
Abstract : The main aim of this paper is to introduce a new concept of  𝑁𝑒𝑢 −  mapping namely 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − open maps and 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed maps in  𝑁𝑒𝑢 − topological spaces . Additionally we 

relate the  properties and characterizations of these mappings with the other mappings in  𝑁𝑒𝑢 −

 topological spaces . 

 Keywords:  𝑁𝑒𝑢𝑔𝑠𝛼∗ − open set , 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed set ,  𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map , 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed 

map. 
 

1.  Introduction 

Then the idea of  𝑁𝑒𝑢 − set theory was introduced by F.Smarandache[7] . It includes three 

components, truth , indeterminancy and false membership function . R.Dhavaseelan and  S.Jafari[5] 

has introduced  the concept of 𝑁𝑒𝑢𝑔 − closed sets . A.A.Salama[11] has very first discussed about 

𝑁𝑒𝑢 − continuous function and he  also discussed about 𝑁𝑒𝑢 −  open and closed mapping . The real 

life application of 𝑁𝑒𝑢 − topology is applied in Information Systems ,  Applied Mathematics etc .  

              In this paper, we introduce some new concepts in 𝑁𝑒𝑢 − topological spaces such as  𝑁𝑒𝑢𝑔𝑠𝛼∗ −

 closed map and 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map .  

2. Preliminaries 

Definition 2.1:[12] Let ℙ be a non-empty fixed set . A 𝑁𝑒𝑢 − set Ҥ on the universe ℙ is defined as Ҥ=

{〈𝓅, (𝑡Ҥ(𝓅), 𝑖Ҥ(𝓅), 𝑓Ҥ(𝓅))〉 ∶ 𝓅 Є ℙ} where 𝑡Ҥ(𝓅), 𝑖Ҥ(𝓅), 𝑓Ҥ(𝓅) represent the degree of membership 

𝑡Ҥ(𝓅), indeterminacy 𝑖Ҥ(𝓅) and non-membership function 𝑓Ҥ(𝓅) respectively for each element 𝓅 Є ℙ 

to the set Ҥ . Also , 𝑡Ҥ ,  𝑖Ҥ ,  𝑓Ҥ : ℙ → ]−0 , 1+[  and  -0 ≤  𝑡Ҥ(𝓅) + 𝑖Ҥ(𝓅) + 𝑓Ҥ(𝓅) ≤ 3+ . Set of all 

Neutrosophic set over ℙ is denoted by Neu(ℙ) . 

Definition 2.2:[12] A neutrosophic topology (NeuT) on a non-empty set ℙ is a family 𝜏𝑁𝑒𝑢
 of  𝑁𝑒𝑢 − 

sets in ℙ satisfying the following axioms , 

     (i) 0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

 Є  𝜏𝑁𝑒𝑢
 . 

    (ii) Ⱥ1 ∩ Ⱥ2 Є 𝜏𝑁𝑒𝑢
 for any  Ⱥ1 , Ⱥ2 Є 𝜏𝑁𝑒𝑢

 . 

    (iii) ⋃ Ⱥ𝑖  Є 𝜏𝑁𝑒𝑢
 for every family { Ⱥ𝑖  / 𝑖 Є ῼ } ⊆ 𝜏𝑁𝑒𝑢

 . 

In this case , the ordered pair (ℙ, 𝜏𝑁𝑒𝑢
) or simply ℙ is called a  𝑁𝑒𝑢 − topological space (𝑁𝑒𝑢TS) . The 

elements of  𝜏𝑁𝑒𝑢
 is neutrosophic open set (𝑁𝑒𝑢 − 𝑂𝑆) and  𝜏𝑁𝑒𝑢

𝑐 is neutrosophic closed set (𝑁𝑒𝑢 − 𝐶𝑆) . 

Definition 2.3:[1] A  𝑁𝑒𝑢 − set Ⱥ in a 𝑁𝑒𝑢TS (ℙ, 𝜏𝑁𝑒𝑢
) is called a neutrosophic generalized semi alpha 

star closed set  (𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆)  if  𝑁𝑒𝑢𝛼 − 𝑖𝑛𝑡(𝑁𝑒𝑢𝛼 − 𝑐𝑙(Ⱥ)) ⊆ 𝑁𝑒𝑢 − 𝑖𝑛𝑡(𝒢) , whenever  Ⱥ ⊆ 𝒢  and  𝒢  

is  𝑁𝑒𝑢𝛼∗ − 𝑂𝑆 .   
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Definition 2.4:[2] A 𝑁𝑒𝑢𝑇𝑆   ( ℙ, 𝜏𝑁𝑒𝑢
) is called a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1

2⁄  space if every 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in 

(ℙ, 𝜏𝑁𝑒𝑢
) is a 𝑁𝑒𝑢 − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) . 

