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Abstract: The purpose of this article is to study some covering properties in neutrosophic 

topological spaces using neutrosophic 𝑏 -open sets. We define neutrosophic 𝑏 -open cover, 

neutrosophic 𝑏 -compactness, neutrosophic countably 𝑏 -compactness neutrosophic 𝑏 -

Lindel�̈�fness, neutrosophic local 𝑏-compactness and study various properties entangled with them. 

We study some covering properties involving neutrosophic continuous, neutrosophic 𝑏-continuous 

and neutrosophic 𝑏∗ -continuous functions. Lastly, we define neutrosophic base, neutrosophic 

subbase, neutrosophic second countability via neutrosophic 𝑏 -open sets and investigate some 

properties. 

Keywords: Neutrosophic 𝑏-open cover; Neutrosophic 𝑏-compact space; Neutrosophic countably 

𝑏-compact space; Neutrosophic local 𝑏-compact space; Neutrosophic b-base. 

 

1. Introduction 

In 1965, Zadeh [30] introduced the concept of a fuzzy set. K. Atanassov [1], in 1986, extended 

this notion to intuitionistic fuzzy set. After that, the idea of a neutrosophic set was developed and 

studied by Florentin Smarandache [20-22]. Later, the theory was studied and taken ahead by many 

researchers [9,12,26,28]. It had been proved by Smarandache [22] that a neutrosophic set was a 

generalized form of an intuitionistic fuzzy set. Various applications [4,5,15,29] in different fields were 

done in a neutrosophic environment. 

In the year 1968, C. L. Chang [7] created the notion of a fuzzy topological space and then, in 1997, 

D. Coker [8] gave the idea of intuitionistic fuzzy topological space. In the year 2012, Salama & Alblowi 

[23] introduced neutrosophic topological space as a generalization of intuitionistic fuzzy topological 

space. Afterwards, many studies were done by the researchers [2,3,6,11,16-19,24,25,27] to develop 

various aspects of neutrosophic topological spaces. The concept of neutrosophic 𝑏-open sets was 

given by Ebenanjar et al.[14]. Recently Dey & Ray [10] studied compactness in neutrosophic 

topological spaces. But compactness via neutrosophic 𝑏-open sets has not bee studied so far. In this 

write-up, we study covering properties using neutrosophic 𝑏-open sets. 

The article is organized by stating some basic concepts in section 2. In section 3, we define 

neutrosophic 𝑏 -open covering, neutrosophic 𝑏 -compactness, neutrosophic countably 𝑏 -

compactness and neutrosophic 𝑏-Lindel�̈�fness and study various properties associated with them. 

In section 4, we define neutrosophic local 𝑏-compactness and try to establish some properties. We 

define neutrosophic 𝑏 -base, neutrosophic 𝑏 -subbase, neutrosophic b-second countability and 

investigate some covering properties in section 5 and lastly, in section 6, we confer a conclusion. 

2. Preliminaries 

In this section, we state some basic concepts which will be helpful in the later sections. 

2.1. Definition: [20] Let 𝑋 be the universe of discourse. A neutrosophic set 𝐴 over 𝑋 is defined as 

𝐴 = {⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}, where the functions T𝐴, I𝐴, F𝐴 are real standard or non-standard 

subsets of ]−0, 1+[, i.e., T𝐴: 𝑋 → ]−0, 1+[, I𝐴: 𝑋 → ]−0, 1+[, F𝐴: 𝑋 → ]−0, 1+[ and −0 ≤ T𝐴(𝑥) + I𝐴(𝑥) +

T𝐴(𝑥) ≤ 3+. 
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The neutrosophic set 𝐴  is characterized by the truth-membership function T𝐴 , indeterminacy-

membership function I𝐴, falsehood-membership function F𝐴. 

2.2. Definition: [28] Let 𝑋 be the universe of discourse. A single valued neutrosophic set 𝐴 over 𝑋 

is defined as 𝐴 = {⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}, where T𝐴, I𝐴, F𝐴  are functions from 𝑋 to [0,1] and 

0 ≤ T𝐴(𝑥) + I𝐴(𝑥) + T𝐴(𝑥) ≤ 3. 

 

The set of all single valued neutrosophic sets over 𝑋 is denoted by 𝒩(𝑋). 

Throughout this article, a neutrosophic set (NS, for short) will mean a single-valued neutrosophic set. 

2.3. Definition: [16] Let 𝐴, 𝐵 ∈ 𝒩(𝑋). Then 

i) (Inclusion): If T𝐴(𝑥) ≤ T𝐵(𝑥), I𝐴(𝑥) ≥ I𝐵(𝑥), F𝐴(𝑥) ≥ F𝐵(𝑥) for all 𝑥 ∈ 𝑋 then 𝐴 is said to be 

a neutrosophic subset of 𝐵 and which is denoted by 𝐴 ⊆ 𝐵. 

ii) (Equality): If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 then 𝐴 = 𝐵. 

iii) (Intersection): The intersection of 𝐴  and 𝐵 , denoted by 𝐴 ∩ 𝐵 , is defined as 𝐴 ∩ 𝐵 =

{⟨𝑥, T𝐴(𝑥) ∧ T𝐵(𝑥), I𝐴(𝑥) ∨ I𝐵(𝑥), F𝐴(𝑥) ∨ F𝐵(𝑥)⟩: 𝑥 ∈ 𝑋}. 

iv) (Union): The union of 𝐴  and 𝐵 , denoted by 𝐴 ∪ 𝐵 , is defined as 𝐴 ∪ 𝐵 = {⟨𝑥, T𝐴(𝑥) ∨

T𝐵(𝑥), I𝐴(𝑥) ∧ I𝐵(𝑥), F𝐴(𝑥) ∧ F𝐵(𝑥)⟩: 𝑥 ∈ 𝑋}. 

v) (Complement): The complement of the NS 𝐴 , denoted by 𝐴𝑐 , is defined as 𝐴𝑐 =

{⟨𝑥, F𝐴(𝑥), 1 − I𝐴(𝑥), T𝐴(𝑥)⟩: 𝑥 ∈ 𝑋} 

vi) (Universal Set): If T𝐴(𝑥) = 1, I𝐴(𝑥) = 0, F𝐴(𝑥) = 0  for all 𝑥 ∈ 𝑋  then 𝐴  is said to be 

neutrosophic universal set and which is denoted by �̃�. 

vii) (Empty Set): If T𝐴(𝑥) = 0, I𝐴(𝑥) = 1, F𝐴(𝑥) = 1  for all 𝑥 ∈ 𝑋  then 𝐴  is said to be 

neutrosophic empty set and which is denoted by ∅̃. 

2.4. Definition: [18] Let 𝒩(𝑋)  be the set of all neutrosophic sets over 𝑋 . An NS 𝑃 =

{⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋} is called a neutrosophic point (NP, for short) iff for any element 𝑦 ∈ 𝑋, 

T𝑃(𝑦) = 𝛼, I𝑃(𝑦) = 𝛽, F𝑃(𝑦) = 𝛾   for  𝑦 = 𝑥  and T𝑃(𝑦) = 0, I𝑃(𝑦) = 1, F𝑃(𝑦) = 1  for  𝑦 ≠ 𝑥, where 

0 < 𝛼 ≤ 1,0 ≤ 𝛽 < 1,0 ≤ 𝛾 < 1 . A neutrosophic point 𝑃 = {⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}  will be 

denoted by 𝑥𝛼,𝛽,𝛾. For the NP 𝑥𝛼,𝛽,𝛾, 𝑥 will be called its support. The complement of the NP 𝑥𝛼,𝛽,𝛾 

will be denoted by 𝑥𝛼,𝛽,𝛾
𝑐  or (𝑥𝛼,𝛽,𝛾)

𝑐
. 

2.5. Definition: [16] Let 𝜏 ⊆ 𝒩(𝑋). Then 𝜏 is called a neutrosophic topology on 𝑋 if 

i) ∅̃ and �̃� belong to 𝜏. 

ii) An arbitrary union of neutrosophic sets in 𝜏 is in 𝜏. 

iii) The intersection of any two neutrosophic sets in 𝜏 is in 𝜏. 

 

If 𝜏 is a neutrosophic topology on 𝑋 then the pair (𝑋, 𝜏) is called a neutrosophic topological space 

(NTS, for short) over 𝑋 . The members of 𝜏  are called neutrosophic open sets in 𝑋 . If for a 

neutrosophic set 𝐴, 𝐴𝑐 ∈ 𝜏 then 𝐴 is said to be a neutrosophic closed set in 𝑋. 

2.6. Definition:[14] Let (𝑋, 𝜏) be an NTS and 𝐺 be a NS over 𝑋. Then 𝐺 is called a 

i) Neutrosophic 𝑏-open (NBO, for short) set iff 𝐺 ⊆ [𝑖𝑛𝑡(𝑐𝑙(𝐺))] ∪ [𝑐𝑙(𝑖𝑛𝑡(𝐺))]. 

ii) Neutrosophic 𝑏-closed (NBC, for short) set iff 𝐺 ⊇ [𝑖𝑛𝑡(𝑐𝑙(𝐺))] ∪ [𝑐𝑙(𝑖𝑛𝑡(𝐺))]. 

