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1. Introduction 

Fuzzy sets were first initiated by Zadeh [24] and he examined the membership function. After 

introducing some more concepts with fuzzy set theory, Atanassov [1, 2, 3, 4] generalized and 

introduced the new concept called intuitionistic fuzzy set (IFS) which is a generalized form of FS. 

Atanassov [5, 6] extended the set to Intuitionistic fuzzy Multi-dimensional sets. Also, Intuitionistic 

fuzzy topological spaces were introduced by Coker [11]. 

Yager [22] familiarized the model of Pythagorean fuzzy sets. Peng and Yang [20] presented the 

basic operators for PFNs. In [21, 23] similarity measures, distance measures, and multiple decision-

making problems of Pythagorean fuzzy sets were discussed.  

Bosc and Pivert [9] stated “Bipolarity refers to the tendency of the human mind to make decisions 

on the basis of positive and negative effects. Positive information states what is desired, satisfactory,  

possible, or considered as being acceptable. At the same time, negative statements express what is 

rejected, impossible, or forbidden. Negative preferences correspond to constraints while positive 

preferences correspond to wishes, Later Lee [15] introduced the concept of bipolar fuzzy sets which 

is a generalization of the fuzzy sets. Recently, bipolar fuzzy models have been studied by many 

authors on algebraic structures. Chen et. al. [10] studied of m-polar fuzzy set. Then, they examined 

many results which are related to these concepts and can be generalized to the case of m-polar fuzzy 

sets. They also proposed numerical examples to show how to apply m-polar fuzzy sets in real-world 

problems. In [19] Naeem discussed Pythagorean m polar fuzzy sets. In [12, 14] Florentin Smarandache 

introduced the concept of neutrosophic refined and bipolar neutrosophic sets, as an extension of this 

[13] Smarandache came with the topic Bipolar Neutrosophic refined sets. R. Jhansi [16] introduced 

the concept of bipolar Pythagorean fuzzy sets which is an extension of the fuzzy sets, bipolar fuzzy 

sets, intuitionistic fuzzy sets, and Pythagorean fuzzy sets. The score function, accuracy function, and 

some basic operators are also discussed in this paper with real-life applications. 

Contrary to ordinary sets, multisets permit us to have multiple occurrences of the members. 

Blizard [7, 8] introduced multiset theory as a generalization of crisp set theory. As an extension of 

multiset, Yager introduced the notion of fuzzy multiset (FMS). Muhammad Riaz, Khalid Naeem, 

Xindong Peng, Deeba Afzal [17] introduced Pythagorean fuzzy multisets that have real-life 

applications by applying the concept of multiple-valued logic. Pythagorean fuzzy multisets provide 
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a strong mathematical model to deal with multi-attribute group decision-making (MAGDM). While 

tackling real-world problems, intuitionistic fuzzy multiset cannot deal with the situation if the sum 

of the membership degree and non-membership degree of the parameter gets larger than 1. It makes 

decision-making demarcated and affects the optimum decision. PFM sets assist us in handling such 

situations. [18] Muhammad Saeed explained the properties, Set-Theoretic Operations, and Axiomatic 

results of Refined Pythagorean fuzzy sets. 

In this paper, we introduce the concept of a bipolar Pythagorean refined set which is the 

combination of the bipolar Pythagorean fuzzy sets and Pythagorean refined sets. Also, we give some 

basic operators and algebraic properties of bipolar Pythagorean refined set operations with desirable 

examples. 

 

2. Preliminaries 

In this section, we recall the basic definitions and related results for developing the desired set. 

Definition 2.1. (Fuzzy set) [23] Let M be a fixed set, then a fuzzy sets Q in M can be define as: Q = {(m, 

μQ (m)) / m ϵ M } Where μQ : M  [0,1] is called the membership degree of m ϵ M. 

