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1. Introduction 

The concept of neutrosophic set was introduced by Smarandache [13,14] in the 1990’s. 

Afterwards many researchers [7,8,11,12,15] studied and developed it. Since its inception, the 

neutrosophic set has garnered significant interest from researchers worldwide due to its flexibility 

and effectiveness. It has proven to be not only valuable in the advancement of science and technology 

but also applicable in various other fields. For instance, works[1,2,6,18,19] on medical diagnosis, 

decision-making problems, image processing,  social issues etc. had also been done in a neutrosophic 

environment. 

In 2010, Wang et al.[16] further developed the notion of a single-valued neutrosophic set. Salma 

et.al. [9,10] added the thinking of neutrosophic relation and studied some of its properties. Building 

upon these concepts, Yang et al.[17] in 2016 introduced single-valued neutrosophic relation and 

investigated some properties. Taking the concept forward, Kim et al.[5] generalized the notion of a of 

single-valued neutrosophic relation from a set X to a set Y. The authors also introduced the 

composition of two neutrosophic relations and throughly examined various properties associated 

with it.  

More recently, in 2022, S.Dey and G.C.Ray [3] introduced a novel definition for the neutrosophic 

composite relation of two single-valued neutrosophic relations. In this article, we aim to explore and 

investigate some properties related to the redefined neutrosophic composite relation. 

 

2. Preliminaries 

In this section we confer some basic concepts which will be helpful in the later sections. 

2.1. Definition: [13] Let 𝑋 be the universe of discourse. A neutrosophic set 𝐴 over 𝑋 is defined as 

𝐴 = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑋}, where the functions 𝒯𝐴, ℐ𝐴, ℱ𝐴 are real standard or non-standard 

subsets of ]−0, 1+[, i.e., 𝒯𝐴: 𝑋 →  ]−0, 1+[, ℐ𝐴: 𝑋 →  ]−0, 1+[, ℱ𝐴: 𝑋 →  ]−0, 1+[ and  -0 ≤ 𝒯𝐴(𝑥) + ℐ𝐴(𝑥) +

ℱ𝐴(𝑥) ≤ 3+. 

The neutrosophic set 𝐴  is characterized by the truth-membership function 𝒯𝐴 , indeterminacy-

membership function ℐ𝐴, falsehood-membership function ℱ𝐴. 

2.2. Definition:[16] Let 𝑋 be the universe of discourse. A single-valued neutrosophic set (SVNS, for 

short) 𝐴  over 𝑋  is defined as 𝐴 = {〈𝑥, 𝒯𝐴(𝑥), ℐ𝐴(𝑥), ℱ𝐴(𝑥)〉: 𝑥 ∈ 𝑋} , where 𝒯𝐴, ℐ𝐴, ℱ𝐴  are functions 

from 𝑋 to [0,1] and 0 ≤ 𝒯𝐴(𝑥) + ℐ𝐴(𝑥) + ℱ𝐴(𝑥) ≤ 3. 
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The functions 𝒯𝐴, ℐ𝐴, ℱ𝐴  denote respectively the degrees of truth-membership, indeterminacy-

membership, falsehood-membership of the element 𝑥 ∈ 𝑋 in 𝐴. 

The set of all single-valued neutrosophic sets over 𝑋 is denoted by 𝒩(𝑋). 

2.3. Definition:[4]  Let 𝐴, 𝐵 ∈ 𝒩(𝑋). Then   

i. (Inclusion): If 𝒯𝐴(𝑥) ≤ 𝒯𝐵(𝑥), ℐ𝐴(𝑥) ≥ ℐ𝐵(𝑥), ℱ𝐴(𝑥) ≥ ℱ𝐵(𝑥) for all 𝑥 ∈ 𝑋 then 𝐴 is said to be 

a neutrosophic subset of 𝐵 and which is denoted by 𝐴 ⊆ 𝐵. 

ii. (Equality): If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 then 𝐴 = 𝐵.  

iii. (Intersection): The intersection of 𝐴  and 𝐵 , denoted by 𝐴 ∩ 𝐵 , is defined as 𝐴 ∩ 𝐵 =

{〈𝑥, 𝒯𝐴(𝑥) ∧ 𝒯𝐵(𝑥), ℐ𝐴(𝑥) ∨ ℐ𝐵(𝑥), ℱ𝐴(𝑥) ∨ ℱ𝐵(𝑥)〉: 𝑥 ∈ 𝑋}.  

iv. (Union): The union of 𝐴  and 𝐵 , denoted by 𝐴 ∪ 𝐵 , is defined as 𝐴 ∪ 𝐵 = {〈𝑥, 𝒯𝐴(𝑥) ∨

𝒯𝐵(𝑥), ℐ𝐴(𝑥) ∧ ℐ𝐵(𝑥), ℱ𝐴(𝑥) ∧ ℱ𝐵(𝑥)〉: 𝑥 ∈ 𝑋}.  

v. (Complement): The complement of the NS 𝐴 , denoted by 𝐴𝑐 , is defined as 𝐴𝑐 =

{〈𝑥, ℱ𝐴(𝑥), 1 − ℐ𝐴(𝑥), 𝒯𝐴(𝑥)〉: 𝑥 ∈ 𝑋} 

vi. (Universal Set): If 𝒯𝐴(𝑥) = 1, ℐ𝐴(𝑥) = 0, ℱ𝐴(𝑥) = 0  for all 𝑥 ∈ 𝑋  then 𝐴  is said to be 

neutrosophic universal set and which is denoted by �̃�.  

vii. (Empty Set): If 𝒯𝐴(𝑥) = 0, ℐ𝐴(𝑥) = 1, ℱ𝐴(𝑥) = 1  for all 𝑥 ∈ 𝑋  then 𝐴  is said to be 

neutrosophic empty set and which is denoted by ∅̃.  

