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Abstract: In this article, we first establish some results based on single-valued neutrosophic sets. 

Next, we define a subspace topology in a neutrosophic topological space and investigate some 

properties. We then define the neutrosophic 𝑇0, 𝑇1, 𝑇2 -spaces and study their various properties 

offering adequate examples.  
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1. Introduction 

Zadeh [36] uncovered the concept of a fuzzy set in 1965, and Atanassov [1] introduced the 

intuitionistic fuzzy set, a generalized version of a fuzzy set, in 1986. After a decade, Florentin 

Smarandache [26-28] developed and studied a new branch of philosophy called “Neutrosophy". 

Smarandache [28] demonstrated that a neutrosophic set is a generalization of an intuitionistic fuzzy 

set. Just like an intuitionistic fuzzy set, a neutrosophic set assigns degrees of membership and non-

membership to its elements. However, it incorporates an additional measure called the degree of 

indeterminacy to determine the level of membership. In a neutrosophic set, all three neutrosophic 

components are independent of one another, which is an important characteristic of the neutrosophic 

set. 

After Smarandache had brought the thought of neutrosophy, it was studied and taken ahead by 

many researchers [6, 30, 34, 35]. Due to its flexibility and effectiveness, neutrosophy is attracting 

researchers from various fields around the world, and it has proven to be useful not only in the 

development of science and technology but also in other areas. For example, Abdel-Basset et al. [3, 4] 

studied the applications of neutrosophic theory in several scientific fields, while Pramanik and Roy 

[23] analyzed the conflict between India and Pakistan over Jammu-Kashmir using neutrosophic game 

theory. Furthermore, researchers have applied neutrosophic theory to medical diagnosis [5, 15], 

decision-making problems [13, 22], image processing [16], and many other fields. 

In 2002, Smarandache [27] introduced the concept of neutrosophic topology on the non-standard 

interval, and Lupiáñez [18-20] subsequently investigated many properties of neutrosophic 

topological spaces. In 2012, Salama & Alblowi[29] revealed the idea of neutrosophic topological space 

as an extension of intuitionistic fuzzy topological space developed by D.Coker [10] in 1997. Salama et 

al.[32] later introduced the concept of neutrosophic continuous functions. In 2016, Karatas and 

Kuru[17] redefined single-valued neutrosophic set operations and examined important properties 

associated with neutrosophic topological spaces. Subsequently, various notions related to 

neutrosophic topological spaces were developed by numerous researchers [2, 11, 12, 14, 24, 25, 30, 31, 

33]. For instance, Al-Nafee et al. [8] utilized neutrosophic crisp points to construct separation axioms 

in neutrosophic crisp topological spaces and examined the relationships between them. In 2020, Ahu 
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and Ferhat [7] introduced the concept of neutrosophic pre-separation axioms in neutrosophic soft 

topological spaces and explored the connections among these separation axioms. Additionally, A. 

Mehmood et al. [21] developed and studied the neutrosophic soft p-separation axioms in 

neutrosophic soft topological spaces, while V. Amarendra Babu and J. Aswini [9] investigated 

separation axioms in supra neutrosophic crisp topological spaces in 2021. 

The primary objective of this article is to define and explore the separation axioms in 

neutrosophic topological spaces. Prior to that, we shall first investigate some properties of single-

valued neutrosophic sets. Additionally, we shall define the subspace topology (relative topology) in 

a neutrosophic topological space and examine a few properties. 

The article is organized by conferring some basic notions in section 2. In section 3, we establish 

some results in connection with single-valued neutrosophic sets. We then define neutrosophic 

subspace with example and investigate some properties. In section 4, we define neutrosophic 

𝑇0, 𝑇1, 𝑇2-spaces and study various properties. In section 5, we confer a conclusion. 

 

2. Preliminaries  

2.1. Definition: [26] Let 𝑋 be the universe of discourse. A neutrosophic set 𝐴 over 𝑋 is defined as 

𝐴 = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑋}, where the functions 𝒯𝐴, ℐ𝐴, ℱ𝐴 are real standard or non-standard 

subsets of ]−0, 1+[, i.e., 𝒯𝐴: 𝑋 →  ]−0, 1+[,  ℐ𝐴: 𝑋 →  ]−0, 1+[,  ℱ𝐴: 𝑋 →  ]−0, 1+[ and  -0 ≤ 𝒯𝐴(𝑥) + ℐ𝐴(𝑥) +

ℱ𝐴(𝑥) ≤ 3+. 

The neutrosophic set 𝐴  is characterized by the truth-membership function 𝒯𝐴 , indeterminacy-

membership function ℐ𝐴, falsehood-membership function ℱ𝐴. 

2.2. Definition: [35] Let 𝑋 be the universe of discourse. A single-valued neutrosophic set 𝐴 over 𝑋 

is defined as 𝐴 = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑋}, where 𝒯𝐴, ℐ𝐴, ℱ𝐴 are functions from 𝑋 to [0,1] and 

0 ≤ 𝒯𝐴(𝑥) + ℐ𝐴(𝑥) + ℱ𝐴(𝑥) ≤ 3. 

The set of all single-valued neutrosophic sets over 𝑋 is denoted by 𝒩(𝑋). 

Throughout this article, a neutrosophic set (NS, for short) will mean a single-valued neutrosophic set. 

2.3. Definition: [17]  Let 𝐴, 𝐵 ∈ 𝒩(𝑋). Then   

(i) (Inclusion): If 𝒯𝐴(𝑥) ≤ 𝒯𝐵(𝑥), ℐ𝐴(𝑥) ≥ ℐ𝐵(𝑥), ℱ𝐴(𝑥) ≥ ℱ𝐵(𝑥) for all 𝑥 ∈ 𝑋 then 𝐴 is said to be a 

neutrosophic subset of 𝐵 and which is denoted by 𝐴 ⊆ 𝐵.  

(ii) (Equality): If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 then 𝐴 = 𝐵.  

(iii) (Intersection): The intersection of 𝐴  and 𝐵 , denoted by 𝐴 ∩ 𝐵 , is defined as 𝐴 ∩ 𝐵 =

{〈𝑥, 𝒯𝐴(𝑥) ∧ 𝒯𝐵(𝑥), ℐ𝐴(𝑥) ∨ ℐ𝐵(𝑥), ℱ𝐴(𝑥) ∨ ℱ𝐵(𝑥)〉: 𝑥 ∈ 𝑋}.  

(iv) (Union): The union of 𝐴  and 𝐵 , denoted by 𝐴 ∪ 𝐵 , is defined as 𝐴 ∪ 𝐵 = {〈𝑥, 𝒯𝐴(𝑥) ∨

𝒯𝐵(𝑥), ℐ𝐴(𝑥) ∧ ℐ𝐵(𝑥), ℱ𝐴(𝑥) ∧ ℱ𝐵(𝑥)〉: 𝑥 ∈ 𝑋}.  

(v) (Complement): The complement of the NS 𝐴, denoted by 𝐴𝑐, is defined as 𝐴𝑐 = {〈𝑥, ℱ𝐴(𝑥), 1 −

ℐ𝐴(𝑥), 𝒯𝐴(𝑥)〉: 𝑥 ∈ 𝑋}. 

(vi) (Universal Set): If 𝒯𝐴(𝑥) = 1, ℐ𝐴(𝑥) = 0, ℱ𝐴(𝑥) = 0  for all 𝑥 ∈ 𝑋  then 𝐴  is said to be 

neutrosophic universal set and which is denoted by �̃�. 

(vii) (Empty Set): If 𝒯𝐴(𝑥) = 0, ℐ𝐴(𝑥) = 1, ℱ𝐴(𝑥) = 1 for all 𝑥 ∈ 𝑋 then 𝐴 is said to be neutrosophic 

empty set and which is denoted by ∅̃.  
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2.4. Definition: [29] Let {𝐴𝑖: 𝑖 ∈△} ⊆ 𝒩(𝑋), where △ is an index set. Then   

(i) ∪𝑖∈△ 𝐴𝑖 = {〈𝑥,  ∨𝑖∈△ 𝒯𝐴𝑖
(𝑥),  ∧𝑖∈△ ℐ𝐴𝑖

(𝑥),  ∧𝑖∈△ ℱ𝐴𝑖
(𝑥)〉: 𝑥 ∈ 𝑋}.  

(ii) ∩𝑖∈△ 𝐴𝑖 = {〈𝑥, ∧𝑖∈△ 𝒯𝐴𝑖
(𝑥),  ∨𝑖∈△ ℐ𝐴𝑖

(𝑥),  ∨𝑖∈△ ℱ𝐴𝑖
(𝑥)〉: 𝑥 ∈ 𝑋}.  

2.5. Definition:[17] Let 𝜏 ⊆ 𝒩(𝑋). Then 𝜏 is called a neutrosophic topology on 𝑋 if   

(i) ∅̃ and �̃� belong to 𝜏.  

(ii) Arbitrary union of neutrosophic sets in 𝜏 is in 𝜏.  

(iii) Intersection of any two neutrosophic sets in 𝜏 is in 𝜏.  

If 𝜏 is a neutrosophic topology on 𝑋 then the pair (𝑋, 𝜏) is called a neutrosophic topological 

space (NTS, for short) over 𝑋. The members of 𝜏 are called neutrosophic 𝜏-open sets (neutrosophic 

open sets or open sets, for short) in 𝑋. If for an NS 𝐴, 𝐴𝑐 ∈ 𝜏 then 𝐴 is said to be a neutrosophic 𝜏-

closed set (neutrosophic closed set or closed set, for short) in 𝑋.   

2.6. Definition: [24] Let 𝒩(𝑋)  be the set of all neutrosophic sets over 𝑋 . An NS 𝑃 =

{〈𝑥, 𝒯𝑃(𝑥), ℐ𝑃(𝑥), ℱ𝑃(𝑥)〉: 𝑥 ∈ 𝑋} is called a neutrosophic point (NP, for short) iff for any element 𝑦 ∈

𝑋, 𝒯𝑃(𝑦) = 𝛼, ℐ𝑃(𝑦) = 𝛽, ℱ𝑃(𝑦) = 𝛾 for   𝑦 = 𝑥 and 𝒯𝑃(𝑦) = 0, ℐ𝑃(𝑦) = 1, ℱ𝑃(𝑦) = 1 for   𝑦 ≠ 𝑥, where 

0 < 𝛼 ≤ 1, 0 ≤ 𝛽 < 1, 0 ≤ 𝛾 < 1 . A neutrosophic point 𝑃 = {〈𝑥, 𝒯𝑃(𝑥), ℐ𝑃(𝑥), ℱ𝑃(𝑥)〉: 𝑥 ∈ 𝑋}  will be 

denoted by 𝑥𝛼,𝛽,𝛾. For the NP 𝑥𝛼,𝛽,𝛾, 𝑥 will be called its support. The complement of the NP 𝑥𝛼,𝛽,𝛾 

will be denoted by (𝑥𝛼,𝛽,𝛾)𝑐. An NS 𝑃 = {〈𝑥, 𝒯𝑃(𝑥), ℐ𝑃(𝑥), ℱ𝑃(𝑥)〉: 𝑥 ∈ 𝑋} is called a neutrosophic crisp 

point (NCP, for short) iff for any element 𝑦 ∈ 𝑋 , 𝒯𝑃(𝑦) = 1, ℐ𝑃(𝑦) = 0, ℱ𝑃(𝑦) = 0  for 𝑦 = 𝑥  and 

𝒯𝑃(𝑦) = 0, ℐ𝑃(𝑦) = 1, ℱ𝑃(𝑦) = 1 for 𝑦 ≠ 𝑥. 

2.7. Definition: [32] Let 𝑋 and 𝑌 be two non-empty sets and 𝑓: 𝑋 → 𝑌 be a function. Also let 𝐴 ∈

𝒩(𝑋) and 𝐵 ∈ 𝒩(𝑌). Then   

(i) Image of 𝐴 under 𝑓 is defined by 𝑓(𝐴) = {〈𝑦, 𝑓(𝒯𝐴)(𝑦), 𝑓(ℐ𝐴)(𝑦), (1 − 𝑓(1 − ℱ𝐴))(𝑦)〉: 𝑦 ∈ 𝑌}, 

where 𝑓(𝒯𝐴)(𝑦) = {
sup{𝒯𝐴(𝑥): 𝑥 ∈ 𝑓−1(𝑦)}  𝑖𝑓   𝑓−1(𝑦) ≠ ∅

0  𝑖𝑓   𝑓−1(𝑦) = ∅
 

𝑓(ℐ𝐴)(𝑦) = {
inf{ℐ𝐴(𝑥): 𝑥 ∈ 𝑓−1(𝑦)}  𝑖𝑓   𝑓−1(𝑦) ≠ ∅

1  𝑖𝑓   𝑓−1(𝑦) = ∅
 

(1 − 𝑓(1 − ℱ𝐴))(𝑦) = {
inf{ℱ𝐴(𝑥): 𝑥 ∈ 𝑓−1(𝑦)}  𝑖𝑓   𝑓−1(𝑦) ≠ ∅

1  𝑖𝑓   𝑓−1(𝑦) = ∅
 

(ii) Pre-image of 𝐵 under 𝑓 is defined by 𝑓−1(𝐵) = {〈𝑥, 𝑓−1(𝒯𝐵)(𝑥), 𝑓−1(ℐ𝐵)(𝑥), 𝑓−1(ℱ𝐵)(𝑥)〉: 𝑥 ∈

𝑋} 

2.8. Theorem: [32] Let 𝑓: 𝑋 → 𝑌 be a function. Also let 𝐴, 𝐴𝑖 ∈ 𝒩(𝑋), 𝑖 ∈ 𝐼  and 𝐵, 𝐵𝑗 ∈ 𝒩(𝑌), 𝑗 ∈ 𝐽. 

Then the following hold.   

