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1. Introduction

Fuzzy sets were first initiated by Zadeh [24] and he examined the membership function. After
introducing some more concepts with fuzzy set theory, Atanassov [1, 2, 3, 4] generalized and
introduced the new concept called intuitionistic fuzzy set (IFS) which is a generalized form of FS.
Atanassov [5, 6] extended the set to Intuitionistic fuzzy Multi-dimensional sets. Also, Intuitionistic
fuzzy topological spaces were introduced by Coker [11].

Yager [22] familiarized the model of Pythagorean fuzzy sets. Peng and Yang [20] presented the
basic operators for PFNSs. In [21, 23] similarity measures, distance measures, and multiple decision-
making problems of Pythagorean fuzzy sets were discussed.

Bosc and Pivert [9] stated “Bipolarity refers to the tendency of the human mind to make decisions
on the basis of positive and negative effects. Positive information states what is desired, satisfactory,
possible, or considered as being acceptable. At the same time, negative statements express what is
rejected, impossible, or forbidden. Negative preferences correspond to constraints while positive
preferences correspond to wishes, Later Lee [15] introduced the concept of bipolar fuzzy sets which
is a generalization of the fuzzy sets. Recently, bipolar fuzzy models have been studied by many
authors on algebraic structures. Chen et. al. [10] studied of m-polar fuzzy set. Then, they examined
many results which are related to these concepts and can be generalized to the case of m-polar fuzzy
sets. They also proposed numerical examples to show how to apply m-polar fuzzy sets in real-world
problems. In [19] Naeem discussed Pythagorean m polar fuzzy sets. In [12, 14] Florentin Smarandache
introduced the concept of neutrosophic refined and bipolar neutrosophic sets, as an extension of this
[13] Smarandache came with the topic Bipolar Neutrosophic refined sets. R. Jhansi [16] introduced
the concept of bipolar Pythagorean fuzzy sets which is an extension of the fuzzy sets, bipolar fuzzy
sets, intuitionistic fuzzy sets, and Pythagorean fuzzy sets. The score function, accuracy function, and
some basic operators are also discussed in this paper with real-life applications.

Contrary to ordinary sets, multisets permit us to have multiple occurrences of the members.
Blizard [7, 8] introduced multiset theory as a generalization of crisp set theory. As an extension of
multiset, Yager introduced the notion of fuzzy multiset (FMS). Muhammad Riaz, Khalid Naeem,
Xindong Peng, Deeba Afzal [17] introduced Pythagorean fuzzy multisets that have real-life
applications by applying the concept of multiple-valued logic. Pythagorean fuzzy multisets provide
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a strong mathematical model to deal with multi-attribute group decision-making (MAGDM). While
tackling real-world problems, intuitionistic fuzzy multiset cannot deal with the situation if the sum
of the membership degree and non-membership degree of the parameter gets larger than 1. It makes
decision-making demarcated and affects the optimum decision. PFM sets assist us in handling such
situations. [18] Muhammad Saeed explained the properties, Set-Theoretic Operations, and Axiomatic
results of Refined Pythagorean fuzzy sets.

In this paper, we introduce the concept of a bipolar Pythagorean refined set which is the
combination of the bipolar Pythagorean fuzzy sets and Pythagorean refined sets. Also, we give some
basic operators and algebraic properties of bipolar Pythagorean refined set operations with desirable
examples.

2. Preliminaries

In this section, we recall the basic definitions and related results for developing the desired set.
Definition 2.1. (Fuzzy set) [23] Let M be a fixed set, then a fuzzy sets Q in M can be define as: Q = {(m,
Hq (m))/m e M} Where pg : M — [0,1] is called the membership degree of m € M.

Definition 2.2: (Pythagorean Fuzzy set) [21] Let X be a non-empty set and I the unit interval [0, 1]. A
PF set S is an object having the form P :{<X, w1y (X),V,, (X)> :Xe X} where the functions

1, (X): X =[01]and v, (x): X — [0,1]denote respectively the degree of membership and degree of

non-membership of each element x € X to the set P, and 0 < (u,, (x))* + (v, (x))? <1for each x € X.