2.4. Definition: [4] Let 𝐴, 𝐵 ∈ 𝒩(𝑋) and {𝐴𝑖: 𝑖 ∈△} ⊆ 𝒩(𝑋), △ is an index set. Then the following 

hold.   

i. 𝐴 ∪ 𝐴 = 𝐴 and 𝐴 ∩ 𝐴 = 𝐴 

ii. 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 and 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

iii. 𝐴 ∪ ∅̃ = 𝐴 and 𝐴 ∪ �̃� = �̃� 

iv. 𝐴 ∩ ∅̃ = ∅̃ and 𝐴 ∩ �̃� = 𝐴 

v. 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶 and 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶 

vi. (𝐴𝑐)𝑐 = 𝐴 

vii. (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐  and (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 

viii. (∪𝑖∈△ 𝐴𝑖)
𝑐 =∩𝑖∈△ 𝐴𝑖

𝑐 and (∩𝑖∈△ 𝐴𝑖)
𝑐 =∪𝑖∈△ 𝐴𝑖

𝑐 

ix. 𝐵 ∪ (∩𝑖∈△ 𝐴𝑖) =∩𝑖∈△ (𝐵 ∪ 𝐴𝑖) 

x. 𝐵 ∩ (∪𝑖∈△ 𝐴𝑖) =∪𝑖∈△ (𝐵 ∩ 𝐴𝑖) 

2.5. Definition: [5] Let 𝑋, 𝑌, 𝑍 be three ordinary sets. Then 𝑅 is called a single-valued neutrosophic 

relation (SVNR, for short) from 𝑋  to 𝑌  if it is a SVNS in 𝑋 × 𝑌  having the form 𝑅 =

{〈(𝑥, 𝑦), 𝒯𝑅(𝑥, 𝑦), ℐ𝑅(𝑥, 𝑦), ℱ𝑅(𝑥, 𝑦)〉: (𝑥, 𝑦) ∈ 𝑋 × 𝑌} , where 𝒯𝑅: 𝑋 × 𝑌 → [0,1], ℐ𝑅: 𝑋 × 𝑌 → [0,1], ℱ𝑅: 𝑋 ×

𝑌 → [0,1] denote respectively the truth-membership function, indeterminacy-membership function, 

falsity-membership function. 

In particular, a SVNR from from 𝑋 to 𝑋 is called a SVNR in 𝑋. 

The empty SVNR and the whole SVNR in 𝑋, denoted by ∅̃𝑁 and �̃�𝑁 respectively, are defined as 

∅̃𝑁 = {〈(𝑥, 𝑦),0,1,1〉: (𝑥, 𝑦) ∈ 𝑋 × 𝑋} and �̃�𝑁 = {〈(𝑥, 𝑦),1,0,0〉: (𝑥, 𝑦) ∈ 𝑋 × 𝑋}. 
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The set of all SVNRs from 𝑋 to 𝑌 is denoted by 𝑆𝑉𝑁𝑅(𝑋 × 𝑌) and the set of all SVNRs in 𝑋 is 

denoted by 𝑆𝑉𝑁𝑅(𝑋). 

2.6. Definition: [5] Let 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌). Then   

i. The inverse of 𝑅, denoted by 𝑅−1, is a SVNR from 𝑌 to 𝑋 defined as 𝑅−1(𝑦, 𝑥) = 𝑅(𝑥, 𝑦) 

for each (𝑦, 𝑥) ∈ 𝑌 × 𝑋.  

ii. The complement of 𝑅 , denoted by 𝑅𝑐 , is a SVNR from 𝑋  to 𝑌  defined as 𝒯𝑅
𝑐(𝑥, 𝑦) =

ℱ𝑅(𝑥, 𝑦), ℐ𝑅
𝑐(𝑥, 𝑦) = 1 − ℐ𝑅(𝑥, 𝑦), ℱ𝑅

𝑐(𝑥, 𝑦) = 𝒯𝑅(𝑥, 𝑦) for each (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

2.7. Definition: [5] Let 𝑅, 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌). Then   

i. 𝑅  is said to be contained in 𝑆 , denoted by 𝑅 ⊆ 𝑆 , if 𝒯𝑅(𝑥, 𝑦) ≤ 𝒯𝑆(𝑥, 𝑦), ℐ𝑅(𝑥, 𝑦) ≥

ℐ𝑆(𝑥, 𝑦),  ℱ𝑅(𝑥, 𝑦) ≥ ℐ𝑆(𝑥, 𝑦) for each (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

ii. 𝑅 is said to be equal to 𝑆, denoted by 𝑅 = 𝑆, if 𝑅 ⊆ 𝑆 and 𝑆 ⊆ 𝑅.  

iii. The intersection of 𝑅  and 𝑆 , denoted by 𝑅 ∩ 𝑆 , is defined as 𝑅 ∩ 𝑆 = {〈(𝑥, 𝑦), 𝒯𝑅(𝑥, 𝑦) ∧

