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Abstract: Early identification and precise prediction of heart disease have important implications for 

preventative measures and better patient outcomes since cardiovascular disease is a leading cause of 

death globally. By analyzing massive amounts of data and seeing patterns that might aid in risk 

stratification and individualized treatment planning, machine learning algorithms have emerged as 

valuable tools for heart disease prediction. Predictive modeling is considered for many forms of heart 

illness, such as coronary artery disease, myocardial infarction, heart failure, arrhythmias, and valvar 

heart disease. Resource allocation, preventative care planning, workflow optimization, patient 

involvement, quality improvement, risk-based contracting, and research progress are all discussed 

as management implications of heart disease prediction. The effective application of machine 

learning-based cardiac disease prediction models requires collaboration between healthcare 

organizations, providers, and data scientists. This paper used three tools such as the neutrosophic 

analytical hierarchy process (AHP) as a feature selection, association rules, and machine learning 

models to predict heart disease. The neutrosophic AHP method is used to compute the weights of 

features and select the highest features. The association rules are used to give rules between values 

in all datasets. Then, we used the neutrosophic AHP as feature selection to select the best feature to 

input in machine learning models. We used nine machine learning models to predict heart disease. 

We obtained the random forest (RF) and decision tree (DT) have the highest accuracy with 100%, 

followed by Bagging, k-nearest neighbors (KNN), and gradient boosting have 99%, 98%, and 97%, 

then AdaBoosting has 89%, then logistic regression and Naïve Bayes have 84%, then the least accuracy 

is support vector machine (SVM) has 68%.    

Keywords: Machine Learning; Heart Disease Prediction; Association Rules; Neutrosophic AHP; 

Feature Selection; Accuracy. 

 

 

1. Introduction 

The worldwide burden of morbidity and death due to cardiovascular disease continues to be 

high. Preventative measures, optimal therapeutic approaches, and a decrease in adverse 

cardiovascular events may all benefit greatly from the early identification and precise prediction of 
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persons at risk for heart disease. The early identification of people at risk for cardiovascular disease 

has been the subject of a great deal of study over the years, leading to the development of prediction 

models and risk assessment approaches. This study examines the state of the art in predicting 

cardiovascular illness and discusses the obstacles, opportunities, and future paths that lie ahead [1, 

2]. 

Heart disease, which includes coronary artery disease, myocardial infarction, and heart failure, 

is a complicated multifactorial ailment impacted by a wide range of hereditary, environmental, and 

behavioral variables. Understanding these characteristics and how they interact is crucial for 

accurately predicting an individual's risk of developing heart disease [3, 4]. The risk of cardiovascular 

disease may be estimated using conventional risk assessment models like the Framingham Risk 

Score, which takes into account variables including age, gender, blood pressure, cholesterol levels, 

and smoking status. Despite their usefulness, these models often employ a small number of variables 

and may fail to capture important interplays between potential dangers. 

Novel methodologies using machine learning, artificial intelligence, and big data analytics have 

emerged as powerful instruments for cardiac disease prediction thanks to the development of 

technology and the availability of large-scale healthcare data. These methods may one day be able to 

analyze massive volumes of data, unearth previously unknown patterns, and provide unique risk 

assessments for each individual user. Predictive models for cardiovascular illness have been 

progressively developed using machine learning methods such as logistic regression (LR), decision 

trees, random forests, support vector machines (SVMs), and neural networks. Clinical, genetic, 

lifestyle, and imaging data may all be included in these algorithms to provide solid models for precise 

risk assessment [3, 5]. 

There has been a lot of interest in incorporating genetic data into heart disease prediction 

algorithms. Individual vulnerability to heart disease is heavily influenced by genetic variables, and 

the addition of genetic markers may improve the accuracy and precision of prediction algorithms. 