Definition 2.3: (Bipolar Pythagorean Fuzzy set) [16] Let X be a non-empty set. A bipolar Pythagorean
fuzzy set (BPFS) A :{<x, (g m2), (e, ;n )> :xe X} where uf:X >[04, n7:X—>[0]]
Uy X —>[-10], 5Y : X —[-1,0]are the mappings such that

0 (11, () + (v, (9)* <1,

~12 (2, () + (v, (x))") <O and

yAP denote the positive membership degree, 77 : denote the positive non-membership degree, lu/':

denote the negative membership degree and 772 denote the negative non membership degree.

Definition 24. [16] Let A={(x, (uf ). (uh i) - x e X} and
B ={<X, (e ne), (g s )> : X € X} be two BPFSs, then their operations are defined as follows:

() AV B ={xmax(uy, g ), min(ry, g ), min(uy , i ), max(i 178 ) - X € X}

(i) AB ={xmin(uf, uf ), max(nf, nf ) max(ul, ul ), min(z ) : x € X3

(i) A® ={X,(7x, 42), (70 1 )i x € X}

Definition 2.5. (Refined Pythagorean Fuzzy Set) [18] A Refined Pythagorean fuzzy set (rpfs) Agp in
U is given by Ay ={(x,1," (9,v,” (9)): e N/, A e Ny, @+ B23,ueU} where a,feN such
that

! S
N (X),VAﬂ(X) :U — | with the condition that, 0< i(ﬂf\‘)z +> (v{)? <1
=

a=1
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3. Bipolar Pythagorean Refined Sets

Despite the fact that electric cars have the potential to greatly decrease GHG emissions and
enhance air quality, there are still obstacles that must be overcome before their widespread adoption
can be achieved.
Definition 3.1. (Bipolar Pythagorean refined set) Let X be the non - empty set in U. A Bipolar

Pythagorean refined set (in short BPRs) Agpr on X can be defined by the form

Ager =% ( Ga (0, Gal (X) e gan (0, %0 (X), 9o (X) e Gar (X)), (G, (X)),

S (i (), 90 (X)), G (X),oo, Si (X)) :xeX]
Where,

gABPR( ), gABPR( )""ngBpR (x), ‘9sz (x), S,f;R (x),...,S,f;R (x): X —>[0]]
S 0, i (),ega (), I (), Fo (X),.... 90 (¥): X —>[-10]
Such that 0< (gn, (X)) + (% (%)) <1

-1< (gABPR ()% + (‘9iA_BpR (x))* <0 for i=1,2,....p for any
element x € X

gzpp (x), g,?;;R (X),.ccc., ch A (X) denote the positive membership degree.
SZPR (x), 19§;R x),......, QE;R (X) denote the positive non membership degree.
gi;PR (x), gf\;PR (X) oo G A, (X) denote the negative membership degree.

1917 (X) 192 (X) ...... .95~ (X) denote the negative non membership degree.

Definition 3.2. (Subset) Let Agpr, Bgpr € BPRS(X) ,where

Ager =106 ( Sa (X, G (0o G () (I (¥, T (X) e, Gt (X)), (G (X)),
2 (NG (0 (I (X), 5 (X) oo I (X)) i x X

Bapr = (% ( G (X)) Gone (X) v G (¥) (T, (0, Far (X) e, T (X)), (G, (X),
S () o 00, (X), 95 (), Fa (X)) ixeX)

Then Agpy is said to be BPR Subset of Bgpg and is denoted by Agpr S Bgpg if

giAJ;PR(X) s giBJ;PR (X) / lgiAJt;PR (X) 2 l9‘;;*{ (X)
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gIA;PR(X) = gIB_BPR (X) 4 lgll'\;PR (X) - Sé;PR (X)
for every x e X and i=1,2,.....,p

Example 3.3:
Let X be anon empty setin U.If Ag,p and Bgpr are bipolar Pythagorean refined sets defined as

follows.