𝒯𝑆(𝑥, 𝑦), ℐ𝑅(𝑥, 𝑦) ∨ ℐ𝑆(𝑥, 𝑦), ℱ𝑅(𝑥, 𝑦) ∨ ℱ𝑆(𝑥, 𝑦)〉: (𝑥, 𝑦) ∈ 𝑋 × 𝑌}.  

iv. The union of 𝑅  and 𝑆 , denoted by 𝑅 ∪ 𝑆 , is defined as 𝑅 ∪ 𝑆 = {〈(𝑥, 𝑦), 𝒯𝑅(𝑥, 𝑦) ∨

𝒯𝑆(𝑥, 𝑦), ℐ𝑅(𝑥, 𝑦) ∧ ℐ𝑆(𝑥, 𝑦), ℱ𝑅(𝑥, 𝑦) ∧ ℱ𝑆(𝑥, 𝑦)〉: (𝑥, 𝑦) ∈ 𝑋 × 𝑌}.  

2.8. Definition: [5] Let 𝑋, 𝑌, 𝑍 be three ordinary sets. Also let 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌) and 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑌 ×

𝑍). Then the composition(max-min-max composition) of 𝑅 and 𝑆, denoted by 𝑆 ∘ 𝑅, is a SVNR from 

𝑋 to 𝑍 defined as  

 𝑆 ∘ 𝑅 = {〈(𝑥, 𝑧), 𝒯𝑆∘𝑅(𝑥, 𝑧), ℐ𝑆∘𝑅(𝑥, 𝑧), ℱ𝑆∘𝑅(𝑥, 𝑧)〉: (𝑥, 𝑧) ∈ 𝑋 × 𝑍}, 

where  

𝒯𝑆∘𝑅(𝑥, 𝑧) =∨𝑦∈𝑌 (𝒯𝑅(𝑥, 𝑦) ∧ 𝒯𝑆(𝑦, 𝑧)), 

ℐ𝑆∘𝑅(𝑥, 𝑧) =∧𝑦∈𝑌 (ℐ𝑅(𝑥, 𝑦) ∨ ℐ𝑆(𝑦, 𝑧)), 

ℱ𝑆∘𝑅(𝑥, 𝑧) =∧𝑦∈𝑌 (ℱ𝑅(𝑥, 𝑦) ∨ ℱ𝑆(𝑦, 𝑧)).  

 

2.9. Definition:[5] 

i. The single-valued neutrosophic identity relation in 𝑋, denoted by 𝐼𝑋, is defined as : for each 

(𝑥, 𝑦) ∈ 𝑋 × 𝑋 , 𝒯𝐼𝑋
(𝑥, 𝑦) = 1, ℐ𝐼𝑋

(𝑥, 𝑦) = 0, ℱ𝐼𝑋
(𝑥, 𝑦) = 0  if 𝑥 = 𝑦  and 𝒯𝐼𝑋

(𝑥, 𝑦) =

0, ℐ𝐼𝑋
(𝑥, 𝑦) = 1, ℱ𝐼𝑋

(𝑥, 𝑦) = 1 if 𝑥 ≠ 𝑦.  

ii. A SVNR 𝑅 in 𝑋 is said to be reflexive if for each 𝑥 ∈ 𝑋, 𝒯𝑅(𝑥, 𝑥) = 1, ℐ𝑅(𝑥, 𝑥) = 0, ℱ𝑅(𝑥, 𝑥) =

0.  

iii. A SVNR 𝑅  in 𝑋  is said to be symmetric if for each (𝑥, 𝑦) ∈ 𝑋 × 𝑋 , 𝒯𝑅(𝑥, 𝑦) =

𝒯𝑅(𝑦, 𝑥), ℐ𝑅(𝑥, 𝑦) = ℐ𝑅(𝑦, 𝑥), ℱ𝑅(𝑥, 𝑦) = ℱ𝑅(𝑦, 𝑥).  

iv. A SVNR 𝑅 in 𝑋 is said to be transitive if 𝑅 ∘ 𝑅 ⊆ 𝑅, i.e., 𝑅2 ⊆ 𝑅.  

2.10. Proposition:[5] Let 𝑋 be an ordinary set and 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋). Then 𝑅 is symmetric iff 𝑅−1 = 𝑅. 
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2.11. Definition:[3] Let 𝑋, 𝑌, 𝑍 be three ordinary sets. Also let 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌) and 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑌 ×

𝑍). Then the redefined neutrosophic composite relation of the SVNRs 𝑅 and 𝑆, denoted by 𝑆 ∘ 𝑅, is 

a SVNR from 𝑋 to 𝑍 defined as 

 

 𝑆 ∘ 𝑅 = {〈(𝑥, 𝑧), 𝒯𝑆∘𝑅(𝑥, 𝑧), ℐ𝑆∘𝑅(𝑥, 𝑧), ℱ𝑆∘𝑅(𝑥, 𝑧)〉: (𝑥, 𝑧) ∈ 𝑋 × 𝑍}, 

where  

𝒯𝑆∘𝑅(𝑥, 𝑧) =∨𝑦∈𝑌
𝒯𝑅(𝑥,𝑦)+𝒯𝑆(𝑦,𝑧)

2
, 

ℐ𝑆∘𝑅(𝑥, 𝑧) =∧𝑦∈𝑌
ℐ𝑅(𝑥,𝑦)+ℐ𝑆(𝑦,𝑧)

2
, 

ℱ𝑆∘𝑅(𝑥, 𝑧) =∧𝑦∈𝑌
ℱ𝑅(𝑥,𝑦)+ℱ𝑆(𝑦,𝑧)

2
.  