 

Definition 2.2: (Pythagorean Fuzzy set) [21] Let X be a non-empty set and I the unit interval [0, 1]. A 

PF set S is an object having the form }:)(),(,{ XxxvxxP pp    where the functions 

]1,0[:)( Xxp and ]1,0[:)( Xxvp
denote respectively the degree of membership and degree of 

non-membership of each element x ϵ X to the set P, and 1))(())((0 22  xvx pp for each x ϵ X. 

 

Definition 2.3: (Bipolar Pythagorean Fuzzy set) [16] Let X be a non-empty set. A bipolar Pythagorean 

fuzzy set (BPFS) }:),(),,(,{ XxxA N

A

N

A

P

A

P

A    where ]1,0[: XP

A , ]1,0[: XP

A  

]0,1[: XN

A , ]0,1[: XN

A are the mappings such that    

1))(())((0 22  xvx pp , 

0)))(())(((1 22  xvx pp  and  

P

A  denote the positive membership degree, 
P

A  denote the positive non-membership degree, N

A  

denote the negative membership degree and N

A denote the negative non membership degree.  

 

Definition 2.4. [16] Let }:),(),,(,{ XxxA N

A

N

A

P

A

P

A   and

}:),(),,(,{ XxxB N

B

N

B

P

B

P

B    be two BPFSs, then their operations are defined as follows: 

(i) }:),max(),,min(),,min(),,max(,{ XxxBA N

B

N

A

N

B

N

A

P

B

P

A

P

B

P

A    

(ii) }:),min(),,max(),,max(),,min(,{ XxxBA N

B

N

A

N

B

N

A

P

B

P

A

P

B

P

A    

(iii) }:),(),,(,{ XxxA N

A

N

A

P

A

P

A

C    

Definition 2.5. (Refined Pythagorean Fuzzy Set) [18] A Refined Pythagorean fuzzy set (rpfs) RPA  in 

U is given by  },3,,:)(),(,{ 11 UuNNxvxxA AARP     where N , such 

that 

IUxvx AA :)(),(


 with the condition that,  1)()(0
1

2

1

2  











 AA v . 
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3. Bipolar Pythagorean Refined Sets 

Despite the fact that electric cars have the potential to greatly decrease GHG emissions and 

enhance air quality, there are still obstacles that must be overcome before their widespread adoption 

can be achieved. 

Definition 3.1. (Bipolar Pythagorean refined set) Let X  be the non - empty set in U. A Bipolar 

Pythagorean refined set (in short BPRs) BPRA
 
on X can be defined by the form  

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 , )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 ,  

           )(2 x
B P RA

 ,……, )(xP

ABPR

 , )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 

Where ,  

)(1 x
BPRA

 , )(2 x
BPRA

 ,…., )(xP

ABPR

 , )(1 x
BPRA

 , )(2 x
BPRA

 ,…, )(xP

ABPR

 : ]1,0[X
 

)(1 x
BPRA

 , )(2 x
BPRA

 ,…, )(xP

ABPR

  , )(1 x
BPRA

 , )(2 x
BPRA

 ,…, )(xP

ABPR

 :  ]0,1[X  

Such that                   1))(())((0 22   xx i

A

i

A BPRBPR
                   

                           0))(())((1 22   xx i

A

i

A BPRBPR


     
for  i=1,2,….,p for any 

element x ϵ X  

)(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

A
BPR

  denote the positive membership degree.  

)(1 x
BPR

A

 , )(2 x
BPRA

 ,……, )(xP

A
BPR

  denote the positive non membership degree. 

)(1 x
BPR

A

 , )(2 x
BPR

A

 ,……, )(xP

A
BPR

  denote the negative membership degree. 

)(1 x
BPR

A

 , )(2 x
BPR

A

 ,……, )(xP

A
BPR

  denote the negative non membership degree.  

