

Neutrosophic gs ∗ **-Open and Closed Maps in Neutrosophic Topological Spaces**

P.Anbarasi Rodrigo ¹ and S.Maheswari 2,*

¹ Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi, Affiliated by Manonmaniam SundaranarUniversity, Abishekapatti, Tirunelveli, India; anbu.n.u@gmail.com.

² Research Scholar, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi. Register Number: 20212212092003. Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India;

mahma1295@gmail.com..

***** Correspondence: mahma1295@gmail.com.

Abstract : The main aim of this paper is to introduce a new concept of N_{eu} – mapping namely $N_{eu}gs\alpha^*$ – open maps and $N_{eu}gs\alpha^*$ – closed maps in N_{eu} – topological spaces . Additionally we relate the properties and characterizations of these mappings with the other mappings in N_{eu} – topological spaces .

Keywords: $N_{eu}gs\alpha^*$ – open set, $N_{eu}gs\alpha^*$ – closed set, $N_{eu}gs\alpha^*$ – open map, $N_{eu}gs\alpha^*$ – closed map.

1. Introduction

Then the idea of N_{eu} – set theory was introduced by F.Smarandache[7] . It includes three components, truth , indeterminancy and false membership function . R.Dhavaseelan and S.Jafari[5] has introduced the concept of $N_{eu}g$ – closed sets . A.A.Salama[11] has very first discussed about N_{eu} – continuous function and he also discussed about N_{eu} – open and closed mapping . The real life application of N_{eu} – topology is applied in Information Systems, Applied Mathematics etc.

In this paper, we introduce some new concepts in N_{eu} – topological spaces such as $N_{eu}gs\alpha^*$ – closed map and $N_{eu}gs\alpha^*$ – open map.

2. Preliminaries

Definition 2.1:[12] Let \mathbb{P} be a non-empty fixed set . A N_{eu} – set H on the universe \mathbb{P} is defined as H= $\{\langle \varphi, (t_{\text{H}}(\varphi), t_{\text{H}}(\varphi), f_{\text{H}}(\varphi)) \rangle : \varphi \in \mathbb{P} \}$ where $t_{\text{H}}(\varphi), t_{\text{H}}(\varphi), f_{\text{H}}(\varphi)$ represent the degree of membership $t_H(p)$, indeterminacy $i_H(p)$ and non-membership function $f_H(p)$ respectively for each element $p \in \mathbb{P}$ to the set H. Also, t_H , i_H , f_H : $\mathbb{P} \rightarrow$] \sim 0, 1 \sim [and $\sim 0 \le t_H(p) + i_H(p) + f_H(p) \le 3$ \sim . Set of all Neutrosophic set over $\mathbb P$ is denoted by $\operatorname{Neu}(\mathbb P)$.

Definition 2.2:[12] A neutrosophic topology (NeuT) on a non-empty set \mathbb{P} is a family $\tau_{N_{eu}}$ of N_{eu} – sets in **ℙ** satisfying the following axioms,

- (i) $0_{N_{eu}}$, $1_{N_{eu}} \in \tau_{N_{eu}}$.
- (ii) $A_1 \cap A_2 \in \tau_{N_{eu}}$ for any A_1 , $A_2 \in \tau_{N_{eu}}$.
- (iii) $\bigcup A_i \in \tau_{N_{eu}}$ for every family { $A_i / i \in \Omega_i$ } $\subseteq \tau_{N_{eu}}$.

In this case, the ordered pair $(\mathbb{P}, \tau_{N_{eu}})$ or simply $\mathbb P$ is called a N_{eu} – topological space (N_{eu} TS). The elements of $\tau_{N_{eu}}$ is neutrosophic open set $(N_{eu} - OS)$ and $\tau_{N_{eu}}^c$ is neutrosophic closed set $(N_{eu} - CS)$.

Definition 2.3:[1] A N_{eu} – set A in a N_{eu} TS ($\mathbb{P}, \tau_{N_{eu}}$) is called a neutrosophic generalized semi alpha star closed set $(N_{eu}gs\alpha^* - CS)$ if $N_{eu}\alpha - int(N_{eu}\alpha - cl(A)) \subseteq N_{eu} - int(G)$, whenever $A \subseteq G$ and G is $N_{eu} \alpha^* - OS$.

Definition 2.4:[2] A $N_{eu}TS$ ($\mathbb{P}, \tau_{N_{eu}}$) is called a $N_{eu}gs\alpha^* - T_{1/2}$ space if every $N_{eu}gs\alpha^* - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$ is a $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$.

Definition 2.5:[5] Let $f_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be any N_{eu} – function and $A =$ $\{(\mathcal{P},(t_{\mathcal{A}}(\mathcal{P}),i_{\mathcal{A}}(\mathcal{P}),f_{\mathcal{A}}(\mathcal{P}))): \mathcal{P}\in\mathbb{P}\}\$ be any N_{eu} - set in $(\mathbb{P},\tau_{N_{eu}})$, then the image of A under f is denoted by $f_N(A)$, is a N_{eu} – set in $(\mathbb{Q}, \sigma_{N_{eu}})$ and is defined by $f_N(A)$ = $\{ (q, [f(t_{\mathbb{A}}(q)), f(i_{\mathbb{A}}(q)), f(f_{\mathbb{A}}(q))]) : q \in \mathbb{Q} \},$

where
$$
f_N(t_A(a)) = \begin{cases} \text{Sup}_{p \in f_N^{-1}(a)} t_A(p), & \text{if } f_N^{-1}(a) \neq \emptyset \\ 0, & \text{otherwise} \end{cases}
$$

$$
f_N(i_A(a)) = \begin{cases} \text{Sup}_{p \in f_N^{-1}(a)} i_A(p), & \text{if } f_N^{-1}(a) \neq \emptyset \\ 0, & \text{otherwise} \end{cases}
$$

$$
(1 - f_N(1 - f_A))(a) = \begin{cases} \text{inf}_{p \in f_N^{-1}(a)} f_A(p), & \text{if } f_N^{-1}(a) \neq \emptyset \\ 1, & \text{otherwise} \end{cases}
$$