(i) 𝐴1 ⊆ 𝐴2 ⇔ 𝑓(𝐴1) ⊆ 𝑓(𝐴2), 𝐵1 ⊆ 𝐵2 ⇔ 𝑓−1(𝐵1) ⊆ 𝑓−1(𝐵2).  

(ii) 𝐴 ⊆ 𝑓−1(𝑓(𝐴)) and if 𝑓 is injective then 𝐴 = 𝑓−1(𝑓(𝐴)).  

(iii) 𝑓−1(𝑓(𝐵)) ⊆ 𝐵 and if 𝑓 is surjective then 𝑓−1(𝑓(𝐵)) = 𝐵.  

(iv) 𝑓−1(∪ 𝐵𝑗) =∪ 𝑓−1(𝐵𝑗) and 𝑓−1(∩ 𝐵𝑗) =∩ 𝑓−1(𝐵𝑗).  

(v) 𝑓(∪ 𝐴𝑖) =∪ 𝑓(𝐴𝑖), 𝑓(∩ 𝐴𝑖) ⊆∩ 𝑓(𝐴𝑖) and if 𝑓 is injective then 𝑓(∩ 𝐴𝑖) =∩ 𝑓(𝐴𝑖).  

(vi) 𝑓−1(∅̃𝑌) = ∅̃𝑋, 𝑓−1(�̃�) = �̃�.  

(vii) 𝑓(∅̃𝑋) = ∅̃𝑌, 𝑓(�̃�) = �̃� if 𝑓 is surjective.  
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2.9. Definition: [33] Let 𝑓 be a function from an NTS (𝑋, 𝜏) to another NTS (𝑌, 𝜎). Then   

(i) 𝑓 is called a neutrosophic continuous function if 𝑓−1(𝐺) ∈ 𝜏 for all 𝐺 ∈ 𝜎 then  

(ii) 𝑓 is called a neutrosophic open function if 𝑓(𝐺) ∈ 𝜎 for all 𝐺 ∈ 𝜏.  

(iii) 𝑓 is called a neutrosophic closed function if 𝑓(𝐺) is a neutrosophic closed set in 𝑌 for every 

neutrosophic closed set 𝐺 in 𝑋.  

(iv) 𝑓 is called a neutrosophic homeomorphism if the following three conditions hold:   

a. 𝑓 is a bijective function.  

b. 𝑓 is a neutrosophic continuous function.  

c. 𝑓−1 is a neutrosophic continuous function.  

2.10. Definition:[24] Let (𝑋, 𝜏) be a neutrosophic topological space. An NS 𝐴 ∈ 𝒩(𝑋) is called a 

neutrosophic neighbourhood or simply neighbourhood (nhbd for short) of an NP 𝑥𝛼,𝛽,𝛾  iff there 

exists an NS 𝐵 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐵 ⊆ 𝐴. 

2.11. Definition: [14] Let (𝑋, 𝜏) be a neutrosophic topological space. A subcollection ℬ of 𝜏 is called 

a base for 𝜏 iff for each 𝐴 ∈ 𝜏, there exists a subcollection {𝐴𝑖: 𝑖 ∈ Δ} ⊆ ℬ such that 𝐴 =∪ {𝐴𝑖: 𝑖 ∈△}, 

where △ is an index set. 

2.12. Definition:[14] Let (𝑋, 𝜏) be a neutrosophic topological space and 𝐴 ∈ 𝒩(𝑋). A collection 𝐶 =

{𝐺𝜆: 𝜆 ∈△} of neutrosophic open sets of 𝑋 is called a neutrosophic open cover (NOC, in short) of 𝐴 

if 𝐴 ⊆∪𝜆∈△ 𝐺𝜆. We then say 𝐶 covers 𝐴. In particular, 𝐶 is said to be a NOC of 𝑋 iff �̃� =∪𝜆∈△ 𝐺𝜆. 

Let 𝐶  be a NOC of the NS 𝐴 and 𝐶′ ⊆ 𝐶 . Then 𝐶′  is called a neutrosophic open subcover 

(NOSC, in short) of 𝐶 if 𝐶′ covers 𝐴. 

2.13. Definition:[14] An NS 𝐴 in an NTS (𝑋, 𝜏) is said to be neutrosophic compact set iff every NOC 

of 𝐴 has a finite NOSC. In particular, the space 𝑋 is said to be neutrosophic compact space iff every 

NOC of 𝑋 has a finite NOSC. 

3. Neutrosophic Subspaces 

In this section we try to establish some results related to single-valued neutrosophic sets. After 

that, we define neutrosophic subspace with example and then investigate some properties. 

3.1. Definition: Let 𝑋, 𝑌 be two crisp sets such that 𝑌 ≠ ∅ and 𝑌 ⊆ 𝑋. We define �̃� = {〈𝑥, 𝛼, 𝛽, 𝛾〉: 𝑥 ∈

𝑋} , where 𝛼 = 1, 𝛽 = 0, 𝛾 = 0  if 𝑥 ∈ 𝑌  and 𝛼 = 0, 𝛽 = 1, 𝛾 = 1  if 𝑥 ∈ 𝑋\𝑌 . The set of all single-

valued neutrosophic sets over 𝑌 will be denoted by 𝒩(𝑌). 

3.2. Definition: Let 𝑋, 𝑌 be two crisp sets such that 𝑌 ≠ ∅ and 𝑌 ⊆ 𝑋. Then for an NS 𝐴 ∈ 𝒩(𝑋), we 

define 𝐴|𝑌 = {〈𝑥, 𝒯𝐴|𝑌
(𝑥), ℐ𝐴|𝑌

(𝑥), ℱ𝐴|𝑌
(𝑥)〉: 𝑥 ∈ 𝑋} , where 𝒯𝐴|𝑌

(𝑥) = 𝒯𝐴(𝑥) , ℐ𝐴|𝑌
(𝑥) = ℐ𝐴(𝑥) , ℱ𝐴|𝑌

(𝑥) =

ℱ𝐴(𝑥) if 𝑥 ∈ 𝑌 and 𝒯𝐴|𝑌
(𝑥) = 0, ℐ𝐴|𝑌

(𝑥) = 1, ℱ𝐴|𝑌
(𝑥) = 1 if 𝑥 ∈ 𝑋\𝑌. 

3.3. Remark: From the definitions 3.1 and 3.2, it is clear that   

1. 𝐴|𝑌 ∈ 𝒩(𝑌) for every 𝐴 ∈ 𝒩(𝑋).  

2. Every NS 𝐴  over 𝑌  can be considered as an NS over 𝑋  by taking 𝒯𝐴(𝑥) = 0, ℐ𝐴(𝑥) =

1, ℱ𝐴(𝑥) = 1 for all 𝑥 ∈ 𝑋\𝑌.  

3. �̃�|𝑌 = �̃� and ∅̃|𝑌 = ∅̃.  
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3.4. Proposition: Let 𝑋, 𝑌, 𝑍 be three sets such that ∅ ≠ 𝑍 ⊆ 𝑌 ⊆ 𝑋. Let 𝐴 ∈ 𝒩(𝑋) and {𝐴𝜆: 𝜆 ∈△} ⊆

𝒩(𝑋), where △ is an index set. Then   

(i) (⋃𝜆∈△ 𝐴𝜆)|𝑌 = ⋃𝜆∈△ (𝐴𝜆|𝑌).  

(ii) (⋂𝜆∈△ 𝐴𝜆)|𝑌 = ⋂𝜆∈△ (𝐴𝜆|𝑌).  

(iii) 𝐴𝑐|𝑌 = (𝐴|𝑌)𝑐.  

(iv) (𝐴|𝑌)|𝑍 = 𝐴|𝑍.  

Proofs: 

(i) (⋃𝜆∈△ 𝐴𝜆)|𝑌 = {〈𝑥, 𝒯(∪𝜆∈△𝐴𝜆)|𝑌
(𝑥), ℐ(∪𝜆∈△𝐴𝜆)|𝑌

(𝑥), ℱ(∪𝜆∈△𝐴𝜆)|𝑌
(𝑥)〉: 𝑥 ∈ 𝑋} 

            = {〈𝑥, 𝒯(∪𝜆∈△𝐴𝜆)|𝑌
(𝑥), ℐ(∪𝜆∈△𝐴𝜆)|𝑌

(𝑥), ℱ(∪𝜆∈△𝐴𝜆)|𝑌
(𝑥)〉: 𝑥 ∈ 𝑌} ⋃  

                   {〈𝑥, 𝒯(∪𝜆∈△𝐴𝜆)|𝑌
(𝑥), ℐ(∪𝜆∈△𝐴𝜆)|𝑌

(𝑥), ℱ(∪𝜆∈△𝐴𝜆)|𝑌
(𝑥)〉: 𝑥 ∈ 𝑋\𝑌} 

             = {〈𝑥, 𝒯∪𝜆∈△𝐴𝜆
(𝑥), ℐ∪𝜆∈△𝐴𝜆

(𝑥), ℱ∪𝜆∈△𝐴𝜆
(𝑥)〉: 𝑥 ∈ 𝑌} ⋃  

                   {〈𝑥, 0,1,1〉: 𝑥 ∈ 𝑋\𝑌} 

              = {〈𝑥,∨𝜆∈△ 𝒯𝐴𝜆
(𝑥),∧𝜆∈△ ℐ𝐴𝜆

(𝑥),∧𝜆∈△ ℱ𝐴𝜆
(𝑥)〉: 𝑥 ∈ 𝑌} 

              = {〈𝑥,∨𝜆∈△ 𝒯𝐴𝜆|𝑌
(𝑥),∧𝜆∈△ ℐ𝐴𝜆|𝑌

(𝑥),∧𝜆∈△ ℱ𝐴𝜆|𝑌
(𝑥)〉: 𝑥 ∈ 𝑌} 

              = ⋃𝜆∈△ [{〈𝑥, 𝒯𝐴𝜆|𝑌
(𝑥), ℐ𝐴𝜆|𝑌

(𝑥), ℱ𝐴𝜆|𝑌
(𝑥)〉: 𝑥 ∈ 𝑌} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∈ 𝑋\𝑌}] 

              = ⋃𝜆∈△ (𝐴𝜆|𝑌) 

 

(ii) (⋂𝜆∈△ 𝐴𝜆)|𝑌 = {〈𝑥, 𝒯(∩𝜆∈△𝐴𝜆)|𝑌
(𝑥), ℐ(∩𝜆∈△𝐴𝜆)|𝑌

(𝑥), ℱ(∩𝜆∈△𝐴𝜆)|𝑌
(𝑥)〉: 𝑥 ∈ 𝑋} 

               = {〈𝑥, 𝒯(∩𝜆∈△𝐴𝜆)|𝑌
(𝑥), ℐ(∩𝜆∈△𝐴𝜆)|𝑌

(𝑥), ℱ(∩𝜆∈△𝐴𝜆)|𝑌
(𝑥)〉: 𝑥 ∈ 𝑌} ⋃  

                        {〈𝑥, 𝒯(∩𝜆∈△𝐴𝜆)|𝑌
(𝑥), ℐ(∩𝜆∈△𝐴𝜆)|𝑌

(𝑥), ℱ(∩𝜆∈△𝐴𝜆)|𝑌
(𝑥)〉: 𝑥 ∈ 𝑋\𝑌} 

               = {〈𝑥, 𝒯∩𝜆∈△𝐴𝜆
(𝑥), ℐ∩𝜆∈△𝐴𝜆

(𝑥), ℱ∩𝜆∈△𝐴𝜆
(𝑥)〉: 𝑥 ∈ 𝑌} ⋃  

                    {〈𝑥, 0,1,1〉: 𝑥 ∈ 𝑋\𝑌} 

               = {〈𝑥,∧𝜆∈△ 𝒯𝐴𝜆
(𝑥),∨𝜆∈△ ℐ𝐴𝜆

(𝑥),∨𝜆∈△ ℱ𝐴𝜆
(𝑥)〉: 𝑥 ∈ 𝑌} 

               = {〈𝑥,∧𝜆∈△ 𝒯𝐴𝜆|𝑌
(𝑥),∨𝜆∈△ ℐ𝐴𝜆|𝑌

(𝑥),∨𝜆∈△ ℱ𝐴𝜆|𝑌
(𝑥)〉: 𝑥 ∈ 𝑌} 

              = ⋂𝜆∈△ [{〈𝑥, 𝒯𝐴𝜆|𝑌
(𝑥), ℐ𝐴𝜆|𝑌

(𝑥), ℱ𝐴𝜆|𝑌
(𝑥)〉: 𝑥 ∈ 𝑌} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∈ 𝑋\𝑌}] 

               = ⋂𝜆∈△ (𝐴𝜆|𝑌) 

 

(iii) 𝐴𝑐|𝑌 = {〈𝑥, 𝒯𝐴𝑐|𝑌
(𝑥), ℐ𝐴𝑐|𝑌

(𝑥), ℱ𝐴𝑐|𝑌
(𝑥)〉: 𝑥 ∈ 𝑋} 

      = {〈𝑥, 𝒯𝐴𝑐(𝑥), ℐ𝐴𝑐(𝑥), ℱ𝐴𝑐(𝑥)〉: 𝑥 ∈ 𝑌} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∈ 𝑋\𝑌} 