Ager ={(x,([0.2,.03,0.5],[0.7,0.6,0.9])([-0.5,-0.4,~0.3],[-0.4,~0.6,-0.7])) : x € X}

Bger ={(X,([0.3,.0.4,0.6],[0.5,0.2,0.8])([-0.6,-0.5,~0.4],[-0.2,-0.4,-0.3])) : x € X}

We can say that Agpr < Bgpg

Definition 3.4: (Equality) Let Agpg , Bgpr € BPRS(X), where

Ager =10% ( Sa (X)) G (¥) v G (¥) (T, (¥, T (X) e G (X)), (G (X)),
62 (X)sGh (OIS (X), 2 (X) eoeenes O (X)) i x X

Baer =((x ( G (X)) Gone (X) v G (¥) (Far, (), Far (X) ey T (X)), (G, (X),
gBBPR( ) PR ngBpR (x), (SBBPR (x), SBBPR (x),...... BBPR (X)) :xeX}

Then Agpg is said to be BPR set equal of Bgpr and is denoted by Agpr=Bgpg if
SholX) = g (0, I (¥) = 95 (%)

S () = co (0, F (X)) = % (X
for every x e Xand i=1,2,......p

Example 3.5.

Let X be a non empty setin U.If Ag,p and Bgpr are bipolar Pythagorean refined sets defined as

follows.

Ager ={(,([0.2,.03,0.5],[0.7,0.6,0.9])([-0.5,-0.4,-0.3],[-0.4,-0.6 -0.7])) : x € X}
Bger ={(x,([0.2,.0.3,0.5],[0.7,0.6,0.9])([-0.5,-0.4,—0.3],[-0.4,-0.6,-0.7])) : x & X}

We can say that Agpr = Bgpr
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Definition 3.6. (Complement)

Let Agpgr € BPRS(X) . where

Ager =10% ( Sa (X)) G (¥) v G (¥) (T, (¥, T (X) e Gn (X)), (G (X)),
S 0 i ) (G, (), Fo (X),e Fn (X)) 1xeX

The complement of Agpr denoted by AS,,  and is defined by

Ager =1(x (G (X), It (X) e Fat (X, 6 (), G ()G (X)), (G, (X)),

Ga (¥ O (), 6a (), a () ega (X)) :xeX)

for every x e X and i=1,2,.....,p

Example 3.7:

Let X be a non empty setin U.If Agpy is bipolar Pythagorean refined sets defined as follows.
Ager ={(,([0.2,.03,0.5],[0.7,0.6,0.9])([-0.5,-0.4,-0.3],[-0.4,-0.6-0.7])) : x € X}

Then the complement of ABPR

AS ={(x,([0.7,0.6,0.91,[0.2,.0.3,0.5])([-0.4,-0.6,-0.7],[0.5,-0.4,-0.3]) ) : x € X}

Definition 3.8. (Union) Let Agpr , Bgpr € BPRS(X) ., where

Ager =10 ( G (X)) Gy (X)eees Gan () (T, (X)), Far (X) e, 31 (X)), (G, (X),
2- P- 1- 2- [
Sl Gan () (S, (X)), Fu (X) e, Fn (X)) 1 x€X)

Bap =0 ( 6y, (), €80, 00, 60 (0055, (0, S () 95, (), (53, (),
co (0, (0,09, (X)), Ja (X),.o Fa (X)) ixeX)

The union of Agpr and Bgpg is denoted by AgprU Bgpr = Cgpgr and is defined by

Copr =1(x ( 6o, (X)), o (X) e gin (), 9 (X), 95 (X),ccc I (X)), (5e,, (X))

So (X gl (), (I, (0), 2 (%), 90 (X)) ixeX)

Where,

R.Janani and A.Francina Shalini, An Introduction to Bipolar Pythagorean Refined Sets



Neutrosophic Systems with Applications, Vol. 8, 2023 18

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

Senp () = max{gy, (X),c5, (¥}
Gere () =min{Iy (), %, ()}

gci:;pR (x) =min{g). ()55, (0}
(x) max{g' (X) 9= (X)} for every x e X and i=1,2,.....,p

CBPR Bgpr

Example 3.9:

Let X be anon empty setin U.If Ag,r and Bgpr are bipolar Pythagorean refined sets defined as

follows.

