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Abstract

Hypergraphs generalize ordinary graphs by allowing hyperedges to join any number of vertices rather
than just two. Superhypergraphs extend this idea further by iterating the powerset construction, creating
hierarchical, nested hyperedge structures. In parallel, quantum graphs model networks of quantum systems,
with wavefunctions propagating along edges under specified boundary conditions. Quantum hypergraph
states translate hypergraph connectivity into multi-qubit entanglement via generalized controlled-phase
gates acting on all vertices of each hyperedge. In this paper, we introduce quantum n-superhypergraph
states, which marry the recursive structure of superhypergraphs with the formalism of quantum hypergraph
states. We give their precise definition, explore key structural properties, and outline potential directions
for their application.

Keywords: Superhypergraph, Hypergraph, Quantum n-superhypergraph state, Quantum hypergraph
state, Quantum Graph

1 | Preliminaries and Definitions

This section introduces the fundamental concepts and definitions necessary for the discussions presented in this
paper. Throughout the paper, we consider only simple and finite graphs. For foundational operations, concepts,
and principles of graph theory, the reader is referred to [1, 2].

1.1 | Graphs and Hypergraphs
In classical graph theory, a hypergraph extends the idea of a conventional graph by permitting edges—called
hyperedges—to join more than two vertices. This broader framework enables the modeling of more intricate
relationships between elements, thereby enhancing its utility in various fields [3, 4, 5]. In the following, we
present rigorous definitions for graphs, subgraphs, and hypergraphs. In this paper, we focus on finite, undirected,
and simple graphs.
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Definition 1 (Hypergraph). [6, 4] A hypergraph 𝐻 = (𝑉 (𝐻), 𝐸(𝐻)) consists of:

• A nonempty set 𝑉 (𝐻) of vertices.

• A set 𝐸(𝐻) of hyperedges, where each hyperedge is a nonempty subset of 𝑉 (𝐻), thereby allowing
connections among multiple vertices.

Unlike standard graphs, hypergraphs are well-suited to represent higher-order relationships. In this paper, we
restrict ourselves to the case where both 𝑉 (𝐻) and 𝐸(𝐻) are finite.

1.2 | Powerset and 𝑛-th Powerset
In what follows, we utilize the concepts of the powerset and the n-th powerset as fundamental building blocks for
our subsequent constructions. The n-th powerset represents an iterative application of the powerset operation.
Similarly, the superhypergraph, which will be introduced later, is an iterative extension of the hypergraph
concept.

Definition 2 (Base Set). [7] A base set 𝑆 is the underlying set from which more elaborate structures, such as
powersets and hyperstructures, are constructed. It is defined by

𝑆 = {𝑥 ∣ 𝑥 belongs to a specified domain}.
All elements appearing in constructions like 𝒫(𝑆) or 𝒫𝑛(𝑆) are drawn from 𝑆.

Definition 3 (Powerset). [7, 8] The powerset of a set 𝑆, denoted 𝒫(𝑆), is the collection of all subsets of 𝑆,
including both ∅ and 𝑆 itself:

𝒫(𝑆) = {𝐴 ∣ 𝐴 ⊆ 𝑆}.

Definition 4 (𝑛-th Powerset). (cf. [9, 10, 7, 11, 12]) The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛(𝐻), is defined
recursively by:

𝑃1(𝐻) = 𝒫(𝐻), 𝑃𝑛+1(𝐻) = 𝒫(𝑃𝑛(𝐻)) for 𝑛 ≥ 1.
Similarly, the 𝑛-th nonempty powerset, denoted 𝑃 ∗

𝑛(𝐻), is given by:
𝑃 ∗

1 (𝐻) = 𝒫∗(𝐻), 𝑃 ∗
𝑛+1(𝐻) = 𝒫∗(𝑃 ∗

𝑛(𝐻)),
where 𝒫∗(𝐻) denotes the powerset of 𝐻 with the empty set omitted.