Wearable technology, such as activity trackers and smartwatches, may provide new information 

for predicting cardiovascular disease. For risk assessment and early diagnosis of cardiac disorders, 

these devices can constantly monitor physiological indicators including heart rate, activity levels, and 

sleep patterns [6, 7]. 

Electronic health records (EHRs) are increasingly being used as a reliable tool for predicting 

cardiovascular issues. EHRs are an invaluable resource for building accurate risk assessment models 

because they include so much information about patients. Although there have been improvements 

in heart disease prediction, there are still certain issues that require fixing. There are a number of 

obstacles that must be removed before predictive models can be widely used in clinical settings. These 

include data quality and standardization, interpretability of machine learning models, privacy 

concerns, and bias and fairness in predictive algorithms [8, 9]. 

Predicting cardiovascular illness raises important ethical questions. To keep patients confident in 

their healthcare professionals, it is critical that they respect their privacy, get their agreement before 

using predictive models, and share their results openly. In order to enhance patient outcomes and 

lessen the burden of cardiovascular illness, heart disease prognosis is a fast-developing subject with 

enormous promise. This study aims to improve cardiovascular care by fostering the creation of more 

precise, accessible, and individually tailored risk assessment tools by critically examining existing 

predictive models, addressing challenges, and exploring emerging technologies [10, 11]. 

This paper used three tools to predict heart disease, first step we used the neutrosophic analytical 

hierarchy process (AHP) as a feature section to select the best feature [12]. Then in the second step, 

we used the association rules to fined rules between variables in the data set. In the third step, we 

used machine learning models to predict the disease. Figure 1 shows the overall three steps to predict 

heart disease. 

The rest of this paper is organized as follows: Section 2 introduces the challenges in heart disease 

prediction. Section 3 introduces the methodology of this paper and has three layers including 
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neutrosophic AHP as a feature selection, association rules, and machine learning models. Section 4 

presents the results and analysis of the dataset. Section 5 introduces the managerial implications of 

heart disease prediction. Finally, Section 6 presents the conclusion of this paper. 

 

Figure 1. The overall steps of the proposed model to predict heart disease. 

2. Heart Disease Prediction 

Public health systems face substantial difficulties from cardiovascular disease, which remains a 

primary cause of morbidity and death globally. In order to adopt preventative measures, optimize 

treatment options, and reduce the burden of cardiovascular events, early identification and precise 

prediction of those at risk is critical. Predictive models and risk assessment approaches that help in 

the early detection of heart disease susceptibility have been the subject of intensive research and 

development in recent years. The purpose of this study is to present an in-depth analysis of the 

current status of cardiac disease prediction, including its successes, failures, and prospective future 

developments [13, 14]. 

Integration of demographics, medical history, lifestyle choices, and clinical biomarkers allows 

for more accurate prediction of cardiovascular disease. To calculate an individual's risk of 

cardiovascular disease, doctors have traditionally used risk assessment models like the Framingham 

Risk Score. The advent of technology and the availability of massive quantities of healthcare data, 

however, has led to the development of creative methodologies that use machine learning algorithms, 

artificial intelligence, and big data analytics to provide more precise and individual predictions. 

Researchers and medical practitioners encounter a number of obstacles while attempting to 

foresee cases of heart disease. Among these difficulties are: 

The accuracy and quality of the data used in heart disease prediction models are crucial. 

However, the accuracy, consistency, and completeness of data might vary widely depending on the 

source. To maintain the consistency and accuracy of prediction models, it is important to take data 

quality and standardization into account when integrating data from several sources, such as 

electronic health records, wearable devices, and genetic databases [15, 16]. 
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While machine learning algorithms are useful for making predictions, they are not always easy 

to understand. Some models have a black box quality that makes it hard to decipher what is really 

driving forecasts. Gaining an understanding of the prediction process, fostering confidence among 

healthcare professionals, and aiding sound decision-making all depend on having access to 

interpretable models. 

Prediction algorithms for cardiovascular disease depend on highly private medical information. 