Agor ={(x,([0.3,.0.5,0.7],[0.6,0.8,0.9])([-0.2,-0.5,-0.6],[-0.5,-0.6,-0.9])): x & X}

Beer ={(x,([0.2,.0.3,0.6],[0.4,0.8,0.3])([-0.3,-0.2,-0.7],[-0.7,-0.8-0.5])) : x e X}

then the union of two sets is

Cepr ={(x([0.3,.0.5,0.7],[0.4,0.8,0.3])([-0.3,-0.5,-0.7], [-0.5,-0.6,~0.5])} : x € X}

Definition 3.10. (Intersection)

Let Agpr , Bgpr € BPRS(X) . where

Ager = (% ( Gy (X)) G (0 v G () (G, (), I, (X) s i (X)), (S, (X),
S ()i (0,(F (X)), I (), 9u (X)) ixeX)

Baer = {(x ( Sap, (X)) Gopy (0 eveevs S (0 (T, (X), G (X) e B (X)), (G, (X),
S () gan (00,5 (X), 95 (X),o Fa (X)) :xeX])

The intersection of Agpr and Bgpy is denoted by Agpr N Bgpr = Dgpg

Daer={(x ( 65, (), 651 (0,68l 00,85, (0, I (0, 957 (),

(65, (%)

gé‘BpR(x), ...... 65, (%), ( 191’BPR (x), .9,§’BPR (X),...... ,SS;PR (X)):xeX)

Where,
cb (9=min{cl (.c8 (0}
8 (=mad{sy (0.8 (0}
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so, () =max{s, (X).cs (X}
l9|i3— (X) _ min{l91\‘ (X), n9é_ (X)} for every x € X and i=1,2,.....,p

Example 3.11:

Let X be anon empty setin U.If Ag,p and Bgpr are bipolar Pythagorean refined sets defined as
follows.
Ager ={(%,([0.3..0.5,0.7],[0.6,0.8,0.9])([-0.2,-0.5,~0.6],[-0.5,-0.6,-0.9]) ) : x € X}

Bger ={(X, ([0.2,.0.3,0.6],[0.4,0.8,0.3])([-0.3-0.4,-0.7],[-0.7,~0.8,0.5]) ) : x & X}
then the intersection of two sets is

Dger ={(X,([0.2,.0.3,0.6,[0.6,0.8,0.9])([0.2,-0.4,-0.6],[-0.7,-0.8,-0.9])): x € X}

Definition 3.12: (Addition)

Let Agpr , Bgpr € BPRS(X) . where

Agpr =% ( G (¥, G (¥) oo G () (I (X), Sl (X) e Ba (X)), (S, (00,
Sho o ()i (0,(F (X), I () ,es 9 (X)) ixeX)

Barr = (% ( S (X)) St () v G (0 (T (¥, 2 () vy I (X)), (S (X)),
S () gan (00, (X), 95 (), G5 (X)) :xeX)

Then the addition of Agpr and Bgpr is denoted by Agpr @ Bgpg

(G (0 +e (0-¢ (s (0,95 (08 (%))
(b 0k (0~ 0+ (-9 (09 ()

For xeX,i=1,2,....p

ABPR ® BBPR =

Definition 3.13: (Multiplication)

Let Agpr , Bgpr € BPRS(X) . where
Ager =10 ( Sy (0, G (X) e G, (0) (g, (), T () v (X)), (G, (X),

S ()i 00,(F (), Fa (X)e Fn (X)) 1xeX])
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Baer = {(x ( Sap, (X)) Gop, (0 eveevs S (0 (T, (X), G (K)o B (X)), (G, (X),

Then the multiplication of Agpg and Bgpg is denoted by Agpp ® Bgpog

(e (e (0. (0 . 09— 85 099 9)

(k00 +ch (i ek ()~Ii_ (09 (x))
For xeX,i=1,2, ..., p.