Definition 3.2. (Subset) Let BPRA , BPRB  ϵ BPRS(X) ,where  

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 ,       

          )(2 x
B P RA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 

BPRB
 
= {( x, ( )(1 x

BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, ))(xP

BBPR

 , ( )(1 x
BPRB

 ,  

          )(2 x
B P RB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ) : x ϵ X } 

Then BPRA  is said to be BPR Subset of BPRB  and is denoted by BPRA ⊆ BPRB  if 

            
)(xi

AB P R

  ≤ )(xi

BBPR

 , )(xi

ABPR


 
≥ )(xi

BBPR
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)(xi

AB P R

  ≥ )(xi

BBPR

 ,  )(xi

ABPR


 
≤ )(xi

BBPR


 

for every x ϵ X and i=1,2,…..,p 

 

Example 3.3: 

Let X be a non empty set in U. If BPRA  and BPRB
 are bipolar Pythagorean refined sets defined as 

follows. 

}:])7.0,6.0,4.0[],3.0,4.0,5.0])([9.0,6.0,7.0[],5.0,03,.2.0([,{BPR XxxA 
 

}:])3.0,4.0,2.0[],4.0,5.0,6.0])([8.0,2.0,5.0[],6.0,4.0,.3.0([,{BPR XxxB 
 

We can say that BPRBPR BA   

Definition 3.4: (Equality) Let BPRA  , BPRB  ϵ BPRS(X) , where  

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 ,   

           )(2 x
B P RA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 

BPRB
 
= {( x, ( )(1 x

BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, ))(xP

BBPR

 , ( )(1 x
BPRB

 ,  

           )(2 x
B P RB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ) : x ϵ X } 

Then BPRA  is said to be BPR set equal of BPRB  and is denoted by BPRA = BPRB  if 

          
)(xi

AB P R

  = )(xi

BBPR

 ,  )(xi

ABPR


 
= )(xi

BBPR


 

          
)(xi

AB P R

  = )(xi

BBPR

 ,  )(xi

ABPR


 
= )(xi

BBPR


 

for every x ϵ X and i=1,2,…..,p
 

Example 3.5. 

Let X be a non empty set in U. If BPRA  and BPRB
 are bipolar Pythagorean refined sets defined as 

follows. 

}:])7.0,6.0,4.0[],3.0,4.0,5.0])([9.0,6.0,7.0[],5.0,03,.2.0([,{BPR XxxA 
 

}:])7.0,6.0,4.0[],3.0,4.0,5.0])([9.0,6.0,7.0[],5.0,3.0,.2.0([,{BPR XxxB 
 

We can say that BPRBPR BA   
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Definition 3.6. (Complement) 

Let BPRA  ϵ BPRS(X) . where  

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 ,  

          )(2 x
B P RA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X  

The complement of BPRA  denoted by
C

BPRA   and is defined by 

 

C

BPRA = {( x, ( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ),(xP

ABPR

 )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP
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 , ( )(1 x
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 ,……, ),(xP
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 , )(2 x
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A

 ,……, )(xP

A
BPR

 ) : x ϵ X } 

for every x ϵ X and i=1,2,…..,p 

 

Example 3.7: 

Let X be a non empty set in U. If BPRA  is bipolar Pythagorean refined sets defined as follows.
.
 

}:])7.0,6.0,4.0[],3.0,4.0,5.0])([9.0,6.0,7.0[],5.0,03,.2.0([,{BPR XxxA 
 

Then the complement of BPRA
 

}:])3.0,4.0,5.0[],7.0,6.0,4.0])([5.0,3.0,.2.0[],9.0,6.0,7.0([,{ XxxAC

BPR 
 

Definition 3.8. (Union) Let BPRA  , BPRB  ϵ BPRS(X) . , where  

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA
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 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 

BPRB
 
= {( x, ( )(1 x

BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, ))(xP

BBPR

 , ( )(1 x
BPRB

 ,  

            )(2 x
B P RB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ) : x ϵ X }  

The union of BPRA  and BPRB  is denoted by BPRA ⋃ BPRB  = BPRC  and is defined by 