      = {〈𝑥, 𝒯𝐴𝑐(𝑥), ℐ𝐴𝑐(𝑥), ℱ𝐴𝑐(𝑥)〉: 𝑥 ∈ 𝑌} 

      = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑌}𝑐  

      = {〈𝑥, 𝒯𝐴|𝑌
(𝑥), ℐ𝐴|𝑌

(𝑥), ℱ𝐴|𝑌
(𝑥)〉: 𝑥 ∈ 𝑌}𝑐  

      = ({〈𝑥, 𝒯𝐴|𝑌
(𝑥), ℐ𝐴|𝑌

(𝑥), ℱ𝐴|𝑌
(𝑥)〉: 𝑥 ∈ 𝑌} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∈ 𝑌})𝑐  

      = {〈𝑥, 𝒯(𝐴|𝑌)𝑐(𝑥), ℐ(𝐴|𝑌)𝑐(𝑥), ℱ(𝐴|𝑌)𝑐(𝑥)〉: 𝑥 ∈ 𝑋} 

      = (𝐴|𝑌)𝑐 

 

(iv) (𝐴|𝑌)|𝑍 = {〈𝑥, 𝒯(𝐴|𝑌)|𝑍
(𝑥), ℐ(𝐴|𝑌)|𝑍

(𝑥), ℱ(𝐴|𝑌)|𝑍
(𝑥)〉: 𝑥 ∈ 𝑋} 

         = {〈𝑥, 𝒯𝐴|𝑌
(𝑥), ℐ𝐴|𝑌

(𝑥), ℱ𝐴|𝑌
(𝑥)〉: 𝑥 ∈ 𝑍} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∉ 𝑍} 

         = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑌 ∩ 𝑍} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∉ 𝑌 ∩ 𝑍} 
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         = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑍} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∉ 𝑍} 

         = {〈𝑥, 𝒯𝐴|𝑍
(𝑥), ℐ𝐴|𝑍

(𝑥), ℱ𝐴|𝑍
(𝑥)〉: 𝑥 ∈ 𝑍} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∉ 𝑍} 

         = {〈𝑥, 𝒯𝐴|𝑍
(𝑥), ℐ𝐴|𝑍

(𝑥), ℱ𝐴|𝑍
(𝑥)〉: 𝑥 ∈ 𝑋} 

         = 𝐴|𝑍 

 

3.5. Proposition: Let 𝑌, 𝑍 be two non-empty subsets of 𝑋 and let 𝐴 ∈ 𝒩(𝑋). Then 𝐴|(𝑌∩𝑍) = (𝐴|𝑌) ∩

(𝐴|𝑍). 

Proof: 

 𝐴|(𝑌∩𝑍) = {〈𝑥, 𝒯𝐴|(𝑌∩𝑍)
(𝑥), ℐ𝐴|(𝑌∩𝑍)

(𝑥), ℱ𝐴|(𝑌∩𝑍)
(𝑥)〉: 𝑥 ∈ 𝑋} 

         = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑌 ∩ 𝑍} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∉ 𝑌 ∩ 𝑍} 

         = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑌 ∩ 𝑍} 

         = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑌} ∩ {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑍} 

         = [{〈𝑥, 𝒯𝐴|𝑌
(𝑥), ℐ𝐴|𝑌

(𝑥), ℱ𝐴|𝑌
(𝑥)〉: 𝑥 ∈ 𝑌} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∉ 𝑌}] ⋂  

              [{〈𝑥, 𝒯𝐴|𝑍
(𝑥), ℐ𝐴|𝑍

(𝑥), ℱ𝐴|𝑍
(𝑥)〉: 𝑥 ∈ 𝑍} ∪ {〈𝑥, 0,1,1〉: 𝑥 ∉ 𝑍}] 

        = {〈𝑥, 𝒯𝐴|𝑌
(𝑥), ℐ𝐴|𝑌

(𝑥), ℱ𝐴|𝑌
(𝑥)〉: 𝑥 ∈ 𝑋} ⋂ {〈𝑥, 𝒯𝐴|𝑍

(𝑥), ℐ𝐴|𝑍
(𝑥), ℱ𝐴|𝑍

(𝑥)〉: 𝑥 ∈ 𝑋} 

        = (𝐴|𝑌) ∩ (𝐴|𝑍) 

 

3.6. Proposition: Let (𝑋, 𝜏) be an NTS. Let ∅ ≠ 𝑌 ⊆ 𝑋 and 𝜏|𝑌 = {𝐺|𝑌: 𝐺 ∈ 𝜏}. Then (𝑌, 𝜏|𝑌) is an 

NTS. 

Proof: 

1. �̃�, ∅̃ ∈ 𝜏 ⇒ �̃�|𝑌, ∅̃|𝑌 ∈ 𝜏|𝑌. As �̃� = �̃�|𝑌 and ∅̃ = ∅̃|𝑌, so �̃�, ∅̃ ∈ 𝜏|𝑌. 

2. Let {𝐺𝑖: 𝑖 ∈△} ⊆ 𝜏|𝑌 Then for each 𝑖 ∈△, 𝐺𝑖 = 𝐺𝑖
′|𝑌 for some 𝐺𝑖

′ ∈ 𝜏. Now ∪𝑖∈△ 𝐺𝑖 =

∪𝑖∈△ (𝐺𝑖
′|𝑌) == (∪𝑖∈△ 𝐺𝑖

′)|𝑌 ∈ 𝜏|𝑌 [∵∪𝑖∈△ 𝐺𝑖
′ ∈ 𝜏 and by 3.4(i)]. 

3. Let 𝐺, 𝐻 ∈ 𝜏|𝑌. Then 𝐺 = 𝐺′|𝑌 and 𝐻 = 𝐻′|𝑌 for some 𝐺′, 𝐻′ ∈ 𝜏. Now 𝐺 ∩ 𝐻 = (𝐺′|𝑌) ∩

(𝐻′|𝑌) = (𝐺′ ∩ 𝐻′)|𝑌 ∈ 𝜏|𝑌 [∵ 𝐺′ ∩ 𝐻′ ∈ 𝜏 and by 3.4(ii)] 

Hence (𝑌, 𝜏|𝑌) is an NTS. 

3.7. Definition: Let (𝑋, 𝜏) be an NTS. Let ∅ ≠ 𝑌 ⊆ 𝑋 and 𝜏|𝑌 = {𝐺|𝑌: 𝐺 ∈ 𝜏}. Then (𝑌, 𝜏|𝑌) [by 3.6] is 

an NTS. The topology 𝜏|𝑌 is called the neutrosophic relative topology of 𝜏 on 𝑌 or the neutrosophic 

subspace topology of 𝑌 and the NTS (𝑌, 𝜏|𝑌) is called a neutrosophic subspace (or a subspace, for 

short) of the NTS (𝑋, 𝜏). 

Members of 𝜏|𝑌 are called 𝜏|𝑌-open sets in 𝑌. An NS 𝐴 ∈ 𝒩(𝑌) such that 𝐴𝑐 ∈ 𝜏|𝑌 is called a 𝜏|𝑌-

closed set in 𝑌. 

(𝑌, 𝜏|𝑌) is called a neutrosophic open subspace or neutrosophic closed subspace of (𝑋, 𝜏) according 

as �̃� ∈ 𝜏 or �̃� ∈ 𝜏𝑐.    

3.8. Example: Let 𝑋 = {𝑎, 𝑏}  and 𝜏 = {∅̃, �̃�, 𝐴, 𝐵, 𝐴 ∩ 𝐵, 𝐴 ∪ 𝐵} , where 𝐴 =

{〈𝑎, 0.5,0.4,0.2〉, 〈𝑏, 0.6,0.3,0.5〉} and 𝐵 = {〈𝑎, 0.3,0.4,0.6〉, 〈𝑏, 0.4,0.7,0.3〉}. Clearly (𝑋, 𝜏) is an NTS. Let 

𝑌 = {𝑎} . Then �̃�|𝑌 = {〈𝑎, 1,0,0〉, 〈𝑏, 0,1,1〉} = �̃� , ∅̃|𝑌 = {〈𝑎, 0,1,1〉, 〈𝑏, 0,1,1〉} = ∅̃ , 𝐴|𝑌 =
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{〈𝑎, 0.5,0.4,0.2〉, 〈𝑏, 0,1,1〉} , 𝐵|𝑌 = {〈𝑎, 0.3,0.4,0.6〉, 〈𝑏, 0,1,1〉} , (𝐴 ∩ 𝐵)|𝑌 = {〈𝑎, 0.3,0.4,0.6〉, 〈𝑏, 0,1,1〉} , 

(𝐴 ∪ 𝐵)|𝑌 = {〈𝑎, 0.5,0.4,0.2〉, 〈𝑏, 0,1,1〉}. 

Clearly 𝜏|𝑌 = {∅̃, �̃�, 𝐴|𝑌 , 𝐵|𝑌, (𝐴 ∩ 𝐵)|𝑌, (𝐴 ∪ 𝐵)|𝑌}  is a neutrosophic subspace topology of 𝑌 , i.e., 

(𝑌, 𝜏|𝑌) is a neutrosophic subspace of (𝑋, 𝜏). 

3.9. Proposition: Let (𝑌, 𝜎) be a subspace of an NTS (𝑋, 𝜏) and (𝑍, 𝜇) be a subspace of (𝑌, 𝜎). Then 

(𝑍, 𝜇) is a subspace of (𝑋, 𝜏). 

Proof: Since 𝑍 ⊆ 𝑌 ⊆ 𝑋 , so 𝑍 ⊆ 𝑋 . We need to show that 𝜏|𝑍 = 𝜇 . Let 𝐺 ∈ 𝜇 . Since (𝑍, 𝜇)  is a 

subspace of (𝑌, 𝜎), so there exists 𝐻 ∈ 𝜎  such that 𝐺 = 𝐻|𝑍 . Again since (𝑌, 𝜎) is a subspace of 

(𝑋, 𝜏) , so there exists 𝐾 ∈ 𝜏  such that 𝐻 = 𝐾|𝑌 . Then 𝐺 = 𝐻|𝑍 = (𝐾|𝑌)|𝑍 = 𝐾|𝑍  [by 3.4(iv)]. Since 

𝐾|𝑍 ∈ 𝜏|𝑍 , so 𝐺 ∈ 𝜏|𝑍 . Therefore 𝜇 ⊆ 𝜏|𝑍 . Next suppose that 𝑈 ∈ 𝜏|𝑍. Then there exists 𝑉 ∈ 𝜏 such 

that 𝑈 = 𝑉|𝑍 . Since (𝑌, 𝜎) is a subspace of (𝑋, 𝜏), so 𝑉|𝑌 ∈ 𝜎. Again since (𝑍, 𝜇) is a subspace of 

(𝑌, 𝜎), so (𝑉|𝑌)|𝑍 ∈ 𝜇 ⇒ 𝑉|𝑍 ∈ 𝜇 ⇒ 𝑈 ∈ 𝜇. Therefore 𝜏|𝑍 ⊆ 𝜇. Hence 𝜏|𝑍 = 𝜇, i.e., (𝑍, 𝜇) is a subspace 

of (𝑋, 𝜏). 

3.10. Proposition: Let 𝑌 and 𝑍 be two subspaces of an NTS (𝑋, 𝜏). If 𝑌 ⊆ 𝑍 then 𝑌 is a subspace of 

𝑍. 

Proof: Let (𝑌, 𝜎) and (𝑍, 𝜇) be the subspaces of the NTS (𝑋, 𝜏). Then 𝜏|𝑌 = 𝜎 and 𝜏|𝑍 = 𝜇. Now 

𝜇|𝑌 = {𝐴|𝑌: 𝐴 ∈ 𝜇} = {(𝐵|𝑍)|𝑌: 𝐵 ∈ 𝜏  and 𝐵|𝑍 = 𝐴 ∈ 𝜇} = {𝐵|𝑌: 𝐵 ∈ 𝜏} = 𝜏|𝑌 = 𝜎 . Since 𝜇|𝑌 = 𝜎 , so 𝑌 

is a subspace of 𝑍. 

3.11. Proposition: Let (𝑌, 𝜏|𝑌) be a subspace of an NTS (𝑋, 𝜏) and 𝐴 ∈ 𝒩(𝑌). Then 𝐴 is 𝜏|𝑌-closed 

iff 𝐴 = 𝐹|𝑌 for some 𝜏-closed set 𝐹 in 𝑋. 

Proof:𝐴 is 𝜏|𝑌-closed in 𝑌 ⇔ 𝐴𝑐 is 𝜏|𝑌-open in 𝑌 ⇔ 𝐴𝑐 = 𝐺|𝑌 for some 𝐺 ∈ 𝜏 ⇔ 𝐴 = (𝐺|𝑌)𝑐 ⇔ 𝐴 =

𝐺𝑐|𝑌 [3.4(iii)] ⇔ 𝐴 = 𝐹|𝑌, where 𝐹 = 𝐺𝑐 is a 𝜏-closed set in 𝑋. 

3.12. Remark: From 3.11, it is easy to conclude that if (𝑌, 𝜏|𝑌) is a subspace of an NTS (𝑋, 𝜏) then 

(𝜏|𝑌)𝑐 = 𝜏𝑐|𝑌.    

3.13. Proposition: Let (𝑌, 𝜏|𝑌) be a subspace of an NTS (𝑋, 𝜏) and let ℬ be a base for 𝜏. Then ℬ|𝑌 =

{𝐵|𝑌: 𝐵 ∈ ℬ} is a base for 𝜏|𝑌. 