3. Neutrosophic $\mathbf{g} s\alpha^*$ − Open and Closed Maps

Definition 3.1: A N_{eu} – function f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ is $N_{eu}gsa^*$ – closed map if the image of every $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$ is a $N_{eu}gs\alpha^*-CS$ in $(\mathbb{Q}$, $\sigma_{N_{eu}})$. (ie) $f_N(\mathbb{A})$ is a $N_{eu}gs\alpha^*-CS$ in $(Q, \sigma_{N_{eu}})$, for every $N_{eu} - CS$ A in $(P, \tau_{N_{eu}})$. The complement of $N_{eu}gs\alpha^*$ – closed map is $N_{eu}gs\alpha^*$ – open map.

.

Theorem 3.2: Every N_{eu} – closed map[10] is $N_{eu}gsa^*$ – closed map, but not conversely.

Example 3.3: Let $\mathbb{P} = \{\mathcal{p}\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{B}\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.4, 0.6, 0.8) \rangle\}$ and B= $\{\langle \mathcal{q}, (0.2, 0.4, 0.6) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p,(0.8,0.4,0.4)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathcal{A}^c) = \{\langle q, (0.8, 0.4, 0.4) \rangle\}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^* -$ closed map . But f_N is not N_{eu} – closed map , because $f_N(\,\text{\AA}^c)$ is not $\,N_{eu}-CS$ in $\big(\mathbb{Q}$, $\sigma_{N_{eu}}\big)$.

Theorem 3.4: Every $N_{eu} \alpha$ – closed map[10] is $N_{eu} g s \alpha^*$ – closed map, but not conversely.

Example 3.5: Let $\mathbb{P} = \{\mathcal{p}\}\$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}\}\$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{B}\}\$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{(\mathcal{p}, (0.3, 0.8, 0.6))\}$ and $B = \{(\mathcal{q}, (0.3, 0.2, 0.8))\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p\ (0.6,0.2,0.3)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathbb{A}^c) = \{(\phi_1, (0.6, 0.2, 0.3))\}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^* - closed$ map . But f_N is not $N_{eu}\alpha$ – closed map , because $f_N(\nvert A^c)$ is not $N_{eu}\alpha$ – CS in $(\mathbb{Q}$, $\sigma_{N_{eu}})$.

Theorem 3.6: Every $N_{eu}S$ – closed map[6] is $N_{eu}gsa^*$ – closed map, but not conversely.

Example 3.7: Let $\mathbb{P} = \{\mathcal{p}\}\$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}\}\$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{B}\}\$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.2, 0.7, 0.8) \rangle\}$ and $B = \{\langle \mathcal{q}, (0.4, 0.3, 0.6) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p\:, (0.8,0.3,0.2)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathcal{A}^c) = \{\langle q, (0.8, 0.3, 0.2)\rangle\}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^* - closed$ map . But f_N is not $N_{eu}S$ – closed map , because $f_N(\nvert A^c)$ is not $N_{eu}S$ – CS in $(\mathbb{Q}, \sigma_{N_{eu}})$.

Theorem 3.8: Every $N_{eu}gs\alpha^*$ – closed map is $N_{eu}\beta$ – closed map[10], but not conversely.

Example 3.9: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, B\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.5, 0.6, 0.4) \rangle\}$ and B= $\{\langle \mathcal{q}, (0.6, 0.8, 0.4) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p\ (0.4,0.4,0.5)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then

 $f_N(\mathcal{A}^c) = \{(\mathcal{A}, (0.4, 0.4, 0.5))\}$ is $N_{eu}\beta - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}\beta$ - closed map . But f_N is not $N_{eu}gsa^*$ – closed map , because $f_N(\mathbb{A}^c)$ is not $N_{eu}gsa^*$ – CS in $(\mathbb{Q}$, $\sigma_{N_{eu}})$.

Theorem 3.10: Every $N_{eu}gsa^*$ – closed map is $N_{eu} \pi g \beta$ – closed map[9], but not conversely.

Example 3.11: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, B\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.2, 0.5, 0.3) \rangle\}$ and $B = \{\langle \mathcal{q}, (0.4, 0.6, 0.2) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q},\ \sigma_{N_{eu}})$ by $f_N(\mathcal{P})=\mathcal{q}$. Let $\mathbb{A}^c=\{\langle \mathcal{P}, (0.3,0.5,0.2)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathbb{A}^c) = \{(\mathcal{A}, (0.3, 0.5, 0.2))\}$ is $N_{eu}\pi g\beta - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}\pi g\beta$ - closed map . But f_N is not $N_{eu}gsa^* - \mathrm{closed}\mapsto f_N(\mathcal{A}^c)$ is not $\ N_{eu}gsa^* - \mathcal{CS}$ in $(\mathbb{Q}$, $\sigma_{N_{eu}})$.

Remark 3.12: The concept of $N_{eu}G^*$ – closed map[4] and $N_{eu}gs\alpha^*$ – closed map are independent.

Example 3.13: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, B\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.8, 0.9, 0.7) \rangle\}$ and $B = \{\langle \mathcal{q}, (0.5, 0.3, 0.8) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p\ (0.7,0.1,0.8)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathbb{A}^c) = \{(\mathbf{q}, (0.7, 0.1, 0.8))\}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^* - closed$ map . But f_N is not $N_{eu}G^*$ – closed map , because $f_N(\mathbb{A}^c)$ is not $N_{eu}G^*$ – CS in $(\mathbb{Q}$, $\sigma_{N_{eu}})$.