1.3 | SuperHyperGraph
A SuperHyperGraph is an advanced extension of the hypergraph concept, integrating recursive powerset structures
into the classical model. This concept has been recently introduced and extensively studied in the literature
[13, 14, 15, 16, 17, 18, 19].

Definition 5 (n-SuperHyperGraph). [20, 21]
Let 𝑉0 be a finite base set of vertices. For each integer 𝑘 ≥ 0, define the iterative powerset by

𝒫0(𝑉0) = 𝑉0, 𝒫𝑘+1(𝑉0) = 𝒫(𝒫𝑘(𝑉0)),
where 𝒫(⋅) denotes the usual powerset operation. An n-SuperHyperGraph is then a pair

SHT(𝑛) = (𝑉 , 𝐸),
with

𝑉 ⊆ 𝒫𝑛(𝑉0) and 𝐸 ⊆ 𝒫𝑛(𝑉0).
Each element of 𝑉 is called an n-supervertex and each element of 𝐸 an n-superedge.

Example 6 (A 2-SuperHyperGraph). Let the base set be 𝑉0 = {𝑎, 𝑏}. Then
𝒫1(𝑉0) = {{𝑎}, {𝑏}, {𝑎, 𝑏}}, 𝒫2(𝑉0) = 𝒫(𝒫1(𝑉0)).

Choose three 2-supervertices:
𝑣1 = {{𝑎}}, 𝑣2 = {{𝑏}}, 𝑣3 = {{𝑎, 𝑏}},
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so that
𝑉 = {𝑣1, 𝑣2, 𝑣3} ⊆ 𝒫2(𝑉0).

Define three 2-superedges:
𝑒1 = {𝑣1, 𝑣2}, 𝑒2 = {𝑣2, 𝑣3}, 𝑒3 = {𝑣1, 𝑣3},

so that
𝐸 = {𝑒1, 𝑒2, 𝑒3} ⊆ 𝒫2(𝑉0).

Then
SHT(2) = (𝑉 , 𝐸)

is a concrete example of a 2-SuperHyperGraph.

1.4 | Quantum hypergraph state
Various quantum-based concepts, such as quantum theory[22, 23, 24, 25] and quantum computing[26, 27, 28, 29],
have been extensively studied. This trend is also evident in graph theory. A quantum graph state is an entangled
multi-qubit state constructed by applying controlled-Z gates based on a graph’s connectivity pattern[30, 31, 32].
As an extension of quantum graphs, concepts like quantum graph neural networks have also been explored
[33, 34, 35, 36]. A quantum hypergraph state generalizes this idea by incorporating generalized controlled-phase
gates, where hyperedges define interactions among multiple qubits[37, 38, 39].

The formal definition of a quantum hypergraph state is presented below. For details on the operations, refer to
[40] and the relevant references.

Definition 7 (Quantum Hypergraph State). [40] Let 𝐺 = (𝑉 , 𝐸) be a hypergraph with |𝑉 | = 𝑛. Associate to
each vertex 𝑣𝑖 ∈ 𝑉 a qubit with Hilbert space ℋ𝑖 ≅ ℂ2, so that the total Hilbert space is

ℋ =
𝑛

⨂
𝑖=1

ℋ𝑖.

Define the state
|+⟩ = 1√

2
(|0⟩ + |1⟩)

and the product state
|+⟩⊗𝑛 = |+⟩ ⊗ |+⟩ ⊗ ⋯ ⊗ |+⟩.

For each hyperedge 𝑒 ∈ 𝐸, define the generalized controlled-phase gate (or generalized Controlled-𝑍 gate) acting
on the qubits corresponding to the vertices in 𝑒 by

𝐶𝑍𝑒 = 𝐼⊗𝑛 − 2 (⨂
𝑖∈𝑒

|1⟩⟨1|) ,

where 𝐼⊗𝑛 denotes the identity on ℋ and the operator ⨂𝑖∈𝑒|1⟩⟨1| acts nontrivially only on the qubits indexed
by 𝑒 (and as the identity on the remaining qubits).