Proof: Let 𝐻 be a 𝜏|𝑌-open set in 𝑌. Also let 𝑥𝛼,𝛽,𝛾 ∈ 𝐻 be an arbitrary NP. Then there exists a 𝜏-

open set 𝐺 such that 𝐻 = 𝐺|𝑌. Since ℬ is a base for 𝜏, so there exists a 𝐵 ∈ ℬ such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐵 ⊆

𝐺. Therefore 𝑥𝛼,𝛽,𝛾 ∈ 𝐵|𝑌 ⊆ 𝐺|𝑌 = 𝐻 as 𝑥𝛼,𝛽,𝛾 ∈ 𝒩(𝑌). Thus for any 𝑥𝛼,𝛽,𝛾 ∈ 𝐻, there exists a member 

𝐵|𝑌 of ℬ|𝑌 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐵|𝑌 ⊆ 𝐻. Therefore 𝐻 =∪ {𝐵|𝑌: 𝐵|𝑌 ∈ ℬ|𝑌 and 𝐵|𝑌 ⊆ 𝐻}. Hence ℬ|𝑌 is 

a base for 𝜏|𝑌. 

4. Neutrosophic Separation Axioms 

Here we study the separation axioms in neutrosophic topological spaces. But, before that, we put 

forward two definitions.  

4.1. Definition: A property of an NTS (𝑋, 𝜏) is said to be hereditary if whenever the space 𝑋 has that 

property, then so does every subspace of it. 
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4.2. Definition: A property of an NTS (𝑋, 𝜏)  is said to be a topological property or topological 

invariant if each space homeomorphic to 𝑋  has that property whenever the space 𝑋  has that 

property. In other words, a property of an NTS is said to be a topological property iff it is preserved 

under homeomorphism. 

4.3. Definition: An NTS (𝑋, 𝜏) is called a neutrosophic 𝑇0-space or (𝑁𝑇0-space, for short) iff for any 

two NPs 𝑥𝛼,𝛽,𝛾  and 𝑦𝛼′,𝛽′,𝛾′ , 𝑥 ≠ 𝑦, there exists a 𝑈 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝑈, 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝑈 or there 

exists a 𝑉 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∉ 𝑉, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉. 

4.4. Example: Let 𝑋 = {𝑎, 𝑏}  and 𝜏 = {∅̃, �̃�, 𝐴, 𝐵} , where 𝐴 = {〈𝑎, 1,0,0〉, 〈𝑏, 0,1,1〉}  and 𝐵 =

{〈𝑎, 0,1,1〉, 〈𝑏, 1,0,0〉}. Clearly (𝑋, 𝜏) is an NTS and it is a 𝑁𝑇0-space. 

4.5. Example: Let 𝑋 = {𝑎, 𝑏} and 𝜏 = {∅̃, �̃�}. Clearly (𝑋, 𝜏) is an NTS but it is not a 𝑁𝑇0-space. 

4.6. Proposition: Let 𝜏 and 𝜏∗ be two neutrosophic topologies on a set 𝑋 such that 𝜏∗ is finer than 

𝜏. If (𝑋, 𝜏) is a 𝑁𝑇0-space then (𝑋, 𝜏∗) is also a 𝑁𝑇0-space. 

Proof: Let 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′ , 𝑥 ≠ 𝑦, be two NPs in 𝑋. Since (𝑋, 𝜏) is a 𝑁𝑇0-space, so there exists a 

𝐺 ∈ 𝜏  such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺 , 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝐺  or there exists a 𝐻 ∈ 𝜏  such that 𝑥𝛼,𝛽,𝛾 ∉ 𝐻 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐻 . 

Since 𝜏∗ is finer than 𝜏, so 𝐺, 𝐻 ∈ 𝜏 ⇒ 𝐺, 𝐻 ∈ 𝜏∗. Thus for any two NPs 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′ , 𝑥 ≠ 𝑦, 

there exists a 𝐺 ∈ 𝜏∗ such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺, 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝐺 or there exists a 𝐻 ∈ 𝜏∗ such that 𝑥𝛼,𝛽,𝛾 ∉ 𝐻, 

𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐻. Hence (𝑋, 𝜏∗) is also a 𝑁𝑇0-space. 

 

4.7. Proposition: Let (𝑋, 𝜏) be a 𝑁𝑇0-space. Then every neutrosophic subspace of 𝑋 is a 𝑁𝑇0-space 

and hence the property is hereditary. 

Proof: Let (𝑌, 𝜏|𝑌) be a neutrosophic subspace of (𝑋, 𝜏), where 𝜏|𝑌 = {𝐺|𝑌: 𝐺 ∈ 𝜏}. We want to show 

(𝑌, 𝜏|𝑌)  is a 𝑁𝑇0 -space. Let 𝑥𝛼,𝛽,𝛾  and 𝑦𝛼′,𝛽′,𝛾′  be two NPs in 𝑌  such that 𝑥 ≠ 𝑦 . Then 

𝑥𝛼,𝛽,𝛾, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑋 , 𝑥 ≠ 𝑦 . Since (𝑋, 𝜏)  is a 𝑁𝑇0 -space, so there exists a 𝜏 -open NS 𝑈  such that 

𝑥𝛼,𝛽,𝛾 ∈ 𝑈  , 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝑈  or there exists a 𝜏 -open NS 𝑉  such that 𝑥𝛼,𝛽,𝛾 ∉ 𝑉 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉 . Then 

(𝑥𝛼,𝛽,𝛾 ∈ 𝑈|𝑌 , 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝑈|𝑌) or (𝑥𝛼,𝛽,𝛾 ∉ 𝑉|𝑌 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉|𝑌). Also 𝑈|𝑌, 𝑉|𝑌 ∈ 𝜏|𝑌 . Thus for any two 

NPs 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′  in 𝑌 such that 𝑥 ≠ 𝑦, there exists a 𝜏|𝑌-open NS 𝑈|𝑌 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝑈|𝑌, 

𝑦𝛼′,𝛽′,𝛾′ ∉ 𝑈|𝑌  or there exists a 𝜏|𝑌 -open NS 𝑉|𝑌  such that 𝑥𝛼,𝛽,𝛾 ∉ 𝑉|𝑌 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉|𝑌  Therefore 

(𝑌, 𝜏|𝑌) is a 𝑁𝑇0-space and hence the property is hereditary. 

 

4.8. Proposition: Let (𝑋, 𝜏) be an NTS. Then 𝑋 is a 𝑁𝑇0-space iff for any two distinct neutrosophic 

crisp points 𝑥1,0,0 and 𝑦1,0,0 in 𝑋, (𝑥1,0,0)�̂�[𝑐𝑙(𝑦1,0,0)] or (𝑦1,0,0)�̂�[𝑐𝑙(𝑥1,0,0)]. 

Proof: Necessary part: Suppose that both (𝑥1,0,0)�̂�[𝑐𝑙(𝑦1,0,0)] and (𝑦1,0,0)�̂�[𝑐𝑙(𝑥1,0,0)] are false. Then 

(𝑥1,0,0)𝑞[𝑐𝑙(𝑦1,0,0)] and (𝑦1,0,0)𝑞[𝑐𝑙(𝑥1,0,0)] are true. Now (𝑥1,0,0)𝑞[𝑐𝑙(𝑦1,0,0)] ⇒ 𝑥1,0,0 ∉ [𝑐𝑙(𝑦1,0,0)]𝑐 ⇒

𝑥1,0,0 ∉ [∩ {𝐺: 𝐺  is a 𝜏 -closed NS and 𝑦1,0,0 ∈ 𝐺}]𝑐 ⇒ 𝑥1,0,0 ∉∪ {𝐺𝑐: 𝐺𝑐  is a 𝜏 -open NS and 𝑦1,0,0 ∉

𝐺𝑐} ⇒ 𝑥1,0,0 ∉ 𝐺𝑐 for all 𝜏-open NSs 𝐺𝑐 such that 𝑦1,0,0 ∉ 𝐺𝑐 . This ensures that if 𝐻 is a 𝜏-open NS 

such that 𝑦1,0,0 ∈ 𝐻  then 𝑥1,0,0 ∈ 𝐻 . Similarly (𝑦1,0,0)𝑞[𝑐𝑙(𝑥1,0,0)] implies that if 𝐾  is a 𝜏-open NS 

such that 𝑥1,0,0 ∈ 𝐾 then 𝑦1,0,0 ∈ 𝐾. Thus every 𝜏-open NS containing one of 𝑥1,0,0 and 𝑦1,0,0 must 
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contain the other. But this is a contradiction to our assumption that 𝑋 is a 𝑁𝑇0-space. Therefore 

(𝑥1,0,0)�̂�[𝑐𝑙(𝑦1,0,0)] or (𝑦1,0,0)�̂�[𝑐𝑙(𝑥1,0,0)]. 

 

Converse part: 𝑥𝛼,𝛽,𝛾  and 𝑦𝑝,𝑞,𝑟  be any two NPs in X such that 𝑥 ≠ 𝑦 . Now by hypothesis, 

(𝑥1,0,0)�̂�[𝑐𝑙(𝑦1,0,0)] or (𝑦1,0,0)�̂�[𝑐𝑙(𝑥1,0,0)]. If (𝑥1,0,0)�̂�[𝑐𝑙(𝑦1,0,0)] then 𝑥1,0,0 ∈ [𝑐𝑙(𝑦1,0,0)]𝑐 , which gives 

𝑥𝛼,𝛽,𝛾 ∈ [𝑐𝑙(𝑦1,0,0)]𝑐. Obviously 𝑦𝑝,𝑞,𝑟 ∉ [𝑐𝑙(𝑦1,0,0)]𝑐 . Since 𝑐𝑙(𝑦1,0,0) is a 𝜏-closed NS, so [𝑐𝑙(𝑦1,0,0)]𝑐 is 

a 𝜏 -open NS. Thus there exists a 𝜏 -open NS [𝑐𝑙(𝑦1,0,0)]𝑐  in 𝑋  such that 𝑥𝛼,𝛽,𝛾 ∈ [𝑐𝑙(𝑦1,0,0)]𝑐  but 

𝑦𝑝,𝑞,𝑟 ∉ [𝑐𝑙(𝑦1,0,0)]𝑐 . Similarly if (𝑦1,0,0)�̂�[𝑐𝑙(𝑥1,0,0)] then there exists a 𝜏-open NS [𝑐𝑙(𝑥1,0,0)]𝑐  in 𝑋 

such that 𝑥𝛼,𝛽,𝛾 ∉ [𝑐𝑙(𝑥1,0,0)]𝑐 but 𝑦𝑝,𝑞,𝑟 ∈ [𝑐𝑙(𝑥1,0,0)]𝑐. Therefore (𝑋, 𝜏) is a 𝑁𝑇0-space. 

Hence proved. 

4.9. Proposition: Let 𝑓 be a one-one neutrosophic continuous function from an NTS (𝑋, 𝜏) to the 

NTS (𝑌, 𝜎). If (𝑌, 𝜎) is 𝑁𝑇0 then (𝑋, 𝜏) is also a 𝑁𝑇0-space. 

Proof: Let 𝑥𝛼,𝛽,𝛾
1  and 𝑥𝛼′,𝛽′,𝛾′

2  be any two NPs in 𝑋 such that 𝑥1 ≠ 𝑥2. Since 𝑓 is one-one, so there 

exist two NPs 𝑦𝑝,𝑞,𝑟
1  and 𝑦𝑝′,𝑞′,𝑟′

2 , 𝑦1 ≠ 𝑦2, in 𝑌 such that 𝑓(𝑥𝛼,𝛽,𝛾
1 ) = 𝑦𝑝,𝑞,𝑟

1  and 𝑓(𝑥𝛼′,𝛽′,𝛾′
2 ) = 𝑦𝑝′,𝑞′,𝑟′

2 , 

i.e., 𝑥𝛼,𝛽,𝛾
1 = 𝑓−1(𝑦𝑝,𝑞,𝑟

1 ) and 𝑥𝛼′,𝛽′,𝛾′
2 = 𝑓−1(𝑦𝑝′,𝑞′,𝑟′

2 ). Since 𝑌 is 𝑁𝑇0, so there exists a 𝜎-open NS 𝐺 

such that 𝑦𝑝,𝑞,𝑟
1 ∈ 𝐺 , 𝑦𝑝′,𝑞′,𝑟′

2 ∉ 𝐺  or there exists a 𝜎-open NS 𝐻  such that 𝑦𝑝,𝑞,𝑟
1 ∉ 𝐻 , 𝑦𝑝′,𝑞′,𝑟′

2 ∈ 𝐻 . 