 

If 𝐺 is an NBO (resp. NBC) set in (𝑋, 𝜏) then we shall also say that 𝐺 is a 𝜏-NBO (resp. 𝜏-NBC) set. 
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2.7. Theorem: [14] Let (𝑋, 𝜏) be an NTS. 

i) If 𝐺 ∈ 𝒩(𝑋) then 𝐺 is an NBO set iff 𝐺𝑐 is an NBC set. 

ii) If 𝐺 ∈ 𝒩(𝑋) then 𝐺 is an NBC set iff 𝐺𝑐 is an NBO set. 

 

2.8. Theorem: [13] Let (𝑋, 𝜏) be an NTS and 𝐴 ∈ 𝒩(𝑋). Then 

i) Every neutrosophic open set in an NTS is an NBO set. 

ii) Every neutrosophic closed set in an NTS is an NBC set. 

 

2.9. Definition: [27] Let 𝑓 be a function from an NTS (𝑋, 𝜏) to the NTS (𝑌, σ). Then 

i) 𝑓 is called a neutrosophic open function if 𝑓(𝐺) ∈ σ for all 𝐺 ∈ 𝜏 

ii) 𝑓 is called a neutrosophic continuous function if 𝑓−1(𝐺) ∈ 𝜏 for all 𝐺 ∈ σ. 

 

2.10. Definition: [13] Let 𝑓 be a function from an NTS (𝑋, 𝜏) to the NTS (𝑌, σ). Then 𝑓 is called a 

neutrosophic 

i) 𝑏-open function if 𝑓(𝐺) is an NBO set in 𝑌 for every neutrosophic open set 𝐺 in 𝑋. 

ii) 𝑏-continuous function if 𝑓−1(𝐺) is an NBO set in 𝑋 for every σ-open NS 𝐺 in 𝑌. 

iii) 𝑏∗-continuous function if 𝑓−1(𝐺) is an NBO set in 𝑋 for every NBO set 𝐺 in 𝑌. 

 

2.11. Proposition: [13] Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏). Then 

i) 𝐺 ∣𝑌 is a 𝜏 ∣𝑌-NBO set in 𝑌 for every 𝜏-NBO set 𝐺 in 𝑋. 

ii) 𝐺 ∣𝑌 is a 𝜏 ∣𝑌-NBC set in 𝑌 for every 𝜏-NBC set 𝐺 in 𝑋. 

 

2.12. Definition: [10] Let (𝑋, 𝜏) be an NTS. A collection {𝐺𝜆: 𝜆 ∈ Δ} of neutrosophic sets of 𝑋 is said 

to have the finite intersection property (FIP, in short) iff every finite subcollection {𝐺𝜆𝑘
: 𝑘 = 1,2, ⋯ , 𝑛} 

of {𝐺𝜆: 𝜆 ∈ Δ} satisfies the condition ⋂𝑘=1
𝑛 𝐺𝜆𝑘

≠ ∅̃, where Δ is an index set. 

*For neutrosophic function and its properties, please see [25]. 

3. Neutrosophic b-compactness 

3.1. Definition: Let (𝑋, 𝜏) be an NTS and 𝐴 ∈  𝒩(𝑋). A collection 𝐶 = {𝐺𝑖 : 𝑖 ∈ ∆} of NBO sets of 𝑋 

is called a neutrosophic 𝑏-open cover (NBOC, in short) of 𝐴 iff 𝐴 ⊆∪𝑖∈∆ 𝐺𝑖. In particular, 𝐶 is said 

to be an NBOC of 𝑋 iff  �̃� = ∪𝑖∈∆ 𝐺𝑖. 

 

Let 𝐶  be an NBOC of the NS 𝐴  and 𝐶′ ⊆ 𝐶 . Then 𝐶′  is called a neutrosophic b-open subcover 

(NBOSC, in short) of 𝐶 if 𝐶′ is also a NBOC of 𝐴. 

 

An NBOC 𝐶 of an NS 𝐴 is said to be countable (resp. finite) if 𝐶 consists of a countable (resp. finite) 

number of NBO sets. 

 

3.2. Definition: An NS 𝐴 in an NTS (𝑋, τ) is said to be a neutrosophic 𝑏-compact set iff every NBOC 

of 𝐴 has a finite NBOSC.  

 

An NS 𝐴 in an NTS (𝑋, τ) is said to be a neutrosophic 𝑏-Lindel�̈�f (resp. neutrosophic countably 𝑏-

compact) set iff every NBOC (resp. countable NBOC) of 𝐴 has a countable(resp. finite) NBOSC. 

 

An NTS (𝑋, τ)  is said to be a neutrosophic 𝑏 -compact space iff every NBOC of 𝑋  has a finite 

NBOSC.  
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An NTS (𝑋, τ) is said to be a neutrosophic 𝑏-Lindel�̈�f (neutrosophic countably 𝑏-compact) space iff 

every NBOC (countable NBOC) of 𝑋 has a countable(finite) NBOSC. 

3.3. Proposition: Every neutrosophic 𝑏-compact space is a neutrosophic countably 𝑏-compact space. 

Proof: Obvious. 

3.4. Proposition: In an NTS, every neutrosophic 𝑏-compact set is a neutrosophic compact set. 

Proof: Let 𝐴 be a neutrosophic 𝑏-compact set of an NTS (𝑋, τ). Let 𝐶 = {𝐺𝑖: 𝑖 ∈ Δ} be an NOC of 𝐴. 

Since every neutrosophic open set is an NBO set[by 2.9], so 𝐺𝑖 is an NBO set for each 𝑖 ∈ Δ. Therefore 

𝐶 is an NBOC of 𝐴. Since A is 𝑏-compact, so there exists a finite subcollection {𝐺𝑖
1 , 𝐺𝑖

2, . . . , 𝐺𝑖
𝑚}, say, 

of 𝐶  such that 𝐴 ⊆ 𝐺𝑖
1 ∪ 𝐺𝑖

2 ∪. . .∪ 𝐺𝑖
𝑚 . Thus the NOC 𝐶  of 𝐴  has a finite NOSC {𝐺𝑖

1, 𝐺𝑖
2, . . . , 𝐺𝑖

𝑚}. 

Hence 𝐴 is a neutrosophic compact set. 

3.5. Example : Converse of the prop. 3.4 is not true. We establish it by the following example. 

Let 𝑋 = {𝑎, 𝑏}, 𝐵 = {⟨𝑎, 0,1,1⟩, ⟨𝑏, 1,0,0⟩}, 𝐺𝑛 = {⟨𝑎, 0,1,1⟩, ⟨𝑏,
𝑛

𝑛+1
,

1

𝑛
,

1

𝑛+1
⟩}, 𝑛 ∈ N = {1,2,3, ⋯ } and 𝜏 =

{�̃�, ∅̃, 𝐵} . Clearly (𝑋, 𝜏)  is an NTS and 𝐺𝑛  is an NBO set for each 𝑛 ∈ N . Obviously 𝐵  is a 

neutrosophic compact set. We observe that {𝐺𝑛: 𝑛 ∈ N} is an NBOC of 𝐵  but it has no NBOSC. 

Therefore 𝐵 is not a neutrosophic 𝑏-compact set. 

3.6. Proposition: Every neutrosophic 𝑏-compact space is a neutrosophic compact space. 

Proof: Obvious from prop. 3.4. 

3.7. Remark: Converse of prop. 3.6 is not true. We establish it by the following example. 

Let us consider the NTS (N, 𝜏), where 𝜏 = {∅̃, Ñ}, N = {1, 2, 3, ⋯ }. Clearly (N, 𝜏) is a neutrosophic 

compact space. We show that (N, 𝜏) is not a neutrosophic 𝑏-compact space. For 𝑛 ∈ N, we define 

𝐺𝑛 = {⟨𝑥, T𝐺𝑛
(𝑥), I𝐺𝑛

(𝑥), F𝐺𝑛
(𝑥): 𝑥 ∈ N} , where T𝐺𝑛

(𝑥) = 1, I𝐺𝑛
(𝑥) = 0, F𝐺𝑛

(𝑥) = 0  if 𝑥 = 𝑛  and 

T𝐺𝑛
(𝑥) = 0, I𝐺𝑛

(𝑥) = 1, F𝐺𝑛
(𝑥) = 1  if 𝑥 ≠ 𝑛 . Clearly, for each 𝑛 ∈ N , 𝐺𝑛  is an NBO set in (N, τ) . 

Obviously the collection 𝐶 = {𝐺𝑛: 𝑛 ∈ N} is an NBOC of N but it has no finite NBOSC. Therefore 

(N, 𝜏) is not a neutrosophic 𝑏-compact space. Thus (N, 𝜏) is a neutrosophic compact space but not a 

neutrosophic 𝑏-compact space. 