BPRC  = {( x, ( )(1

BPR
xC

 , )(2

BPR
xC

 ,……, )(
BPR

xP

C

 , )(1

BPR
xC

 , )(2

BPR
xC

 ,……, )),(
BPR

xP

C

 )(( 1

BPR
xC

 ,  

             )(2

B P R
xC

 ,……, )(
BPR

xP

C

 , ( )(1

BPR
xC

 , )(2

BPR
xC

 ,……, )(
BPR

xP

C

 ) : x ϵ X } 

Where, 
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  for every x ϵ X and i=1,2,…..,p 

Example 3.9: 

Let X be a non empty set in U. If BPRA  and BPRB
 are bipolar Pythagorean refined sets defined as 

follows. 

}:])9.0,6.0,5.0[],6.0,5.0,2.0])([9.0,8.0,6.0[],7.0,5.0,.3.0([,{BPR XxxA 
 

}:])5.0,8.0,7.0[],7.0,2.0,3.0])([3.0,8.0,4.0[],6.0,3.0,.2.0([,{BPR XxxB 
 

then the union of two sets is  

}:])5.0,6.0,5.0[],7.0,5.0,3.0])([3.0,8.0,4.0[],7.0,5.0,.3.0([,{BPR XxxC 
 

Definition 3.10. (Intersection)
 

Let BPRA  , BPRB  ϵ BPRS(X) . where  

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP
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= {( x, ( )(1 x
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 ,……, )(xP

BBPR

 ) : x ϵ X }   

The intersection of BPRA  and BPRB  is denoted by BPRA ⋂ BPRB  = BPRD   

BPRD = {( x, ( )(1

BPR

xD
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BPR
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Where, 
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  for every x ϵ X and i=1,2,…..,p 

 

Example 3.11: 

Let X be a non empty set in U. If BPRA  and BPRB
 are bipolar Pythagorean refined sets defined as 

follows.
.
 

}:])9.0,6.0,5.0[],6.0,5.0,2.0])([9.0,8.0,6.0[],7.0,5.0,.3.0([,{BPR XxxA 
 

}:])5.0,8.0,7.0[],7.0,4.0,3.0])([3.0,8.0,4.0[],6.0,3.0,.2.0([,{BPR XxxB 
 

then the intersection of two sets is  

}:])9.0,8.0,7.0[],6.0,4.0,2.0])([9.0,8.0,6.0[,6.0,3.0,.2.0([,{BPR XxxD 
 

Definition 3.12: (Addition)
 

Let BPRA  , BPRB  ϵ BPRS(X) . where  

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP
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 ,  
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B P RA

 ,……, )(xP

ABPR

 ,( )(1 x
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 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 

BPRB
 
= {( x, ( )(1 x

BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, ))(xP

BBPR

 , ( )(1 x
BPRB

 ,  

            )(2 x
B P RB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ) : x ϵ X }   

Then the addition of  BPRA  and BPRB  is denoted by BPRBPR BA 
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For  x ϵ X , i=1,2,…,p 

Definition 3.13: (Multiplication) 

Let BPRA  , BPRB  ϵ BPRS(X) . where  

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 ,  

           )(2 x
B P RA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 
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BPRB
 
= {( x, ( )(1 x

BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, ))(xP

BBPR
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BPRB

 ,  
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B P RB

 ,……, )(xP

BBPR

 ,( )(1 x
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BPRB

 ,……, )(xP

BBPR

 ) : x ϵ X }   

Then the multiplication of  BPRA  and BPRB  is denoted by BPRBPR BA 
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For  x ϵ X, i=1, 2, …, p. 

4. Algebraic Properties of Bipolar Pythagorean Refined Set Operations 

Proposition 4.1: (Commutative Law)
  

Let BPRA  , BPRB ϵ BPRS(X) .Then  

 (a)  BPRBPRBPRBPR ABBA   

 (b) BPRBPRBPRBPR ABBA   

Proof: The proofs can be easily made. 