Again, since 𝑓 is neutrosophic continuous, so 𝑓−1(𝐺) is a 𝜏-open NS. Also 𝑦𝑝,𝑞,𝑟
1 ∈ 𝐺 ⇒ 𝑓−1(𝑦𝑝,𝑞,𝑟

1 ) ∈

𝑓−1(𝐺) ⇒ 𝑥𝛼,𝛽,𝛾
1 ∈ 𝑓−1(𝐺)  and 𝑦𝑝′,𝑞′,𝑟′

2 ∉ 𝐺 ⇒ 𝑓−1(𝑦𝑝′,𝑞′,𝑟′
2 ) ∉ 𝑓−1(𝐺) ⇒ 𝑥𝛼′,𝛽′,𝛾′

2 ∉ 𝑓−1(𝐺) . Similarly 

𝑓−1(𝐻) is a 𝜏-open NS such that 𝑥𝛼′,𝛽′,𝛾′
2 ∈ 𝑓−1(𝐻), 𝑥𝛼,𝛽,𝛾

1 ∉ 𝑓−1(𝐻). Thus for any two NPs 𝑥𝛼,𝛽,𝛾
1  and 

𝑥𝛼′,𝛽′,𝛾′
2  in 𝑋 such that 𝑥1 ≠ 𝑥2, there exists a 𝜏-open NS 𝑓−1(𝐺) such that 𝑥𝛼,𝛽,𝛾

1 ∈ 𝑓−1(𝐺), 𝑥𝛼′,𝛽′,𝛾′
2 ∉

𝑓−1(𝐺) or there exists a 𝜏-open NS 𝑓−1(𝐻) such that 𝑥𝛼,𝛽,𝛾
1 ∉ 𝑓−1(𝐻), 𝑥𝛼′,𝛽′,𝛾′

2 ∈ 𝑓−1(𝐻). Therefore 

(𝑋, 𝜏) is a 𝑁𝑇0-space. Hence proved. 

4.10. Proposition: The property of being 𝑁𝑇0-space is preserved under a bijective neutrosophic open 

function. 

Proof: Let (𝑋, 𝜏) and (𝑌, 𝜎) be two NTSs. Also let (𝑋, 𝜏) be a 𝑁𝑇0-space and 𝑓: 𝑋 → 𝑌 be a bijective 

neutrosophic open function. We show that (𝑌, 𝜎) ia a 𝑁𝑇0-space. Let 𝑦𝑝,𝑞,𝑟
1  and 𝑦𝑝′,𝑞′,𝑟′

2  be two NPs 

in 𝑌 such that 𝑦1 ≠ 𝑦2. Since 𝑓 is bijective, so there exist two NPs 𝑥𝛼,𝛽,𝛾
1  and 𝑥𝛼′,𝛽′,𝛾′

2 , 𝑥1 ≠ 𝑥2, in 𝑋 

such that 𝑓(𝑥𝛼,𝛽,𝛾
1 ) = 𝑦𝑝,𝑞,𝑟

1  and 𝑓(𝑥𝛼′,𝛽′,𝛾′
2 ) = 𝑦𝑝′,𝑞′,𝑟′

2 . Since 𝑋 is 𝑁𝑇0, so there exists a 𝜏-open NS 𝐺 

such that 𝑥𝛼,𝛽,𝛾
1 ∈ 𝐺 , 𝑥𝛼′,𝛽′,𝛾′

2 ∉ 𝐺 or there exists a 𝜏-open NS 𝐻 such that 𝑥𝛼,𝛽,𝛾
1 ∉ 𝐻, 𝑥𝛼′,𝛽′,𝛾′

2 ∈ 𝐻. 

Suppose 𝐺 exists such that 𝑥𝛼,𝛽,𝛾
1 ∈ 𝐺 and 𝑥𝛼′,𝛽′,𝛾′

2 ∉ 𝐺. Since 𝑓 is a neutrosophic open function, so 

𝑓(𝐺) is a 𝜎-open NS such that 𝑦𝑝,𝑞,𝑟
1 = 𝑓(𝑥𝛼,𝛽,𝛾

1 ) ∈ 𝑓(𝐺) and 𝑦𝑝′,𝑞′,𝑟′
2 = 𝑓(𝑥𝛼′,𝛽′,𝛾′

2 ) ∉ 𝑓(𝐺). Similarly if 

𝐻  exists such that 𝑥𝛼,𝛽,𝛾
1 ∉ 𝐻  and 𝑥𝛼′,𝛽′,𝛾′

2 ∈ 𝐻  then 𝑓(𝐻)  is a 𝜎 -open NS such that 𝑦𝑝,𝑞,𝑟
1 =

𝑓(𝑥𝛼,𝛽,𝛾
1 ) ∉ 𝑓(𝐻)  and 𝑦𝑝′,𝑞′,𝑟′

2 = 𝑓(𝑥𝛼′,𝛽′,𝛾′
2 ) ∈ 𝑓(𝐻) . Thus for any two NPs 𝑦𝑝,𝑞,𝑟

1  and 𝑦𝑝′,𝑞′,𝑟′
2  in 𝑌 

such that 𝑦1 ≠ 𝑦2 , there exists a 𝜎-open NS 𝑓(𝐺) such that 𝑦𝑝,𝑞,𝑟
1 ∈ 𝑓(𝐺), 𝑦𝑝′,𝑞′,𝑟′

2 ∉ 𝑓(𝐺) or there 

exists a 𝜎-open NS 𝑓(𝐻) such that 𝑦𝑝,𝑞,𝑟
1 ∉ 𝑓(𝐻), 𝑦𝑝′,𝑞′,𝑟′

2 ∈ 𝑓(𝐻). Therefore (𝑌, 𝜎) is a 𝑁𝑇0-space. 

Hence proved. 

4.11. Proposition: The property of being 𝑁𝑇0-space is a topological property. 
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Proof: Let (𝑋, 𝜏)  and (𝑌, 𝜎)  be two NTSs. Also let (𝑋, 𝜏)  be a 𝑁𝑇0 -space and 𝑓: 𝑋 → 𝑌  be a 

neutrosophic homeomorphism. Since 𝑓  is a neutrosophic homeomorphism, so 𝑓  is a bijective 

neutrosophic open function. Therefore by the proposition 4.10, (𝑌, 𝜎) is a 𝑁𝑇0-space. Hence proved. 

4.12. Definition: An NTS (𝑋, 𝜏) is called a neutrosophic 𝑇1-space (𝑁𝑇1-space, for short) iff for any 

two NPs 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′ , 𝑥 ≠ 𝑦, there exists a 𝑈 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝑈, 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝑈 and there 

exists a 𝑉 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∉ 𝑉, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉. 

 

4.13. Example: Let 𝑋 = {𝑎, 𝑏}  and 𝜏 = {∅̃, �̃�, 𝐴, 𝐵} , where 𝐴 = {〈𝑎, 1,0,0〉, 〈𝑏, 0,1,1〉}  and 𝐵 =

{〈𝑎, 0,1,1〉, 〈𝑏, 1,0,0〉}. Clearly (𝑋, 𝜏) is an NTS and it is a 𝑁𝑇1-space.   

  

4.14. Example: Let 𝑋 = {𝑎, 𝑏} and 𝜏 = {∅̃, �̃�}. Clearly (𝑋, 𝜏) is an NTS but it is not a 𝑁𝑇1-space. 

 

4.15. Proposition: Let 𝜏 and 𝜏∗ be two neutrosophic topologies on a set 𝑋 such that 𝜏∗ is finer than 

𝜏. If (𝑋, 𝜏) is a 𝑁𝑇1-space then (𝑋, 𝜏∗) is also a 𝑁𝑇1-space. 

Proof: Let 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′ , 𝑥 ≠ 𝑦, be two NPs in 𝑋. Since (𝑋, 𝜏) is a 𝑁𝑇1-space, so there exists a 

𝐺 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺, 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝐺  and there exists a 𝐻 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∉ 𝐻, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐻. 

Since 𝜏∗ is finer than 𝜏, so 𝐺, 𝐻 ∈ 𝜏 ⇒ 𝐺, 𝐻 ∈ 𝜏∗. Thus for any two NPs 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′  in 𝑋 such 

that 𝑥 ≠ 𝑦, there exists a 𝐺 ∈ 𝜏∗ such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺, 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝐺 and there exists a 𝐻 ∈ 𝜏∗ such that 

𝑥𝛼,𝛽,𝛾 ∉ 𝐻, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐻. Hence (𝑋, 𝜏∗) is a 𝑁𝑇1-space. 

 

4.16. Proposition: Let (𝑋, 𝜏) be an NTS. If (𝑋, 𝜏) is a 𝑁𝑇1-space then it is a 𝑁𝑇0-space. 

Proof: Let 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′ , 𝑥 ≠ 𝑦, be two NPs in 𝑋. Since 𝑋 is 𝑁𝑇1-space, so there exists a 𝑈 ∈ 𝜏 

such that 𝑥𝛼,𝛽,𝛾 ∈ 𝑈, 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝑈 and there exists a 𝑉 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∉ 𝑉, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉. Hence 

(𝑋, 𝜏) is a 𝑁𝑇0-space. 

 

4.17. Remark: Converse of the proposition 4.16 is not true. We establish it by the following counter 

example. 

Let 𝑋 = {𝑎, 𝑏} and 𝜏 = {∅̃, �̃�, 𝐴}, where 𝐴 = {〈𝑎, 1,0,0〉, 〈𝑏, 0,1,1〉}. Clearly (𝑋, 𝜏) is a 𝑁𝑇0-space but 

not a 𝑁𝑇1-space. 

 

4.18. Proposition: Let (𝑋, 𝜏) be a 𝑁𝑇1-space. Then every neutrosophic subspace of 𝑋 is a 𝑁𝑇1-space 

and hence the property is hereditary. 

Proof: Let (𝑌, 𝜏|𝑌) be a neutrosophic subspace of (𝑋, 𝜏), where 𝜏|𝑌 = {𝐺|𝑌: 𝐺 ∈ 𝜏}. We want to show 

(𝑌, 𝜏|𝑌)  is a 𝑁𝑇1 -space. Let 𝑥𝛼,𝛽,𝛾  and 𝑦𝛼′,𝛽′,𝛾′  be two NPs in 𝑌  such that 𝑥 ≠ 𝑦 . Then 

𝑥𝛼,𝛽,𝛾, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑋, 𝑥 ≠ 𝑦. Since (𝑋, 𝜏) is 𝑁𝑇1-space, so there exists a 𝜏-open NS 𝑈 such that 𝑥𝛼,𝛽,𝛾 ∈

𝑈 , 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝑈 and there exists a 𝜏-open NS 𝑉  such that 𝑥𝛼,𝛽,𝛾 ∉ 𝑉 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉 . Then (𝑥𝛼,𝛽,𝛾 ∈

𝑈|𝑌 , 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝑈|𝑌)  and (𝑥𝛼,𝛽,𝛾 ∉ 𝑉|𝑌 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉|𝑌) . Also 𝑈|𝑌, 𝑉|𝑌 ∈ 𝜏|𝑌 . Thus for any two NPs 

𝑥𝛼,𝛽,𝛾  and 𝑦𝛼′,𝛽′,𝛾′  in 𝑌  such that 𝑥 ≠ 𝑦 , there exists a 𝜏|𝑌 -open NS 𝑈|𝑌  such that 𝑥𝛼,𝛽,𝛾 ∈ 𝑈|𝑌 , 



Neutrosophic Systems with Applications, Vol. 2, 2023                                                 48 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Sudeep Dey and Gautam Chandra Ray, Separation Axioms in Neutrosophic Topological Spaces 

𝑦𝛼′,𝛽′,𝛾′ ∉ 𝑈|𝑌  and there exists a 𝜏|𝑌 -open NS 𝑉|𝑌  such that 𝑥𝛼,𝛽,𝛾 ∉ 𝑉|𝑌 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉|𝑌  Therefore 

(𝑌, 𝜏|𝑌) is a 𝑁𝑇1-space and hence the property is hereditary. 

 

4.19. Proposition: Let (𝑋, 𝜏) be an NTS. Then every NCP in 𝑋 is a 𝜏-closed NS iff 𝑋 is a 𝑁𝑇1-space. 

Proof: Necessary part: Let 𝑥𝛼,𝛽,𝛾  and 𝑦𝑝,𝑞,𝑟  be two NPs in 𝑋  such that 𝑥 ≠ 𝑦 . Since 𝑥 ≠ 𝑦 , so 

𝑥𝛼,𝛽,𝛾 ∈ (𝑦1,0,0)𝑐. By hypothesis, 𝑦1,0,0 is a 𝜏-closed NS. Therefore (𝑦1,0,0)𝑐 is a 𝜏-open NS. Thus there 

exists a 𝜏-open NS (𝑦1,0,0)𝑐 such that 𝑥𝛼,𝛽,𝛾 ∈ (𝑦1,0,0)𝑐 but 𝑦𝑝,𝑞,𝑟 ∉ (𝑦1,0,0)𝑐. Similarly (𝑥1,0,0)𝑐 is a 𝜏-

open NS such that 𝑦𝑝,𝑞,𝑟 ∈ (𝑥1,0,0)𝑐 but 𝑥𝛼,𝛽,𝛾 ∉ (𝑥1,0,0)𝑐. Therefore 𝑋 is a 𝑁𝑇1-space. 

Sufficient part: Let 𝑥1,0,0 be an NCP in 𝑋. Also let 𝑦𝑝,𝑞,𝑟 be an NP in 𝑋 such that 𝑥 ≠ 𝑦. Then 𝑦𝑝,𝑞,𝑟 ∈

(𝑥1,0,0)𝑐. Let us consider an NP 𝑥𝛼,𝛽,𝛾 with support 𝑥. Since 𝑋 is a 𝑁𝑇1-space, so for 𝑦𝑝,𝑞,𝑟  and 𝑥𝛼,𝛽,𝛾, 

there exists a 𝜏-open NS G such that 𝑦𝑝,𝑞,𝑟 ∈ 𝐺  and 𝑥𝛼,𝛽,𝛾 ∉ 𝐺 . Since for all 𝛼, 𝛽, 𝛾  with 0 < 𝛼 ≤

1, 0 ≤ 𝛽 < 1, 0 ≤ 𝛾 < 1, one such 𝐺 exists, therefore we must have a 𝜏-open NS H such that 𝑦𝑝,𝑞,𝑟 ∈

𝐻 and 𝑥1,0,0 ∩ 𝐻 = ∅̃, i.e., 𝑦𝑝,𝑞,𝑟 ∈ 𝐻 ⊆ (𝑥1,0,0)𝑐. Therefore (𝑥1,0,0)𝑐 is a 𝜏-open NS and hence 𝑥1,0,0 is 

a 𝜏-closed NS. 