Definition 2.5:[5] Let  𝑓𝑁  ∶  (ℙ , 𝜏𝑁𝑒𝑢
)   →   (ℚ  ,  𝜎𝑁𝑒𝑢

) be any 𝑁𝑒𝑢 −  function and Ⱥ = 

{〈 𝓅, (𝑡Ⱥ(𝓅), 𝑖Ⱥ(𝓅), 𝑓Ⱥ(𝓅)) 〉 ∶ 𝓅 Є ℙ} be any 𝑁𝑒𝑢 − set in (ℙ, 𝜏𝑁𝑒𝑢
) , then the  image of Ⱥ under 𝑓 is 

denoted by 𝑓𝑁(Ⱥ) , is a 𝑁𝑒𝑢 −  set in (ℚ ,  𝜎𝑁𝑒𝑢
) and is defined by 𝑓𝑁 (Ⱥ) =  

{〈 𝓆 , (𝑓(𝑡Ⱥ(𝓆)), 𝑓(𝑖Ⱥ(𝓆)), 𝑓(𝑓Ⱥ(𝓆))) 〉 ∶ 𝓆 Є ℚ} ,   

            where      𝑓𝑁 (𝑡Ⱥ(𝓆)) = {
𝑆𝑢𝑝𝓅𝜖𝑓𝑁

−1(𝓆)  𝑡Ⱥ(𝓅) ,   𝑖𝑓  𝑓𝑁
−1(𝓆) ≠ ∅ 

0                        ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
           

                          𝑓𝑁 (𝑖Ⱥ(𝓆)) = {
𝑆𝑢𝑝𝓅𝜖𝑓𝑁

−1(𝓆)  𝑖Ⱥ(𝓅) ,   𝑖𝑓  𝑓𝑁
−1(𝓆) ≠ ∅ 

0                        ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
        

        (1 − 𝑓𝑁(1 − 𝑓Ⱥ))(𝓆) = {
𝑖𝑛𝑓𝓅𝜖𝑓𝑁

−1(𝓆)  𝑓Ⱥ(𝓅) ,   𝑖𝑓  𝑓𝑁
−1(𝓆) ≠ ∅ 

1                       ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
       . 

3. Neutrosophic   𝒈𝒔𝜶∗ − Open and Closed Maps  

Definition 3.1: A 𝑁𝑒𝑢 − function 𝑓𝑁: (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map if the image of 

every 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

) . (ie)  𝑓𝑁(Ⱥ)  is a  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in 

(ℚ ,  𝜎𝑁𝑒𝑢
) , for every 𝑁𝑒𝑢 − 𝐶𝑆  Ⱥ  in (ℙ, 𝜏𝑁𝑒𝑢

) .  The complement of  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map is  

𝑁𝑒𝑢𝑔𝑠𝛼∗ − open  map . 

Theorem 3.2: Every 𝑁𝑒𝑢 − closed map[10] is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , but not conversely. 

Example 3.3: Let ℙ ={𝓅} and ℚ ={𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.4,0.6,0.8)〉} and Ƀ= {〈𝓆 , (0.2,0.4,0.6)〉} .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈 𝓅, (0.8,0.4,0.4)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 ( Ⱥ𝑐) = {〈𝓆 , (0.8 , 0.4 , 0.4)〉} is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . But 𝑓𝑁  is 

not 𝑁𝑒𝑢 − closed map , because 𝑓𝑁( Ⱥ𝑐) is not  𝑁𝑒𝑢 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) . 

Theorem 3.4: Every 𝑁𝑒𝑢𝛼 − closed map[10] is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , but not conversely. 

Example 3.5: Let ℙ ={𝓅} and ℚ ={𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

), Ⱥ= {〈𝓅, (0.3,0.8,0.6)〉} and  Ƀ= {〈𝓆 , (0.3,0.2,0.8)〉} .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅 , (0.6,0.2,0.3)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 ( Ⱥ𝑐) = {〈 𝓆 , (0.6 , 0.2 , 0.3)〉}  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . But 𝑓𝑁 is 

not 𝑁𝑒𝑢𝛼 − closed map , because 𝑓𝑁( Ⱥ𝑐) is not 𝑁𝑒𝑢𝛼 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) .  

Theorem 3.6: Every 𝑁𝑒𝑢𝑆 − closed map[6] is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , but not conversely. 

Example 3.7: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.2,0.7,0.8)〉} and  Ƀ= {〈𝓆 , (0.4,0.3,0.6)〉}  .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅 , (0.8,0.3,0.2)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 ( Ⱥ𝑐) = {〈𝓆 , (0.8 , 0.3 , 0.2)〉}  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . But 𝑓𝑁  is 

not 𝑁𝑒𝑢𝑆 − closed map , because 𝑓𝑁 ( Ⱥ𝑐) is not  𝑁𝑒𝑢𝑆 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) .  

Theorem 3.8: Every 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map is 𝑁𝑒𝑢𝛽 − closed map[10] , but not conversely. 

Example 3.9: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.5,0.6,0.4)〉} and Ƀ= {〈𝓆 , (0.6,0.8,0.4)〉} .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅 , (0.4,0.4,0.5)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  
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𝑓𝑁 (Ⱥ𝑐) = {〈 𝓆 , (0.4, 0.4 , 0.5)〉} is  𝑁𝑒𝑢𝛽 −  𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁 is  𝑁𝑒𝑢𝛽 – closed map . But  𝑓𝑁  is not 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , because 𝑓𝑁(Ⱥ𝑐)  is not  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) .   

Theorem 3.10: Every 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map is 𝑁𝑒𝑢𝜋𝑔𝛽 − closed map[9] , but not conversely. 

Example 3.11: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.2,0.5,0.3)〉} and Ƀ = {〈𝓆 , (0.4,0.6,0.2)〉} .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅 , (0.3,0.5,0.2)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 (Ⱥ𝑐) = {〈𝓆 , (0.3 , 0.5 , 0.2)〉}  is  𝑁𝑒𝑢𝜋𝑔𝛽 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁 is  𝑁𝑒𝑢𝜋𝑔𝛽 − closed map . But  𝑓𝑁 is 

not 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , because 𝑓𝑁(Ⱥ𝑐)  is not  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
)  .   