 

Proposition 4.2 : (Associative Law) 

Let BPRA  ,
 BPRB ϵ BPRS(X) .Then

 

(a)  BPRBPRBPRBPRBPRBPR CBACBA  )()(
 

(b) BPRBPRBPRBPRBPRBPR CBACBA  )()(  
   

Proof : Let BPRA
, BPRB

 and BPRC   be three bipolar Pythagorean refined sets defined as follows. 

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 ,  

            )(2 x
B P RA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 

BPRB
 
= {( x, ( )(1 x

BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, ))(xP

BBPR

 , ( )(1 x
BPRB

 ,  

            )(2 x
B P RB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ) : x ϵ X } 

 BPRC
 
= {( x, ( )(1 x

BPRC

 , )(2 x
BPRC

 ,……, )(xP

CBPR

 ,( )(1 x
BPRC

 , )(2 x
BPRC

 ,……, ))(xP

CBPR

 , ( )(1 x
BPRC

 ,  

            )(2 x
B P RC

 ,……, )(xP

CBPR

 ,( )(1 x
BPRC

 , )(2 x
BPRC

 ,……, )(xP

CBPR

 ) : x ϵ X } 
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Then  BPRBPRBPR CBA )(  

                            {( x, ( )(1 x
BPRA

 ∨ )(1 x
BPRB

 ,……, )(xP

ABPR

 ∨ ))(xP

BBPR

  , ( )(1 x
BPRA

 ∨

)(1 x
BPRB

 ,……, )(xP

ABPR

 ∨ ))(xP

BBPR

  , ( )(1 x
BPRA

 ∨ )(1 x
BPRB

 ,……, )(xP

ABPR

 ∨ ))(xP

BBPR

 ,( )(1 x
BPRA

 ∨

)(1 x
BPRB

 ,……, )(xP

ABPR

 ∨ ))(xP

BBPR

 : x ϵ X }⋃ {( x, ( )(1 x
BPRC

 ,….……, )(xP

CBPR

 ,( )(1 x
BPRC

 ,……,

))(xP

CBPR

 ,( )(1 x
BPRC

 ,…………, )(xP

CBPR

 ,( )(1 x
BPRC

 ,…….……, )(xP

CBPR

 ): x ϵ X } 

                              
= {( x, ( )(1 x

BPRA

 ∨ )(1 x
BPRB

 ∨ ))(1 x
BPRC

 ,……, )(( xP

ABPR

 ∨ )(xP

BBPR

 ∨

))(xP

C BPR

  , ( )(1 x
BPRA

 ∨ )(1 x
BPRB

 ∨ ))(1 x
BPRC

 ,……,( )(xP

ABPR

 ∨ )(xP

BBPR

 ∨ ))(xP

CBPR

  , ( )(1 x
BPRA

 ∨

)(1 x
BPRB

 ∨ ))(1 x
BPRC

 ,…………, ( )(xP

ABPR

 ∨ )(xP

BBPR

 ∨ ))(xP

CBPR

 ,( )(1 x
BPRA

 ∨ )(1 x
BPRB

 ∨, ))(1 x
BPRC



,………..,( )(xP

ABPR

 ∨ )(xP

BBPR

 ∨, ))(xP

CBPR

  : x ϵ X }. 

                               = {( x,  )(1 x
BPRA

 ∨( )(1 x
BPRB

 ∨ ))(1 x
BPRC

 ,……, )(xP

ABPR

 ∨ )(( xP

BBPR

 ∨

))(xP

C BPR

  , )(1 x
BPRA

 ∨( )(1 x
BPRB

 ∨ ))(1 x
BPRC

 ,……, )(xP

ABPR

 ∨ )(( xP

BBPR

 ∨ ))(xF P

CBPR


 , )(1 x

BPRA

 ∨

)(( 1 x
BPRB

 ∨ ))(1 x
BPRC

 ,…………, )(xP

ABPR

 ∨ )(( xP

BBPR

 ∨ ))(xP

CBPR

 , )(1 x
BPRA

 ∨ )(( 1 x
BPRB

 ∨, ))(1 x
BPRC



,……….., )(xP

ABPR

 ∨ )(( xP

BBPR

 ∨, ))(xP

CBPR

  : x ϵ X }. 