3.8. Proposition: In an NTS, union of two neutrosophic 𝑏-compact sets is neutrosophic 𝑏-compact. 

Proof: Let A and B be two neutrosophic 𝑏-compact sets of an NTS (𝑋, 𝜏). Let 𝐶 = {𝐺𝑖: 𝑖 ∈ Δ} be an 

NBOC of 𝐴 ∪ 𝐵. Then 𝐴 ∪ 𝐵 ⊆∪𝑖∈Δ 𝐺𝑖 . Since 𝐴 ⊆ 𝐴 ∪ 𝐵, so 𝐶  is an NBOC of 𝐴. Again since A is 

neutrosophic 𝑏-compact, so there exists a finite subcollection {𝐺𝑖
1 , 𝐺𝑖

2, . . . , 𝐺𝑖
𝑚} of 𝐶 such that 𝐴 ⊆

𝐺𝑖
1 ∪ 𝐺𝑖

2 ∪. . .∪ 𝐺𝑖
𝑚. Similarly, since B is neutrosophic 𝑏-compact, so there exists a finite subcollection 

{𝐻𝑖
1, 𝐻𝑖

2, . . . , 𝐻𝑖
𝑛}  of 𝐶  such that 𝐵 ⊆ 𝐻𝑖

1 ∪ 𝐻𝑖
2 ∪. . .∪ 𝐻𝑖

𝑛 . Therefore 𝐴 ∪ 𝐵 ⊆ 𝐺𝑖
1 ∪ 𝐺𝑖

2 ∪. . .∪ 𝐺𝑖
𝑚 ∪ 𝐻𝑖

1 ∪

𝐻𝑖
2 ∪. . .∪ 𝐻𝑖

𝑛. Thus there exists a finite subcollection {𝐺𝑖
1, 𝐺𝑖

2, . . . , 𝐺𝑖
𝑚 , 𝐻𝑖

1 , 𝐻𝑖
2, . . . , 𝐻𝑖

𝑛} of 𝐶 such that ∪

𝐵 ⊆ 𝐺𝑖
1 ∪ 𝐺𝑖

2 ∪. . .∪ 𝐺𝑖
𝑚 ∪ 𝐻𝑖

1 ∪ 𝐻𝑖
2 ∪. . .∪ 𝐻𝑖

𝑛  . Therefore  𝐴 ∪ 𝐵  is neutrosophic 𝑏 -compact. Hence 

proved. 

3.9. Proposition: In an NTS, finite union of neutrosophic 𝑏-compact sets is neutrosophic 𝑏-compact. 

Proof: Immediate from the prop. 3.8. 

3.10. Proposition: In an NTS, union of a neutrosophic 𝑏-compact set and a neutrosophic compact set 

is a neutrosophic compact set. 

Proof: Obvious. 

3.11. Definition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏). Then the set of all NBO 

sets 𝐺 ∣𝑌 in 𝑌 for which 𝐺 is an NBO set in 𝑋 will be denoted by 𝑁𝐵𝑂(𝑌), i.e., 𝑁𝐵𝑂(𝑌) = {𝐺 ∣𝑌⊆

𝑌: 𝐺 ∣𝑌  is an NBO set in 𝑌 and 𝐺 ⊆ 𝑋 is an NBO set in 𝑋}. 

3.12. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌. Then 𝐴 is 

neutrosophic 𝑏-compact in 𝑋 iff every cover of 𝐴 by the sets in 𝑁𝐵𝑂(𝑌) has a finite subcover. 

Proof: Necessary part: Let 𝐶 = {𝐺𝑖 ∣𝑌: 𝑖 ∈ Δ} be a cover of 𝐴, where 𝐺𝑖 ∣𝑌∈ 𝑁𝐵𝑂(𝑌) for each 𝑖 ∈ Δ. 

Then 𝐴 ⊆∪𝑖∈Δ 𝐺𝑖 ∣𝑌⇒ 𝐴 ⊆∪𝑖∈Δ 𝐺𝑖. Clearly 𝐺𝑖 is an NBO set in 𝑋 [by 3.11] for each 𝐺𝑖 ∣𝑌∈ 𝐶 and so, 

𝐶∗ = {𝐺𝑖: 𝐺𝑖 ∣𝑌∈ 𝑁𝐵𝑂(𝑌)} is an NBOC of 𝐴 in 𝑋. Since A is 𝑏-compact in 𝑋, so there exists a finite 

subcollection {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}  of 𝐶∗  such that 𝐴 ⊆∪𝑘=1

𝑛 𝐺𝑖𝑘
⇒ 𝐴 ⊆ (∪𝑘=1

𝑛 𝐺𝑖𝑘
) ∣𝑌⇒ 𝐴 ⊆

∪𝑘=1
𝑛 (𝐺𝑖𝑘

∣𝑌). Thus the cover 𝐶 of 𝐴 has a finite subcover {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}. 
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Sufficient part: Let 𝐵 = {𝐺𝑖: 𝑖 ∈ Δ} be an NBOC of 𝐴 in 𝑋, where 𝐺𝑖 is an NBO set in 𝑋 for each 𝑖 ∈

Δ . Then 𝐴 ⊆∪𝑖∈Δ 𝐺𝑖 ⇒ 𝐴 ⊆ (∪𝑖∈Δ 𝐺𝑖) ∣𝑌⇒ 𝐴 ⊆∪𝑖∈Δ (𝐺𝑖 ∣𝑌) . Since 𝐺𝑖 ∣𝑌∈ 𝑁𝐵𝑂(𝑌)  for each 𝐺𝑖 ∈ 𝐵 [by 

2.12], so 𝐵∗ = {𝐺𝑖 ∣𝑌: 𝑖 ∈ Δ} is a cover of 𝐴 by the NBO sets in 𝑁𝐵𝑂(𝑌). Therefore, by hypothesis, 

there exists a finite subcollection {𝐺𝑖𝑘
∣𝑌: 𝑘 = 1,2,3, . . . , 𝑛}  of 𝐵∗  such that 𝐴 ⊆∪𝑘=1

𝑛 (𝐺𝑖𝑘
∣𝑌) ⇒ 𝐴 ⊆

(∪𝑘=1
𝑛 𝐺𝑖𝑘

) ∣𝑌⇒ 𝐴 ⊆∪𝑘=1
𝑛 𝐺𝑖𝑘

. Thus the NBOC 𝐵  of 𝐴  has a finite NBOSC {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛} . 

Therefore, 𝐴 is neutrosophic 𝑏-compact in 𝑋. 

3.13. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌. Then 𝐴 is 

neutrosophic countably 𝑏-compact in 𝑋 iff every countable cover of 𝐴 by the sets in 𝑁𝐵𝑂(𝑌) has a 

finite subcover. 

Proof: Obvious from the prop. 3.12. 

3.14. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌. Then 𝐴 is 

neutrosophic 𝑏-Lindel�̈�f in 𝑋 iff every cover of 𝐴 by the sets in 𝑁𝐵𝑂(𝑌) has a countable subcover. 

Proof: Obvious from the prop. 3.12. 

3.15. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌 . If 𝐴  is 

neutrosophic 𝑏-compact in 𝑋 then 𝐴 is neutrosophic compact in 𝑌. 

Proof: Let  𝐶  = {𝐺𝑖 ∣𝑌: 𝑖 ∈ Δ}  be an NOC of 𝐴  in 𝑌 , where 𝐺𝑖 ∣𝑌∈ 𝜏 ∣𝑌  for each 𝑖 ∈ Δ . Then 𝐴 ⊆

∪𝑖∈Δ (𝐺𝑖 ∣𝑌) ⇒ 𝐴 ⊆∪𝑖∈Δ 𝐺𝑖. Obviously 𝐺𝑖 ∈ 𝜏 and so, 𝐺𝑖 is an NBO set in 𝑋 for each 𝑖 ∈ Δ. Therefore, 

𝐶∗ = {𝐺𝑖: 𝐺𝑖 ∣𝑌∈ 𝐶}  is an NBOC of 𝐴  in 𝑋 . Since A is 𝑏 -compact in 𝑋 , so there exists a finite 

subcollection {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}  of 𝐶∗  such that 𝐴 ⊆∪𝑘=1

𝑛 𝐺𝑖𝑘
⇒ 𝐴 ⊆ (∪𝑘=1

𝑛 𝐺𝑖𝑘
) ∣𝑌⇒ 𝐴 ⊆

∪𝑘=1
𝑛 (𝐺𝑖𝑘

∣𝑌) . Thus the NOC 𝐶  of 𝐴  has a finite NOSC {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛} . Therefore 𝐴  is 

neutrosophic compact in 𝑌. 

3.16. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌. If 𝐴 is 𝑏-

compact in 𝑌 then 𝐴 is 𝑏-compact in 𝑋. 

Proof: Obvious. 

3.17. Proposition: If G is an NBC subset of a neutrosophic 𝑏-compact space (𝑋, 𝜏) such that 𝐺 ∩ 𝐺𝑐 =

∅̃ then 𝐺 is a neutrosophic 𝑏-compact. 