Then the quantum hypergraph state corresponding to 𝐺 is defined as

|𝐺⟩ = (∏
𝑒∈𝐸

𝐶𝑍𝑒) |+⟩⊗𝑛.

Here the product is taken over all hyperedges in an arbitrary fixed order (the gates commute since they are all
diagonal).

Remark 8. When every hyperedge has cardinality 2 (i.e. when 𝐺 is a graph), the state |𝐺⟩ reduces to the
standard graph state, which is a stabilizer state. However, if there exists at least one hyperedge with |𝑒| > 2,
then the corresponding 𝐶𝑍𝑒 gate is non-Clifford and the resulting state is typically non-stabilizer.

Even though quantum hypergraph states are not stabilizer states in the conventional sense when hyperedges of
size greater than 2 are present, they admit a generalized stabilizer formalism.
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Definition 9 (Generalized Stabilizer Generators). [40] For a hypergraph state |𝐺⟩ defined above, define for
each vertex 𝑣𝑖 ∈ 𝑉 the operator

𝑆𝑖 = 𝑋𝑖 ∏
𝑒∈𝐸
𝑣𝑖∈𝑒

𝐶𝑍𝑒∖{𝑣𝑖},

where:

• 𝑋𝑖 is the Pauli-𝑋 operator acting on the 𝑖-th qubit,

• 𝑒 ∖ {𝑣𝑖} denotes the hyperedge 𝑒 with the vertex 𝑣𝑖 removed, and

• 𝐶𝑍𝑒∖{𝑣𝑖} is the corresponding controlled-phase gate acting on the qubits in 𝑒 ∖ {𝑣𝑖}.

These operators satisfy
𝑆𝑖|𝐺⟩ = |𝐺⟩, for all 𝑖 = 1, 2, … , 𝑛.

Example 10 (A 3-Qubit Quantum Hypergraph State). Consider the hypergraph
𝐺 = (𝑉 , 𝐸)

with vertices
𝑉 = {𝑣1, 𝑣2, 𝑣3}

and hyperedges
𝐸 = {𝑒1, 𝑒2},

where
𝑒1 = {𝑣1, 𝑣2} and 𝑒2 = {𝑣1, 𝑣2, 𝑣3}.

First, assign each vertex a qubit so that the overall Hilbert space is
ℋ = ℋ1 ⊗ ℋ2 ⊗ ℋ3,

and prepare the initial product state
|+⟩⊗3 = |+⟩ ⊗ |+⟩ ⊗ |+⟩,

with
|+⟩ = 1√

2
(|0⟩ + |1⟩).

Thus,
|+⟩⊗3 = 1√

8
(|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩).

For each hyperedge, define a generalized controlled‑phase gate. For the 2‑edge
𝑒1 = {𝑣1, 𝑣2},

the gate is
𝐶𝑍𝑒1

= 𝐼⊗3 − 2 (|1⟩⟨1| ⊗ |1⟩⟨1| ⊗ 𝐼),

which flips the sign of any component where qubits 1 and 2 are both in state |1⟩. For the 3‑edge
𝑒2 = {𝑣1, 𝑣2, 𝑣3},

the generalized controlled‑phase gate is

𝐶𝑍𝑒2
= 𝐼⊗3 − 2 (|1⟩⟨1| ⊗ |1⟩⟨1| ⊗ |1⟩⟨1|),

which flips the sign only when all three qubits are in the state |1⟩.

The quantum hypergraph state is then constructed by sequentially applying these gates:
|𝐺⟩ = 𝐶𝑍𝑒2

𝐶𝑍𝑒1
|+⟩⊗3.

Let us detail the action:

(1) Applying 𝐶𝑍𝑒1
on |+⟩⊗3 flips the sign of the basis states where qubits 1 and 2 are both |1⟩. In particular,

|110⟩ → −|110⟩, |111⟩ → −|111⟩.
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(2) Next, applying 𝐶𝑍𝑒2
flips the sign of the state with all qubits in |1⟩, i.e.,

−|111⟩ → (−1) × (−1)|111⟩ = |111⟩,
while leaving other components unchanged.