Hence proved. 

 

4.20. Proposition: Let 𝑓 be a one-one neutrosophic continuous function from an NTS (𝑋, 𝜏) to the 

NTS (𝑌, 𝜎). If (𝑌, 𝜎) is 𝑁𝑇1 then (𝑋, 𝜏) is also a 𝑁𝑇1-space. 

Proof: Let 𝑥𝛼,𝛽,𝛾
1  and 𝑥𝛼′,𝛽′,𝛾′

2  be any two NPs in 𝑋 such that 𝑥1 ≠ 𝑥2. Since 𝑓 is one-one, so there 

exist two NPs 𝑦𝑝,𝑞,𝑟
1  and 𝑦𝑝′,𝑞′,𝑟′

2 , 𝑦1 ≠ 𝑦2, in 𝑌 such that 𝑓(𝑥𝛼,𝛽,𝛾
1 ) = 𝑦𝑝,𝑞,𝑟

1  and 𝑓(𝑥𝛼′,𝛽′,𝛾′
2 ) = 𝑦𝑝′,𝑞′,𝑟′

2 , 

i.e., 𝑥𝛼,𝛽,𝛾
1 = 𝑓−1(𝑦𝑝,𝑞,𝑟

1 ) and 𝑥𝛼′,𝛽′,𝛾′
2 = 𝑓−1(𝑦𝑝′,𝑞′,𝑟′

2 ). Since 𝑌 is 𝑁𝑇1, so there exists a 𝜎-open NS 𝐺 

such that 𝑦𝑝,𝑞,𝑟
1 ∈ 𝐺, 𝑦𝑝′,𝑞′,𝑟′

2 ∉ 𝐺 and there exists a 𝜎-open NS 𝐻 such that 𝑦𝑝,𝑞,𝑟
1 ∉ 𝐻, 𝑦𝑝′,𝑞′,𝑟′

2 ∈ 𝐻. 

Since 𝑓  is neutrosophic continuous, so 𝑓−1(𝐺)  and 𝑓−1(𝐻)  are 𝜏 -open NSs. Also 𝑦𝑝,𝑞,𝑟
1 ∈ 𝐺 ⇒

𝑓−1(𝑦𝑝,𝑞,𝑟
1 ) ∈ 𝑓−1(𝐺) ⇒ 𝑥𝛼,𝛽,𝛾

1 ∈ 𝑓−1(𝐺)  and 𝑦𝑝′,𝑞′,𝑟′
2 ∉ 𝐺 ⇒ 𝑓−1(𝑦𝑝′,𝑞′,𝑟′

2 ) ∉ 𝑓−1(𝐺) ⇒ 𝑥𝛼′,𝛽′,𝛾′
2 ∉

𝑓−1(𝐺). Similarly 𝑥𝛼′,𝛽′,𝛾′
2 ∈ 𝑓−1(𝐻) and 𝑥𝛼,𝛽,𝛾

1 ∉ 𝑓−1(𝐻) . Thus for any two NPs 𝑥𝛼,𝛽,𝛾
1  and 𝑥𝛼′,𝛽′,𝛾′

2  

in 𝑋 such that 𝑥1 ≠ 𝑥2, there exists a 𝜏-open NS 𝑓−1(𝐺) such that 𝑥𝛼,𝛽,𝛾
1 ∈ 𝑓−1(𝐺), 𝑥𝛼′,𝛽′,𝛾′

2 ∉ 𝑓−1(𝐺) 

and there exists a 𝜏-open NS 𝑓−1(𝐻) such that 𝑥𝛼,𝛽,𝛾
1 ∉ 𝑓−1(𝐻), 𝑥𝛼′,𝛽′,𝛾′

2 ∈ 𝑓−1(𝐻). Therefore (𝑋, 𝜏) 

is a 𝑁𝑇1-space. Hence proved. 

 

4.21. Proposition: The property of being 𝑁𝑇1-space is preserved under a bijective neutrosophic open 

function. 

Proof: Let (𝑋, 𝜏) and (𝑌, 𝜎) be two NTSs. Also let (𝑋, 𝜏) be a 𝑁𝑇1-space and 𝑓: 𝑋 → 𝑌 be a bijective 

neutrosophic open function. We show that (𝑌, 𝜎) ia a 𝑁𝑇1-space. Let 𝑦𝑝,𝑞,𝑟
1  and 𝑦𝑝′,𝑞′,𝑟′

2 , 𝑦1 ≠ 𝑦2, be 

two NPs in 𝑌. Since 𝑓 is bijective, so there exist two NPs 𝑥𝛼,𝛽,𝛾
1  and 𝑥𝛼′,𝛽′,𝛾′

2 , 𝑥1 ≠ 𝑥2, in 𝑋 such that 

𝑓(𝑥𝛼,𝛽,𝛾
1 ) = 𝑦𝑝,𝑞,𝑟

1  and 𝑓(𝑥𝛼′,𝛽′,𝛾′
2 ) = 𝑦𝑝′,𝑞′,𝑟′

2 . Since 𝑋 is 𝑁𝑇1, so there exists a 𝜏-open NS 𝐺 such that 

𝑥𝛼,𝛽,𝛾
1 ∈ 𝐺, 𝑥𝛼′,𝛽′,𝛾′

2 ∉ 𝐺 and there exists a 𝜏-open NS 𝐻 such that 𝑥𝛼,𝛽,𝛾
1 ∉ 𝐻, 𝑥𝛼′,𝛽′,𝛾′

2 ∈ 𝐻. Since 𝑓 is 

a neutrosophic open function, so 𝑓(𝐺)  is a 𝜎 -open NS such that 𝑦𝑝,𝑞,𝑟
1 = 𝑓(𝑥𝛼,𝛽,𝛾

1 ) ∈ 𝑓(𝐺)  and 

𝑦𝑝′,𝑞′,𝑟′
2 = 𝑓(𝑥𝛼′,𝛽′,𝛾′

2 ) ∉ 𝑓(𝐺). Similarly 𝑓(𝐻) is a 𝜎-open NS such that 𝑦𝑝,𝑞,𝑟
1 = 𝑓(𝑥𝛼,𝛽,𝛾

1 ) ∉ 𝑓(𝐻) and 

𝑦𝑝′,𝑞′,𝑟′
2 = 𝑓(𝑥𝛼′,𝛽′,𝛾′

2 ) ∈ 𝑓(𝐻). Thus for any two NPs 𝑦𝑝,𝑞,𝑟
1  and 𝑦𝑝′,𝑞′,𝑟′

2  in 𝑌 such that 𝑦1 ≠ 𝑦2, there 
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exists a 𝜎-open NS 𝑓(𝐺) such that 𝑦𝑝,𝑞,𝑟
1 ∈ 𝑓(𝐺), 𝑦𝑝′,𝑞′,𝑟′

2 ∉ 𝑓(𝐺) and there exists a 𝜎-open NS 𝑓(𝐻) 

such that 𝑦𝑝,𝑞,𝑟
1 ∉ 𝑓(𝐻), 𝑦𝑝′,𝑞′,𝑟′

2 ∈ 𝑓(𝐻). Therefore (𝑌, 𝜎) is a 𝑁𝑇1-space. Hence proved. 

 

4.22. Proposition: The property of being 𝑁𝑇1-space is a topological property. 

Proof: Let (𝑋, 𝜏)  and (𝑌, 𝜎)  be two NTSs. Also let (𝑋, 𝜏)  be a 𝑁𝑇1 -space and 𝑓: 𝑋 → 𝑌  be a 

neutrosophic homeomorphism. Since 𝑓  is a neutrosophic homeomorphism, so 𝑓  is a bijective 

neutrosophic open function. Therefore by the proposition 4.21, (𝑌, 𝜎) is a 𝑁𝑇1-space. Hence proved. 

 

4.23. Proposition: Let (𝑋, 𝜏) be an NTS. Then 𝑋 is 𝑁𝑇1 iff the intersection of all the neutrosophic 

neighbourhoods of an arbitrary NP of 𝑋 is an NP. 

Proof: Necessary part: Let 𝑥𝛼,𝛽,𝛾  be an arbitrary NP in 𝑋  and 𝑁  be the intersection of all the 

neutrosophic neighbourhoods of 𝑥𝛼,𝛽,𝛾. Also let 𝑦𝑝,𝑞,𝑟 be any NP in 𝑋 such that 𝑥 ≠ 𝑦. Since 𝑋 is 

𝑁𝑇1, so there exists a neutrosophic neighbourhood 𝐺 of 𝑥𝛼,𝛽,𝛾 such that 𝑦𝑝,𝑞,𝑟 ∉ 𝐺 and consequently 

𝑦𝑝,𝑞,𝑟 ∉ 𝑁. Since 𝑦𝑝,𝑞,𝑟 is arbitrary, so 𝑁 = 𝑥𝛼,𝛽,𝛾. 

Sufficient part: Let 𝑥𝛼,𝛽,𝛾  and 𝑦𝑝,𝑞,𝑟  be any two NPs in 𝑋  such that 𝑥 ≠ 𝑦 . By hypothesis, the 

intersection of all the neutrosophic neighbourhoods of 𝑥𝛼,𝛽,𝛾  is 𝑥𝛼,𝛽,𝛾 . So, there must exist a 

neutrosophic neighbourhood of 𝑥𝛼,𝛽,𝛾  which does not contain 𝑦𝑝,𝑞,𝑟 . Similarly, there must exist a 

neutrosophic neighbourhood of 𝑦𝑝,𝑞,𝑟  which does not contain 𝑥𝛼,𝛽,𝛾 . Therefore 𝑋 is a 𝑁𝑇1-space. 

Hence proved. 

4.24 Definition: An NTS (𝑋, 𝜏) is called a neutrosophic 𝑇2-space or neutrosophic Hausdorff space 

(𝑁𝑇2-space or 𝑁-Hausdorff space, for short) iff for any two NPs 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′, 𝑥 ≠ 𝑦, there exist 

𝑈, 𝑉 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝑈, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉 and 𝑈 ∩ 𝑉 = ∅̃. 

4.25. Example: Let 𝑋 = {𝑎, 𝑏}  and 𝜏 = {∅̃, �̃�, 𝐴, 𝐵} , where 𝐴 = {〈𝑎, 1,0,0〉, 〈𝑏, 0,1,1〉}  and 𝐵 =

{〈𝑎, 0,1,1〉, 〈𝑏, 1,0,0〉}. Clearly (𝑋, 𝜏) is an NTS and it is a 𝑁𝑇2-space. 

4.26. Example: Let 𝑋 = {𝑎, 𝑏} and 𝜏 = {∅̃, �̃�}. Clearly (𝑋, 𝜏) is an NTS but it is not a 𝑁𝑇2-space. 

4.27. Proposition: Let 𝜏 and 𝜏∗ be two neutrosophic topologies on a set 𝑋 such that 𝜏∗ is finer than 

𝜏. If (𝑋, 𝜏) is a 𝑁𝑇2-space then (𝑋, 𝜏∗) is also a 𝑁𝑇2-space. 

Proof: Let 𝑥𝛼,𝛽,𝛾  and 𝑦𝛼′,𝛽′,𝛾′ , 𝑥 ≠ 𝑦, be two NPs in 𝑋. Since (𝑋, 𝜏) is a 𝑁𝑇2-space, so there exist 

𝐺, 𝐻 ∈ 𝜏  such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐻  and 𝐺 ∩ 𝐻 = ∅̃. Since 𝜏∗  is finer than 𝜏 , so 𝐺, 𝐻 ∈ 𝜏 ⇒

𝐺, 𝐻 ∈ 𝜏∗. Thus for any two NPs 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′  in 𝑋 such that 𝑥 ≠ 𝑦, there exist 𝐺, 𝐻 ∈ 𝜏∗ such 

that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐻 and 𝐺 ∩ 𝐻 = ∅̃.. Hence (𝑋, 𝜏∗) is a 𝑁𝑇2-space. 

4.28. Proposition: Let (𝑋, 𝜏) be an NTS. If (𝑋, 𝜏) is a 𝑁𝑇2-space then it is a 𝑁𝑇1-space. 

Proof: Let 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′  be any two NPs in 𝑋 such that 𝑥 ≠ 𝑦. Since (𝑋, 𝜏) is a 𝑁𝑇2-space, so 

there exist 𝜏-open NSs 𝐻 and 𝐾 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐻 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐾 and 𝐻 ∩ 𝐾 = ∅̃. Since 𝑥𝛼,𝛽,𝛾 ∈ 𝐻 

and 𝐻 ∩ 𝐾 = ∅̃, so 𝑥𝛼,𝛽,𝛾 ∉ 𝐾. Similarly, 𝑦𝛼′,𝛽′,𝛾′ ∉ 𝐻. Thus there exists a 𝐻 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐻, 

𝑦𝛼′,𝛽′,𝛾′ ∉ 𝐻 and there exists a 𝐾 ∈ 𝜏 such that 𝑥𝛼,𝛽,𝛾 ∉ 𝐾, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐾. Hence (𝑋, 𝜏) is a 𝑁𝑇1-space. 