ABPR ® BBPR =

4. Algebraic Properties of Bipolar Pythagorean Refined Set Operations

Proposition 4.1: (Commutative Law)

Let Agpr , Bgpre BPRS(X) .Then
(a) ABPR o BBPR = BBPR o ABPR

b) ABPR M BBPR = BBPR M ABPR

Proof: The proofs can be easily made.

Proposition 4.2 : (Associative Law)

Let Agpr , Bgpre BPRS(X) .Then

(@) Agpr U (Bgpr' /Crpr) = (Agpr W Bypr) W Cpp

() Agpr M (Bger M Cppr) = (Ager M Bgpr) M Cipg

Proof : Let ABPR, Bgpr and Cgpr  be three bipolar Pythagorean refined sets defined as follows.

Agor =10% ( S (X, Gy (e Gar (0 (S (), G (¥) e, Gt (X)), (G, (00,
S 0 g (003, (), Fo (%) ,e Fn (X)) :xeX)

Bapr =% ( oy (X)) Gone )ves G () (I (), G () vy I (X)), (S, (X)),
o (0, (0,095, (X)), Ja (X),.o, Fa (X)) ixeX)

Carr = (% ( 5o (0, 2 (X) gl () (5 (), I3 (X) e I (X)), (e, (X)),

Sor () gl ()%, (0, F (X, 95 (X)) xeX)
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Then (ABPR UBBPR) UCBPR =

1% ( S VG (v Gae (M) vgar (X)) L ( Fa () v
o () oo Gt )V (¥) (S VG, (X g, () Vg, (). G ()
IE (X orenns 82 (OVIE () x € XIU (X (G5 (X) e 657 (I (X) e
R C3) N ¢ P LG8 () (. (K)o L 95 (X)) xeX)

=% ( S VG, (VG (X)) (Gang, (K vy (X)V

chpR (x)) Q,ﬁgm (X) v SQZPR (x)VIQéEPR (X)), (O

A BPR

() v, () vIe, (X)), ( G, (K

o, Ve, (X))o JCGa (Ve ()vel (). 9, () vds, () v, 95 (X))

B BPR BPR

e (9 (v (v, 95 (X)) :xeX}.

{00 G, (VS (D VGE,, (X)) G, () V(G (X)V

(X) v

CBPR

S (X)) G, (X) V(T

BBPR

(), v G )V (I, O VES (X)) 6, ()

(G CVRT-rS €) Py S )V (S, D)V, (X)), I, () V(S (v, 5, (X))

S LI (V5 (v, 95 (X)) xeX).
= Ager U (Bger UCopr)
(b) The proof is obvious.

Proposition 4.3: (Idempotent Law)

Let Agpr , Bgpr € BPRS(X) .Then
(@  Agor Y Agor = Ageg
(b) Agpr M Agpr = Ager

Proof: The proofs can be easily made.

Example 4.4:
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Let X be a non empty setin U.If Ag,p and Bgpr are bipolar Pythagorean refined sets defined as
follows.

Ager ={(x,([0.3,.0.5,0.7],[0.6,0.8,0.9])([-0.2,-0.5,-0.6],[-0.5,~0.6,~0.9]) ) : x € X}

Then,

Ao U A, = {(%,([0.3,.0.5,0.7],[0.6,0.8,0.9])([-0.2,-0.5,0.6], [-0.5,~0.6,-0.9])) : x € X}

Hence, ABPRUABPR ABPR

(b) The proof is obvious.

Proposition 4.5: ( Demorgan’s Law)

Let Agpr , Bgpre BPRS(X) .
(a) (ABPR o BBPR)C = BBPRC M ABPRC

c c c
(6) (Agpr M Bgpr)” =Bger \ Ager
Proof: The proofs can be easily made.