Proof: Let 𝐶 = {𝐻𝑖 : 𝑖 ∈ Δ} be an NBOC of 𝐺. Then 𝐴 ⊆∪𝑖∈Δ 𝐻𝑖. Since 𝐺𝑐 is an NBO set and since 𝐺 ∩

𝐺𝑐 = ∅̃ , i.e., 𝐺 ∪ 𝐺𝑐 = �̃� , so 𝐷 = {𝐻𝑖 : 𝑖 ∈ Δ} ∪ {𝐺𝑐}  is an NBOC of 𝑋 . As 𝑋  is neutrosophic 𝑏 -

compact, so there exists a finite subcollection 𝐷′ = {𝐻𝑖1
, 𝐻𝑖2

, . . . , 𝐻𝑖𝑛
} ∪ {𝐺𝑐} of 𝐷 such that 𝑋 ⊆ 𝐻𝑖1

∪

𝐻𝑖2
∪. . .∪ 𝐻𝑖𝑛

∪ 𝐺𝑐 . Therefore 𝐺 ⊆ 𝐻𝑖1
∪ 𝐻𝑖2

∪. . .∪ 𝐻𝑖𝑛
∪ 𝐺𝑐 . But 𝐺 ∩ 𝐺𝑐 = ∅̃ , so 𝐺 ⊆ 𝐻𝑖1

∪ 𝐻𝑖2
∪. . .∪

𝐻𝑖𝑛
. Thus the NBOC 𝐶 of 𝐺 has a finite NBOSC {𝐻𝑖1

, 𝐻𝑖2
, . . . , 𝐻𝑖𝑛

}. Hence 𝐺 is a neutrosophic 𝑏-

compact set. 

3.18. Proposition: If 𝐺 is an NBC subset of a neutrosophic 𝑏-compact space (𝑋, τ) such that 𝐺 ∩

𝐺𝑐 = ∅̃ then 𝐺 is neutrosophic compact. 

Proof: Immediate from the prop. 3.17 as 𝑏-compactness implies compactness. 

3.19. Proposition: If 𝐺  is a neutrosophic closed subset of a neutrosophic 𝑏-compact space (𝑋, τ) 

such that 𝐺 ∩ 𝐺𝑐 = ∅̃ then 𝐺 is neutrosophic 𝑏-compact. 

Proof: Immediate from the prop. 3.17 as every neutrosophic closed set is an NBC set. 

3.20. Proposition: If 𝐺  is a neutrosophic closed subset of a neutrosophic 𝑏-compact space (𝑋, 𝜏) 

such that 𝐺 ∩ 𝐺𝑐 = ∅̃ then 𝐺 is neutrosophic compact. 

Proof: Immediate from the prop. 3.19. 

3.21. Proposition: Let (𝑋, 𝜏)  be an NTS. An NS 𝐴 = {⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}  over 𝑋  is 

neutrosophic 𝑏-compact iff for every collection 𝐶 = {𝐺𝜆: 𝜆 ∈ Δ} of NBO sets of 𝑋 satisfying T𝐴(𝑥) ≤

⋁𝜆∈ΔT𝐺𝜆
(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − I𝐺𝜆

(𝑥))  and 1 − F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆
(𝑥)) , there exists a finite 

subcollection {𝐺𝜆𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}  such that T𝐴(𝑥) ≤ ⋁𝑘=1

𝑛 T𝐺𝜆𝑘
(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝑘=1

𝑛 (1 − I𝐺𝜆𝑘
(𝑥)) 

and 1 − F𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)). 

Proof: Necessary Part: Let 𝐶 = {𝐺𝜆: 𝜆 ∈ Δ}  be any collection of NBO sets of 𝑋 satisfying T𝐴(𝑥) ≤

⋁𝜆∈ΔT𝐺𝜆
(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − I𝐺𝜆

(𝑥))  and 1 − F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆
(𝑥)) . Now 1 − I𝐴(𝑥) ≤
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⋁𝜆∈Δ (1 − I𝐺𝜆
(𝑥))  ⇒ 1 − I𝐴(𝑥) ≤ 1 − I𝐺𝛽

(𝑥)  for some ∈ Δ  ⇒ I𝐴(𝑥) ≥ I𝐺𝛽
(𝑥) ⇒ I𝐴(𝑥) ≥ ⋀𝜆∈ΔI𝐺𝜆

(𝑥) . 

Similarly 1 − F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆
(𝑥)) ⇒ F𝐴(𝑥) ≥ ⋀𝜆∈ΔF𝐺𝜆

(𝑥). Therefore 𝐴 ⊆∪𝜆∈Δ 𝐺𝜆 , i.e., 𝐶  is an 

NBOC of 𝐴. Since 𝐴 is neutrosophic 𝑏-compact, so 𝐶 has a finite NBOSC {𝐺𝜆𝑘
: 𝑘 = 1,2,3, ⋯ , 𝑛}, say. 

Therefore 𝐴 ⊆∪𝑘=1
𝑛 𝐺𝜆𝑘

. Then T𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 T𝐺𝜆𝑘

(𝑥) , I𝐴(𝑥) ≥ ⋀𝑘=1
𝑛 I𝐺𝜆𝑘

(𝑥)  and F𝐴(𝑥) ≥ ⋀𝑘=1
𝑛 F𝐺𝜆𝑘

(𝑥) . 

Now I𝐴(𝑥) ≥ ⋀𝑘=1
𝑛 I𝐺𝜆𝑘

(𝑥) ⇒ I𝐴(𝑥) ≥ I𝐺𝜆𝑚
(𝑥)  for some 𝑚, 1 ≤ 𝑚 ≤ 𝑛  ⇒ 1 − I𝐴(𝑥) ≤ 1 − I𝐺𝜆𝑚

(𝑥)  for 

some 𝑚, 1 ≤ 𝑚 ≤ 𝑛 ⇒ 1 − I𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − I𝐺𝜆𝑘

(𝑥)). Similarly F𝐴(𝑥) ≥ ⋀𝑘=1
𝑛 F𝐺𝜆𝑘

(𝑥) ⇒ 1 − F𝐴(𝑥) ≤

⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)) . Thus T𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 T𝐺𝜆𝑘

(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − I𝐺𝜆𝑘

(𝑥))  and 1 − F𝐴(𝑥) ≤

⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)). 

Sufficient Part: Let 𝐶 = {𝐺𝜆: 𝜆 ∈ Δ} be an NBOC of 𝐴 . Then 𝐴 ⊆∪𝜆∈Δ 𝐺𝜆 , i.e., T𝐴(𝑥) ≤ ⋁𝜆∈ΔT𝐺𝜆
(𝑥), 

I𝐴(𝑥) ≥ ⋀𝜆∈ΔI𝐺𝜆
(𝑥) and F𝐴(𝑥) ≥ ⋀𝜆∈ΔF𝐺𝜆

(𝑥). Now I𝐴(𝑥) ≥ ⋀𝜆∈ΔI𝐺𝜆
(𝑥) ⇒ I𝐴(𝑥) ≥ I𝐺𝛼

(𝑥) for some ∈ Δ 

⇒ 1 − I𝐴(𝑥) ≤ 1 − I𝐺𝛼
(𝑥) ⇒ 1 − I𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − I𝐺𝜆

(𝑥)) . Similarly F𝐴(𝑥) ≥ ⋀𝜆∈ΔF𝐺𝜆
(𝑥) ⇒ 1 −

F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆
(𝑥)) . Thus the collection 𝐶  satisfies the condition T𝐴(𝑥) ≤ ⋁𝜆∈ΔT𝐺𝜆

(𝑥) , 1 −

I𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − I𝐺𝜆
(𝑥)) and 1 − F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆

(𝑥)). By the hypothesis, there exists a finite 

subcollection {𝐺𝜆𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}  such that T𝐴(𝑥) ≤ ⋁𝑘=1

𝑛 T𝐺𝜆𝑘
(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝑘=1

𝑛 (1 − I𝐺𝜆𝑘
(𝑥)) 

and 1 − F𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)) . Now 1 − I𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − I𝐺𝜆𝑘

(𝑥)) ⇒ 1 − I𝐴(𝑥) ≤ 1 − I𝐺𝜆𝑚
(𝑥) 

for some , 1 ≤ 𝑚 ≤ 𝑛  ⇒ I𝐴(𝑥) ≥ I𝐺𝜆𝑚
(𝑥) ⇒ I𝐴(𝑥) ≥ ⋀𝑘=1

𝑛 I𝐺𝜆𝑘
(𝑥) . Similarly, we shall have F𝐴(𝑥) ≥

⋀𝑘=1
𝑛 F𝐺𝜆𝑘

(𝑥) . Therefore 𝐴 ⊆∪𝑘=1
𝑛 𝐺𝜆𝑘

, i.e., the NBOC 𝐶  of 𝐴  has a finite NBOSC {𝐺𝜆𝑘
: 𝑘 =

1,2,3, ⋯ , 𝑛}. Therefore, 𝐴 is neutrosophic 𝑏-compact set. 

Hence proved. 