Example 3.14: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{B}\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.4, 0.3, 0.9) \rangle\}$ and $B = \{\langle \mathcal{q}, (0.7, 0.4, 0.6) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p,(0.9,0.7,0.4)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathbb{A}^c) = \{ (q, (0.9, 0.7, 0.4)) \}$ is $N_{eu}G^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}G^*$ -closed map . But f_N is not $N_{eu}gsa^*$ – closed map , because $f_N(\mathcal{A}^c)$ is not $N_{eu}gsa^*$ – CS in $(\mathbb{Q}$, $\sigma_{N_{eu}})$.

Remark 3.15: The concept of $N_{eu}g - \text{closed map}[10]$ and $N_{eu}g s \alpha^* - \text{closed map}$ are independent.

Example 3.16: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{B}\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \varphi, (0.7, 0.7, 0.2) \rangle\}$ and $B = \{\langle \varphi, (0.4, 0.3, 0.6) \rangle\}$. Define a map $f_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ by $f_N(\mathcal{P}) = q$. Let $\mathbb{A}^c = \{(\mathcal{P}, (0.2, 0.3, 0.7))\}$ be a $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Then $f_N(\mathcal{A}^c) = \{ (q, (0.2, 0.3, 0.7)) \}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^* - closed$ map . But f_N is not $N_{eu}g$ – closed map , because $f_N(\mathcal{A}^c)$ is not $N_{eu}g$ – CS in $(\mathbb{Q}, \sigma_{N_{eu}})$.

Example 3.17: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{Neu} = \{0_{Neu}, 1_{Neu}, \mathbb{A}\}$ and $\sigma_{Neu} = \{0_{Neu}, 1_{Neu}, \mathbb{B}\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.9, 0.8, 0.8) \rangle\}$ and $B = \{\langle \mathcal{q}, (0.6, 0.8, 0.4) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q},\ \sigma_{N_{eu}})$ by $f_N(\mathcal{P})=\mathcal{q}$. Let $\mathbb{A}^c=\{\langle \mathcal{P}, (0.8,0.2,0.9)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathbb{A}^c) = \{ (q, (0.8, 0.2, 0.9)) \}$ is $N_{eu}g - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}g$ -closed map. But f_N is not $N_{eu}gs\alpha^*$ –closed map , because $f_N(\mathcal{A}^c)$ is not $N_{eu}gs\alpha^*$ – CS in $(\mathbb{Q}$, $\sigma_{N_{eu}})$.

Remark 3.18: The concept of $N_{eu}P$ – closed map[10] and $N_{eu}gsa^*$ – closed map are independent.

Example 3.19: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, B\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \varphi, (0.4, 0.4, 0.5) \rangle\}$ and $B = \{\langle \varphi, (0.3, 0.2, 0.8) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p\ (0.5,0.6,0.4)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathcal{A}^c) = \{(\mathcal{A}, (0.5, 0.6, 0.4))\}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^*$ -closed map . But f_N is not $N_{eu}P$ – closed map , because $f_N(\mathcal{A}^c)$ is not $N_{eu}P$ – CS in $(\mathbb{Q}, \sigma_{N_{eu}})$.

Example 3.20: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, B\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.8, 0.4, 0.3) \rangle\}$ and $B = \{\langle \mathcal{q}, (0.7, 0.6, 0.5) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p\ , (0.3,0.6,0.8)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathbb{A}^c) = \{(\mathbf{q}, (0.3, 0.6, 0.8))\}$ is $N_{eu}P - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}P$ -closed map. But f_N is not $N_{eu}gsa^*$ –closed map , because $f_N(\mathcal{A}^c)$ is not $N_{eu}gsa^*$ – CS in $(\mathbb{Q}$, $\sigma_{N_{eu}})$.

Remark 3.21: The concept of $N_{eu}bg - closed$ map[8] and $N_{eu}gsa^* - closed$ map are independent.

Example 3.22: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, B\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.6, 0.1, 0.7) \rangle\}$ and $B = \{\langle \mathcal{q}, (0.5, 0.3, 0.8) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p\ (0.7,0.9,0.6)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathcal{A}^c) = \{ (q, (0.7, 0.9, 0.6)) \}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^*$ -closed map . But f_N is not $N_{eu}bg$ – closed map , because $f_N(\mathcal{A}^c)$ is not $N_{eu}bg$ – CS in $(\mathbb{Q}, \sigma_{N_{eu}})$.

Example 3.23: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, B\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.8, 0.6, 0.6) \rangle\}$ and B= $\{\langle \mathcal{q}, (0.7, 0.8, 0.3) \rangle\}$. Define a map $f_N\colon (\mathbb{P},\tau_{N_{eu}})\to (\mathbb{Q}$, $\sigma_{N_{eu}})$ by $f_N(p)=q$. Let $A^c=\{\langle p,(0.6,0.4,0.8)\rangle\}$ be a $N_{eu}-CS$ in $(\mathbb{P},\tau_{N_{eu}})$. Then $f_N(\mathbb{A}^c) = \{(\,q_-, (0.6, 0.4, 0.8))\}$ is $N_{eu}bg - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}bg - closed$ map . But f_N is not $N_{eu}gsa^*$ –closed map , because $f_N(\pmb{\mathcal{A}}^c)$ is not $N_{eu}gsa^*$ – CS in $(\mathbb{Q}$, $\sigma_{N_{eu}})$.

Remark 3.24: Let $f: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ and $g: (\mathbb{Q}, \sigma_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be $N_{eu}gsa^*$ – closed map, then $gof : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ need not be $N_{eu}gs\alpha^*$ – closed map.