It is critical that personal information about patients be kept private and that data be kept secure. 

Predicting cardiovascular illness is complicated by the need to protect individual privacy while yet 

providing researchers with access to necessary data [17, 18]. 

Fairness and Bias: Predictive methods may unwittingly amplify existing biases in the training 

data. Predicting cardiac disease may be difficult because of racial, ethnic, socioeconomic, and gender 

biases in healthcare. To guarantee fair and objective forecasts for everyone, it is essential to address 

and mitigate these biases. 

External validation and generalizability Predictive models built for one population or healthcare 

system may not be applicable to another. To evaluate the efficacy and applicability of models, it is 

essential to conduct external validation in a variety of populations. The issue of designing models 

that work well for a wide range of users and contexts persists. 

Dynamic variables that change over time have an impact on heart disease, as shown by 

longitudinal studies. Changes in risk variables, illness progression, and response to therapy are all 

important to account for in predictive models. Predicting the onset of cardiac disease is difficult since 

it requires taking into account both static and dynamic factors. 

Including Genetic Data: Many people's predisposition to developing heart disease is determined 

by their genes. The precision and accuracy of prediction models may be improved by including 

genetic information in their construction. However, there are obstacles such as the difficulty in 

analyzing genetic data, the need for big genetic databases, and the ethical concerns with genetic 

testing and privacy [17, 19]. 

Fewer people from underrepresented groups have been included in heart disease research and 

data collection, for example, people of color. This underrepresentation may impair the development 

of specific risk assessment models for different groups and lead to discrepancies in forecast accuracy. 

Important steps towards a solution include filling up data gaps and ensuring research is inclusive 

[20, 21]. 

Improving the precision, fairness, and practicality of heart disease prediction algorithms 

depends on resolving these issues. We want to overcome these obstacles by creating highly accurate 

prognostic tools for the effective prevention and treatment of cardiovascular disease. 

3. Methodology 

This section has three layers. First, the neutrosophic AHP used as a feature selection is used to 

select the best feature in the dataset. Then, we used the association rules to find the rules between 

data. Finally, we applied nine machine learning models to predict heart disease. 

 

3.1 Neutrosophic AHP as a Feature Selection 

In order to choose which characteristics should be included in a model for predicting heart 

disease, neutrosophic AHP feature selection is used. The goal of neutrosophic feature selection is to 

deal with data uncertainty and imprecision by giving each feature a degree of membership [22]. This 

permits the characteristics most helpful to the model's prediction ability to be chosen, with their 

neutrosophic nature taken into account. By zeroing in on the most relevant characteristics, the 

accuracy and interpretability of heart disease prediction models may be increased by utilizing 

neutrosophic AHP feature selection approaches. We used the neutrosophic AHP method as a feature 

selection [23-25]. 
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Each input layer is given due consideration using the AHP technique as a means of producing a 

well-informed choice. When employing the AHP, you may use both quantitative and qualitative data 

because of the hierarchical structure provided by comparing each criterion. The AHP technique 

allows for a rating scale from 1 to 9 for any given set of data. 

When thinking about the first issue, the AHP method works well. This is due to the fact that 

AHP approaches may rank competing criteria in order of preference based on contextual factors. 

Indicators used in selecting choices may also be affected by the structure of the regional forwarding 

network [26]. The optimal size of a collection of cooperative candidates for a relay is the second open 

question. Cooperative candidate relay sets may include groups of nearby nodes with varying data 

redundancy rates, cooperative relay delays, and delivery ratios. One of the sets of a certain size is 

deemed the cooperative candidate relay set after being evaluated based on its characteristics, 

compatibility with the vehicular environment, and good trade-off among the necessary aspects. 

 

Step 1. The hierarchical analysis between features in dataset is performed. 

The hierarchal used to define the goal from the problem, and define the features. 

Step 2. Build pairwise comparison matrix. 