)( BPRBPRBPR CBA   

(b) The proof is obvious. 

Proposition 4.3: (Idempotent Law) 

Let BPRA  , BPRB
 ϵ BPRS(X) .Then  

(a)  BPRBPRBPR AAA   

(b) BPRBPRBPR AAA   

Proof: The proofs can be easily made. 

Example 4.4: 
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Let X be a non empty set in U. If BPRA  and BPRB
 are bipolar Pythagorean refined sets defined as 

follows. 

}:])9.0,6.0,5.0[],6.0,5.0,2.0])([9.0,8.0,6.0[],7.0,5.0,.3.0([,{BPR XxxA 
 

Then ,  

 BPRBPR AA }:])9.0,6.0,5.0[],6.0,5.0,2.0])([9.0,8.0,6.0[],7.0,5.0,.3.0([,{ Xxx 
 

Hence , BPRBPRBPR AAA   

(b) The proof is obvious.  
 

Proposition 4.5: ( Demorgan’s Law) 

Let BPRA  , BPRB ϵ BPRS(X) . 

(a)  
C

BPR

C

BPR

C

BPRBPR ABBA  )(  

(b) 
C

BPR

C

BPR

C

BPRBPR ABBA  )(  

Proof: The proofs can be easily made. 

Proposition 4.6: (Distributive Law) 

Let BPRA  ,
 BPRB ϵ BPRS(X) . 

(a)  )()()( BPRBPRBPRBPRBPRBPRBPR CABACBA   

(b) )()()( BPRBPRBPRBPRBPRBPRBPR CABACBA   

Proof : Let BPRA
, BPRB

 and BPRC   be three bipolar Pythagorean refined sets defined as follows.
.
 

BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 ,  

            )(2 x
B P RA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 

BPRB
 
= {( x, ( )(1 x

BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, ))(xP

BBPR

 , ( )(1 x
BPRB

 ,  

            )(2 x
B P RB

 ,……, )(xP

BBPR

 ,( )(1 x
BPRB

 , )(2 x
BPRB

 ,……, )(xP

BBPR

 ) : x ϵ X } 

 BPRC
 
= {( x, ( )(1 x

BPRC

 , )(2 x
BPRC

 ,……, )(xP

CBPR

 ,( )(1 x
BPRC

 , )(2 x
BPRC

 ,……, ))(xP

CBPR

 , ( )(1 x
BPRC

 ,  

            )(2 x
B P RC

 ,……, )(xP

CBPR

 ,( )(1 x
BPRC

 , )(2 x
BPRC

 ,……, )(xP

CBPR

 ) : x ϵ X } 
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Then )( BPRBPRBPR CBA   