Example 3.25: Let $\mathbb{P} = \{p\}$ and $\mathbb{Q} = \{q\}$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ and $\sigma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, B\}$ are N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$ and $(\mathbb{Q}, \sigma_{N_{eu}})$, $A = \{\langle \mathcal{p}, (0.6, 0.3, 0.9) \rangle\}$ and $B = \{\langle \mathcal{q}, (0.4, 0.5, 0.7) \rangle\}$. Define a map $f_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ by $f_N(\mathcal{P}) = q$. Let $\mathbb{A}^c = \{(\mathcal{P}, (0.9, 0.7, 0.6))\}$ be a $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Then $f_N(\mathbb{A}^c) = \{(\mathcal{A}, (0.9, 0.7, 0.6))\}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^* - closed$ map. Let \mathbb{R} $= \{r\}$. Also, $C = \{\langle r, (0.2, 0.7, 0.8)\rangle\}$ is $N_{eu}(\mathbb{R})$ and $\gamma_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathcal{C}\}$ is $N_{eu}TS$ on $(\mathbb{R}, \gamma_{N_{eu}})$. Define a map $g_N: (\mathbb{Q}, \sigma_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ by $g_N(q-0.2) = r$. Let $B^c = \{\langle q, (0.7, 0.5, 0.4) \rangle\}$ be a $N_{eu} - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}})$. Then $g_N(B^c) = \{ \langle r, (0.5, 0.3, 0.2) \rangle \}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{R}, \gamma_{N_{eu}}) \Rightarrow g_N$ is $N_{eu}gs\alpha^*$ closed map . Define a map $g_Nof_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ by $g_Nof_N(p-0.2) = r$. But g_Nof_N is not $N_{eu}gs\alpha^*$ – closed map , because $g_Nof_N(\mathcal{A}^c)$ is not $N_{eu}gs\alpha^*$ – CS in $(\mathbb{R}$, $\gamma_{N_{eu}})$.

Theorem 3.26: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ and $g_N : (\mathbb{Q}, \sigma_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – closed map . Also, $(\mathbb{Q}, \sigma_{N_{eu}})$ is $N_{eu}gs\alpha^* - T_{1/2}$ space, then $g_Nof_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu}gs\alpha^* - \text{closed}$ map .

Proof: Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gs\alpha^*$ – closed map, then $f_N(\mathbb{A})$ is $N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{Q}, \sigma_{Neu})$. Given $(\mathbb{Q}, \sigma_{Neu})$ is $N_{eu}gs\alpha^* - T_{1/2}$ space, then $f_N(\mathbb{A})$ is $N_{eu} - CS$ in $(Q, \sigma_{N_{eu}})$. Given g_N is $N_{eu}gs\alpha^*$ – closed map, then $g_N(f_N(A)) = g_N \circ f_N(A)$ is $N_{eu}gs\alpha^*$ – CS in $(\mathbb{R}, \gamma_{N_{eu}}) \Rightarrow g_N of_N$ is $N_{eu} g s a^*$ – closed map.

4. Properties of Neutrosophic $gsa[∗]$ – Open and Closed Maps

Theorem 4.1: Let $f_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu} \alpha$ – closed map and $g_N: (\mathbb{Q}, \sigma_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – closed map . Also , $(Q, \sigma_{N_{eu}})$ is $N_{eu}gs\alpha^* - T_{1/2}$ space , then $g_Nof_N: (P, \tau_{N_{eu}}) \to$ $(\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu}gs\alpha^*$ – closed map.

Proof: Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu} \alpha$ – closed map, then $f_N(\mathbf{A})$ is $N_{eu} \alpha - CS$ in $(Q, \sigma_{N_{eu}}) \Rightarrow f_N(A)$ is $N_{eu}gs\alpha^* - CS$ in $(Q, \sigma_{N_{eu}})$. Given $(Q, \sigma_{N_{eu}})$ is $N_{eu}gs\alpha^* - T_{1/2}$ space, then $f_N(\mathbf{A})$ is $N_{eu} - CS$ in $(\mathbf{Q}, \sigma_{N_{eu}})$. Given g_N is $N_{eu}gs\alpha^* - closed$ map, then $g_N(f_N(\mathbf{A})) = g_N \sigma f_N(\mathbf{A})$ is $N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{R}, \gamma_{N_{eu}}) \Rightarrow g_N of_N \text{ is } N_{eu}gs\alpha^* - \text{closed map}.$

Remark 4.1(a): The above theorem is true if we replace $f_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ as $N_{eu}S$ – closed map, $N_{eu} \alpha^*$ – closed map , $N_{eu} R$ – closed map , $N_{eu} S \alpha$ – closed map and $N_{eu} g \alpha$ – closed map .

Theorem 4.2: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be N_{eu} – closed map and $g_N : (\mathbb{Q}, \sigma_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – closed map, then g_Nof_N : $(\mathbb{P}$, $\tau_{N_{eu}}) \rightarrow (\mathbb{R}$, $\gamma_{N_{eu}})$ is $N_{eu}gs\alpha^*$ – closed map.

Proof: Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is N_{eu} – closed map, then $f_N(\mathbf{A})$ is $N_{eu} - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}})$. Given g_N is $N_{eu}gsa^*$ – closed map, then $g_N(f_N(A)) = g_N \circ f_N(A)$ is $N_{eu}gsa^*$ – CS in $(\mathbb{R}, \gamma_{N_{eu}}) \Rightarrow g_N of_N$ is $N_{eu} g s \alpha^*$ – closed map.