We used the triangular neutrosophic scale to evaluate the features [27]. 

Aij
t =  [

a11
t ⋯ a1n

t

⋮ ⋱ ⋮
an1

t ⋯ ann
t

]                                                 (1) 

Where a1n
t  refers to the triangular neutrosophic number, n refers to the number of criteria, t refers 

the decision makers. 

Step 3. Obtain the crisp value. 

We used the score function to obtain the crisp value [27]. 

Step 4. Combine the opinions of experts. 

We used the average method to combine the different pairwise comparison matrix into one matrix. 

Step 5. Compute the row average. 

wi =
∑ (aij

t )n
j=1

n
                                                                     (2) 

Step 6. Normalize the crisp values. 

wi
m =

wi

∑ wi
m
i=1

                                                                     (3) 

Step 7. Compute the consistency ratio (CR). 

CR =
CI

RI
                                                                            (4) 

CI =
λ_ max −n

n−1
                                                    (5) 

Where λ_max refers to the weighted sum vector. 

 

3.2 Association Rules 

In order to model and uncover the interdependencies between database entries, association rules 

are used. Support, confidence, and lift are criteria to show the importance of associations [28-31]. 

3.2.1 Support 

This metric provides insight into how often a certain collection of products appears in all trades. 

Let's pretend that Set1 is bread and Set2 is shampoo. There will be a lot more bread purchases than 

shampoo purchases. You correctly predicted that the support for set1 would be greater than that for 

set2. Let's say set1 is "bread and butter" and set2 is "bread and shampoo." Bread and butter are 

common cart items, but how often do you see bread and shampoo? Not really. In this situation, set1 

is more likely to be preferred than set2 in terms of popularity. In mathematical terms, the amount of 

backing for an item set is the share of all transactions that include those objects. 

 

Support{{x} → {y}} =
Transactions containing both x and y

total number of transactions
                                       (6) 
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Using support value, we can determine which rules are worth investigating further. If there are 

10,000 transactions, for instance, it may be useful to focus on the subset of item sets that appears at 

least 50 times, or has support = 0.005. Without further data, we cannot make any firm conclusions 

about the nature of the relationships among the items in a very poorly supported item set. 

3.2.2 Confidence 

This metric describes the probability that the consequent will be present on the cart, assuming 

that the antecedents are present. That is to say, of all the purchases that included the term "Captain 

Crunch," how many also included the word "Milk?" It's well known that the "Captain Crunch" vs. 

"Milk" guideline should be taken very seriously. Confidence, in technical terms, is the chance that the 

consequent will occur given the antecedent. 

 

Confidence ({x} → {y}) =
transactions containing both x and y

transaction containing x
                          (7) 

 

First, let's take a moment to think about a few additional situations. How sure are you that 

"Butter" and "Bread" are synonymous? To clarify, what percentage of purchases included both butter 

and bread? Extremely high, or very near to 1? Yeah, you nailed it. What about milk and yogurt? Back 

on top of the world. Milk for your toothbrush? Still unsure? Since "Milk" is such a common 

commodity, it is safe to assume that this rule will always hold true. 

3.2.3 Lift 

When determining the conditional probability of occurrence of Y given X, Lift accounts for the 

support (frequency) of consequent. The word "lift" is used to describe this metric rather literally. 

Imagine this as the *boost* to our self-assurance that comes from having Y in the shopping basket 

thanks to the presence of X. To restate, lift is the increase in the chance of Y being on the cart due to 

the knowledge of X's existence relative to the probability of Y being on the cart due to ignorance of 

X's presence. 

 

Lift ({x} → {y}) =
(transactions containing both x and y)/ (Transaction containing x)  

Fraction of transactions containing y
                (8) 

 

3.3 Machine Learning Algorithms 

Classification is a supervised learning technique in machine learning; it also denotes a predictive 

modelling challenge in which a class label is predicted for an input sample. Specifically, it is a 

mathematical function (f) that maps input variables (X) to target variables (Y), where Y might be a 

label or category. It may be performed on either structured or unstructured data to make predictions 

about the class of provided data items. Examples of classification the heart disease. 