Remark 3.12: The concept of  𝑁𝑒𝑢𝐺∗ − closed map[4]  and  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map  are independent  . 

Example 3.13: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ = {〈𝓅, (0.8,0.9,0.7)〉} and  Ƀ= {〈𝓆 , (0.5,0.3,0.8)〉}  .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅 , (0.7,0.1,0.8)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 (Ⱥ𝑐) = {〈 𝓆 , (0.7 , 0.1 , 0.8)〉} is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . But 𝑓𝑁 is 

not 𝑁𝑒𝑢𝐺∗ − closed map , because 𝑓𝑁 (Ⱥ𝑐)   is not  𝑁𝑒𝑢𝐺∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) .  

Example 3.14: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) ,  Ⱥ= {〈𝓅, (0.4,0.3,0.9)〉} and  Ƀ= {〈𝓆 , (0.7,0.4,0.6)〉} .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅, (0.9,0.7,0.4)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 (Ⱥ𝑐) = {〈𝓆  , (0.9, 0.7, 0.4)〉} is  𝑁𝑒𝑢𝐺∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝐺∗ −closed map . But  𝑓𝑁  is not 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , because 𝑓𝑁(Ⱥ𝑐)  is not  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
).   

Remark 3.15: The concept of  𝑁𝑒𝑢𝑔 − closed map[10]  and  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map  are independent  . 

Example 3.16: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.7,0.7,0.2)〉} and  Ƀ = {〈𝓆 , (0.4,0.3,0.6)〉}  .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅 , (0.2,0.3,0.7)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 (Ⱥ𝑐) = {〈𝓆 , (0.2, 0.3, 0.7)〉}   is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . But 𝑓𝑁 is 

not 𝑁𝑒𝑢𝑔 − closed map , because  𝑓𝑁 (Ⱥ𝑐)  is not  𝑁𝑒𝑢𝑔 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) .  

Example 3.17: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.9,0.8,0.8)〉} and  Ƀ = {〈𝓆 , (0.6,0.8,0.4)〉}  .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅, (0.8,0.2,0.9)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 (Ⱥ𝑐) = {〈𝓆  , (0.8, 0.2, 0.9)〉} is 𝑁𝑒𝑢𝑔 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝑔 −closed map . But  𝑓𝑁 is not 

𝑁𝑒𝑢𝑔𝑠𝛼∗ −closed map , because 𝑓𝑁(Ⱥ𝑐)  is not  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
)   .  

Remark 3.18: The concept of  𝑁𝑒𝑢𝑃 − closed map[10]  and  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map  are independent . 

Example 3.19: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ = {〈𝓅, (0.4,0.4,0.5)〉} and  Ƀ = {〈𝓆 , (0.3,0.2,0.8)〉} .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅 , (0.5,0.6,0.4)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 (Ⱥ𝑐) = {〈 𝓆 , (0.5 , 0.6 , 0.4)〉} is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ −closed map . But 𝑓𝑁  is 

not 𝑁𝑒𝑢𝑃 − closed map , because 𝑓𝑁 (Ⱥ𝑐) is not  𝑁𝑒𝑢𝑃 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) .  

Example 3.20: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ = {〈𝓅, (0.8,0.4,0.3)〉} and  Ƀ = {〈𝓆 , (0.7,0.6,0.5)〉} . Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆. Let  Ⱥ𝑐 = {〈𝓅 , (0.3,0.6,0.8)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 (Ⱥ𝑐) = {〈 𝓆 , (0.3 , 0.6 , 0.8)〉} is  𝑁𝑒𝑢𝑃 − 𝐶𝑆 in  (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is 𝑁𝑒𝑢𝑃 −closed map. But  𝑓𝑁  is not 

𝑁𝑒𝑢𝑔𝑠𝛼∗ −closed map , because 𝑓𝑁(Ⱥ𝑐)  is not  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
).  
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Remark 3.21: The concept of  𝑁𝑒𝑢𝑏𝑔 − closed map[8]  and  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map  are independent . 

Example 3.22: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.6,0.1,0.7)〉} and Ƀ= {〈𝓆 , (0.5 , 0.3,0.8)〉}  .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅 , (0.7,0.9,0.6)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 (Ⱥ𝑐) = {〈𝓆 , (0. 7, 0.9 , 0.6)〉}  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ −closed map . But 𝑓𝑁  is 

not 𝑁𝑒𝑢𝑏𝑔 − closed map , because  𝑓𝑁(Ⱥ𝑐)  is not 𝑁𝑒𝑢𝑏𝑔 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
).  

Example 3.23: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.8,0.6,0.6)〉} and Ƀ= {〈𝓆 , (0.7,0.8,0.3)〉} .  Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅, (0.6,0.4,0.8)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then  

𝑓𝑁 (Ⱥ𝑐) = {〈 𝓆  , (0.6 , 0.4 , 0.8)〉} is 𝑁𝑒𝑢𝑏𝑔 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is 𝑁𝑒𝑢𝑏𝑔 − closed map . But 𝑓𝑁 is not 

𝑁𝑒𝑢𝑔𝑠𝛼∗ −closed map , because 𝑓𝑁(Ⱥ𝑐)  is not  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) .  