 

2.12 Example: Let 𝑋 = {𝑎, 𝑏}, 𝑌 = {𝑝, 𝑞}, 𝑍 = {𝑢, 𝑣}. Also let 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌) and 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑌 × 𝑍) 

be given by the Table-1, Table-2.  

Table-1 

𝑅 𝑝 𝑞 

𝑎  (0.6, 0.1, 0.2)   (0.1, 0.2, 0.7)  

𝑏  (0.5, 0.6, 0.7)   (0.3, 0.2, 0.1)  

 

Table-2 

𝑆 𝑢 𝑣 

𝑝  (0.5, 0.3, 0.2)   (0.6, 0.4, 0.3)  

𝑞  (0.9, 0.1, 0.2)   (0.2, 0.5, 0.4)  

 

 Then by using the definition 2.11, we have  

𝒯𝑆∘𝑅(𝑎, 𝑢) =∨𝑦∈𝑌
𝒯𝑅(𝑎,𝑦)+𝒯𝑆(𝑦,𝑢)

2
= ∨ {

0.6+0.5

2
,

0.1+0.9

2
} = 0.55. 

ℐ𝑆∘𝑅(𝑎, 𝑢) =∧𝑦∈𝑌
ℐ𝑅(𝑎,𝑦)+ℐ𝑆(𝑦,𝑢)

2
= ˄{

0.1+0.3

2
,

0.2+0.1

2
} = 0.15. 

ℱ𝑆∘𝑅(𝑎, 𝑢) =∧𝑦∈𝑌
ℱ𝑅(𝑎,𝑦)+ℱ𝑆(𝑦,𝑢)

2
= ˄ {

0.2+0.2

2
,

0.7+0.2

2
} = 0.20.  

Similarly proceeding for the pairs (𝑎, 𝑣), (𝑏, 𝑢), (𝑏, 𝑣), we get the redefined neutrosophic composite 

relation 𝑆 ∘ 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑍) as shown in the following Table-3.  

Table-3 

𝑆 ∘ 𝑅 𝑢 𝑣 

𝑎  (0.55, 0.15, 0.20)   (0.60, 0.25, 0.25)  

𝑏  (0.60, 0.15, 0.15)   (0.55, 0.35, 0.25)  
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Main Results: In this section we study the properties of redefined neutrosophic composite relation. 

 

3.1. Proposition: Let 𝑋, 𝑌, 𝑍 be three ordinary sets. Also let 𝑅, 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌) and 𝑃 ∈ 𝑆𝑉𝑁𝑅(𝑌 ×

𝑍). Then   

i. 𝑃 ∘ (𝑅 ∪ 𝑆) = (𝑃 ∘ 𝑅) ∪ (𝑃 ∘ 𝑆).  

ii. 𝑅 ⊆ 𝑆 ⇒ 𝑃 ∘ 𝑅 ⊆ 𝑃 ∘ 𝑆.  

iii. (𝑃 ∘ 𝑅)−1 = 𝑅−1 ∘ 𝑃−1.  

Proof:  

i. Clearly 𝑃 ∘ (𝑅 ∪ 𝑆), (𝑃 ∘ 𝑅) ∪ (𝑃 ∘ 𝑆) ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑍). Let (𝑥, 𝑧) ∈ 𝑋 × 𝑍. Then  

 𝒯𝑃∘(𝑅∪𝑆)(𝑥, 𝑧) = ∨
𝑦∈𝑌

𝒯𝑅∪𝑆(𝑥,𝑦)+𝒯𝑃(𝑦,𝑧)

2
 

            = ∨
𝑦∈𝑌

(𝒯𝑅(𝑥,𝑦)∨𝒯𝑆(𝑥,𝑦))+𝒯𝑃(𝑦,𝑧)

2
 

            = ∨
𝑦∈𝑌

[
𝒯𝑅(𝑥,𝑦)+𝒯𝑃(𝑦,𝑧)

2
 ∨  

𝒯𝑆(𝑥,𝑦)+𝒯𝑃(𝑦,𝑧)

2
] 

            = [ ∨
𝑦∈𝑌

𝒯𝑅(𝑥,𝑦)+𝒯𝑃(𝑦,𝑧)

2
]  ∨  [ ∨

𝑦∈𝑌

𝒯𝑆(𝑥,𝑦)+𝒯𝑃(𝑦,𝑧)

2
] 

            = 𝒯𝑃∘𝑅(𝑥, 𝑧) ∨ 𝒯𝑃∘𝑆(𝑥, 𝑧) 

            = 𝒯(𝑃∘𝑅)∪(𝑃∘𝑆)(𝑥, 𝑧) 

Similarly we can show that ℐ𝑃∘(𝑅∪𝑆)(𝑥, 𝑧) = ℐ(𝑃∘𝑅)∪(𝑃∘𝑆)(𝑥, 𝑧)  and ℱ𝑃∘(𝑅∪𝑆)(𝑥, 𝑧) = ℱ(𝑃∘𝑅)∪(𝑃∘𝑆)(𝑥, 𝑧) . 