3.22. Proposition: Let (𝑋, 𝜏) be an NTS. Then 𝑋 is neutrosophic 𝑏-compact iff for every collection 

𝐶 = {𝐺𝜆: 𝜆 ∈ Δ} of NBO sets of 𝑋  satisfying ⋁𝜆∈ΔT𝐺𝜆
(𝑥) = 1, ⋁𝜆∈Δ (1 − I𝐺𝜆

(𝑥)) = 1 and ⋁𝜆∈Δ (1 −

F𝐺𝜆
(𝑥)) = 1 , there exists a finite subcollection {𝐺𝜆𝑘

: 𝑘 = 1,2,3, . . . , 𝑛}  such that ⋁𝑘=1
𝑛 T𝐺𝜆𝑘

(𝑥) = 1 , 

⋁𝑘=1
𝑛 (1 − I𝐺𝜆𝑘

(𝑥)) = 1 and ⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)) = 1. 

Proof: Immediate from the prop. 3.21. 

3.23. Proposition: An NTS (𝑋, 𝜏) is neutrosophic 𝑏-compact iff every collection of NBC sets with FIP 

has a non-empty intersection. 

Proof: Necessary part: Let 𝐴 = {𝑁𝑖: 𝑖 ∈ Δ}   be an arbitrary collection of NBC sets with FIP. We show 

that ∩𝑖∈Δ 𝑁𝑖 ≠ ∅̃. On the contrary, suppose that ∩𝑖∈Δ 𝑁𝑖 = ∅̃. Then (∩𝑖∈Δ 𝑁𝑖)
𝑐 = (∅̃)

𝑐
⇒∪𝑖∈Δ 𝑁𝑖

𝑐 = �̃�. 

Therefore 𝐵 = {𝑁𝑖
𝑐: 𝑁𝑖 ∈ 𝐴} is an NBOC of 𝑋 and so, 𝐵 has a finite NBOSC {𝑁𝑖1

𝑐 , 𝑁𝑖2

𝑐 , . . . , 𝑁𝑖𝑘

𝑐 }, say. 

Then ∪𝑗=1
𝑘 𝑁𝑖𝑗

𝑐 = �̃� ⇒∩𝑗=1
𝑘 𝑁𝑖𝑗

= ∅̃, which is a contradiction as 𝐴 has FIP. Therefore ∩𝑖∈Δ 𝑁𝑖 ≠ ∅̃.  

Sufficient part: Suppose that 𝑋  is not neutrosophic 𝑏-compact. Then there exists an NBOC 𝐶 =

{𝐺𝑖: 𝑖 ∈ Δ} of 𝑋 which has no finite NBOSC. Then for every finite subcollection {𝐺𝑖1
, 𝐺𝑖2

, . . . , 𝐺𝑖𝑘
} of 

𝐶, we have ∪𝑗=1
𝑘 𝐺𝑖𝑗

≠ �̃� ⇒∩𝑗=1
𝑘 𝐺𝑖𝑗

𝑐 ≠ ∅̃. Therefore, {𝐺𝑖
𝑐 : 𝐺𝑖 ∈ 𝐶} is a collection of NBC sets having the 

FIP. By the assumption, ∩𝑖∈Δ 𝐺𝑖
𝑐 ≠ ∅̃ ⇒∪𝑖∈Δ 𝐺𝑖 ≠ �̃�. This shows that 𝐶 is not an NBOC of 𝑋, which is 

a contradiction. Therefore, the NBOC 𝐶  of 𝑋  must have a finite NBOSC. Therefore 𝑋  is 

neutrosophic 𝑏-compact. 

Hence proved. 

3.24. Proposition: Let 𝑓 be a neutrosophic 𝑏-open function from an NTS (𝑋, τ) to the NTS (𝑌, 𝜎) 

and 𝐴 ∈ 𝒩(𝑌). If 𝐴 is neutrosophic 𝑏-compact in 𝑌 then 𝑓−1(𝐴) is neutrosophic compact in 𝑋. 

Proof: Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ} be an NOC of 𝑓−1(𝐴). Then 𝑓−1(𝐴) ⊆∪𝜆∈Δ 𝐺𝜆 ⇒ 𝐴 ⊆ 𝑓(∪𝜆∈Δ 𝐺𝜆) ⇒ 𝐴 ⊆

∪𝜆∈Δ 𝑓(𝐺𝜆). Since 𝐺𝜆 is τ-open set, so 𝑓(𝐺𝜆) is 𝜎-NBO set for each 𝜆 ∈ Δ as 𝑓 is a 𝑏-open function. 

Therefore, 𝐶 = {𝑓(𝐺𝜆): 𝐺𝜆 ∈ 𝐵} is an NBOC of 𝐴. Since A is neutrosophic 𝑏-compact, so 𝐶  has a 

finite NBOSC {𝑓(𝐺𝜆1
), 𝑓(𝐺𝜆2

), 𝑓(𝐺𝜆3
), . . . , 𝑓(𝐺𝜆𝑛

)} , say. Therefore 𝐴 ⊆∪𝑖=1
𝑛 𝑓(𝐺𝜆𝑖

) ⇒ 𝐴 ⊆
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𝑓(∪𝑖=1
𝑛 𝐺𝜆𝑖

) ⇒ 𝑓−1(𝐴) ⊆∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NOC 𝐵  of 𝑓−1(𝐴)  has a finite NOSC 

{𝐺𝜆1
, 𝐺𝜆2

, 𝐺𝜆3
, . . . , 𝐺𝜆𝑛

}. Therefore 𝑓−1(𝐴) is neutrosophic compact in 𝑋. Hence proved. 

3.25. Proposition: Let 𝑓 be a neutrosophic 𝑏-open function from an NTS (𝑋, τ) onto the NTS (𝑌, 𝜎). 

If (𝑌, 𝜎)  is neutrosophic 𝑏 -compact (resp. neutrosophic countably 𝑏 -compact, neutrosophic 𝑏 -

Lindel�̈�f) then (𝑋, τ) is neutrosophic compact (resp. neutrosophic countably compact, neutrosophic 

Lindel�̈�f). 

Proof: Immediate from the prop. 3.24 as 𝑓 is onto. 

3.26. Proposition: Let 𝑓 be a neutrosophic open function from an NTS (𝑋, τ) onto the NTS (𝑌, 𝜎). If 

(𝑌, 𝜎)  is neutrosophic 𝑏 -compact (resp. neutrosophic countably 𝑏 -compact, neutrosophic 𝑏 -

Lindel�̈�f) then (𝑋, τ) is neutrosophic compact (resp. neutrosophic countably compact, neutrosophic 

Lindel�̈�f). 

Proof: Obvious as every neutrosophic open set is an NBO set. 

3.27. Proposition: Let 𝑓 be a neutrosophic 𝑏-continuous function from an NTS (𝑋, τ) to the NTS 

(𝑌, 𝜎). If 𝐴 is neutrosophic 𝑏-compact set in 𝑋 then 𝑓(𝐴) is neutrosophic compact set in 𝑌. 

Proof: Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ} be an NOC of 𝑓(𝐴). Then 𝑓(𝐴) ⊆∪𝜆∈Δ 𝐺𝜆 ⇒ 𝑓−1(𝑓(𝐴)) ⊆ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) ⇒

𝑓−1(𝑓(𝐴)) ⊆∪𝜆∈Δ 𝑓−1(𝐺𝜆) ⇒ 𝐴 ⊆∪𝜆∈Δ 𝑓−1(𝐺𝜆). Since 𝐺𝜆 is 𝜎-open NS in 𝑌, so 𝑓−1(𝐺𝜆) is τ-NBO set 

in 𝑋  as 𝑓  is 𝑏 -continuous. Therefore 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵}  is an NBOC of 𝐴 . Since 𝐴  is 

neutrosophic 𝑏-compact, so 𝐶 has a finite NBOSC {𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)}, say. Therefore 

𝐴 ⊆∪𝑖=1
𝑛 𝑓−1(𝐺𝜆𝑖

) ⇒ 𝐴 ⊆ 𝑓−1(∪𝑖=1
𝑛 𝐺𝜆𝑖

) ⇒ 𝑓(𝐴) ⊆∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NOC 𝐵  of 𝑓(𝐴)  has a finite 

NOSC. Therefore 𝑓(𝐴) is neutrosophic compact. Hence proved. 

3.28. Proposition: Let 𝑓  be a neutrosophic continuous function from an NTS (𝑋, τ)  to the NTS 

(𝑌, 𝜎). If 𝑓 is neutrosophic 𝑏-compact in 𝑋 then 𝑓(𝐴) is neutrosophic compact in 𝑌. 

Proof: Obvious from the prop. 3.27 as every neutrosophic open set is an NBO set. 

3.29. Proposition: Let 𝑓 be a neutrosophic 𝑏-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If (𝑋, τ) is neutrosophic 𝑏-compact then (𝑌, 𝜎) is neutrosophic compact. 