Remark 3.24: Let  𝑓: (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) and  𝑔 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ ,  𝛾𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , 

then  𝑔𝑜𝑓 ∶  (ℙ ,  𝜏𝑁𝑒𝑢
)  →  (ℝ ,  𝛾𝑁𝑒𝑢

)  need  not  be  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

Example 3.25: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  are 𝑁𝑒𝑢TS on 

(ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ = {〈𝓅, (0.6,0.3,0.9)〉} and  Ƀ = {〈𝓆 , (0.4,0.5,0.7)〉} . Define a map 

𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
)  → (ℚ ,  𝜎𝑁𝑒𝑢

) by 𝑓𝑁(𝓅) = 𝓆 . Let  Ⱥ𝑐 = {〈𝓅 , (0.9,0.7,0.6)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in  (ℙ, 𝜏𝑁𝑒𝑢
) . 

Then  𝑓𝑁 (Ⱥ𝑐) = {〈𝓆 , (0.9, 0.7, 0.6)〉} is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . Let ℝ 

= {𝓇} . Also, Ȼ= {〈𝓇, (0.2,0.7,0.8)〉} is 𝑁𝑒𝑢(ℝ) and  𝛾𝑁𝑒𝑢
= {0𝑁𝑒𝑢

 , 1𝑁𝑒𝑢
, Ȼ} is 𝑁𝑒𝑢TS on (ℝ ,  𝛾𝑁𝑒𝑢

).  Define 

a map 𝑔𝑁 ∶ (ℚ ,  𝜎𝑁𝑒𝑢
) → (ℝ ,  𝛾𝑁𝑒𝑢

)  by  𝑔𝑁(𝓆 − 0.2) = 𝓇 . Let  Ƀ𝑐 =  {〈𝓆 , (0.7,0.5,0.4)〉} be a 𝑁𝑒𝑢 − 𝐶𝑆  

in (ℚ, 𝜎𝑁𝑒𝑢
). Then  𝑔𝑁(Ƀ𝑐) = {〈𝓇 , (0.5, 0.3, 0.2)〉} is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℝ , 𝛾𝑁𝑒𝑢

) ⇒ 𝑔𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

closed map . Define a map  𝑔𝑁𝑜𝑓𝑁  ∶  (ℙ , 𝜏𝑁𝑒𝑢
)  →  (ℝ  ,  𝛾𝑁𝑒𝑢

) by  𝑔𝑁𝑜𝑓𝑁(𝓅 − 0.2) =  𝓇  . But 𝑔𝑁𝑜𝑓𝑁 is 

not 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , because 𝑔𝑁𝑜𝑓𝑁(Ⱥ𝑐) is not 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℝ ,  𝛾𝑁𝑒𝑢
) .  

Theorem 3.26: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) and  𝑔𝑁 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ , 𝛾𝑁𝑒𝑢

) be  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map 

. Also , (ℚ ,  𝜎𝑁𝑒𝑢
) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1

2⁄  space ,  then  𝑔𝑁𝑜𝑓𝑁  ∶ (ℙ ,  𝜏𝑁𝑒𝑢
)  → (ℝ ,  𝛾𝑁𝑒𝑢

)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed 

map . 

Proof: Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) .  Given  𝑓𝑁   is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑓𝑁(Ⱥ)  is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ , 𝜎𝑁𝑒𝑢
) . Given (ℚ , 𝜎𝑁𝑒𝑢

) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then  𝑓𝑁(Ⱥ)  is  𝑁𝑒𝑢 − 𝐶𝑆  in 

(ℚ , 𝜎𝑁𝑒𝑢
) .  Given  𝑔𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗  − closed map , then 𝑔𝑁(𝑓𝑁(Ⱥ))  =  𝑔𝑁𝑜𝑓𝑁 (Ⱥ)   is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in 

(ℝ , 𝛾𝑁𝑒𝑢
) ⇒ 𝑔𝑁𝑜𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map .  

4. Properties of Neutrosophic  𝒈𝒔𝜶∗ −Open and Closed Maps  

Theorem 4.1: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝛼 − closed map and  𝑔𝑁 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ , 𝛾𝑁𝑒𝑢

) 

be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . Also , (ℚ ,  𝜎𝑁𝑒𝑢
) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1

2⁄  space ,  then  𝑔𝑁𝑜𝑓𝑁  ∶  (ℙ ,  𝜏𝑁𝑒𝑢
)  →

(ℝ ,  𝛾𝑁𝑒𝑢
)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

Proof: Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Given  𝑓𝑁   is 𝑁𝑒𝑢𝛼 − closed map , then 𝑓𝑁 (Ⱥ)  is 𝑁𝑒𝑢𝛼 − 𝐶𝑆  

in (ℚ , 𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁(Ⱥ)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ , 𝜎𝑁𝑒𝑢

) . Given (ℚ , 𝜎𝑁𝑒𝑢
) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1

2⁄  space , then 

𝑓𝑁 (Ⱥ)  is  𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ , 𝜎𝑁𝑒𝑢
) .  Given 𝑔𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑔𝑁(𝑓𝑁(Ⱥ)) = 𝑔𝑁𝑜𝑓𝑁 (Ⱥ) is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℝ , 𝛾𝑁𝑒𝑢
) ⇒ 𝑔𝑁𝑜𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

Remark 4.1(a): The above theorem is true if we replace 𝑓𝑁: (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) as 𝑁𝑒𝑢𝑆 − closed 

map, 𝑁𝑒𝑢𝛼∗ − closed map , 𝑁𝑒𝑢𝑅 − closed map , 𝑁𝑒𝑢𝑆𝛼 − closed map and 𝑁𝑒𝑢𝑔𝛼 − closed map . 