Thus, the final state is

|𝐺⟩ = 1√
8

(|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ − |110⟩ + |111⟩).

This explicit construction shows that the three-qubit state |𝐺⟩ is generated by both a standard controlled‑Z gate
(on qubits 1 and 2) and a non‐Clifford three‑qubit controlled‑phase gate (on qubits 1, 2, and 3), illustrating the
key features that distinguish quantum hypergraph states from conventional graph states.

2 | Result of this paper

2.1 | Quantum 𝑛-SuperHypergraphs states
In this subsection we introduce and define the notion of Quantum 𝑛-SuperHypergraph States, show that they
generalize Quantum Hypergraph States, and prove several of their properties. We now define the associated
quantum state.

Definition 11 (Quantum 𝑛-SuperHypergraph State). Let SHT(𝑛) = (𝑉 , 𝐸) be an 𝑛-SuperHyperGraph with
|𝑉 | = 𝑚. Associate to each 𝑛-supervertex 𝑣 ∈ 𝑉 a qubit with Hilbert space ℋ𝑣 ≅ ℂ2, and define the total
Hilbert space as

ℋ = ⨂
𝑣∈𝑉

ℋ𝑣.

Define the single-qubit state

|+⟩ = 1√
2

(|0⟩ + |1⟩)

and the product state
|+⟩⊗𝑚 = ⨂

𝑣∈𝑉
|+⟩.

For each 𝑛-superedge 𝑒 ∈ 𝐸, define the generalized controlled-phase gate by

𝐶𝑍𝑒 = 𝐼⊗𝑚 − 2(⨂
𝑣∈𝑒

|1⟩⟨1|),

where 𝐼⊗𝑚 is the identity on ℋ. Then the Quantum 𝑛-SuperHypergraph State is given by

|SHT(𝑛)⟩ = (∏
𝑒∈𝐸

𝐶𝑍𝑒)|+⟩⊗𝑚.

The product over 𝑒 ∈ 𝐸 is taken in an arbitrary fixed order (the gates commute since they are diagonal).

Theorem 12. Every Quantum Hypergraph State is a Quantum 1-SuperHypergraph State. In particular, if 𝑛 = 1
then 𝒫1(𝑉0) = 𝒫(𝑉0), and the state

|SHT(1)⟩ = (∏
𝑒∈𝐸

𝐶𝑍𝑒)|+⟩⊗|𝑉 |

coincides with the standard Quantum Hypergraph State.

Proof : Let 𝐺 = (𝑉 , 𝐸) be any finite hypergraph with vertex set 𝑉 ⊆ 𝑉0 and hyperedge set 𝐸 ⊆ 𝒫(𝑉0). By
definition, the standard quantum hypergraph state |𝐺⟩ is constructed as follows:

(i) Assign to each 𝑣 ∈ 𝑉 a qubit with Hilbert space ℋ𝑣 ≅ ℂ2, ℋ = ⨂
𝑣∈𝑉

ℋ𝑣,

(ii) |+⟩⊗|𝑉 | = ⨂
𝑣∈𝑉

1√
2 (|0⟩ + |1⟩),
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(iii) 𝐶𝑍𝑒 = 𝐼⊗|𝑉 | − 2 (⨂
𝑣∈𝑒

|1⟩⟨1|) for each 𝑒 ∈ 𝐸,

(iv) |𝐺⟩ = (∏
𝑒∈𝐸

𝐶𝑍𝑒) |+⟩⊗|𝑉 |.