 

4.29. Lemma: The co-finite NTS (ℕ, 𝜏) is not a 𝑁𝑇2-space, where ℕ is the set of all natural numbers. 
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Proof: Let ℕ̃ = {〈𝑥, 1,0,0〉: 𝑥 ∈ ℕ} and ∅̃ = {〈𝑥, 0,1,1〉: 𝑥 ∈ ℕ}. Given that 𝜏 is a co-finite topology on 

ℕ, so 𝜏 is the set containing ∅̃ and all those neutrosophic sets over ℕ whose complements are finite. 

We show that the co-finite NTS (ℕ, 𝜏) is not a 𝑁𝑇2-space. 

Suppose, on the contrary, that (ℕ, 𝜏) is a 𝑁𝑇2-space. Then for any two NPs 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′  in ℕ 

such that 𝑥 ≠ 𝑦, there exist 𝜏-open NSs 𝐺, 𝐻 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐻 and 𝐺 ∩ 𝐻 = ∅̃. Now 

𝐺 ∩ 𝐻 = ∅̃ ⇒ (𝐺 ∩ 𝐻)𝑐 = (∅̃)𝑐 ⇒ 𝐺𝑐 ∪ 𝐻𝑐 = ℕ̃, which is not possible as ℕ̃ is an infinite neutrosophic 

set and 𝐺𝑐 ∪ 𝐻𝑐 is a finite neutrosophic set being the union of two finite neutrosophic sets 𝐺𝑐 and 

𝐻𝑐 . 

Therefore the co-finite NTS (ℕ, 𝜏) is a not a 𝑁𝑇2-space. 

4.30. Remark: Converse of the proposition 4.28 is not true. We establish it by the following counter 

example. 

We consider the co-finite NTS (ℕ, 𝜏), where ℕ is the set of all natural numbers. In the lemma 4.29, 

we have shown that (ℕ, 𝜏) is not a 𝑁𝑇2-space. 

We now show that (ℕ, 𝜏) is a 𝑁𝑇1-space. Let ℕ̃ = {〈𝑥, 1,0,0〉: 𝑥 ∈ ℕ} and ∅̃ = {〈𝑥, 0,1,1〉: 𝑥 ∈ ℕ}. Let 

𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′  be two NPs in ℕ such that 𝑥 ≠ 𝑦. Now (ℕ̃\𝑥1,0,0)𝑐 = 𝑥1,0,0, a finite NS. Therefore 

ℕ̃\𝑥1,0,0 is a 𝜏-open NS. Obviously 𝑦𝛼′,𝛽′,𝛾′ ∈ ℕ̃\𝑥1,0,0 but 𝑥𝛼,𝛽,𝛾 ∉ ℕ̃\𝑥1,0,0. Similarly ℕ̃\𝑦1,0,0 is a 𝜏-

open NS such that 𝑥𝛼,𝛽,𝛾 ∈ ℕ̃\𝑦1,0,0 but 𝑦𝛼′,𝛽′,𝛾′ ∉ ℕ̃\𝑦1,0,0. Therefore (ℕ, 𝜏) is a 𝑁𝑇1-space. 

Thus the co-finite NTS (ℕ, 𝜏) is a 𝑁𝑇1-space but not a 𝑁𝑇2-space. 

 

4.31. Proposition: Let (𝑋, 𝜏) be a 𝑁𝑇2-space. Then every neutrosophic subspace of 𝑋 is a 𝑁𝑇2-space 

and hence the property is hereditary. 

Proof: Let (𝑌, 𝜏|𝑌) be a neutrosophic subspace of (𝑋, 𝜏), where 𝜏|𝑌 = {𝐺|𝑌: 𝐺 ∈ 𝜏}. We want to show 

(𝑌, 𝜏|𝑌)  is a 𝑁𝑇2 -space. Let 𝑥𝛼,𝛽,𝛾  and 𝑦𝛼′,𝛽′,𝛾′  be two NPs in 𝑌  such that 𝑥 ≠ 𝑦 . Then 

𝑥𝛼,𝛽,𝛾, 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑋, 𝑥 ≠ 𝑦. Since (𝑋, 𝜏) is 𝑁𝑇2-space, so there exist 𝜏-open NSs 𝑈, 𝑉 such that 𝑥𝛼,𝛽,𝛾 ∈

𝑈 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉 and 𝑈 ∩ 𝑉 = ∅̃ . Then 𝑥𝛼,𝛽,𝛾 ∈ 𝑈|𝑌 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉|𝑌  and (𝑈|𝑌) ∩ (𝑉|𝑌) = (𝑈 ∩ 𝑉)|𝑌 =

∅̃|𝑌 = ∅̃. Thus for any two NPs 𝑥𝛼,𝛽,𝛾 and 𝑦𝛼′,𝛽′,𝛾′ in 𝑌 such that 𝑥 ≠ 𝑦, there exist 𝜏|𝑌-open NSs 

𝑈|𝑌 , 𝑉|𝑌  such that 𝑥𝛼,𝛽,𝛾 ∈ 𝑈|𝑌 , 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝑉|𝑌  and (𝑈|𝑌) ∩ (𝑉|𝑌) = ∅̃. Therefore (𝑌, 𝜏|𝑌) is a 𝑁𝑇2 -

space and hence the property is hereditary. 

 

4.32. Proposition: If 𝑓  is a one-one neutrosophic continuous function from an NTS (𝑋, 𝜏)  to a 

neutrosophic Hausdorff space (𝑌, 𝜎) then (𝑋, 𝜏) is also a neutrosophic Hausdorff space. 

Proof: Let 𝑥𝛼,𝛽,𝛾
1  and 𝑥𝛼′,𝛽′,𝛾′

2  be any two NPs in 𝑋 such that 𝑥1 ≠ 𝑥2. Since 𝑓 is one-one, so there 

exist two NPs 𝑦𝑝,𝑞,𝑟
1  and 𝑦𝑝′,𝑞′,𝑟′

2 , 𝑦1 ≠ 𝑦2, in 𝑌 such that 𝑓(𝑥𝛼,𝛽,𝛾
1 ) = 𝑦𝑝,𝑞,𝑟

1  and 𝑓(𝑥𝛼′,𝛽′,𝛾′
2 ) = 𝑦𝑝′,𝑞′,𝑟′

2 , 

i.e., 𝑥𝛼,𝛽,𝛾
1 = 𝑓−1(𝑦𝑝,𝑞,𝑟

1 ) and 𝑥𝛼′,𝛽′,𝛾′
2 = 𝑓−1(𝑦𝑝′,𝑞′,𝑟′

2 ). Since (𝑌, 𝜎) is neutrosophic Hausdorff, so there 

exist 𝜎 -open NSs 𝐻1, 𝐻2  such that 𝑦𝑝,𝑞,𝑟
1 ∈ 𝐻1, 𝑦𝑝′,𝑞′,𝑟′

2 ∈ 𝐻2  and 𝐻1 ∩ 𝐻2 = ∅̃ . Since 𝑓  is 

neutrosophic continuous, so 𝑓−1(𝐻1)  and 𝑓−1(𝐻2)  are 𝜏 -open NSs. Now 𝑓−1(𝐻1) ∩ 𝑓−1(𝐻2) =

𝑓−1(𝐻1 ∩ 𝐻2) = 𝑓−1(∅̃) = ∅̃ . Also 𝑦𝑝,𝑞,𝑟
1 ∈ 𝐻1 ⇒ 𝑓−1(𝑦𝑝,𝑞,𝑟

1 ) ∈ 𝑓−1(𝐻1) ⇒ 𝑥𝛼,𝛽,𝛾
1 ∈ 𝑓−1(𝐻1) . Similarly 

𝑥𝛼′,𝛽′,𝛾′
2 ∈ 𝑓−1(𝐻2). Thus for any two NPs 𝑥𝛼,𝛽,𝛾

1  and 𝑥𝛼′,𝛽′,𝛾′
2  in 𝑋 such that 𝑥1 ≠ 𝑥2, there exist 𝜏-
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open NSs 𝑓−1(𝐻1), 𝑓−1(𝐻2)  such that 𝑥𝛼,𝛽,𝛾
1 ∈ 𝑓−1(𝐻1) , 𝑥𝛼′,𝛽′,𝛾′

2 ∈ 𝑓−1(𝐻2)  and 𝑓−1(𝐻1) ∩

𝑓−1(𝐻2) = ∅̃. Therefore (𝑋, 𝜏) is a neutrosophic Hausdorff space. Hence proved.   

  

4.33. Proposition: The property of being 𝑁𝑇2-space is preserved under a bijective neutrosophic open 

function. 

Proof: Let (𝑋, 𝜏) and (𝑌, 𝜎) be two NTSs. Also let (𝑋, 𝜏) be a 𝑁𝑇2-space and 𝑓: 𝑋 → 𝑌 be a bijective 

neutrosophic open function. We show that (𝑌, 𝜎) ia a 𝑁𝑇2-space. Let 𝑦𝑝,𝑞,𝑟
1  and 𝑦𝑝′,𝑞′,𝑟′

2 , 𝑦1 ≠ 𝑦2, be 

two NPs in 𝑌. Since 𝑓 is bijective, so there exist two NPs 𝑥𝛼,𝛽,𝛾
1  and 𝑥𝛼′,𝛽′,𝛾′

2 , 𝑥1 ≠ 𝑥2, in 𝑋 such that 

𝑓(𝑥𝛼,𝛽,𝛾
1 ) = 𝑦𝑝,𝑞,𝑟

1  and 𝑓(𝑥𝛼′,𝛽′,𝛾′
2 ) = 𝑦𝑝′,𝑞′,𝑟′

2 . Since 𝑋 is 𝑁𝑇2, so there exist 𝜏-open NSs 𝐺, 𝐻 such that 

𝑥𝛼,𝛽,𝛾
1 ∈ 𝐺, 𝑥𝛼′,𝛽′,𝛾′

2 ∈ 𝐻 and 𝐺 ∩ 𝐻 = ∅̃. Since 𝑓 is a neutrosophic open function, so 𝑓(𝐺), 𝑓(𝐻) are 

𝜎 -open NSs such that 𝑦𝑝,𝑞,𝑟
1 = 𝑓(𝑥𝛼,𝛽,𝛾

1 ) ∈ 𝑓(𝐺) , 𝑦𝑝′,𝑞′,𝑟′
2 = 𝑓(𝑥𝛼′,𝛽′,𝛾′

2 ) ∈ 𝑓(𝐻) . Again since 𝑓  is 

bijective, so 𝑓(𝐺) ∩ 𝑓(𝐻) = 𝑓(𝐺 ∩ 𝐻) = 𝑓(∅̃) = ∅̃ . Thus for any two NPs 𝑦𝑝,𝑞,𝑟
1  and 𝑦𝑝′,𝑞′,𝑟′

2  in 𝑌 

such that 𝑦1 ≠ 𝑦2 , there exist 𝜎-open NSs 𝑓(𝐺), 𝑓(𝐻) such that 𝑦𝑝,𝑞,𝑟
1 ∈ 𝑓(𝐺), 𝑦𝑝′,𝑞′,𝑟′

2 ∈ 𝑓(𝐻) and 

𝑓(𝐺) ∩ 𝑓(𝐻) = ∅̃. Therefore (𝑌, 𝜎) is a 𝑁𝑇2-space. Hence proved. 

 

4.34. Proposition: The property of being 𝑁𝑇2-space is a topological property. 

Proof: Let (𝑋, 𝜏)  and (𝑌, 𝜎)  be two NTSs. Also let (𝑋, 𝜏)  be a 𝑁𝑇2 -space and 𝑓: 𝑋 → 𝑌  be a 

neutrosophic homeomorphism. Since 𝑓  is a neutrosophic homeomorphism, so 𝑓  is a bijective 

neutrosophic open function. Therefore by the proposition 4.33, (𝑌, 𝜎) is a 𝑁𝑇2-space. Hence proved. 

 

4.35. Proposition: Let 𝐴 be a neutrosophic compact subset of a neutrosophic Hausdorff space (𝑋, 𝜏) 

such that 𝐴 ∩ 𝐴𝑐 = ∅̃. Then 𝐴 is a neutrosophic closed set. 