 Theorem 4.2: Let 𝑓𝑁: (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢 − closed map and  𝑔𝑁 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ , 𝛾𝑁𝑒𝑢

) be 

 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map ,  then  𝑔𝑁𝑜𝑓𝑁  ∶  (ℙ ,  𝜏𝑁𝑒𝑢
)  → (ℝ ,  𝛾𝑁𝑒𝑢

)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 
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Proof: Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) .  Given  𝑓𝑁   is 𝑁𝑒𝑢 −  closed map , then 𝑓𝑁(Ⱥ)  is 𝑁𝑒𝑢 − 𝐶𝑆  in 

(ℚ , 𝜎𝑁𝑒𝑢
) .  Given 𝑔𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗  − closed map , then 𝑔𝑁(𝑓𝑁(Ⱥ)) = 𝑔𝑁𝑜𝑓𝑁(Ⱥ)  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in 

(ℝ , 𝛾𝑁𝑒𝑢
)  ⇒ 𝑔𝑁𝑜𝑓𝑁   is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map .  

Theorem 4.3: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝛼 − continuous , surjective and (ℙ ,  𝜏𝑁𝑒𝑢
)  be 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space. Also,  𝑔𝑁𝑜𝑓𝑁  ∶  (ℙ ,  𝜏𝑁𝑒𝑢

)  → (ℝ ,  𝛾𝑁𝑒𝑢
) be  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then  𝑔𝑁 ∶

(ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ , 𝛾𝑁𝑒𝑢

) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

Proof: Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) .  Given  𝑓𝑁   is 𝑁𝑒𝑢𝛼 − continuous , then 𝑓𝑁

−1(Ⱥ)  is 𝑁𝑒𝑢𝛼 −

𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1(Ⱥ)  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
).  Given (ℙ ,  𝜏𝑁𝑒𝑢

)  be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , 

then 𝑓𝑁
−1(Ⱥ)  is 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢

) . Given 𝑔𝑁𝑜𝑓𝑁  ∶  (ℙ ,  𝜏𝑁𝑒𝑢
)  → (ℝ ,  𝛾𝑁𝑒𝑢

)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed 

map , then 𝑔𝑁𝑜𝑓𝑁 (𝑓𝑁
−1(Ⱥ)) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢

) . Given 𝑓𝑁   is surjective , then 𝑔𝑁(Ⱥ)  is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢
) ⇒ 𝑔𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

Remark 4.3(a): The above theorem is true if we replace 𝑓𝑁 as 𝑁𝑒𝑢𝑆 −continuous , 𝑁𝑒𝑢𝛼∗ − continuous , 

𝑁𝑒𝑢𝑅 − continuous , 𝑁𝑒𝑢𝑆𝛼 − continuous and  𝑁𝑒𝑢𝑔𝛼 − continuous . 

Theorem 4.4: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢 − continuous and surjective . Also,  𝑔𝑁𝑜𝑓𝑁  ∶

(ℙ ,  𝜏𝑁𝑒𝑢
)  → (ℝ ,  𝛾𝑁𝑒𝑢

)  be  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then  𝑔𝑁 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ , 𝛾𝑁𝑒𝑢

) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

closed map . 

Proof: Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) .  Given  𝑓𝑁   is 𝑁𝑒𝑢 − continuous , then 𝑓𝑁

−1(Ⱥ)  is 𝑁𝑒𝑢 − 𝐶𝑆  

in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑔𝑁𝑜𝑓𝑁  ∶ (ℙ ,  𝜏𝑁𝑒𝑢

) → (ℝ ,  𝛾𝑁𝑒𝑢
)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑔𝑁𝑜𝑓𝑁(𝑓−1(Ⱥ)) is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢
) ⇒ 𝑔𝑁(Ⱥ)  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢

) ⇒  𝑔𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

Theorem 4.5: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) and  𝑔𝑁 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ , 𝛾𝑁𝑒𝑢

) be two 𝑁𝑒𝑢 − mappings, 

such that their composition 𝑔𝑁𝑜𝑓𝑁 ∶  (ℙ ,  𝜏𝑁𝑒𝑢
)  → (ℝ ,  𝛾𝑁𝑒𝑢

)  be  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . Then the 

following statements are true . 

   (1) If  𝑔𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute[2] and injective , then 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map .  

   (2) If  𝑔𝑁 is strongly 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous[3] and injective, then 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

   (3) If  𝑔𝑁 is perfectly 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous[3] and injective, then 𝑓𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

Proof: (1) , Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑔𝑁𝑜𝑓𝑁  ∶ (ℙ ,  𝜏𝑁𝑒𝑢

) → (ℝ ,  𝛾𝑁𝑒𝑢
)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

closed map , then 𝑔𝑁𝑜𝑓𝑁 (Ⱥ) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢
) . Given 𝑔𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute , then 

𝑔𝑁
−1(𝑔𝑁𝑜𝑓𝑁 (Ⱥ)) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

) . Given 𝑔𝑁 is injective , then 𝑔𝑁
−1(𝑔𝑁𝑜𝑓𝑁 (Ⱥ)) = 𝑓𝑁(Ⱥ) is  

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

(2) , Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑔𝑁𝑜𝑓𝑁  ∶ (ℙ ,  𝜏𝑁𝑒𝑢

) → (ℝ ,  𝛾𝑁𝑒𝑢
)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed 

map, then 𝑔𝑁𝑜𝑓𝑁(Ⱥ) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢
) . Given 𝑔𝑁 is strongly 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then 