Theorem 4.3: Let $f_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu} \alpha$ - continuous, surjective and $(\mathbb{P}, \tau_{N_{eu}})$ be $N_{eu}gs\alpha^* - T_{1/2}$ space. Also, $g_Nof_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be $N_{eu}gs\alpha^* -$ closed map, then $g_N:$ $(\mathbb{Q}, \sigma_{N_{eu}}) \rightarrow (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu}gs\alpha^*$ – closed map.

Proof: Let A be any $N_{eu} - CS$ in $(Q, \sigma_{N_{eu}})$. Given f_N is $N_{eu} \alpha$ – continuous, then $f_N^{-1}(A)$ is $N_{eu} \alpha$ – CS in $(\mathbb{P}, \tau_{N_{eu}}) \Rightarrow f_N^{-1}(\mathbb{A})$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given $(\mathbb{P}, \tau_{N_{eu}})$ be $N_{eu}gs\alpha^* - T_{1/2}$ space, then $f_N^{-1}(A)$ is $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given $g_N \circ f_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu} g s \alpha^*$ - closed map, then $g_Nof_N(f_N^{-1}(A))$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{R}, \gamma_{N_{eu}})$. Given f_N is surjective, then $g_N(A)$ is $N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{R}, \gamma_{Neu}) \Rightarrow g_N \text{ is } N_{eu}gs\alpha^* - \text{closed map}.$

Remark 4.3(a): The above theorem is true if we replace f_N as $N_{eu}S$ -continuous, $N_{eu}a^*$ - continuous, $N_{eu}R$ – continuous , $N_{eu}S\alpha$ – continuous and $N_{eu}g\alpha$ – continuous.

Theorem 4.4: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be N_{eu} - continuous and surjective . Also, $g_N \sigma f_N$: $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – closed map, then $g_N : (\mathbb{Q}, \sigma_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu}gs\alpha^*$ – closed map .

Proof: Let A be any $N_{eu} - CS$ in $(Q, \sigma_{N_{eu}})$. Given f_N is N_{eu} – continuous, then $f_N^{-1}(A)$ is $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given $g_Nof_N:(\mathbb{P}, \tau_{N_{eu}})\to (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu}gs\alpha^*$ – closed map, then $g_Nof_N(f^{-1}(A))$ is $N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{R}, \gamma_{N_{eu}}) \Rightarrow g_N(\mathbb{A}) \text{ is } N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{R}, \gamma_{N_{eu}}) \Rightarrow g_N \text{ is } N_{eu}gs\alpha^* - \text{closed map}.$

Theorem 4.5: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ and $g_N : (\mathbb{Q}, \sigma_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be two N_{eu} – mappings, such that their composition $g_N \circ f_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be $N_{eu} g s \alpha^*$ – closed map . Then the following statements are true .

- (1) If g_N is $N_{eu}g s \alpha^*$ irresolute[2] and injective, then f_N is $N_{eu}g s \alpha^*$ closed map.
- (2) If g_N is strongly $N_{eu}gs\alpha^*$ continuous[3] and injective, then f_N is $N_{eu}gs\alpha^*$ closed map.
- (3) If g_N is perfectly $N_{eu}gs\alpha^*$ continuous[3] and injective, then f_N is $N_{eu}gs\alpha^*$ closed map.

Proof: (1), Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given $g_Nof_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu}gsa^*$ – closed map, then $g_Nof_N(A)$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{R}, \gamma_{N_{eu}})$. Given g_N is $N_{eu}gs\alpha^*$ – irresolute, then $g_N^{-1}(g_N \circ f_N(A))$ is $N_{eu}g s \alpha^* - CS$ in $(Q, \sigma_{N_{eu}})$. Given g_N is injective, then $g_N^{-1}(g_N \circ f_N(A)) = f_N(A)$ is $N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N \text{ is } N_{eu}gs\alpha^* - \text{closed map}.$

(2), Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given $g_N \circ f_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu}gs\alpha^*$ - closed map, then $g_Nof_N(A)$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{R}, \gamma_{N_{eu}})$. Given g_N is strongly $N_{eu}gs\alpha^*$ – continuous, then $g_N^{-1}(g_N \circ f_N(A))$ is $N_{eu} - CS$ in $(Q, \sigma_{N_{eu}})$. Given g is injective, then $g_N^{-1}(g_N \circ f_N(A)) = f_N(A)$ is $N_{eu} - CS \text{ in } (\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N(\mathbb{A}) \text{ is } N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N \text{ is } N_{eu}gs\alpha^* - \text{closed map}.$

(3), Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given $g_N \circ f_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu} g s \alpha^*$ - closed map, then g_N $of_N(A)$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{R}, \gamma_{N_{eu}})$. Given g_N is perfectly $N_{eu}gs\alpha^*$ - continuous, then $g_N^{-1}(g_N \circ f_N(A))$ is both $N_{eu} - OS$ and $N_{eu} - CS$ in $(Q, \sigma_{N_{eu}})$ Given g_N is injective , then $g_N^{-1}(g_N \circ f_N(A)) = f_N(A)$ is both $N_{eu} - OS$ and $N_{eu} - CS$ in $(Q, \sigma_{N_{eu}}) \Rightarrow f_N(A)$ is $N_{eu} g s \alpha^* - CS$ in $(Q, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gsa^*$ – closed map.

P. Anbarasi Rodrigo and S. Maheswari, Neutrosophic gsα-open and closed maps in neutrosophic topological spaces*

Theorem 4.6: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu}gsa^*$ – closed map and $g_N : (\mathbb{Q}, \sigma_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be N_{eu} – closed map, then $g_Nof_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu}gsa^*$ – closed map, if $(\mathbb{Q}, \sigma_{N_{eu}})$ is $N_{eu}gs\alpha^* - T_{1/2}$ space.