Therefore 𝑃 ∘ (𝑅 ∪ 𝑆) = (𝑃 ∘ 𝑅) ∪ (𝑃 ∘ 𝑆).  

ii. Clearly 𝑃 ∘ 𝑅, 𝑃 ∘ 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑍). Let (𝑥, 𝑧) ∈ 𝑋 × 𝑍. Then  

 𝒯𝑃∘𝑅(𝑥, 𝑧) = ∨
𝑦∈𝑌

𝒯𝑅(𝑥,𝑦)+𝒯𝑃(𝑦,𝑧)

2
≤ ∨

𝑦∈𝑌

𝒯𝑆(𝑥,𝑦)+𝒯𝑃(𝑦,𝑧)

2
[∵ R ⊆ S] = 𝒯𝑃∘𝑆(𝑥, 𝑧). 

 

Therefore, 𝒯𝑃∘𝑅(𝑥, 𝑧) ≤ 𝒯𝑃∘𝑆(𝑥, 𝑧). 

Similarly we can show that ℐ𝑃∘𝑅(𝑥, 𝑧) ≥ ℐ𝑃∘𝑆(𝑥, 𝑧) and ℱ𝑃∘𝑅(𝑥, 𝑤) ≥ ℱ𝑃∘𝑆(𝑥, 𝑧). 

Hence 𝑃 ∘ 𝑅 ⊆ 𝑃 ∘ 𝑆. 

 

iii. Clearly 𝑃 ∘ 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑍) and (𝑃 ∘ 𝑅)−1, 𝑅−1 ∘ 𝑃−1 ∈ 𝑆𝑉𝑁𝑅(𝑍 × 𝑋). Let (𝑧, 𝑥) ∈ 𝑍 × 𝑋. 

Then  

 𝒯(𝑃∘𝑅)−1(𝑧, 𝑥) = 𝒯𝑃∘𝑅(𝑥, 𝑧) 

 = ∨
𝑦∈𝑌

𝒯𝑅(𝑥,𝑦)+𝒯𝑃(𝑦,𝑧)

2
 

 = ∨
𝑦∈𝑌

𝒯
𝑅−1(𝑦,𝑥)+𝒯

𝑃−1(𝑧,𝑦)

2
 

 = 𝒯𝑅−1∘𝑃−1(𝑧, 𝑥) 
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Similarly we can show that ℐ(𝑃∘𝑅)−1(𝑧, 𝑥) = ℐ𝑅−1∘𝑃−1(𝑧, 𝑥) and ℱ(𝑃∘𝑅)−1(𝑧, 𝑥) = ℱ𝑅−1∘𝑃−1(𝑧, 𝑥). 

Therefore (𝑃 ∘ 𝑅)−1 = 𝑅−1 ∘ 𝑃−1. 

 

3.2. Remark: Redefined neutrosophic composite relation is not commutative. We shall establish by 

the following counter example. 

Let 𝑋 = {𝑎, 𝑏}, 𝑌 = {𝑝, 𝑞}, 𝑍 = {𝑢, 𝑣}. Also let 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌), 𝑃 ∈ 𝑆𝑉𝑁𝑅(𝑌 × 𝑍). Obviously 𝑃 ∘ 𝑅 ∈

𝑆𝑉𝑁𝑅(𝑋 × 𝑍) and 𝑅 ∘ 𝑃 ∈ 𝑆𝑉𝑁𝑅(𝑌 × 𝑌). Therefore 𝑃 ∘ 𝑅 ≠ 𝑅 ∘ 𝑃. 

 

3.3. Remark: Redefined neutrosophic composite relation is not associative. We shall establish by the 

following counter example. 

Let 𝑋 = {𝑎, 𝑏}, 𝑌 = {𝑝, 𝑞}, 𝑍 = {𝑢, 𝑣}, 𝑊 = {𝑥, 𝑦} . Also let 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌), 𝑃 ∈ 𝑆𝑉𝑁𝑅(𝑌 × 𝑍)  and 

𝑄 ∈ 𝑆𝑉𝑁𝑅(𝑍 × 𝑊) be given by the following Table-4, Table-5, Table-6.   

Table-4 

𝑅 𝑝 𝑞 

𝑎  (.6,.1,.2)   (.1,.2,.7)  

𝑏  (.5,.6,.7)   (.3,.2,.1)  

 

Table-5 

𝑃 𝑢 𝑣 

𝑝  (.5,.3,.2)   (.6,.4,.3)  

𝑞  (.9,.1,.2)   (.3,.2,.1)  

 

Table-6 

𝑄 𝑥 𝑦 

𝑢  (.5,.4,.2)   (.5,.3,.1)  

𝑣  (.8,.2,.1)   (.3,.6,.4)  

 

Then by using the definition 2.11, we find the redefined neutrosophic composite relations 𝑃 ∘ 𝑅 ∈

𝑆𝑉𝑁𝑅(𝑋 × 𝑍), 𝑄 ∘ 𝑃 ∈ 𝑆𝑉𝑁𝑅(𝑌 × 𝑊), 𝑄 ∘ (𝑃 ∘ 𝑅) ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑊), (𝑄 ∘ 𝑃) ∘ 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑊) as 

shown in the following Table-7, Table-8, Table-9, Table-10. 