On the other hand, for 𝑛 = 1 the 1-th powerset satisfies

𝒫1(𝑉0) = 𝒫(𝑉0),

so a 1-SuperHyperGraph SHT(1) = (𝑉 , 𝐸) is exactly the same combinatorial data (𝑉 , 𝐸) that defines 𝐺. The
quantum 1-SuperHypergraph state |SHT(1)⟩ is then built by the identical prescription:

(i’) ℋ′ = ⨂
𝑣∈𝑉

ℋ𝑣, |+⟩′⊗|𝑉 | = |+⟩⊗|𝑉 |,

(ii’) 𝐶𝑍′
𝑒 = 𝐼⊗|𝑉 | − 2 (⨂

𝑣∈𝑒
|1⟩⟨1|) for each 𝑒 ∈ 𝐸,

(iii’) |SHT(1)⟩ = (∏
𝑒∈𝐸

𝐶𝑍′
𝑒) |+⟩′⊗|𝑉 |.

Since the assignments in steps (i)–(iv) agree exactly with those in (i’)–(iii’), and because all the controlled-phase
gates commute (being diagonal in the computational basis), it follows that

|SHT(1)⟩ = |𝐺⟩.

Hence every quantum hypergraph state is realized as the quantum 1-SuperHypergraph state. �

Quantum Hypergraph States admit a generalized stabilizer description. The following theorem extends this
formalism to Quantum 𝑛-SuperHypergraph States.

Theorem 13 (Generalized Stabilizer Property). Let |SHT(𝑛)⟩ be a Quantum 𝑛-SuperHypergraph State constructed
as above. For each 𝑛-supervertex 𝑣 ∈ 𝑉, define

𝑆𝑣 = 𝑋𝑣 ∏
𝑒∈𝐸
𝑣∈𝑒

𝐶𝑍𝑒∖{𝑣},

where 𝑋𝑣 is the Pauli-𝑋 operator acting on the qubit corresponding to 𝑣 and 𝐶𝑍𝑒∖{𝑣} denotes the generalized
controlled-phase gate acting on the qubits associated with 𝑒 ∖ {𝑣}. Then,

𝑆𝑣|SHT(𝑛)⟩ = |SHT(𝑛)⟩, ∀ 𝑣 ∈ 𝑉 .

Proof : Let 𝑚 = |𝑉 | and write

|SHT(𝑛)⟩ = (∏
𝑒∈𝐸

𝐶𝑍𝑒) |+⟩⊗𝑚 =∶ 𝑈 |+⟩⊗𝑚,

where 𝑈 denotes the product of all generalized controlled-phase gates. Recall that each |+⟩ = (|0⟩ + |1⟩)/
√

2 is a
+1 eigenstate of the Pauli-𝑋 operator.

Fix any 𝑛-supervertex 𝑣 ∈ 𝑉. By definition,

𝑆𝑣 = 𝑋𝑣 ∏
𝑒∈𝐸
𝑣∈𝑒

𝐶𝑍 𝑒∖{𝑣}.

We will show 𝑆𝑣 |SHT(𝑛)⟩ = |SHT(𝑛)⟩.

1. Commutation with non-incident gates. If 𝑒 ∌ 𝑣, then 𝐶𝑍𝑒 acts trivially on qubit 𝑣 and hence commutes with
both 𝑋𝑣 and every 𝐶𝑍𝑒′∖{𝑣}.

2. Decomposition of 𝑈 into incident and non-incident parts. Write 𝑈 = 𝑈¬𝑣 𝑈𝑣, where

𝑈𝑣 = ∏
𝑒∈𝐸
𝑣∈𝑒

𝐶𝑍𝑒, 𝑈¬𝑣 = ∏
𝑒∈𝐸
𝑣∉𝑒

𝐶𝑍𝑒.
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Since 𝑈¬𝑣 commutes with both 𝑋𝑣 and ∏𝑒∋𝑣 𝐶𝑍𝑒∖{𝑣}, we have

𝑆𝑣 𝑈 = 𝑈¬𝑣 𝑋𝑣 (∏
𝑒∋𝑣

𝐶𝑍𝑒∖{𝑣}) 𝑈𝑣.