Proof: Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gs\alpha^*$ – closed map, then $f_N(\mathbb{A})$ is $N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{Q}, \sigma_{N_{eu}})$. Given $(\mathbb{Q}, \sigma_{N_{eu}})$ is $N_{eu}gs\alpha^* - T_{1/2}$ space, then $f_N(\mathbb{A})$ is $N_{eu} - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}})$. Given g_N is N_{eu} – closed map, then $g_N(f_N(\mathbf{A}))$ is N_{eu} – CS in $(\mathbb{R}, \gamma_{N_{eu}}) \Rightarrow g_N \sigma f_N(\mathbf{A})$ is $N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{R}, \gamma_{N_{eu}}) \Rightarrow g_N of_N \text{ is } N_{eu}gs\alpha^* - \text{closed map}.$

Theorem 4.7: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ and $g_N : (\mathbb{Q}, \sigma_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ be two N_{eu} – mappings. Then the following statements are true .

(1) If $g_N \circ f_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ is $N_{eu} g s \alpha^*$ – open map and f_N is N_{eu} – continuous, then g_N is $N_{eu}gs\alpha^*$ – open map.

(2) If $g_N \circ f_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{R}, \gamma_{N_{eu}})$ is N_{eu} – closed map and g_N is $N_{eu} g s \alpha^*$ – continuous, then f_N is $N_{eu}gs\alpha^*$ – closed map.

Proof: (1), Let A be any $N_{eu} - CS$ in $(Q, \sigma_{N_{eu}})$. Given f_N is N_{eu} – continuous, then $f_N^{-1}(A)$ is $N_{eu} - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given $g_N of_N$ is $N_{eu} gsa^* -$ open map, then $g_N of_N (\mathfrak{f}_N^{-1}(\mathbb{A})) = g_N(\mathbb{A})$ is $N_{eu}gs\alpha^* - OS$ in $(\mathbb{R}, \gamma_{Neu}) \Rightarrow g_N$ is $N_{eu}gs\alpha^* - open$ map.

(2), Let A be any $N_{eu} - CS$ in (\mathbb{P} , $\tau_{N_{eu}}$). Given g_Nof_N is N_{eu} – closed map, then $g_Nof_N(A)$ is N_{eu} – *CS* in $(\mathbb{R}, \gamma_{N_{eu}})$. Given g_N is $N_{eu}gs\alpha^*$ -continuous, then $g_N^{-1}(g_N \circ f_N(A)) = f_N(A)$ is $N_{eu}gs\alpha^*$ -*CS* in $(Q, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^*$ – closed map.

Theorem 4.8: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be a bijective N_{eu} – mapping . Then the following are equivalent.

(1) f_N is $N_{eu}gs\alpha^*$ – open map, (2) f_N is $N_{eu}gs\alpha^*$ – closed map, (3) f_N^{-1} is $N_{eu}gs\alpha^*$ – continuous[2].

Proof: (1) \Rightarrow (2), Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}}) \Rightarrow \mathbb{A}^c$ is $N_{eu} - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gs\alpha^*$ – open map, then $f_N(A^c) = (f_N(A))^c$ is $N_{eu}gs\alpha^* - OS$ in $(Q, \sigma_{N_{eu}}) \Rightarrow f_N(A)$ is $N_{eu}gs\alpha^*$ – *CS* in $(Q, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gsa^*$ – closed map.

(2) \Rightarrow (3), Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gs\alpha^* - closed$ map, then $f_N(\mathbb{A})$ is $N_{eu}gs\alpha^* - CS$ in $(Q, \sigma_{N_{eu}})$. Given f_N is bijective , then $(f_N^{-1})^{-1}(A) = f_N(A)$ is $N_{eu}gs\alpha^* - CS$ in $(Q, \sigma_{N_{eu}}) \Rightarrow f_N^{-1}$ is $N_{eu}gs\alpha^*$ -continuous.

(3) \Rightarrow (1), Let A be any $N_{eu} - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N^{-1} is $N_{eu}gs\alpha^*$ -continuous, then $(f_N^{-1})^{-1}(A) = f_N(A)$ is $N_{eu}gs\alpha^* - OS$ in $(Q, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^* - open$ map.

Theorem 4.9: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – closed map and $(\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – $T_{1/2}$ space, then f_N is N_{eu} – closed map.

Proof: Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gs\alpha^*$ – closed map, then $f_N(\mathbb{A})$ is $N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{Q}, \sigma_{N_{eu}})$. Given $(\mathbb{Q}, \sigma_{N_{eu}})$ is $N_{eu}gs\alpha^* - T_{1/2}$ space, then $f_N(\mathbb{A})$ is $N_{eu} - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is N_{eu} – closed map.

Theorem 4.10: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – closed map and $(\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – $T_{1/2}$ space, then f_N is $N_{eu}a$ – closed map.

P. Anbarasi Rodrigo and S. Maheswari, Neutrosophic gsα-open and closed maps in neutrosophic topological spaces*

Proof: Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gs\alpha^*$ – closed map, then $f_N(A)$ is $N_{eu}gs\alpha^* - CS \text{ in } (\mathbb{Q}, \sigma_{N_{eu}})$. Given $(\mathbb{Q}, \sigma_{N_{eu}})$ is $N_{eu}gs\alpha^* - T_{1/2}$ space, then $f_N(\mathbb{A})$ is $N_{eu} - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N(\mathbb{A})$ is $N_{eu} \alpha - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu} \alpha$ - closed map.

Remark 4.10(a): The above theorem is true if we replace f as $N_{eu}S$ -closed map , $N_{eu}a^*$ - closed map , $N_{eu}R$ – closed map , $N_{eu}S\alpha$ – closed map and $N_{eu}g\alpha$ – closed map .