Table-7 

𝑃 ∘ 𝑅 𝑢 𝑣 

𝑎  (.55,.15,.20)   (.60,.25,.25)  

𝑏  (.60,.15,.15)   (.55,.35,.25)  

 

Table-8 

𝑄 ∘ 𝑃 𝑥 𝑦 

𝑝  (.70,.20,.15)   (.50,.40,.25)  

𝑞  (.70,.25,.15)   (.70,.30,.20)  
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Table-9 

𝑄 ∘ (𝑃 ∘ 𝑅) 𝑥 𝑦 

𝑎  (.475,.225,.225)   (.475,.225,.225)  

𝑏  (.475,.225,.225)   (.475,.225,.225)  

 

Table-10 

(𝑄 ∘ 𝑃) ∘ 𝑅 𝑥 𝑦 

𝑎  (.65,.15,.175)   (.55,.25,.225)  

𝑏  (.60,.225,.125)   (.50,.25,.15)  

 

We see that 𝒯𝑄∘(𝑃∘𝑅)(𝑎, 𝑥) = 0.475    and   𝒯(𝑄∘𝑃)∘𝑅(𝑎, 𝑥) = 0.65 . Since   𝒯𝑄∘(𝑃∘𝑅)(𝑎, 𝑥) ≠

𝒯(𝑄∘𝑃)∘𝑅(𝑎, 𝑥), so 𝑄 ∘ (𝑃 ∘ 𝑅) ≠ (𝑄 ∘ 𝑃) ∘ 𝑅. 

 

3.4. Remark: Redefined neutrosophic composite relation is not distributive over intersection. We shall 

establish by the following counter example. 

Let 𝑋 = {𝑎, 𝑏}, 𝑌 = {𝑝, 𝑞}, 𝑍 = {𝑢, 𝑣}, 𝑊 = {𝑥, 𝑦} . Also let 𝑅, 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌), 𝑃 ∈ 𝑆𝑉𝑁𝑅(𝑌 × 𝑍)  be 

given by the Table-11, Table-12, Table-13. 

Table-11 

𝑅 𝑝 𝑞 

𝑎  (.6,.1,.2)   (.1,.2,.7)  

𝑏  (.5,.6,.7)   (.3,.2,.1)  

 

Table-12 

𝑆 𝑝 𝑞 

𝑎  (.8,.7,.3)   (.2,.0,.7)  

𝑏  (.7,.2,.3)   (.5,.6,.4)  

 

Table-13 

𝑃 𝑢 𝑣 

𝑝  (.5,.3,.2)   (.6,.4,.3)  

𝑞  (.9,.1,.2)   (.3,.2,.1)  

 

Then by using the definition 4(`)@, we find the SVNRs 𝑅 ∩ 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌), 𝑃 ∘ (𝑅 ∩ 𝑆) ∈ 𝑆𝑉𝑁𝑅(𝑋 ×

𝑍), 𝑃 ∘ 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑍), 𝑃 ∘ 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑍) and (𝑃 ∘ 𝑅) ∩ (𝑃 ∘ 𝑆) ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑌) as shown in the 

following Table-14, Table-15, Table-16, Table-17, Table-18. 
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Table-14 

𝑃 ∘ 𝑅 𝑢 𝑣 

𝑎  (.55,.15,.20)   (.60,.25,.25)  

𝑏  (.60,.15,.15)   (.55,.35,.25)  

 

Table-15 

𝑃 ∘ 𝑆 𝑢 𝑣 

𝑎  (.65,.05,.25)   (.70,.25,.30)  

𝑏  (.70,.25,.25)   (.65,.30,.30)  

 

Table-16 

𝑅 ∩ 𝑆 𝑝 𝑞 

𝑎  (.6,.7,.3)   (.1,.2,.7)  

𝑏  (.5,.6,.7)   (.3,.6,.4)  

 

Table-17 

𝑃 ∘ (𝑅 ∩ 𝑆) 𝑢 𝑣 

𝑎  (.55,.15,.25)   (.60,.35,.30)  

𝑏  (.60,.35,.30)   (.55,.50,.40)  

 

Table-18 

(𝑃 ∘ 𝑅) ∩ (𝑃 ∘ 𝑆) 𝑢 𝑣 

𝑎  (.55,.05,.20)   (.60,.25,.25)  

𝑏  (.60,.15,.15)   (.55,.30,.25)  

 

From the Table-17 and Table-18, it is easy to see that  

ℐ𝑃∘(𝑅∩𝑆)(𝑎, 𝑢) = .15   and   ℐ(𝑃∘𝑅)∩(𝑃∘𝑆)(𝑎, 𝑢) = .05.  

Therefore 𝑃 ∘ (𝑅 ∩ 𝑆) ≠ (𝑃 ∘ 𝑅) ∩ (𝑃 ∘ 𝑆). 

 

3.5. Proposition: Let 𝑋 be an ordinary set and 𝑅, 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑋). If 𝑅, 𝑆 are reflexive then 𝑆 ∘ 𝑅 is 

reflexive. 