𝑔𝑁
−1(𝑔𝑁𝑜𝑓𝑁 (Ⱥ)) is 𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

) . Given 𝑔 is injective , then 𝑔𝑁
−1(𝑔𝑁𝑜𝑓𝑁 (Ⱥ)) = 𝑓𝑁(Ⱥ) is  

𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁 (Ⱥ)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

) ⇒ 𝑓𝑁   is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

(3) , Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑔𝑁𝑜𝑓𝑁  ∶ (ℙ ,  𝜏𝑁𝑒𝑢

) → (ℝ ,  𝛾𝑁𝑒𝑢
)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed 

map, then 𝑔𝑁𝑜𝑓𝑁(Ⱥ) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢
) . Given 𝑔𝑁 is perfectly 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then 

𝑔𝑁
−1(𝑔𝑁𝑜𝑓𝑁 (Ⱥ)) is both 𝑁𝑒𝑢 − 𝑂𝑆  and  𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

) .Given 𝑔𝑁 is injective , then 

𝑔𝑁
−1(𝑔𝑁𝑜𝑓𝑁 (Ⱥ)) = 𝑓𝑁(Ⱥ) is both 𝑁𝑒𝑢 − 𝑂𝑆  and  𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

) ⇒ 𝑓𝑁(Ⱥ)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in 

(ℚ ,  𝜎𝑁𝑒𝑢
) ⇒  𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 
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Theorem 4.6: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map  and  𝑔𝑁 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ , 𝛾𝑁𝑒𝑢

) 

be 𝑁𝑒𝑢 − closed map , then  𝑔𝑁𝑜𝑓𝑁  ∶  (ℙ ,  𝜏𝑁𝑒𝑢
)  → (ℝ ,  𝛾𝑁𝑒𝑢

) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , if  (ℚ ,  𝜎𝑁𝑒𝑢
) is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space.  

Proof: Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) .  Given  𝑓𝑁   is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑓𝑁(Ⱥ)  is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) .  Given (ℚ ,  𝜎𝑁𝑒𝑢

) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then 𝑓𝑁 (Ⱥ)  is 𝑁𝑒𝑢 − 𝐶𝑆  in 

(ℚ ,  𝜎𝑁𝑒𝑢
) . Given 𝑔𝑁  is 𝑁𝑒𝑢 − closed map , then  𝑔𝑁(𝑓𝑁(Ⱥ)) is 𝑁𝑒𝑢 − 𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢

) ⇒ 𝑔𝑁𝑜𝑓𝑁(Ⱥ)  is  

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢
) ⇒ 𝑔𝑁𝑜𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

Theorem 4.7: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) and  𝑔𝑁 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ , 𝛾𝑁𝑒𝑢

) be two 𝑁𝑒𝑢 − mappings. 

Then the following statements are true . 

  (1) If  𝑔𝑁𝑜𝑓𝑁  ∶  (ℙ ,  𝜏𝑁𝑒𝑢
)  → (ℝ ,  𝛾𝑁𝑒𝑢

) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map and 𝑓𝑁  is 𝑁𝑒𝑢 − continuous , then  𝑔𝑁 

is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map . 

  (2) If  𝑔𝑁𝑜𝑓𝑁  ∶  (ℙ ,  𝜏𝑁𝑒𝑢
)  → (ℝ ,  𝛾𝑁𝑒𝑢

) is 𝑁𝑒𝑢 − closed map and  𝑔𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then  𝑓𝑁  

is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

Proof: (1) , Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) .  Given  𝑓𝑁   is 𝑁𝑒𝑢 − continuous , then 𝑓𝑁

−1(Ⱥ)  is 

𝑁𝑒𝑢 − 𝑂𝑆  in (ℙ ,  𝜏𝑁𝑒𝑢
) .  Given 𝑔𝑁𝑜𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map , then 𝑔𝑁𝑜𝑓𝑁 (𝑓𝑁

−1(Ⱥ)) = 𝑔𝑁(Ⱥ) is  

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆 in (ℝ ,  𝛾𝑁𝑒𝑢
) ⇒ 𝑔𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map .  

(2) , Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ ,  𝜏𝑁𝑒𝑢
) .  Given  𝑔𝑁𝑜𝑓𝑁  is 𝑁𝑒𝑢 − closed map , then 𝑔𝑁𝑜𝑓𝑁(Ⱥ)  is 𝑁𝑒𝑢 −

𝐶𝑆  in (ℝ  ,  𝛾𝑁𝑒𝑢
) .  Given 𝑔𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ −continuous , then 𝑔𝑁

−1(𝑔𝑁𝑜𝑓𝑁(Ⱥ))  = 𝑓𝑁(Ⱥ)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map .  

Theorem 4.8: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be a bijective 𝑁𝑒𝑢 − mapping . Then the following are 

equivalent. 

  (1) 𝑓𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map ,  (2) 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map ,  (3) 𝑓𝑁
−1 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ −continuous[2] .  