Proposition 4.6: (Distributive Law)

Let Agpr , Bgpre BPRS(X) .

(@) Ager I (Bger M Capr) = (Ager W Bger) M (Ager W Copr)

(®) Agpr M (Bgpr W Copr) = (Agpr M Bypr) W (Agpr M Capr)

Proof : Let ABPR, Bger and Cgpr  be three bipolar Pythagorean refined sets defined as follows.

Ager =10 ( Sa (X)) G (¥) e G (¥) (T, (¥, T (K)o, Gi (X)), (G (X)),
S 0 i (00,3, (), Fo (%) ,e Fn (X)) :xeX)

Baer ={(% ( o (X)) Sone (0o G () (I (), ot (¥) 1oy o (X)), (G, (X)),
o (0, (0,09, (X)), Ja (X),.o, Fa (X)) ixeX)

Capr =% ( 6 (0, 680 ()68l 000, (0, I, () e I (X)), (S, (X)),

Sor () gl () (5, (0, I (%), I (X)) :xeX}
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Then ABPR S (BBPR M CBPR)

e I (), (S (), G () i ()G, (X)), G (), Fn (X)) 1 x € XU
(% ( Sope ) A G, (X)) e (G, ) AGEe. (X)) (T () At (X)) ey (o (X) A
9o (0), (65, VA6, () oo (Son, )AL, (0) (Ia, () NG (X))o (T, () A

gt

Carn (X) xeX}
= 1% Sa, )V (Ga, (G (X)) e Gan () V(G (X)

)a 9

C BPR

(X) A 82"

C BPR

NGCun (X)), G (X) v (G, () v G (¥)) V (I, (X)), Gay (X V (

B BPR BBPR

65 () A (0) e s () V(652 (O AT (0), T, (O v (S, (0 A S, (X)) s
92 () v (98, ()8, (x)):xeX)

Sl (65, 0Vl (AL, () Vel (X)) e
(65" (Ovel: (Al (Ve (0), (95, (v o ()AL, (v S () e
(90 (v ()8 VL (0), (che (v 6h (O)Aleh, (vl (0) s
(65 (vel (A, (Ovels, (), (I, (v 8 () AT, (VI (0),eee
(95, (v S5 () A9, () vIE, (1)) :xeX)

= (Agpr Y Bgpr) M (Agpr W Cppz)

(b) The proof is obvious.

Proposition 4.7: (Double complement Law)

Let Agpr € BPRS(X), then

(A;PR)C = ABPR

Proof: Let Agpgr be the bipolar Pythagorean refined set defined as follows.
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Ager =1(% ( Ga, (0, cal (X, gan () (I (X), Iar () e Far (X)), (Shn, (%),
2- P 1- 2— p_
Sago X e Gan (X) (S, (X)), G (X) e, Fp (X)) 1 x€X)

(Ager) =% (F (9, Gt () e Far () G (X), G (X) e s (X)), (I, (X)),
19/; (x),...... ,SEB;R (x), gA (%), gA 00 ,gA (¥):xeX)

(Ager)” =1(% ( Spre (X, Gam () oo G () (Fa (X)), Far (X) e, G (X)),
S (), Ga () g (X).(9, (0, Fa (X) ... o (X)) :xeX)

Hence (Ager)_ Agpr

Proposition 4.8: ( Absorption Law)

Let Agpr , Bgpre BPRS(X).

(a) ABPR o (ABPR M BBPR) = ABPR
(b) ABPR M (ABPR N BBPR) = ABPR

Proof: The proofs can be easily made.

5. Conclusion

This paper ensures the work of introducing the new set namely the Bipolar Pythagorean refined
set by using the theory of the Bipolar Pythagorean set and Pythagorean refined(multi) set. Several
operations and laws have been discussed along with some examples. In the future, Bipolar
Pythagorean refined topological spaces can be introduced. And also, decision-making problems on
bipolar Pythagorean refined sets can be introduced.
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