Classification problems with just two possible answers (true or false) are known as "binary 

classification." For example, in a job requiring binary classification, "normal" may be one class and 

"abnormal" another. As an example, if the work at hand includes a medical test, and the result is 

"cancer not detected," then "cancer detected" may be seen as the aberrant condition. In the same way, 

the "spam" and "not spam" categories used by email service providers are also regarded to be binary 

[23, 33]. 

The machine learning and data science field is rife with suggested categorization methods. The 

most widely-used approaches to predicting heart disease are summed up here. 

3.3.1 Naïve Bayes   

By using Bayes' theorem under the premise of feature independence, the naïve Bayes (NB) 

algorithm is developed. In many practical applications, such as document or text categorization, 

spam filtering, etc., it performs admirably and may be used for both binary and multi-class categories. 

The NB classifier may be used to efficiently categorize the data's noisy examples and build a solid 

prediction model. The main advantage is that it just requires a minimal amount of training data to 

rapidly and accurately estimate the required parameters, in contrast to more complex methods. 
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However, it makes very strong assumptions about the independence of characteristics, which might 

reduce its performance. Common NB classifier versions include the Gaussian, Multinomial, 

Complement, Bernoulli, and Categorical distributions [34, 35]. 

3.3.2 Logistic Regression   

LR is another popular probabilistic-based statistical model used to address classification problems 

in machine learning. A logistic function, often known as the sigmoid function from its mathematical 

definition, is commonly used in LR to assess probabilities. Overfitting is possible with high-

dimensional data, and it performs best when the data can be linearly partitioned. In these cases, 

regularization (L1 and L2) methods may be employed to prevent over-fitting. The linearity 

assumption between the dependent and independent variables is seen as a fundamental limitation of 

LR. Although it is more typically employed for classification difficulties, it may also be used for 

regression issues [36]. 

 

LR(r) =
1

1+exp(−r)
                                       (9) 

 

3.3.3 K-Nearest Neighbors  

Known as a "lazy learning" method, k-nearest neighbors (KNN) is a kind of "instance-based 

learning" or non-generalizing learning. Rather than concentrating on building a single, overarching 

model, it maintains an n-dimensional database of all occurrences that correlate to training data. 

Similarity metrics (such as the Euclidean distance function) are used by KNN to classify fresh data 

points. Each point is assigned to a category based on a majority decision of its k closest neighbors. 

The accuracy is data-dependent, however, it is quite tolerant to noisy training data. Choosing the 

right number of neighbors to use might be challenging when using KNN. KNN is versatile, since it 

may be used for both classification and regression [37]. 

3.3.4 Support Vector Machine 

SVMs are another prominent machine learning technology that may be used for classification, 

regression, and other applications. A SVM builds a hyper-plane or series of hyper-planes in high or 

infinite dimensional space. Since, in general, the larger the margin, the smaller the classifier's 

generalization error, it stands to reason that the hyper-plane, which has the largest distance from the 

closest training data points in each class, achieves a strong separation. It works well in high-

dimensional spaces and exhibits varying behaviors depending on the kernel function used. Common 

kernel functions used in SVM classifiers include linear, polynomial, radial basis function (RBF), 

sigmoid, etc. SVM operates poorly, however, when there is more noise in the data set, such as when 

the target classes overlap [38, 39]. 

3.3.5 Decision Tree 

One popular kind of supervised learning that does not rely on parameters is the decision tree (DT). 