Proof: Since 𝑓  is onto, so 𝑓(�̃�) = �̃� . Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ}  be an NOC of 𝑌 . Then ∪𝜆∈Δ 𝐺𝜆 = �̃� ⇒

∪𝜆∈Δ 𝐺𝜆 = 𝑓(�̃�) ⇒ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) = �̃� ⇒∪𝜆∈Δ 𝑓−1(𝐺𝜆) = �̃�. Since 𝐺𝜆 is 𝜎-open NS in 𝑌, so 𝑓−1(𝐺𝜆) is 

τ-NBO set in 𝑋 as 𝑓 is 𝑏-continuous. Therefore 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵} is an NBOC of 𝑋. Since 𝑋 is 

𝑏 -compact, so 𝐶  has a finite NBOSC {𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)} , say. Therefore 

∪𝑖=1
𝑛 𝑓−1(𝐺𝜆𝑖

) = �̃� ⇒ 𝑓−1(∪𝑖=1
𝑛 𝐺𝜆𝑖

) = �̃� ⇒∪𝑖=1
𝑛 𝐺𝜆𝑖

= 𝑓(�̃�) ⇒∪𝑖=1
𝑛 𝐺𝜆𝑖

= �̃�. Thus the NOC 𝐵 of 𝑌 has 

a finite NOSC. Therefore 𝑌 is neutrosophic compact. Hence proved. 

3.30. Proposition: Let 𝑓 be a neutrosophic continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If (𝑋, τ) is neutrosophic 𝑏-compact then (𝑌, 𝜎) is neutrosophic compact. 

Proof: Obvious from the prop. 3.29 as every neutrosophic open set is an NBO set. 

3.31. Proposition: Let 𝑓 be a neutrosophic 𝑏-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If 𝑋 is neutrosophic countably 𝑏-compact then 𝑌 is neutrosophic countably compact. 

Proof: Since 𝑓 is onto, so 𝑓(�̃�) = �̃�. Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ}  be a countable NOC of 𝑌. Then ∪𝜆∈Δ 𝐺𝜆 =

�̃� ⇒∪𝜆∈Δ 𝐺𝜆 = 𝑓(�̃�) ⇒ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) = �̃� ⇒∪𝜆∈Δ 𝑓−1(𝐺𝜆) = �̃�. Since 𝐺𝜆 is 𝜎-open NS in 𝑌, so 𝑓−1(𝐺𝜆) 

is τ -NBO set in 𝑋  as 𝑓  is 𝑏 -continuous. Therefore 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵}  is an NBOC of 𝑋 . 

Obviously 𝐶 is countable as 𝐵 is countable. Again since 𝑋 is neutrosophic countably 𝑏-compact, 

so 𝐶  has a finite NBOSC {𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)} , say. Therefore ∪𝑖=1

𝑛 𝑓−1(𝐺𝜆𝑖
) = �̃� ⇒

𝑓−1(∪𝑖=1
𝑛 𝐺𝜆𝑖

) = �̃� ⇒∪𝑖=1
𝑛 𝐺𝜆𝑖

= 𝑓(�̃�) ⇒∪𝑖=1
𝑛 𝐺𝜆𝑖

= �̃� . Thus the countable NOC 𝐵  of 𝑌  has a finite 

NOSC. Hence 𝑌 is neutrosophic countably compact. 

3.32. Proposition: Let 𝑓 be a neutrosophic continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If 𝑋 is neutrosophic countably 𝑏-compact then 𝑌 is neutrosophic countably compact. 

Proof: Immediate from the prop. 3.31 as every neutrosophic open set is an NBO set. 

3.33. Proposition: Let 𝑓 be a neutrosophic 𝑏-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If 𝑋 is neutrosophic 𝑏-Lindel�̈�f then 𝑌 is neutrosophic Lindel�̈�f. 

Proof: Since 𝑓  is onto, so 𝑓(�̃�) = �̃� . Let 𝐶 = {𝐺𝑖: 𝑖 ∈ Δ}   be an NOC of 𝑌 . Then ∪𝑖∈Δ 𝐺𝑖 = �̃� ⇒

∪𝑖∈Δ 𝐺𝑖 = 𝑓(�̃�) ⇒ 𝑓−1(∪𝑖∈Δ 𝐺𝑖) = �̃� ⇒∪𝑖∈Δ 𝑓−1(𝐺𝑖) = �̃� ⇒ {𝑓−1(𝐺𝑖): 𝐺𝑖 ∈ 𝐶} is an NBOC of 𝑋. Since 𝑋 
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is neutrosophic 𝑏 - Lindel �̈� f, so {𝑓−1(𝐺𝑖): 𝐺𝑖 ∈ 𝐶}  has a countable NBOSC 𝐵 = {𝑓−1(𝐺𝑖𝑘
): 𝑘 =

1,2,3, … }, say. Therefore, �̃� = 𝑓−1(𝐺𝜆1
) ∪ 𝑓−1(𝐺𝜆2

) ∪ 𝑓−1(𝐺𝜆3
) ∪ … . This gives �̃� = 𝑓−1(𝐺𝜆1

∪ 𝐺𝜆2
∪

𝐺𝜆3
∪ … ) ⇒ 𝑓(�̃�) = 𝐺𝜆1

∪ 𝐺𝜆2
∪ 𝐺𝜆3

∪ …  ⇒ �̃� = 𝐺𝜆1
∪ 𝐺𝜆2

∪ 𝐺𝜆3
∪ …  ⇒ {𝐺𝑖𝑘

: 𝑘 = 1,2,3, … }  is an NOC 

of 𝑌. Since 𝐵 is countable so, {𝐺𝑖𝑘
: 𝑘 = 1,2,3, … } is also countable.  Therefore, the NOC 𝐶 of 𝑌 has 

a countable NOSC {𝐺𝑖𝑘
: 𝑘 = 1,2,3, … } and so, 𝑌 is neutrosophic Lindel�̈�f. 

3.34. Proposition: Let 𝑓 be a neutrosophic continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If 𝑋 is neutrosophic 𝑏-Lindel�̈�f then 𝑌 is neutrosophic Lindel�̈�f. 

Proof: Immediate from the prop. 3.33 as every neutrosophic open set is an NBO set. 

3.35. Definition: Let 𝑓 be a neutrosophic function from an NTS (𝑋, τ) to the NTS (𝑌, 𝜎).  Then 𝑓 

is called a neutrosophic 𝑏∗-open function if 𝑓(𝐺) is an NBO set in 𝑌 for every NBO set 𝐺 in 𝑋. 

3.36. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-open function from an NTS (𝑋, τ) to the NTS (𝑌, 𝜎) 

and 𝐴 ∈ 𝒩(𝑌). If 𝐴 is neutrosophic 𝑏-compact in 𝑌 then 𝑓−1(𝐴) is neutrosophic 𝑏-compact in 𝑋. 

Proof: Let 𝐵 = {𝐺𝑖: 𝑖 ∈ Δ}   be an  NBOC of 𝑓−1(𝐴) . Then  𝑓−1(𝐴) ⊆ ∪𝑖∈Δ 𝐺𝑖 ⇒ 𝐴 ⊆ 𝑓(∪𝑖∈Δ 𝐺𝑖) ⇒

A ⊆ ∪𝑖∈Δ 𝑓(𝐺𝑖) . Since 𝐺𝑖  is a τ -NBO set, so 𝑓(𝐺𝑖)  is a 𝜎 -NBO set for each 𝑖 ∈ Δ  as 𝑓  is a 

neutrosophic 𝑏∗ -open function. Therefore, 𝐶 = {𝑓(𝐺𝑖): 𝐺𝑖 ∈ 𝐵}  is an NBOC of A. Since 𝐴  is 

neutrosophic 𝑏 -compact, so 𝐶  has a finite NBOSC {𝑓(𝐺𝜆1
), 𝑓(𝐺𝜆2

), 𝑓(𝐺𝜆3
), . . . , 𝑓(𝐺𝜆𝑛

)} , say. 

Therefore, 𝐴 ⊆∪𝑖=1
𝑛 𝑓(𝐺𝜆𝑖

) ⇒ 𝐴 ⊆ 𝑓(∪𝑖=1
𝑛 𝐺𝜆𝑖

) ⇒ 𝑓−1(𝐴) ⊆∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NBOC 𝐵 of 𝑓−1(𝐴) has 

a finite NBOSC {𝐺𝜆1
, 𝐺𝜆2

, 𝐺𝜆3
, . . . , 𝐺𝜆𝑛

} . Therefore 𝑓−1(𝐴)  is neutrosophic 𝑏 -compact in 𝑋 . Hence 

proved.   

3.37. Proposition: Let 𝑓  be a neutrosophic 𝑏∗ -open function from an NTS (𝑋, τ)  onto the NTS 

(𝑌, 𝜎). If (𝑌, 𝜎)  is neutrosophic 𝑏-compact in then (𝑋, τ) is also neutrosophic 𝑏-compact. 

Proof: Immediate from the prop. 3.36 as 𝑓 is onto. 

3.38. Proposition: Let 𝑓  be a neutrosophic 𝑏∗ -open function from an NTS (𝑋, τ)  onto the NTS 

(𝑌, 𝜎). If (𝑌, 𝜎) is neutrosophic countably 𝑏-compact (neutrosophic 𝑏-Lindel�̈�f) then (𝑋, τ) is also 

neutrosophic countably 𝑏-compact (neutrosophic 𝑏-Lindel�̈�f). 

Proof: Obvious. 

3.39. Definition: Let 𝑓 be a neutrosophic function from an NTS (𝑋, τ) to the NTS (𝑌, 𝜎). Then 𝑓 is 

called a neutrosophic 𝑏∗-continuous function if 𝑓−1(𝐺) is an NBO set in 𝑋 for every NBO set 𝐺 in 

𝑌. 