3. Cancellation of extra phase factors. For each 𝑒 ∋ 𝑣, note
𝐶𝑍𝑒 = |0⟩⟨0|𝑣 ⊗ 𝐼 + |1⟩⟨1|𝑣 ⊗ 𝐶𝑍𝑒∖{𝑣}.

It follows that
𝑋𝑣 (∏

𝑒∋𝑣
𝐶𝑍𝑒∖{𝑣}) 𝑈𝑣 = 𝑈𝑣 𝑋𝑣,

because each 𝐶𝑍𝑒∖{𝑣} cancels the phase inserted by |1⟩⟨1|𝑣 when 𝑋𝑣 acts.

4. Eigenvalue argument on the product state. Since |+⟩⊗𝑚 is a +1 eigenstate of 𝑋𝑣 and is invariant under 𝑈¬𝑣,

𝑆𝑣 |SHT(𝑛)⟩ = 𝑈¬𝑣 𝑈𝑣 𝑋𝑣 |+⟩⊗𝑚 = 𝑈 |+⟩⊗𝑚 = |SHT(𝑛)⟩.

Since 𝑣 was arbitrary, this holds for every 𝑣 ∈ 𝑉, completing the proof. �

Theorem 14 (Non-Cliffordness). If there exists an 𝑛-superedge 𝑒 ∈ 𝐸 with |𝑒| > 2, then the Quantum 𝑛-
SuperHypergraph State |SHT(𝑛)⟩ is non-stabilizer in the conventional sense (i.e., it cannot be generated solely by
Clifford operations).

Proof : Recall that the Clifford group on 𝑚 qubits is the normalizer of the 𝑚-qubit Pauli group and is generated
by the single-qubit Hadamard and phase gates together with the two-qubit CNOT gate. In particular, every
Clifford unitary lies in the second level of the Clifford hierarchy.

Now let 𝑒 ∈ 𝐸 be an 𝑛-superedge with |𝑒| > 2, and consider the gate
𝐶𝑍𝑒 = 𝐼⊗𝑚 − 2 (⨂

𝑣∈𝑒
|1⟩⟨1|) .

This operator acts nontrivially on all qubits indexed by 𝑒 simultaneously, flipping the phase only on the basis
vector |1⟩⊗|𝑒|. Such a gate belongs to the |𝑒|-th level of the Clifford hierarchy: for any Pauli operator 𝑃, the
conjugation

𝐶𝑍𝑒 𝑃 𝐶𝑍†
𝑒

yields an operator in the (|𝑒| − 1)-th level but not necessarily in the Pauli group itself when |𝑒| > 2. Since gates
in the Clifford group must map Pauli operators back to Pauli operators (remaining within the second level), it
follows that 𝐶𝑍𝑒 cannot be decomposed into single-qubit and two-qubit Clifford gates.

Because the circuit preparing |SHT(𝑛)⟩ includes at least one such non-Clifford gate 𝐶𝑍𝑒, the resulting state
cannot lie entirely within the stabilizer formalism. Hence |SHT(𝑛)⟩ is a non-stabilizer state. �

Theorem 15 (Commutation of generalized phase gates). For any two 𝑛-superedges 𝑒, 𝑓 ∈ 𝐸, the corresponding
gates commute:

𝐶𝑍𝑒 𝐶𝑍𝑓 = 𝐶𝑍𝑓 𝐶𝑍𝑒.