Proof: For any two elements 𝑥, 𝑦 ∈ 𝑋, we have  

 𝒯𝑆∘𝑅(𝑥, 𝑥) = ∨
𝑦∈𝑋

𝒯𝑅(𝑥,𝑦)+𝒯𝑆(𝑦,𝑥)

2
 

         = [ ∨
𝑦≠𝑥

𝒯𝑅(𝑥,𝑦)+𝒯𝑆(𝑦,𝑥)

2
] ∨  [

𝒯𝑅(𝑥,𝑥)+𝒯𝑆(𝑥,𝑥)

2
] 

         = [ ∨
𝑦≠𝑥

𝒯𝑅(𝑥,𝑦)+𝒯𝑆(𝑦,𝑥)

2
] ∨ [

1+1

2
](∵ 𝑅 and 𝑆 are reflexive) 

         = [ ∨
𝑦≠𝑥

𝒯𝑅(𝑥,𝑦)+𝒯𝑆(𝑦,𝑥)

2
] ∨ 1 = 1 
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 Again  

 ℐ𝑆∘𝑅(𝑥, 𝑥) = ∧
𝑦∈𝑋

ℐ𝑅(𝑥,𝑦)+ℐ𝑆(𝑦,𝑥)

2
 

         = [ ∧
𝑦≠𝑥

𝒳𝑅(𝑥,𝑦)+ℐ𝑆(𝑦,𝑥)

2
]^[

ℐ𝑅(𝑥,𝑥)+ℐ𝑆(𝑥,𝑥)

2
] 

         = [ ∧
𝑦≠𝑥

ℐ𝑅(𝑥,𝑦)+ℐ𝑆(𝑦,𝑥)

2
]^ [

0+0

2
](∵ 𝑅 and 𝑆 are reflexive) 

         = [ ∧
𝑦≠𝑥

ℐ𝑅(𝑥,𝑦)+ℐ𝑆(𝑦,𝑥)

2
]^0 

         = 0 

Similarly we can show that ℱ𝑆∘𝑅(𝑥, 𝑥) = 0. 

Therefore, 𝑆 ∘ 𝑅 is reflexive. 

 

3.6. Remark: Let 𝑋 be an ordinary set and 𝑅, 𝑃 ∈ 𝑆𝑉𝑁𝑅(𝑋). If 𝑅, 𝑃 are symmetric then 𝑃 ∘ 𝑅 may 

not be symmetric. We shall establish it by a counter example. 

Let 𝑋 = {𝑎, 𝑏}. Also let 𝑅, 𝑃 ∈ 𝑆𝑉𝑁𝑅(𝑋) be given by the Table-19 and Table-20.  

Table-19 

𝑅 𝑎 𝑏 

𝑎  (0.6, 0.1, 0.2)   (0.5, 0.6, 0.7)  

𝑏  (0.5, 0.6, 0.7)   (0.3, 0.2, 0.1)  

 

Table-20 

𝑃 𝑎 𝑏 

𝑎  (0.5, 0.3, 0.2)   (0.6, 0.4, 0.3)  

𝑏  (0.6, 0.4, 0.3)   (0.2, 0.5, 0.4)  

 

Then 𝒯𝑃∘𝑅(𝑎, 𝑏) =∨𝑦∈𝑋
𝒯𝑅(𝑎,𝑦)+𝒯𝑆(𝑦,𝑏)

2
=∨ {

0.6+0.6

2
,

0.5+0.2

2
} = 0.6 

and 𝒯𝑃∘𝑅(𝑏, 𝑎) =∨𝑦∈𝑋
𝒯𝑅(𝑏,𝑦)+𝒯𝑆(𝑦,𝑎)

2
=∨ {

0.5+0.5

2
,

0.3+0.6

2
} = 0.5.  

We can see that 𝒯𝑃∘𝑅(𝑎, 𝑏) = 0.6 ≠ 0.5 = 𝒯𝑃∘𝑅(𝑏, 𝑎). Therefore 𝑃 ∘ 𝑅 is not symmetric. 

 

3.7. Proposition: Let 𝑋  be an ordinary set and 𝑅, 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑋) are symmetric. Then 𝑆 ∘ 𝑅 is 

symmetric iff 𝑆 ∘ 𝑅 = 𝑅 ∘ 𝑆. 

 

Proof: Since 𝑅 and 𝑆 are symmtric, so 𝑅−1 = 𝑅 and 𝑆−1 = 𝑆 [by 2.10]. First suppose that 𝑆 ∘ 𝑅 is 

symmetric. Then 𝑆 ∘ 𝑅 = (𝑆 ∘ 𝑅)−1 = 𝑅−1 ∘ 𝑆−1 = 𝑅 ∘ 𝑆. Conversely suppose that 𝑆 ∘ 𝑅 = 𝑅 ∘ 𝑆. Then 

(𝑆 ∘ 𝑅)−1 = 𝑅−1 ∘ 𝑆−1 = 𝑅 ∘ 𝑆,i.e., 𝑆 ∘ 𝑅 is symmetric. 
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3.8. Proposition: Let 𝑋  be an ordinary set and 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋 × 𝑋)  be transitive. Then 𝑅 ∘ 𝑅  is 

transitive. 

Proof: Since 𝑅 is transitive, so 𝑅 ∘ 𝑅 ⊆ 𝑅, i.e., 𝑅2 ⊆ 𝑅. Now  

 𝒯𝑅2∘𝑅2(𝑥, 𝑧) = ∨
𝑦∈𝑋

𝒯
𝑅2(𝑥,𝑦)+𝒯

𝑅2(𝑦,𝑧)

2
 

           ≤ ∨
𝑦∈𝑋

𝒯𝑅(𝑥,𝑦)+𝒯𝑅(𝑦,𝑧)

2
 

           = 𝒯𝑅∘𝑅(𝑥, 𝑧) 

           = 𝒯𝑅2(𝑥, 𝑧) 

Similarly we can show that ℐ𝑅2∘𝑅2(𝑥, 𝑧) ≥ ℐ𝑅2(𝑥, 𝑧) and ℱ𝑅2∘𝑅2(𝑥, 𝑧) ≥ ℱ𝑅2(𝑥, 𝑧). Therefore 𝑅2 ∘ 𝑅2 ⊆

𝑅2. Hence 𝑅2, i.e., 𝑅 ∘ 𝑅 is transitive. 