                                  
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA



,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X }⋃ 

{( x, ( )(1 x
BPRB

 ∧ ))(1 x
BPRC

 ,……, )(( xP

BBPR

 ∧ ))(xP

C BPR

 ,( )(1 x
BPRB

 ∧ ))(1 x
BPRC

 ,……, )(( xP

BBPR

 ∧

))(xP

CBPR

 , ( )(1 x
BPRB

 ∧ ))(1 x
BPRC

 ,……, )(( xP

BBPR

 ∧ ))(xP

CBPR

 ,( )(1 x
BPRB

 ∧ ))(1 x
BPRC

 ,……, )(( xP

BBPR

 ∧

)(xP

CBPR

 ) : x ϵ X } 

                                  = {( x, )(1 x
BPRA

 ∨ ( )(1 x
BPRB

 ∧ ))(1 x
BPRC

 ,……, )(xP

ABPR

 ∨ )(( xP

BBPR



∧ ))(xP

C BPR

 , )(1 x
BPRA

 ∨ ( )(1 x
BPRB

 ∧ ))(1 x
BPRC

 ,……, ))(xP

ABPR

 ∨ )(( xP

BBPR

 ∧ ))(xP

CBPR

 , )(1 x
BPRA

 ∨ (

)(1 x
BPRB

 ∧ ))(1 x
BPRC

 ,……, )(xP

ABPR

 ∨ )(( xP

BBPR

 ∧ ))(xP

CBPR

 , )(1 x
BPRA

 ∨ ( )(1 x
BPRB

 ∧ ))(1 x
BPRC

 ,……,

)(xP

ABPR

 ∨ )(( xP

BBPR

 ∧ )(xP

CBPR

 ) : x ϵ X } 

                                  = {( x, ( )(1 x
BPRA

 ∨ ))(1 x
BPRB

 ∧ )(( 1 x
BPRA

 ∨ ))(1 x
BPRC

 ,……,

)(( xP

ABPR

 ∨ ))(xP

BBPR

 ∧ )(( xP

ABPR

 ∨ ))(xP

C BPR

 , )(( 1 x
BPRA

 ∨ ))(1 x
BPRB

 ∧ )(( 1 x
BPRA

 ∨ ))(1 x
BPRC

 ,……,

)(( xP

ABPR

 ∨ ))(xP

BBPR

 ∧ ))(( xP

ABPR

 ∨ ))(xP

CBPR

 , ( )(1 x
BPRA

 ∨ ))(1 x
BPRB

 ∧ )(( 1 x
BPRA

 ∨ ))(1 x
BPRC

 ,……,

)(( xP

ABPR

 ∨ ))(xP

BBPR

 ∧ )(( xP

ABPR

 ∨ ))(xP

CBPR

 , )(( 1 x
BPRA

 ∨ ))(1 x
BPRB

 ∧ )(( 1 x
BPRA

 ∨ ))(1 x
BPRC

 ,……,

)(( xP

ABPR

 ∨ ))(xP

BBPR

 ∧ )(( xP

ABPR

 ∨ )(xP

CBPR

 ) : x ϵ X } 

)()( BPRBPRBPRBPR CABA 
 

(b) The proof is obvious.
 

Proposition 4.7: (Double complement Law) 

Let BPRA  ϵ BPRS(X) , then 

cc

BPRA )(
= BPRA

 

Proof: Let BPRA  be the bipolar Pythagorean refined set defined as follows. 
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BPRA
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 ,  

            )(2 x
B P RA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 

)( c

BPRA = {( x, ( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ),(xP

ABPR

 )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( )(1 x
BPRA

 ,  

            )(2 x
BPR

A

 ,……, ),(xP

A
BPR

 )(1 x
BPR

A

 , )(2 x
BPR

A

 ,……, )(xP

A
BPR

 ) : x ϵ X } 

cc

BPRA )(
 
= {( x, ( )(1 x

BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, ))(xP

ABPR

 , ( 

            )(1 x
B P RA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ,( )(1 x
BPRA

 , )(2 x
BPRA

 ,……, )(xP

ABPR

 ) : x ϵ X } 

Hence 
cc

BPRA )(
= BPRA

 

Proposition 4.8: ( Absorption Law) 

Let BPRA  , BPRB ϵ BPRS(X) . 

(a)  BPRBPRBPRBPR ABAA  )(  

(b) BPRBPRBPRBPR ABAA  )(  

Proof: The proofs can be easily made. 

 

5. Conclusion 

This paper ensures the work of introducing the new set namely the Bipolar Pythagorean refined 

set by using the theory of the Bipolar Pythagorean set and Pythagorean refined(multi) set. Several 

operations and laws have been discussed along with some examples. In the future, Bipolar 

Pythagorean refined topological spaces can be introduced. And also, decision-making problems on 

bipolar Pythagorean refined sets can be introduced.  
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