Proof : Each 𝐶𝑍𝑒 is diagonal in the computational basis, acting by

𝐶𝑍𝑒|𝑥⟩ = (−1)∏𝑣∈𝑒 𝑥𝑣 |𝑥⟩,
where 𝑥 = (𝑥𝑣)𝑣∈𝑉 ∈ {0, 1}𝑚. Since two diagonal operators always commute,

𝐶𝑍𝑒 𝐶𝑍𝑓|𝑥⟩ = (−1)∑𝑤∈𝑒 𝑥𝑤+∑𝑤∈𝑓 𝑥𝑤 |𝑥⟩ = 𝐶𝑍𝑓 𝐶𝑍𝑒|𝑥⟩
for every basis vector |𝑥⟩. Hence 𝐶𝑍𝑒𝐶𝑍𝑓 = 𝐶𝑍𝑓𝐶𝑍𝑒. �

Theorem 16 (Explicit amplitude formula). The quantum 𝑛-SuperHypergraph state admits the expansion

∣SHT(𝑛)⟩ = 1
2𝑚/2 ∑

𝑥∈{0,1}𝑚

(−1)∑𝑒∈𝐸 ∏𝑣∈𝑒 𝑥𝑣 |𝑥⟩.
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Proof : Starting from

∣SHT(𝑛)⟩ = (∏
𝑒∈𝐸

𝐶𝑍𝑒) |+⟩⊗𝑚, |+⟩⊗𝑚 = 1
2𝑚/2 ∑

𝑥∈{0,1}𝑚

|𝑥⟩,

apply each 𝐶𝑍𝑒 to |𝑥⟩, which multiplies it by (−1)∏𝑣∈𝑒 𝑥𝑣 . Since the gates commute, the total phase is the
product over all 𝑒, i.e.

∏
𝑒∈𝐸

(−1)∏𝑣∈𝑒 𝑥𝑣 = (−1)∑𝑒∈𝐸 ∏𝑣∈𝑒 𝑥𝑣 .

Collecting factors yields the stated sum. �

Theorem 17 (Abelian stabilizer group and uniqueness). Let 𝐺 be the subgroup of the 𝑚-qubit Pauli group
generated by {𝑆𝑣 ∶ 𝑣 ∈ 𝑉 }. Then 𝐺 is abelian, has order 2𝑚, and |SHT(𝑛)⟩ is its unique common +1 eigenstate.

Proof : Each generator
𝑆𝑣 = 𝑋𝑣 ∏

𝑒∈𝐸
𝑣∈𝑒

𝐶𝑍𝑒∖{𝑣}

is Hermitian and squares to the identity. To see that [𝑆𝑢, 𝑆𝑣] = 0 for 𝑢 ≠ 𝑣, note:

• 𝑋𝑢 commutes with 𝑋𝑣 and with every 𝐶𝑍𝑒∖{𝑤} whenever 𝑢 ≠ 𝑤.

• Any two 𝐶𝑍 gates commute by the previous theorem.

Hence the 𝑚 independent involutions 𝑆𝑣 generate an abelian group of size 2𝑚. Since each 𝑆𝑣 fixes |SHT(𝑛)⟩, this
state lies in the common +1-eigenspace of 𝐺. But in an 𝑚-qubit system an abelian subgroup of order 2𝑚 has a
one-dimensional joint +1-eigenspace, so |SHT(𝑛)⟩ is its unique common eigenvector with eigenvalue +1. �

Example 18 (A Quantum 2-SuperHypergraph State). Let the base set be 𝑉0 = {𝑎, 𝑏}. Then
𝒫1(𝑉0) = {{𝑎}, {𝑏}, {𝑎, 𝑏}}, 𝒫2(𝑉0) = 𝒫(𝒫1(𝑉0)).

We select four 2-supervertices:
𝑣1 = {{𝑎}}, 𝑣2 = {{𝑏}}, 𝑣3 = {{𝑎, 𝑏}}, 𝑣4 = {{𝑎}, {𝑏}},

so that
𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}

and define three 2-superedges:
𝑒1 = {𝑣1, 𝑣2}, 𝑒2 = {𝑣2, 𝑣3, 𝑣4}, 𝑒3 = {𝑣1, 𝑣3}.

Associate to each 𝑣𝑖 a qubit with Hilbert space ℋ𝑖 ≅ ℂ2, and prepare the product state

|+⟩⊗4 = ( 1√
2 (|0⟩ + |1⟩))⊗4 = 1

4
∑

𝑥∈{0,1}4

|𝑥1𝑥2𝑥3𝑥4⟩.