Both the classification and regression jobs employ DT learning techniques. Popular DT algorithms 

include ID3, C4.5, and CART. And in the relevant application fields, such as user behavior analytics 

and Cybersecurity analytics, the newly suggested BehavDT and IntrudTree by Sarker et al. are 

successful. In order to categorize the instances, DT sorts the tree from its root node to a subset of its 

leaf nodes. Classifying instances involves traversing a tree from its root node to the leaf nodes along 

the branches that correspond to the attributes being checked. The Gini impurity and the entropy gain 

are two of the most often used metrics for partitioning [40]. 

We can define entropy and Gini as: 

H(x) = − ∑ p(xi) log2 p(xi)
n
i=1                                (10) 

E = 1 − ∑ pi
2c

i=1                                                         (11) 

3.3.6 Random Forest  

Well-known in the fields of machine learning and data science, random forest classifiers are 

employed as an ensemble classification approach. In this technique, "parallel ensemble" is used to 

simultaneously train several decision tree classifiers on independent subsamples of the data set, with 
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the final result being determined by a vote or an average of the results. As a result, it improves 

prediction accuracy and regulates the issue of over-fitting. That's why it's more common for the 

random forest (RF) learning model to outperform those using a single decision tree. It uses a hybrid 

of bootstrap aggregation (bagging) and random feature selection to construct several decision trees 

with intentional variety. It works well with both categorical and continuous data and may be used 

for classification and regression issues [41, 42]. 

3.3.7 AdaBoost  

Adaptive Boosting (AdaBoost) is an iterative ensemble learning procedure that uses error 

feedback to improve underperforming classifiers. This concept, dubbed "meta-learning" after its 

creators Yoav Freund et al. AdaBoost employs a "sequential ensemble," in contrast to the random 

forest's parallel ensemble. In order to achieve a decent classifier with high accuracy, it combines 

multiple underperforming classifiers to produce a powerful classifier. AdaBoost is an adaptive 

classifier since it greatly improves the classifier's efficiency; yet, it might lead to overfits in certain 

situations. AdaBoost is sensitive to noisy data and outliers, making it best utilized to improve the 

performance of decision trees, the basis estimator, for binary classification tasks [43]. 

3.3.8 Gradient Boosting  

Similar to the RFs example up top, Gradient Boosting is a kind of ensemble learning method that 

builds a final model from a collection of smaller models (usually decision trees). Like how neural 

networks employ gradient descent to optimize weights, we use the gradient to minimize the loss 

function [44]. 

3.3.9 Bagging   

The model is comprised of homogenous weak learners, who acquire knowledge in isolation and 

in parallel, and then average their results. Bagging, or Bootstrap Aggregating, is a meta-algorithm for 

machine learning ensembles that increases the reliability and precision of statistical classification and 

regression models. The variance is reduced and overfitting is prevented. Typically, this is used in 

decision tree techniques. The method of bagging is a variant of the model-averaging strategy [45]. 

4. Results and analysis 

This section summarizes the analysis of heart disease data and the obtained results from the 

various machine learning algorithms. 

 

4.1 Description of Dataset 

The information may be accessed by the general public on the Kaggle website. It was collected 

as part of an ongoing cardiovascular research on people living in the town of Framingham, which is 

located in the state of Massachusetts. The information about the patients may be found in the dataset. 

It consists of nearly 4,000 rows and fifteen different qualities. In furthermore, the different statistical 

results for the dataset's input parameters are displayed in Table 1, including the count, mean, 

standard deviation, minimum, 25%, 50%, 75%, and maximum values. 

 

Table 1. The statistics values of the attributes in heart disease data. 

