𝑣}, 𝑚) = max{𝑏𝑑𝑓((𝑢, 𝑣), 𝑚), 𝑏𝑑𝑓((𝑣, 𝑢), 𝑚)}, ∀𝑚 ∈ 𝑁𝑚.

(3) Retain the vertex attributes:
𝑎𝑑𝑓𝑢(𝑣, 𝑙) = 𝑎𝑑𝑓(𝑣, 𝑙), 𝑎𝐶𝑓𝑢(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑎, 𝑏).

(4) The resulting graph 𝐺𝐺𝑃
𝑢 = (𝑃𝑀𝑢, 𝑃𝑁𝑢), where 𝑃𝑁𝑢 = (𝑁𝑢, 𝑚, 𝑁𝑚, 𝑏𝑑𝑓𝑢, 𝑏𝐶𝑓𝑢), satisfies the properties

of a General Plithogenic Graph.

Thus, 𝐺𝐺𝑃
𝑢 is a valid General Plithogenic Graph obtained by symmetrizing the edge set and combining

attributes. �
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5 | Future Tasks: Uncertain Directed Hypergraphs and Beyond

This section outlines the future directions of this research. We aim to explore the mathematical structures
and applications of Directed Hypergraphs [97, 98, 81, 130, 14] and Mixed Hypergraphs [125, 72, 79] within
the framework of uncertain directed graphs, including Fuzzy and Neutrosophic graphs. Additionally, we plan
to extend these graph concepts to Superhypergraphs [117, 118, 40, 47, 119, 65, 60, 34, 53] and explore their
potential applications.

Furthermore, we intend to investigate extensions involving Bidirected Graphs [39, 63, 131, 26], Multidirected
Graph [92, 45, 135, 91], and Treesoft Graphs (or Treesoft sets) [120, 10, 36, 94, 52, 44, 128, 59], as needed.
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