For each superedge 𝑒 ∈ 𝐸, define the generalized controlled-phase gate

𝐶𝑍𝑒 = 𝐼⊗4 − 2 (⨂
𝑣𝑖∈𝑒

|1⟩⟨1|),

which flips the sign of any basis state for which all qubits indexed by 𝑒 are 1. Applying these in the order
𝑒1, 𝑒3, 𝑒2 yields

|SHT(2)⟩ = 𝐶𝑍𝑒2
𝐶𝑍𝑒3

𝐶𝑍𝑒1
|+⟩⊗4 = 1

4
∑

𝑥∈{0,1}4

(−1)𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3𝑥4 |𝑥1𝑥2𝑥3𝑥4⟩.

Here the phase exponent 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3𝑥4 encodes the combined action of the three gates:

• 𝑥1𝑥2 from 𝐶𝑍𝑒1
,

• 𝑥1𝑥3 from 𝐶𝑍𝑒3
,

• 𝑥2𝑥3𝑥4 from 𝐶𝑍𝑒2
.
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This explicit formula illustrates how the recursion to the second powerset level enriches the phase structure
beyond ordinary quantum hypergraph states.

Example 19 (A Quantum 3-SuperHypergraph State). Let the base set be

𝑉0 = {𝑎}.

Then the iterated powersets are

𝒫0(𝑉0) = {𝑎}, 𝒫1(𝑉0) = {{𝑎}}, 𝒫2(𝑉0) = {∅, {{𝑎}}},

𝒫3(𝑉0) = 𝒫(𝒫2(𝑉0)) = { ∅, {∅}, {{{𝑎}}}, {∅, {{𝑎}}} }.
Choose three 3-supervertices

𝑣1 = {∅}, 𝑣2 = {{{𝑎}}}, 𝑣3 = {∅, {{𝑎}}},

so that
𝑉 = {𝑣1, 𝑣2, 𝑣3} ⊆ 𝒫3(𝑉0).

Define two 3-superedges
𝑒1 = {𝑣1, 𝑣2}, 𝑒2 = {𝑣1, 𝑣2, 𝑣3},

hence
𝐸 = {𝑒1, 𝑒2} ⊆ 𝒫3(𝑉0).

Assign to each 𝑣𝑖 a qubit with Hilbert space ℋ𝑖 ≅ ℂ2, and prepare the product state

|+⟩⊗3 = ( 1√
2 (|0⟩ + |1⟩))⊗3 = 1√

8
∑

𝑥∈{0,1}3

|𝑥1𝑥2𝑥3⟩.

For each superedge 𝑒, the gate
𝐶𝑍𝑒 = 𝐼⊗3 − 2 (⨂

𝑣∈𝑒
|1⟩⟨1|)

flips the sign of any basis vector whose bits at positions in 𝑒 are all 1. Applying first 𝐶𝑍𝑒1
then 𝐶𝑍𝑒2

yields

|SHT(3)⟩ = 𝐶𝑍𝑒2
𝐶𝑍𝑒1

|+⟩⊗3.

An explicit expansion in the computational basis is

|SHT(3)⟩ = 1√
8

(|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ − |110⟩ + |111⟩).

Here the amplitude −1/
√

8 for |110⟩ arises because 𝐶𝑍𝑒1
flips it (since 𝑥1 = 𝑥2 = 1) while 𝐶𝑍𝑒2

does not, and
the amplitude for |111⟩ remains +1/

√
8 because it is flipped twice. This fully specifies a concrete three-qubit

Quantum 3-SuperHypergraph State.

3 | Conclusion of this paper

In this paper, we introduced the Quantum 𝑛-SuperHypergraph State as an extension of the Quantum Hypergraph
State and examined its underlying mathematical structure. In future work, we plan to carry out computational
studies of these states, develop more refined models, and explore extensions based on directed graphs and
bidirected graphs [41].
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