Proof: (1) ⇒ (2) , Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ ,  𝜏𝑁𝑒𝑢
) ⇒ Ⱥ𝑐 is 𝑁𝑒𝑢 − 𝑂𝑆  in (ℙ ,  𝜏𝑁𝑒𝑢

) .  Given  𝑓𝑁  is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map , then 𝑓𝑁(Ⱥ𝑐) = (𝑓𝑁(Ⱥ))𝑐  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒    𝑓𝑁(Ⱥ) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

(2) ⇒ (3) , Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ ,  𝜏𝑁𝑒𝑢
) . Given  𝑓𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑓𝑁(Ⱥ) is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) . Given 𝑓𝑁  is bijective , then (𝑓𝑁

−1)
−1

(Ⱥ) = 𝑓𝑁 (Ⱥ) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in 

(ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ −continuous . 

(3) ⇒ (1) , Let Ⱥ be any  𝑁𝑒𝑢 − 𝑂𝑆  in (ℙ ,  𝜏𝑁𝑒𝑢
) . Given  𝑓𝑁

−1 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ −continuous , then 

(𝑓𝑁
−1)

−1
(Ⱥ) = 𝑓𝑁 (Ⱥ) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

) ⇒ 𝑓𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map . 

Theorem 4.9: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map  and  (ℚ , 𝜎𝑁𝑒𝑢
) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑇1
2⁄  space ,  then 𝑓𝑁   is  𝑁𝑒𝑢 − closed map . 

Proof: Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) .  Given  𝑓𝑁   is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑓𝑁(Ⱥ)  is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) .  Given (ℚ ,  𝜎𝑁𝑒𝑢

) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then 𝑓𝑁 (Ⱥ)  is 𝑁𝑒𝑢 − 𝐶𝑆  in 

(ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is 𝑁𝑒𝑢 −  closed map . 

Theorem 4.10: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map  and  (ℚ , 𝜎𝑁𝑒𝑢
) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑇1
2⁄  space ,  then 𝑓𝑁   is 𝑁𝑒𝑢𝛼 − closed map . 
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Proof: Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) .  Given  𝑓𝑁   is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑓𝑁(Ⱥ)  is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) .  Given (ℚ ,  𝜎𝑁𝑒𝑢

) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then 𝑓𝑁 (Ⱥ)  is 𝑁𝑒𝑢 − 𝐶𝑆  in 

(ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁 (Ⱥ)  is 𝑁𝑒𝑢𝛼 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

) ⇒ 𝑓𝑁   is  𝑁𝑒𝑢𝛼 − closed map . 

Remark 4.10(a): The above theorem is true if we replace 𝑓 as 𝑁𝑒𝑢𝑆 −closed map , 𝑁𝑒𝑢𝛼∗ − closed map , 

𝑁𝑒𝑢𝑅 − closed map , 𝑁𝑒𝑢𝑆𝛼 − closed map and  𝑁𝑒𝑢𝑔𝛼 − closed map . 

Theorem 4.11: Let 𝑓𝑁 : (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be a bijective 𝑁𝑒𝑢 − mapping and 𝑓𝑁
−1 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

irresolute, then 𝑓𝑁   is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map .   

Proof: Let Ⱥ be any  𝑁𝑒𝑢 − 𝐶𝑆  in 
(

ℙ ,  𝜏𝑁𝑒𝑢 )
 ⇒Ⱥ is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in 

(
ℙ ,  𝜏𝑁𝑒𝑢 )

 . Given 𝑓𝑁
−

1  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

irresolute , then (𝑓𝑁
−1)

−1
(Ⱥ) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

) . Given 𝑓𝑁  is bijective , then (𝑓𝑁
−1)

−1
(Ⱥ) =

𝑓𝑁 (Ⱥ) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁   is 𝑁𝑒𝑢𝑔𝑠𝛼∗ −closed map . 

Theorem 4.12: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

) be  𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map iff  𝑓𝑁 (𝑁𝑒𝑢 − 𝑖𝑛𝑡(Ⱥ)) ⊆

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑖𝑛𝑡(𝑓𝑁(Ⱥ)) , for each 𝑁𝑒𝑢 − set Ⱥ  in (ℙ, 𝜏𝑁𝑒𝑢
) .   

Proof: Let Ⱥ be any 𝑁𝑒𝑢 −  set in (ℙ, 𝜏𝑁𝑒𝑢
) ⇒ 𝑁𝑒𝑢 − 𝑖𝑛𝑡(Ⱥ) is 𝑁𝑒𝑢 − 𝑂𝑆  in (ℙ, 𝜏𝑁𝑒𝑢

) . Given 𝑓𝑁 is  

𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map , then 𝑓𝑁(𝑁𝑒𝑢 − 𝑖𝑛𝑡(Ⱥ)) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑖𝑛𝑡 (𝑓𝑁(𝑁𝑒𝑢 −

𝑖𝑛𝑡(Ⱥ))) =  𝑓𝑁 (𝑁𝑒𝑢 − 𝑖𝑛𝑡(Ⱥ)) . Given 𝑓𝑁(𝑁𝑒𝑢 − 𝑖𝑛𝑡(Ⱥ)) ⊆ 𝑓𝑁(Ⱥ) , then 𝑓𝑁 (𝑁𝑒𝑢  − 𝑖𝑛𝑡(Ⱥ)) = 𝑁𝑒𝑢𝑔𝑠𝛼∗  −