Theorem 4.11: Let f_N : $(\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be a bijective N_{eu} – mapping and f_N^{-1} is $N_{eu}gsa^*$ – irresolute, then f_N is $N_{eu}gs\alpha^*$ – closed map.

Proof: Let A be any $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}}) \Rightarrow \mathsf{A}$ is $N_{eu} g s \alpha^* - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_{N-1} is $N_{eu} g s \alpha^* - CS$ irresolute, then $(f_N^{-1})^{-1}(A)$ is $N_{eu}^{\prime} g s \alpha^* - CS$ in $(Q, \sigma_{N_{eu}})$. Given f_N is bijective, then $(f_N^{-1})^{-1}(A) =$ $f_N(\mathcal{A})$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^*$ -closed map.

Theorem 4.12: Let $f_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu}gsa^*$ – open map iff $f_N(N_{eu}-int(A)) \subseteq$ $N_{eu}gs\alpha^* - int(f_N(A))$, for each $N_{eu} - \text{set } A$ in $(\mathbb{P}, \tau_{N_{eu}})$.

Proof: Let A be any N_{eu} – set in $(\mathbb{P}, \tau_{N_{eu}}) \Rightarrow N_{eu} - int(A)$ is $N_{eu} - 0S$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gs\alpha^*$ – open map , then $f_N(N_{eu}-int(A))$ is $N_{eu}gs\alpha^* - OS$ in $(Q, \sigma_{N_{eu}}) \Rightarrow N_{eu}gs\alpha^* - int(f_N(N_{eu}$ $int(\mathcal{A}))=f_N(N_{eu}-int(\mathcal{A}))$. Given $f_N(N_{eu}-int(\mathcal{A}))\subseteq f_N(\mathcal{A})$, then $f_N(N_{eu}-int(\mathcal{A}))=N_{eu}gs\alpha^*-1$ $int\left(f_N(N_{eu}-int({\bf\AA}))\right)\subseteq\,N_{eu}g$ s α^* – $int(f_N({\bf\AA}))$. Conversely , Suppose ${\bf\AA}$ is $N_{eu}-$ OS $\,$ in $\left({\bf\Bbb P}$, $\tau_{N_{eu}}\right)$. Then by hypothesis , $f_N(A) = f_N(N_{eu} - int(A)) \subseteq N_{eu}gsa^* - int(f_N(A)) \to \textcircled{1}$. Given $N_{eu}gsa^*$ – $int(f_N(\mathbb{A}))$ is the largest $N_{eu}gs\alpha^*-OS$ which is contained in $f_N(\mathbb{A})$, then $N_{eu}gs\alpha^*-int(f_N(\mathbb{A}))\subseteq$ $f_N(\mathcal{A}) \to \mathcal{Q}$. From $\textcircled{1}$ and $\textcircled{2}$, $f_N(\mathcal{A}) = N_{eu}gs\alpha^* - int(f_N(\mathcal{A})) \Rightarrow f_N(\mathcal{A})$ is $N_{eu}gs\alpha^* - 0S$ in $\textcircled{1}$ ϕ , $\sigma_{N_{eu}}$ \Rightarrow f_N is $N_{eu}gs\alpha^*$ – open map.

Theorem 4.13: Let $f_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – closed map iff $f_N(N_{eu}-cl(A)) \supseteq$ $N_{eu}gs\alpha^* - cl(f_N(A))$, for each N_{eu} – set A in $(\mathbb{P}, \tau_{N_{eu}})$.

Proof: Let A be any N_{eu} – set in $(\mathbb{P}, \tau_{N_{eu}}) \Rightarrow N_{eu} - cl(A)$ is $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gs\alpha^*$ – closed map , then $f_N(N_{eu}-cl(A))$ is $N_{eu}gs\alpha^*$ – CS in $(Q, \sigma_{N_{eu}}) \Rightarrow N_{eu}gs\alpha^*$ – $cl(f_N(N_{eu}$ $cl(A))$ = $f_N(N_{eu} - cl(A))$. Given $f_N(A) \subseteq f_N(N_{eu} - cl(A))$, then $f_N(N_{eu} - cl(A)) = N_{eu}gsa^*$ $cl(f_N(N_{eu}-cl(A))) \supseteq N_{eu}gs\alpha^* - cl(f_N(A))$. Conversely, Suppose $\mathbb A$ is $N_{eu}-CS$ in $(\mathbb P, \tau_{N_{eu}})$. Then by hypothesis , $f_N(\mathbf{A}) = f_N(N_{eu} - cl(\mathbf{A})) \supseteq N_{eu} g s \alpha^* - cl(f_N(\mathbf{A})) \rightarrow \textcircled{1}$. Given $N_{eu} g s \alpha^* - cl(f_N(\mathbf{A}))$ is the smallest $N_{eu}gs\alpha^* - CS$ containing $f_N(A)$, then $f_N(A) \subseteq N_{eu}gs\alpha^* - cl(f_N(A)) \to \textcircled{2}$. From $\textcircled{1}$ and (2) , $f_N(A) = N_{eu}gs\alpha^* - cl(f_N(A)) \Rightarrow f_N(A)$ is $N_{eu}gs\alpha^* - CS$ in $(Q, \sigma_{N_{eu}}) \Rightarrow f_N$ is $N_{eu}gs\alpha^* - closed$ map .

Theorem 4.14: Let $f_N: (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – closed map, then $N_{eu} - cl(f_N^{-1}(\mathbb{A})) \supseteq$ $f_N^{-1}(N_{eu}gs\alpha^* - cl(A))$ for every N_{eu} – set A of $(Q, \sigma_{N_{eu}})$.