3.40. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-continuous function from an NTS (𝑋, τ) to the NTS 

(𝑌, 𝜎). If 𝐴 is neutrosophic 𝑏-compact in 𝑋 then 𝑓(𝐴) is also neutrosophic 𝑏-compact in 𝑌. 

Proof: Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ}  be an NBOC of 𝑓(𝐴) . Then 𝑓(𝐴) ⊆ ∪𝜆∈Δ 𝐺𝜆 ⇒ A ⊆ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) ⇒ A ⊆

∪𝜆∈Δ 𝑓−1(𝐺𝜆). Since 𝐺𝜆 is 𝜎-NBO set in 𝑌, so 𝑓−1(𝐺𝜆) is τ-NBO set in 𝑋 as 𝑓 is neutrosophic 𝑏∗-

continuous function. Therefore 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵} is an NBOC of 𝐴. Since 𝐴 is neutrosophic 𝑏-

compact in 𝑋 , so 𝐶  has a finite NBOSC {𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)} , say. Therefore 𝐴 ⊆

∪𝑖=1
𝑛 𝑓−1(𝐺𝜆𝑖

) ⇒ 𝐴 ⊆ 𝑓−1(∪𝑖=1
𝑛 𝐺𝜆𝑖

) ⇒ 𝑓(𝐴) ⊆∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NBOC 𝐵 of 𝑓(𝐴) has a finite NBOSC 

{𝐺𝜆1
, 𝐺𝜆2

, 𝐺𝜆3
, . . . , 𝐺𝜆𝑛

}.. Therefore 𝑓(𝐴) is neutrosophic 𝑏-compact.  

3.41. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If (𝑋, τ) is neutrosophic 𝑏-compact then (𝑌, 𝜎) is also neutrosophic 𝑏-compact. 

Proof: Since 𝑓  is onto, so 𝑓(�̃�) = �̃� . Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ} be an NBOC of 𝑌 . Then ∪𝜆∈Δ 𝐺𝜆 = �̃� ⇒

∪𝜆∈Δ 𝐺𝜆 = 𝑓(�̃�) ⇒ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) = �̃� ⇒∪𝜆∈Δ 𝑓−1(𝐺𝜆) = �̃�. Since 𝐺𝜆 is 𝜎-NBO set in 𝑌, so 𝑓−1(𝐺𝜆) is 

τ-NBO set in 𝑋 as 𝑓 is neutrosophic 𝑏∗-continuous function. Therefore, 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵} is an 

NBOC of 𝑋 . Since 𝑋  is neutrosophic 𝑏 -compact, so 𝐶  has a finite NBOSC 

{𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)} , say. Therefore, �̃� =∪𝑖=1

𝑛 𝑓−1(𝐺𝜆𝑖
) ⇒ �̃� = 𝑓−1(∪𝑖=1

𝑛 𝐺𝜆𝑖
) ⇒ 𝑓(�̃�) =

∪𝑖=1
𝑛 𝐺𝜆𝑖

⇒ �̃� =∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NBOC 𝐵 of 𝑌 has a finite NBOSC {𝐺𝜆1
, 𝐺𝜆2

, 𝐺𝜆3
, . . . , 𝐺𝜆𝑛

}. Therefore 

𝑌 is neutrosophic 𝑏-compact. 
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3.42. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If (𝑋, τ) is neutrosophic countably 𝑏-compact (resp. neutrosophic 𝑏-Lindel�̈�f) then (𝑌, 𝜎) is 

also neutrosophic countably 𝑏-compact (resp. neutrosophic 𝑏-Lindel�̈�f). 

Proof: Obvious. 

4. Neutrosophic local b-compactness 

4.1. Definition: An NTS (𝑋, τ) is said to be a neutrosophic locally 𝑏-compact space iff for every NP 

𝑥𝛼,𝛽,𝛾 in 𝑋, there exists an NBO set G in 𝑋 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺 and 𝐺 is neutrosophic 𝑏-compact in 

𝑋. 

4.2. Proposition: Every neutrosophic 𝑏-compact space is a neutrosophic locally 𝑏-compact space. 

Proof: Let (𝑋, τ)  be a neutrosophic 𝑏 -compact space and let 𝑥𝛼,𝛽,𝛾  be an NP in 𝑋 . Since 𝑋  is 

neutrosophic 𝑏-compact and since �̃� is an NBO set such that 𝑥𝛼,𝛽,𝛾 ∈ �̃�, so, (𝑋, τ) is a neutrosophic 

locally 𝑏-compact space. 

4.3. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-open and 𝑏∗-continuous function from an NTS space 

(𝑋, τ) to the NTS (𝑌, τ). If (𝑌, τ) neutrosophic locally 𝑏-compact then (𝑋, τ) is also a neutrosophic 

locally 𝑏-compact space. 

Proof: Let 𝑥𝛼,𝛽,𝛾 be any NP in 𝑋. Also let 𝑦𝑝,𝑞,𝑟  be the NP in 𝑌 such that 𝑓(𝑥𝛼,𝛽,𝛾) = 𝑦𝑝,𝑞,𝑟 . Since 

𝑦𝑝,𝑞,𝑟 ∈ 𝑌 and 𝑌 neutrosophic locally 𝑏-compact, so there exists a 𝜎-NBO set 𝐺 such that 𝑦𝑝,𝑞,𝑟 ∈ 𝐺 

and 𝐺 is neutrosophic 𝑏-compact in 𝑌. Now 𝑦𝑝,𝑞,𝑟 ∈ 𝐺 ⇒ 𝑓(𝑥𝛼,𝛽,𝛾) ∈ 𝐺 ⇒ 𝑥𝛼,𝛽,𝛾 ∈ 𝑓−1(𝐺). Since 𝑓 is 

neutrosophic 𝑏∗ -open and 𝐺  is neutrosophic 𝑏 -compact in 𝑌 , so by the prop. 3.36, 𝑓−1(𝐺)  is 

neutrosophic 𝑏-compact in 𝑋. Again since 𝑓 is a neutrosophic 𝑏∗-continuous function, so 𝑓−1(𝐺) is 

a 𝜏-NBO set. Thus for any any NP 𝑥𝛼,𝛽,𝛾 in 𝑋, there exists a 𝜏-NBO set 𝑓−1(𝐺) such that 𝑥𝛼,𝛽,𝛾 ∈

𝑓−1(𝐺)  and 𝑓−1(𝐺)  is neutrosophic 𝑏-compact in 𝑋 . Therefore (𝑋, τ)  is neutrosophic locally 𝑏-

compact space. 

4.4. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-open and 𝑏∗-continuous function from an NTS space 

(𝑋, τ)  onto the NTS (𝑌, τ) . If (𝑋, τ)  neutrosophic locally 𝑏 -compact then (𝑌, σ)  is also a 

neutrosophic locally 𝑏-compact space. 

Proof: Let 𝑦𝑝,𝑞,𝑟  be any NP in 𝑌 . Since 𝑓  is onto, so there exists an NP 𝑥𝛼,𝛽,𝛾  in 𝑋  such that 

𝑓(𝑥𝛼,𝛽,𝛾) = 𝑦𝑝,𝑞,𝑟. Since 𝑥𝛼,𝛽,𝛾 ∈ 𝑋 and 𝑋 neutrosophic locally 𝑏-compact, so there exists a τ-NBO set 

𝐺 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺 and 𝐺 is neutrosophic 𝑏-compact in 𝑋. Now 𝑥𝛼,𝛽,𝛾 ∈ 𝐺 ⇒ 𝑓(𝑥𝛼,𝛽,𝛾) ∈ 𝑓(𝐺) ⇒

𝑦𝑝,𝑞,𝑟 ∈ 𝑓(𝐺). Since 𝑓 is neutrosophic 𝑏∗-continuous and 𝐺 is neutrosophic 𝑏-compact in 𝑋, so by 

3.40, 𝑓(𝐺) is neutrosophic 𝑏-compact in 𝑌. Again since 𝑓 is a neutrosophic 𝑏∗-open function, so 

𝑓(𝐺) is a σ-NBO set. Thus for any any NP 𝑦𝑝,𝑞,𝑟  in 𝑌, there exists a σ-NBO set 𝑓(𝐺) such that 

𝑦𝑝,𝑞,𝑟 ∈ 𝑓(𝐺) and 𝑓(𝐺) is neutrosophic 𝑏-compact in 𝑌. Therefore (𝑌, σ) is neutrosophic locally 𝑏-

compact space. 

5. Covering properties via neutrosophic b-base 

5.1. Definition : Let (𝑋, τ)  be an NTS and 𝑁𝐵𝑂(𝑋)  be the collection of all NBO sets in 𝑋 . A 

subcollection 𝐵 of 𝑁𝐵𝑂(𝑋) is called a neutrosophic 𝑏-base (Nb-base, for short) for 𝑋 iff for each 

𝐴 ∈ 𝑁𝐵𝑂(𝑋), there exists a subcollection {𝐴𝑖: 𝑖 ∈ Δ} of 𝐵 such that 𝐴 =∪ {𝐴𝑖: 𝑖 ∈ Δ}, where Δ is an 

index set. 