Proof: We want to show that 𝐴 is 𝜏-closed, i.e. 𝐴𝑐 is 𝜏-open. Let 𝑥𝛼,𝛽,𝛾 be an NP in 𝐴𝑐. Since 𝑋 is 

neutrosophic Hausdorff, so for any NP 𝑦𝑝,𝑞,𝑟
𝑖 ∈ 𝐴 (Obviously 𝑥 ≠ 𝑦 as 𝐴 ∩ 𝐴𝑐 = ∅̃), there exist 𝜏-

open NSs 𝐺𝑖(𝑥𝛼,𝛽,𝛾) , 𝐻𝑖(𝑦𝑝,𝑞,𝑟
𝑖 )  such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺𝑖(𝑥𝛼,𝛽,𝛾) , 𝑦𝑝,𝑞,𝑟

𝑖 ∈ 𝐻𝑖(𝑦𝑝,𝑞,𝑟
𝑖 )  and 𝐺𝑖(𝑥𝛼,𝛽,𝛾) ∩

𝐻𝑖(𝑦𝑝,𝑞,𝑟
𝑖 ) = ∅̃ for each 𝑖 ∈△, where △ is an index set. Clearly {𝐻𝑖(𝑦𝑝,𝑞,𝑟

𝑖 ): 𝑖 ∈△} is a NOC of 𝐴. Since 

𝐴 is neutrosophic compact, so 𝐴 has a finite NOSC, i.e., 𝐴 ⊆ ⋃𝑛
𝑘=1 𝐻𝑖𝑘

(𝑦𝑝,𝑞,𝑟
𝑖𝑘 ). Let 𝐺𝑖𝑘

(𝑥𝛼,𝛽,𝛾) be the 

neutrosophic open sets corresponding to the neutrosophic open sets 𝐻𝑖𝑘
(𝑦𝑝,𝑞,𝑟

𝑖𝑘 ), 𝑘 = 1,2,3, ⋯ , 𝑛. Let 

𝑀 = ⋂𝑛
𝑘=1 𝐺𝑖𝑘

(𝑥𝛼,𝛽,𝛾) and 𝑁 = ⋃𝑛
𝑘=1 𝐻𝑖𝑘

(𝑦𝑝,𝑞,𝑟
𝑖𝑘 ). Obviously 𝑀 is a 𝜏-open set. We claim that 𝑀 ∩ 𝑁 =

∅̃. Let 𝑧𝛼′,𝛽′,𝛾′ be an arbitrary NP in 𝑁. Then 𝑧𝛼′,𝛽′,𝛾′ ∈ 𝐻𝑖𝑘
(𝑦𝑝,𝑞,𝑟

𝑖𝑘 ) for some 𝑘, 1 ≤ 𝑘 ≤ 𝑛 ⇒ 𝑧𝛼′,𝛽′,𝛾′ ∉

𝐺𝑖𝑘
(𝑥𝛼,𝛽,𝛾) for some 𝑘, 1 ≤ 𝑘 ≤ 𝑛 ⇒ 𝑧𝛼′,𝛽′,𝛾′ ∉ 𝑀. Again if 𝑢𝑟,𝑠,𝑡 ∈ 𝑀 be an arbitrary NP then 𝑢𝑟,𝑠,𝑡 ∈

𝐺𝑖𝑘
(𝑥𝛼,𝛽,𝛾) for all 𝑘, 1 ≤ 𝑘 ≤ 𝑛 ⇒ 𝑢𝑟,𝑠,𝑡 ∉ 𝐻𝑖𝑘

(𝑦𝑝,𝑞,𝑟
𝑖𝑘 ) for all 𝑘, 1 ≤ 𝑘 ≤ 𝑛 ⇒ 𝑢𝑟,𝑠,𝑡 ∉ 𝑁. Thus 𝑀 ∩ 𝑁 = ∅̃. 

Since 𝐴 ⊆ 𝑁 and since 𝑀 ∩ 𝑁 = ∅̃, so 𝐴 ∩ 𝑀 = ∅̃ and therefore 𝑀 ⊆ 𝐴𝑐. Since 𝑀 is a 𝜏-open set and 

since 𝑥𝛼,𝛽,𝛾 ∈ 𝑀 , so 𝑀  is a 𝜏 -neighbourhood of 𝑥𝛼,𝛽,𝛾 . Since 𝑀 ⊆ 𝐴𝑐 , so 𝐴𝑐  is also a 𝜏 -

neighbourhood of 𝑥𝛼,𝛽,𝛾. Since 𝑥𝛼,𝛽,𝛾 is an arbitrary NP in 𝐴𝑐, so 𝐴𝑐 is a 𝜏-neighbourhood of each 

of its NPs. Therefore 𝐴𝑐 is 𝜏-open, i.e., 𝐴 is a 𝜏-closed NS. Hence proved. 

 

4.36. Proposition: Let (𝑋, 𝜏) be a neutrosophic Hausdorff space. If 𝑥𝛼,𝛽,𝛾 is an NP in 𝑋 and 𝐴 is a 

neutrosophic compact subset of 𝑋 such that 𝑥𝛼,𝛽,𝛾 ∩ 𝐴 = ∅̃ then 𝑥𝛼,𝛽,𝛾 and 𝐴 can be separated by 

two disjoint neutrosophic open sets. 
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Proof: Since 𝑥𝛼,𝛽,𝛾 ∩ 𝐴 = ∅̃, so 𝑥𝛼,𝛽,𝛾 ∈ 𝐴𝑐. Since 𝑋 is neutrosophic Hausdorff, so for any NP 𝑦𝑝,𝑞,𝑟
𝑖 ∈

𝐴, 𝑥 ≠ 𝑦, there exist 𝜏-open NSs 𝐺𝑖(𝑥𝛼,𝛽,𝛾), 𝐻𝑖(𝑦𝑝,𝑞,𝑟
𝑖 ) such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺𝑖(𝑥𝛼,𝛽,𝛾), 𝑦𝑝,𝑞,𝑟

𝑖 ∈ 𝐻𝑖(𝑦𝑝,𝑞,𝑟
𝑖 ) 

and 𝐺𝑖(𝑥𝛼,𝛽,𝛾) ∩ 𝐻𝑖(𝑦𝑝,𝑞,𝑟
𝑖 ) = ∅̃ for each 𝑖 ∈△, where △ is an index set. Clearly {𝐻𝑖(𝑦𝑝,𝑞,𝑟

𝑖 ): 𝑖 ∈△} is a 

NOC of 𝐴. Since 𝐴 is neutrosophic compact, so 𝐴 has a finite NOSC, i.e., 𝐴 ⊆ ⋃𝑛
𝑘=1 𝐻𝑖𝑘

(𝑦𝑝,𝑞,𝑟
𝑖𝑘 ). Let 

𝐺𝑖𝑘
(𝑥𝛼,𝛽,𝛾) be the 𝜏-open NSs corresponding to the 𝜏-open NSs 𝐻𝑖𝑘

(𝑦𝑝,𝑞,𝑟
𝑖𝑘 ), 𝑘 = 1,2,3, ⋯ , 𝑛. Let 𝑀 =

⋂𝑛
𝑘=1 𝐺𝑖𝑘

(𝑥𝛼,𝛽,𝛾) and 𝑁 = ⋃𝑛
𝑘=1 𝐻𝑖𝑘

(𝑦𝑝,𝑞,𝑟
𝑖𝑘 ). Obviously 𝑀 and 𝑁 are neutrosophic open sets such that 

𝑥𝛼,𝛽,𝛾 ∈ 𝑀  and 𝐴 ⊆ 𝑁 . We claim that 𝑀 ∩ 𝑁 = ∅̃ . Let 𝑧𝛼′,𝛽′,𝛾′  be an arbitrary NP in 𝑁 . Then 

𝑧𝛼′,𝛽′,𝛾′ ∈ 𝐻𝑖𝑘
(𝑦𝑝,𝑞,𝑟

𝑖𝑘 ) for some 𝑘, 1 ≤ 𝑘 ≤ 𝑛 ⇒ 𝑧𝛼′,𝛽′,𝛾′ ∉ 𝐺𝑖𝑘
(𝑥𝛼,𝛽,𝛾) for some 𝑘, 1 ≤ 𝑘 ≤ 𝑛 ⇒ 𝑧𝛼′,𝛽′,𝛾′ ∉

𝑀 . Again if 𝑢𝑟,𝑠,𝑡 ∈ 𝑀  be an arbitrary NP then 𝑢𝑟,𝑠,𝑡 ∈ 𝐺𝑖𝑘
(𝑥𝛼,𝛽,𝛾)  for all 𝑘, 1 ≤ 𝑘 ≤ 𝑛 ⇒ 𝑢𝑟,𝑠,𝑡 ∉

𝐻𝑖𝑘
(𝑦𝑝,𝑞,𝑟

𝑖𝑘 ) for all 𝑘, 1 ≤ 𝑘 ≤ 𝑛 ⇒ 𝑢𝑟,𝑠,𝑡 ∉ 𝑁. Therefore 𝑀 ∩ 𝑁 = ∅̃. Hence proved.   

 

4.37. Proposition: Let 𝐴 be a neutrosophic compact subset of a neutrosophic Hausdorff space (𝑋, 𝜏). 

If 𝑥𝛼,𝛽,𝛾 is an NP in 𝑋 such that 𝑥𝛼,𝛽,𝛾 ∩ 𝐴 = ∅̃ then there exists a neutrosophic open set 𝐺 such that 

𝑥𝛼,𝛽,𝛾 ∈ 𝐺 ⊆ 𝐴𝑐. 

Proof: Immediately from 4.36. 

 

4.38. Proposition: Let 𝐴  and 𝐵  be disjoint neutrosophic compact subsets of a neutrosophic 

Hausdorff space (𝑋, 𝜏). Then there exist disjoint neutrosophic open sets 𝐺 and 𝐻 such that 𝐴 ⊆ 𝐺 

and 𝐵 ⊆ 𝐻. 

Proof: Let 𝑥𝛼,𝛽,𝛾 ∈ 𝐴. Then 𝑥𝛼,𝛽,𝛾 ∉ 𝐵 as 𝐴 ∩ 𝐵 = ∅̃. Since 𝑋 is neutrosophic Hausdorff, so for 

any 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐵 , there exist disjoint 𝜏 -open NSs 𝐺(𝑦𝛼′,𝛽′,𝛾′)  and 𝐻(𝑦𝛼′,𝛽′,𝛾′)  such that 𝑥𝛼,𝛽,𝛾 ∈

𝐺(𝑦𝛼′,𝛽′,𝛾′) and 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐻(𝑦𝛼′,𝛽′,𝛾′). The collection {𝐻(𝑦𝛼′,𝛽′,𝛾′): 𝑦𝛼′,𝛽′,𝛾′ ∈ 𝐵} is evidently a NOC of 

𝐵. Since 𝐵 is neutrosophic compact, so there exist finitely many NPs 𝑦𝑝,𝑞,𝑟
𝑖 , 𝑖 = 1,2,3, . . . , 𝑛 of 𝐵 such 

that 𝐵 ⊆ ⋃𝑛
𝑖=1 𝐻(𝑦𝑝,𝑞,𝑟

𝑖 ) . Let 𝐻(𝑥𝛼,𝛽,𝛾) = ⋃𝑛
𝑖=1 𝐻(𝑦𝑝,𝑞,𝑟

𝑖 )  and 𝐺(𝑥𝛼,𝛽,𝛾) = ⋂𝑛
𝑖=1 𝐺(𝑦𝑝,𝑞,𝑟

𝑖 ) , where 

𝐺(𝑦𝑝,𝑞,𝑟
𝑖 ) are the 𝜏-open NSs corresponding to the 𝜏-open NSs 𝐻(𝑦𝑝,𝑞,𝑟

𝑖 ). Then clearly 𝐻(𝑥𝛼,𝛽,𝛾) and 

𝐺(𝑥𝛼,𝛽,𝛾)  are 𝜏 -open NSs such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺(𝑥𝛼,𝛽,𝛾), 𝐵 ⊆ 𝐻(𝑥𝛼,𝛽,𝛾)  and 𝐺(𝑥𝛼,𝛽,𝛾) ∩ 𝐻(𝑥𝛼,𝛽,𝛾) = ∅̃ . 

Now suppose that 𝑥𝛼,𝛽,𝛾  is an arbitrary NP in 𝐴. We construct 𝐺(𝑥𝛼,𝛽,𝛾) and 𝐻(𝑥𝛼,𝛽,𝛾) as above. 

Evidently {𝐺(𝑥𝛼,𝛽,𝛾): 𝑥𝛼,𝛽,𝛾 ∈ 𝐴} is a NOC of 𝐴 . Since 𝐴  is neutrosophic compact, so there exist 

finitely many NPs 𝑥𝑟,𝑠,𝑡
𝑗

, 𝑗 = 1,2,3, . . . , 𝑚  of 𝐴  such that 𝐴 ⊆ ⋃𝑚
𝑗=1 𝐺(𝑥𝑟,𝑠,𝑡

𝑗
) . Let 𝐺 = ⋃𝑚

𝑗=1 𝐺(𝑥𝑟,𝑠,𝑡
𝑗

) 

and 𝐻 = ⋂𝑚
𝑗=1 𝐻(𝑥𝑟,𝑠,𝑡

𝑗
) , where 𝐻(𝑥𝑟,𝑠,𝑡

𝑗
)  are the 𝜏 -open NSs corresponding to the 𝜏 -open NSs 

𝐺(𝑥𝑟,𝑠,𝑡
𝑗

) . Clearly 𝐺  and 𝐻  are neutrosophic open sets such that 𝐴 ⊆ 𝐺 , 𝐵 ⊆ 𝐻  and 𝐺 ∩ 𝐻 = ∅̃ . 

Hence proved. 

5. Conclusion 

In this article, our primary objective was to explore the separation axioms in neutrosophic 

topological spaces. Just like in the study of topological spaces in classical, fuzzy or other settings, the 

significance of subspace topology and subspaces can not be overlooked, as many properties of 

topological spaces are interconnected with subspaces. Therefore, in section 3, we have introduced the 

concept of neutrosophic subspace, and investigated a few properties of it. Before delving into 

neutrosophic subspaces, we have laid the groundwork by establishing some results based on single-

valued neutrosophic sets which have played a crucial role in the study of neutrosophic subspaces. 
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Moving forward in section 4, we have defined neutrosophic 𝑇0 , 𝑇1  and 𝑇2 -spaces in relation to 

neutrosophic topological spaces and examined various properties associated with these separation 

axioms. Our future research will aim to explore other notions associated with neutrosophic 

topological spaces. We hope that the findings presented in this article will prove beneficial to the 

research community and contribute to the advancement of various aspects of neutrosophic topology. 
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