 𝑖𝑛𝑡 (𝑓𝑁(𝑁𝑒𝑢  −  𝑖𝑛𝑡(Ⱥ)))  ⊆  𝑁𝑒𝑢𝑔𝑠𝛼∗  −  𝑖𝑛𝑡(𝑓𝑁(Ⱥ)) . Conversely , Suppose Ⱥ  is 𝑁𝑒𝑢  −  𝑂𝑆  in (ℙ ,  𝜏𝑁𝑒𝑢
) 

. Then by hypothesis , 𝑓𝑁(Ⱥ) = 𝑓𝑁(𝑁𝑒𝑢 − 𝑖𝑛𝑡(Ⱥ))  ⊆  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑖𝑛𝑡(𝑓𝑁(Ⱥ)) → ① . Given 𝑁𝑒𝑢𝑔𝑠𝛼∗  −

 𝑖𝑛𝑡(𝑓𝑁(Ⱥ)) is the largest 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆 which is contained in 𝑓𝑁 (Ⱥ) , then 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑖𝑛𝑡(𝑓𝑁(Ⱥ)) ⊆

𝑓𝑁 (Ⱥ) → ② . From ① and ② , 𝑓𝑁 (Ⱥ) = 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑖𝑛𝑡(𝑓𝑁 (Ⱥ)) ⇒ 𝑓𝑁(Ⱥ) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 

𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map . 

Theorem 4.13: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

) be  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map iff  𝑓𝑁(𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ)) ⊇

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(𝑓𝑁(Ⱥ)) , for each 𝑁𝑒𝑢 − set Ⱥ  in (ℙ, 𝜏𝑁𝑒𝑢
) .   

Proof: Let Ⱥ be any 𝑁𝑒𝑢 −  set in (ℙ, 𝜏𝑁𝑒𝑢
) ⇒ 𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ) is 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢

) . Given 𝑓𝑁  is  

𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑓𝑁(𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ)) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁(𝑁𝑒𝑢 −

𝑐𝑙(Ⱥ))) =  𝑓𝑁 (𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ)) . Given 𝑓𝑁(Ⱥ) ⊆ 𝑓𝑁 (𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ)) , then 𝑓𝑁 (𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ)) = 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑐𝑙 (𝑓𝑁(𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ))) ⊇ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(𝑓𝑁(Ⱥ)) . Conversely , Suppose Ⱥ  is 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then 

by hypothesis , 𝑓𝑁(Ⱥ) = 𝑓𝑁 (𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ))  ⊇ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(𝑓𝑁(Ⱥ)) → ① . Given 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(𝑓𝑁(Ⱥ)) is 

the smallest 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 containing  𝑓𝑁(Ⱥ) , then 𝑓𝑁(Ⱥ) ⊆ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(𝑓𝑁 (Ⱥ)) → ② . From ① and 

② , 𝑓𝑁(Ⱥ) = 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(𝑓𝑁(Ⱥ)) ⇒ 𝑓𝑁 (Ⱥ) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed 

map .  

Theorem 4.14: Let  𝑓𝑁: (ℙ, 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed  map , then  𝑁𝑒𝑢 − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ)) ⊇

𝑓𝑁
−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ)) for every 𝑁𝑒𝑢 − set Ⱥ  of  (ℚ ,  𝜎𝑁𝑒𝑢

) .  

Proof: Let Ⱥ be a 𝑁𝑒𝑢 −  set in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑁𝑒𝑢 − 𝑐𝑙 (𝑓𝑁

−1(Ⱥ)) is 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
). Given 𝑓𝑁  is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑓𝑁 (𝑁𝑒𝑢 − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ))) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

). By theorem 4.13 , 

𝑓𝑁 (𝑁𝑒𝑢 − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ))) ⊇ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁 (𝑓𝑁

−1(Ⱥ))) ⊇ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ) ⇒ 𝑁𝑒𝑢 − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ)) ⊇

𝑓𝑁
−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ)) .  

Theorem 4.15: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open  map , then  𝑁𝑒𝑢 − 𝑖𝑛𝑡
(

𝑓𝑁
−1(Ⱥ)

)
⊆

𝑓𝑁
−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑖𝑛𝑡(Ⱥ)) for every  𝑁𝑒𝑢 −   set Ⱥ  of  (ℚ ,  𝜎𝑁𝑒𝑢

) .  
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Proof: Let Ⱥ be a 𝑁𝑒𝑢 −   set in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑁𝑒𝑢 − 𝑖𝑛𝑡 (𝑓𝑁

−1(Ⱥ)) is 𝑁𝑒𝑢 − 𝑂𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑓𝑁  is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map , then 𝑓𝑁 (𝑁𝑒𝑢 − 𝑖𝑛𝑡 (𝑓𝑁
−1(Ⱥ))) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

). Now ,  𝑓𝑁 (𝑁𝑒𝑢 −

𝑖𝑛𝑡 (𝑓𝑁
−1(Ⱥ))) ⊆ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑖𝑛𝑡 (𝑓𝑁 (𝑓𝑁

−1(Ⱥ))) ⊆ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑖𝑛𝑡(Ⱥ) (by theorem 4.12) ⇒ 𝑁𝑒𝑢 −

𝑖𝑛𝑡 (𝑓𝑁
−1(Ⱥ)) ⊆ 𝑓𝑁

−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑖𝑛𝑡(Ⱥ)) .  



5.Conclusions : In this paper we have discussed about the 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open and closed map . We had 

an idea to extend this paper to the next level about 𝑁𝑒𝑢𝑔𝑠𝛼∗ − homeomorphism and also the 

application of this paper . In  future work , we will discussed and find out the results of this paper 

application. 
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