 

3.9. Proposition: Let 𝑋 be an ordinary set. If 𝑅 ∈ 𝑆𝑉𝑁𝑅(𝑋) is transitive 𝑅−1 is also transitive. 

Proof: Since 𝑅 is transitive, so 𝑅 ∘ 𝑅 ⊆ 𝑅. Now 

 𝒯𝑅−1∘𝑅−1(𝑥, 𝑧) = ∨
𝑦∈𝑋

𝒯
𝑅−1(𝑥,𝑦)+𝒯

𝑅−1(𝑦,𝑧)

2
 

              = ∨
𝑦∈𝑋

𝒯𝑅(𝑦,𝑥)+𝒯𝑅(𝑧,𝑦)

2
 

              = 𝒯𝑅∘𝑅(𝑧, 𝑥) 

              ≤ 𝒯𝑅(𝑧, 𝑥) 

              = 𝒯𝑅−1(𝑥, 𝑧) 

Similarly we can show that ℐ𝑅−1∘𝑅−1(𝑥, 𝑧) ≥ ℐ𝑅−1(𝑥, 𝑧)  and ℱ𝑅−1∘𝑅−1(𝑥, 𝑧) ≥ ℱ𝑅−1(𝑥, 𝑧) . Therefore 

𝑅−1 ∘ 𝑅−1 ⊆ 𝑅−1 and so, 𝑅−1 is transitive. 

3.10. Remark: Let 𝑋 be an ordinary set and 𝑅, 𝑆 ∈ 𝑆𝑉𝑁𝑅(𝑋). If 𝑅, 𝑆 are transitive then 𝑅 ∪ 𝑆 and 

𝑅 ∩ 𝑆 may not be transitive. We shall establish it by a counter example. Let 𝑋 = {𝑎, 𝑏}. Also let 𝑅, 𝑆 ∈

𝑆𝑉𝑁𝑅(𝑋) be given by the Table-21 and Table-22. 

Table-21 

𝑅 𝑎 𝑏 

𝑎  (0.8, 0.5, 0.4)   (0.6, 0.4, 0.5)  

𝑏  (0.7, 0.6, 0.2)   (0.7, 0.6, 0.3)  

 

Table-22 

𝑆 𝑎 𝑏 

𝑎  (0.7, 0.4, 0.2)   (0.4, 0.6, 0.4)  

𝑏  (0.5, 0.4, 0.3)   (0.5, 0.4, 0.4)  

 

Clearly 𝑅 and 𝑆 are transitive. 

Then the relations 𝑅 ∪ 𝑆 and 𝑅 ∩ 𝑆 are as given in Table-23 and Table-24.  
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Table-23 

𝑅 ∪ 𝑆 𝑎 𝑏 

𝑎  (0.8, 0.4, 0.2)   (0.6, 0.4, 0.4)  

𝑏  (0.7, 0.4, 0.2)   (0.7, 0.4, 0.3)  

 

Table-24 

𝑅 ∩ 𝑆 𝑎 𝑏 

𝑎  (0.7, 0.5, 0.4)   (0.4, 0.6, 0.5)  

𝑏  (0.5, 0.6, 0.3)   (0.5, 0.6, 0.4)  

 

Now, 

𝒯(𝑅∪𝑆)∘(𝑅∪𝑆)(𝑎, 𝑏) =∨𝑦∈𝑋

𝒯𝑅(𝑎, 𝑦) + 𝒯𝑆(𝑦, 𝑏)

2
=∨ {

0.8 + 0.6

2
,
0.6 + 0.7

2
} = 0.7 

and 𝒯(𝑅∩𝑆)∘(𝑅∩𝑆)(𝑎, 𝑏) =∨𝑦∈𝑋
𝒯𝑅(𝑎,𝑦)+𝒯𝑆(𝑦,𝑏)

2
=∨ {

0.5+0.7

2
,

0.5+0.5

2
} = 0.6.  

We can see that 𝒯(𝑅∪𝑆)∘(𝑅∪𝑆)(𝑎, 𝑏) = 0.7 > 0.6 = 𝒯𝑅∪𝑆(𝑎, 𝑏) , i.e. (𝑅 ∪ 𝑆) ∘ (𝑅 ∪ 𝑆) ⊈ 𝑅 ∪ 𝑆 . Therefore 

𝑅 ∪ 𝑆 is not transitive. 

We can also see that 𝒯(𝑅∩𝑆)∘(𝑅∩𝑆)(𝑏, 𝑎) = 0.6 > 0.5 = 𝒯𝑅∩𝑆(𝑏, 𝑎) , i.e. (𝑅 ∩ 𝑆) ∘ (𝑅 ∩ 𝑆) ⊈ 𝑅 ∩ 𝑆 . 

Therefore 𝑅 ∩ 𝑆 is not transitive. 

 

  

3. Conclusion 

In this article, we have investigated various properties in connection with redefined 

neutrosophic composite relation. Our investigations into the neutrosophic composite relation provide 

valuable insights and pave the way for further advancements in the field of neutrosophic algebra. We 

anticipate that the findings presented in this study will serve as a significant resource for researchers 

and scholars, enabling them to build upon our work and contribute to the ongoing development and 

exploration of neutrosophic algebra. 
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