Proof: Let A be a N_{eu} – set in $(Q, \sigma_{N_{eu}}) \Rightarrow N_{eu} - cl(f_N^{-1}(A))$ is $N_{eu} - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gs\alpha^*$ – closed map, then $f_N(N_{eu}-cl(f_N^{-1}(A)))$ is $N_{eu}gs\alpha^*$ – CS in $(\mathbb{Q}, \sigma_{N_{eu}})$. By theorem 4.13, $f_N(N_{eu}-cl(f_N^{-1}(A)))\supseteq N_{eu}gs\alpha^*-cl(f_N(f_N^{-1}(A)))\supseteq N_{eu}gs\alpha^*-cl(A) \qquad \Rightarrow N_{eu}-cl(f_N^{-1}(A))\supseteq$ $f_N^{-1}(N_{eu}gs\alpha^* - cl(A))$.

Theorem 4.15: Let $f_N : (\mathbb{P}, \tau_{N_{eu}}) \to (\mathbb{Q}, \sigma_{N_{eu}})$ be $N_{eu}gs\alpha^*$ – open map, then $N_{eu} - int (f_N^{-1}(\mathbb{A})) \subseteq$ $f_N^{-1}(N_{eu}gs\alpha^* - int(A))$ for every N_{eu} – set A of $(\mathbb{Q}, \sigma_{N_{eu}})$.

Proof: Let A be a N_{eu} – set in $(\mathbb{Q}, \sigma_{N_{eu}}) \Rightarrow N_{eu} - int(f_N^{-1}(A))$ is $N_{eu} - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Given f_N is $N_{eu}gsa^*$ – open map, then $f_N(N_{eu}-int (f_N^{-1}(A)))$ is $N_{eu}gsa^* - OS$ in $(\mathbb{Q}$, $\sigma_{N_{eu}})$. Now, $f_N(N_{eu} \int \int_{-\infty}^{\infty} f(x^{-1}(A)) dx = N_{eu}g s \alpha^* - \int \int_{-\infty}^{\infty} f(x^{-1}(A)) dx = N_{eu}g s \alpha^* - \int \int_{-\infty}^{\infty} f(x) dx$ (by theorem 4.12) $\Rightarrow N_{eu} - \int_{-\infty}^{\infty} f(x) dx$ $int (f_N^{-1}(A)) \subseteq f_N^{-1}(N_{eu}gs\alpha^* - int(A)).$

5. Conclusions : In this paper we have discussed about the $N_{eu}gs\alpha^*$ – open and closed map. We had an idea to extend this paper to the next level about $N_{eu}gsa^*$ – homeomorphism and also the application of this paper . In future work , we will discussed and find out the results of this paper application.

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the privacy-preserving nature of the data but are available from the corresponding author upon reasonable request.

Conflict of interest

The authors declare that there is no conflict of interest in the research.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

- 1. Anbarasi Rodrigo , P., Maheswari , S., Neutrosophic Generalized Semi Alpha Star Closed Sets in Neutrosophic Topological Spaces , Paper presented in International Conference on Mathematics , Statistics , Computers And Information Sciences , 2021 .
- 2. Anbarasi Rodrigo, P., Maheswari, S., Functions Related to Neutrosophic $gs\alpha^*$ Closed Sets in Neutrosophic Topological Spaces, Paper presented in 24th FAI International Conference on Global Trends of Data Analytics in Business Management , Social Sciences , Medical Sciences and Decision Making 24th FAI-ICDBSMD 2021 .
- 3. Anbarasi Rodrigo, P., Maheswari, S., More Functions Associated with Neutrosophic $gs\alpha^*$ Closed Sets in Neutrosophic Topological Spaces , Advanced Topics of Topology (communicated) .
- 4. Atkinswestley, A., & Chandrasekar, S., Neutrosophic g^* Closed Sets And its Maps, Neutrosophic Sets & Systems , Vol.36 , pp.96-107 , 2020 .
- 5. Dhavaseelan , R., & Jafari , S., Generalized Neutrosophic Closed Sets , New trends in Neutrosophic Theory And Applications , Vol.2 , pp.261-273 , Jan 2017 .
- 6. Dhavaseelan , R., Jafari , S., & Hanif Page , MD., Neutrosophic generalized α -Contra -Continuity , Creat.Math.Inform., ISSN:1843-441X , Vol.27, No.2 , pp.133-139 , 2018 .
- 7. Floretin Smarandache , Neutrosophic Set: A Generalization of Intuitionistic Fuzzy Set , Jorunal of Defense Resources Management , 2010,107-116 .
- 8. Maheswari , C., & Chandrasekar , S., Neutrosophic bg-Closed Sets & its Continuity , Neutrosophic Sets & Systems , Vol.36 , pp.108-120 , 2020 .
- 9. Narmatha , S., Glory Bebina , E., & Vishnu Priyaa , R., On $\pi g \beta$ –Closed Sets and Mappings in Neutrosophic Topological Spaces , International Journal of Innovative Technology And Exploring Engineering(IJITEE) , ISSN:2278-3075 , Vol.8 , Issue-12S , pp.505-510 , October 2019.
- 10. Ramesh , K. Ngpr homeomorphism in Neutrosophic Topological Spaces , Neutrosophic Sets And Systems , University of New Mexico , Vol.32 , pp.25-37 , 2020 .
- 11. Salama , A.A., Florentin Smarandache & Valeri Kromov , Neutrosophic Closed Set & Neutrosophic Continuous Functions , Neutrosophic Sets And Systems , Vol.4 , pp.4-8 , 2014.
- 12. Sreeja, D., & Sarankumar, T., Generalized Alpha Closed Sets in Neutrosophic Topological Spaces, JASC , Journal of Applied Science & Computations , ISSN:1076-5131 , Vol.5 , Issue 11, pp.1816-1823 , Nov-2018 .

Received: Mar 01, 2023. Accepted: Jul 30, 2023

© 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).