A subcollection 𝐵∗ of 𝑁𝐵𝑂(𝑋) is called a neutrosophic 𝑏-subbase (Nb-subbase, for short) for 𝑋 iff 

the finite intersection of members of 𝐵∗ forms a neutrosophic 𝑏-base for 𝑋. 

5.2. Definition: An NTS (𝑋, τ) is said to be a neutrosophic 𝑏-second countable or neutrosophic 𝑏 −

𝐶𝐼𝐼 space iff 𝑋 has a countable neutrosophic 𝑏-base. 

5.3. Proposition: Let 𝐵 be an Nb-base for an NTS (𝑋, τ). Then 𝑋 is neutrosophic 𝑏-compact iff every 

NBOC of 𝑋 by the members of 𝐵 has a finite NBOSC. 

Proof: Necessary Part: Obvious. 

Sufficient Part : Let 𝐵 = {𝐵𝛼: 𝛼 ∈ Δ} be the Nb-base. Also let 𝐶 = {𝐺𝜆: 𝜆 ∈ Δ} be an NBOC of 𝑋. Then 

each member 𝐺𝜆 of 𝐶 is the union of some members of 𝐵 and the totality of such members of 𝐵 is 
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evidently an NBOC of 𝑋. By the hypothesis, this collection of members of 𝐵 has a finite NBOSC 𝐷 =

{𝐵𝛼𝑗
: 𝑗 = 1,2,3, ⋯ , 𝑛} , say. Clearly for each 𝐵𝛼𝑗

 in 𝐷 , there is a 𝐺𝜆𝑗
 in 𝐶  such that 𝐵𝛼𝑗

⊆ 𝐺𝜆𝑗
. 

Therefore the finite subcollection {𝐺𝜆𝑗
: 𝑗 = 1,2,3, ⋯ , 𝑛} of 𝐶 is an NBOC of 𝑋, i.e., the NBOC 𝐶 of 𝑋 

has a finite NBOSC. Therefore 𝑋 is neutrosophic 𝑏-compact. 

5.4. Proposition: Let (𝑋, τ) be a neutrosophic countably 𝑏-compact space. If 𝑋 is neutrosophic 𝑏 −

𝐶𝐼𝐼 then 𝑋 neutrosophic 𝑏-compact. 

Proof: Let 𝐷 = {𝐴𝑖: 𝑖 ∈ Δ} be any NBOC of 𝑋 . Since 𝑋  is neutrosophic 𝑏 − 𝐶𝐼𝐼 , so there exists a 

countable Nb-base 𝐵 = {𝐵𝑛: 𝑛 = 1,2,3, ⋯ } for 𝑋. Then each 𝐴𝑖 ∈ 𝐷 can be expressed as a countable 

union of members of 𝐵, i.e., for each 𝐴𝑖 ∈ 𝐷, we have 𝐴𝑖 = ⋃𝑘=1
𝑖0 𝐵𝑛𝑘

, where 𝐵𝑛𝑘
∈ 𝐵 and 𝑖0 may be 

infinity. Clearly 𝐵0 = {𝐵𝑛𝑘
} is an NBOC of 𝑋. Also 𝐵0 is countable as 𝐵0 ⊆ 𝐵. Therefore, 𝐵0 is a 

countable NBOC of 𝑋. Since 𝑋 is countably 𝑏-compact, so 𝐵0 has a finite NBOSC 𝐵′, say. Since by 

construction, each member of 𝐵′ is contained in one member 𝐴𝑖 of 𝐷, so these 𝐴𝑖’s form a finite 

NBOC of 𝑋. Thus the NBOC 𝐷 of 𝑋 has a finite NBOSC. Therefore 𝑋 is neutrosophic 𝑏-compact. 

Hence Proved. 

5.5. Remark: From the propositions 3.3 and 5.4, it is clear that if an NTS (𝑋, τ)  is neutrosophic 𝑏 −

𝐶𝐼𝐼 then neutrosophic 𝑏-compactness and neutrosophic countably 𝑏-compactness are equivalent. 

5.6. Proposition: If an NTS (𝑋, τ)   is neutrosophic 𝑏 − 𝐶𝐼𝐼 then it is neutrosophic 𝑏-Lindel�̈�f. 

Proof: Let 𝐷 = {𝐴𝑖: 𝑖 ∈ Δ} be any NBOC of 𝑋 . Since 𝑋  is neutrosophic 𝑏 − 𝐶𝐼𝐼 , so there exists a 

countable Nb-base 𝐵  = {𝐵𝑛: 𝑛 = 1,2,3, ⋯ }  for 𝑋 . Then each 𝐴𝑖 ∈ 𝐷  can be expressed as the 

countable union of members of 𝐵, i.e., for each 𝐴𝑖 ∈ 𝐷, we have  𝐴𝑖 = ⋃𝑘=1
𝑖0 𝐵𝑛𝑘

, where 𝐵𝑛𝑘
∈ 𝐵 and 

𝑖0  may be infinity. Let 𝐵0  = {𝐵𝑛𝑘
}. Then 𝐵0  is an NBOC of 𝑋 . Also 𝐵0  is countable as 𝐵0 ⊆ 𝐵 . 

Therefore, 𝐵0 is a countable NBOC of 𝑋. By construction, each member of 𝐵0 is contained in one 

member 𝐴𝑖 of 𝐷. So, these 𝐴𝑖’s of 𝐷 form a countable NBOSC of 𝑋. Thus the NBOC 𝐷 of 𝑋 has a 

countable NBOSC. Therefore 𝑋 is neutrosophic 𝑏- Lindel�̈�f.  

5.7. Proposition: Let 𝛽 be an Nb-subbase of an NTS (𝑋, τ). Then 𝑋 is neutrosophic 𝑏-compact iff for 

every collection of NBC sets taken from 𝛽𝑐 having the FIP, there is a non-empty intersection. 

Proof: Necessary part: Immediate from the prop. 3.23. 

Sufficient Part: On the contrary, let us suppose that 𝑋 is not 𝑏-compact. Then by the prop. 3.23, there 

exists a collection 𝐶 = {𝐺𝑖: 𝑖 ∈ 𝐼} of NBC sets of 𝑋 having FIP such that ∩𝑖∈𝐼 𝐺𝑖 = ∅̃. The collection 

𝐹 = {𝐶} of all such collections 𝐶 can be arranged in an order by using the classical inclusion(⊆) and 

therefore, the collection 𝐹 will have an upper bound. By Zorn’s lemma, there will be a maximal 

collection of all these collections 𝐶 . Let 𝑃 = {𝐾𝑗 : 𝑗 ∈ 𝐽}  be the maximal collection. Clearly, this 

collection 𝑃 has the following properties: 

(i) ∅̃ ∉ 𝑃 (ii) 𝐴 ∈ 𝑃, 𝐴 ⊆ 𝐵 ⇒ 𝐵 ∈ 𝑃 (iii) 𝐴, 𝐵 ∈ 𝑃 ⇒ 𝐴 ∩ 𝐵 ∈ 𝑃 (iv) ∩ (𝑃 ∩ 𝛽𝑐) = ∅̃.  

Clearly the property (iv) creates a contradiction to the hypothesis. Therefore 𝑋 is neutrosophic 

𝑏-compact. 

Hence proved. 

 

6. Conclusions 

In this article, we have defined neutrosophic 𝑏-open cover with the help of neutrosophic 𝑏-open 

sets and then we have defined neutrosophic 𝑏 -compact, neutrosophic countably 𝑏 -compact, 

neutrosophic 𝑏-Lindel�̈�f spaces and investigated various covering properties. We have proved that 

every neutrosophic 𝑏-compact space is a neutrosophic compact space but the converse is not true. 

We have shown that if 𝑓  is a neutrosophic continuous or a 𝑏 -continuous function from a 

neutrosophic 𝑏-compact (resp. countably 𝑏-compact, 𝑏-Lindel�̈�f) space (𝑋, τ) onto a neutrosophic 

topological space (𝑌, σ) then (𝑌, 𝜎) is a neutrosophic compact (resp. countably compact, Lindel�̈�f) 

space. In 3.41 (resp. 3.42), we have established that neutrosophic 𝑏-compactness (resp. countably 𝑏-

compactness, 𝑏-Lindel�̈�fness) is preserved under a neutrosophic 𝑏∗-continuous function. We have 

then defined and studied a few properties of neutrosophic local 𝑏-compactness. At last, in section 5, 
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we have defined neutrosophic 𝑏 -base, 𝑏 -subbase, neutrosophic 𝑏 - 𝐶𝐼𝐼  and investigated some 

properties. We have set up that if a neutrosophic topological space is neutrosophic 𝑏 -𝐶𝐼𝐼  then 

neutrosophic 𝑏-compactness and neutrosophic countably 𝑏-compactness are equivalent. In 5.7, we 

have stated and proved “Alexander subbase lemma” in case of a neutrosophic 𝑏-compact space. 

Hope that the findings in this article will assist the research fraternity to move forward for the 

development of different aspects of neutrosophic topology. 
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