Statistics sex cp trestbps chol fbs restecg thalach 

count 1025.000 1025.000 1025.000 1025.000 1025.000 1025.000 1025.000 
mean 54.434 0.696 0.942 131.612 246.000 0.149 0.530 
Std. 9.072 0.460 1.030 17.517 51.593 0.357 0.528 
Min 29.000 0.000 0.000 94.000 126.000 0.000 0.000 
25% 48.000 0.000 0.000 120.000 211.000 0.000 0.000 
50% 56.000 1.000 1.000 130.000 240.000 0.000 1.000 
75% 61.000 1.000 2.000 140.000 275.000 0.000 1.000 
Max 77.000 1.000 3.000 200.000 564.000 1.000 2.000 
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Statistics exang oldpeak slope ca thal Target 

count 1025.000 1025.000 1025.000 1025.000 1025.000 1025.000 
mean 149.114 0.337 1.072 1.385 0.754 2.324 
Std. 23.006 0.473 1.175 0.618 1.031 0.621 
Min 71.000 0.000 0.000 0.000 0.000 0.000 
25% 132.000 0.000 0.000 1.000 0.000 2.000 
50% 152.000 0.000 0.800 1.000 0.000 2.000 
75% 166.000 1.000 1.800 2.000 1.000 3.000 
Max 202.000 1.000 6.200 2.000 4.000 3.000 

 

Figure 2 shows the data of sex and target columns. Where red color refers to the female and blue color 

refers to male. 0 refer to the target class no disease and 1 refers to the target class 1 has a disease. The 

number persons of male greater than female in 0 class. Also in 1 class the number rows in male greater 

than female.  

 
Figure 2. The sex and target columns. 

 

Figure 3 shows the scatter diagram of data in age and cholesterol columns. Where the red color refers 

to the disease and blue color refers to no disease. The age between 30 and 40 years old have disease 

more than no disease.  

 

Figure 3. The scatter diagram of age and cholesterol. 
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Figure 4 shows the heatmap and correlation in dataset. In the age row, there are six criteria are 

negative correlation and other are positive correlation. The ca criterion is the highly positive 

correlated with the age criterion. The age criterion has a negative correlation with the target variable. 

In the sex criterion, there are 8 negative correlation criteria and 5 positive correlation criteria. The sex 

criterion has a negative correlation with the target variable. The thal is the highly correlated with the 

sex variable. In cp variable, there are six variables positive correlated and other are negative 

correlated. The cp has a positive correlation with the target variable. The cp variable is the most 

correlated variable with the target variable. In the trestbps, there are 7 positive correlated variables 

and other are negative correlated variable. Trestbps has a negative correlation with the target 

variable. In the chol, there are 7 positive correlated variables and other are negative correlated 

variable. Chol has a negative correlation with the target variable. In the fbs, there are 8 positive 

correlated variables and other are negative correlated variable. fbs has a negative correlation with the 

target variable. In the restecg, there are 4 positive correlated variables and other are negative 

correlated variable. restecg has a positive correlation with the target variable. In the thalach, there are 

4 positive correlated variables and other are p correlated variable. thalach has a positive correlation 

with the target variable. In the exang, there are 8 positive correlated variables and other are negative 

correlated variable. exang has a negative correlation with the target variable in the oldpeak, there are 

8 positive correlated variables and other are negative correlated variable. oldpeak has a negative 

correlation with the target variable. In the slope, there are 4 positive correlated variables and other 

are negative correlated variable. Slope has a positive correlation with the target variable. In the ca, 

there are 8 positive correlated variables and other are negative correlated variable. ca has a negative 

correlation with the target variable. In the thal, there are 7 positive correlated variables and other are 

negative correlated variable. thal has a negative correlation with the target variable. 

In all variables there are four variables are positive correlated with the target variable and all 

other variables are negative correlated. The variables have positive correlation with the target 

variable are (cp, restecg, thalach, and slope). Between four variables, the cp is the largest positive 

correlated with the target variable. So, the cp, restecg, thalach, and slope have an association 

correlation with the target variable.  

 

Figure 4. The heatmap in the dataset. 
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4.2 Neutrosophic AHP as a Feature Selection 

We build the comparison matrix between 13 features. This matrix contains the triangular 

neutrosophic number. Table 2 shows the triangular neutrosophic numbers for 13 features. Then 

replace these numbers with the crisp values [27]. Then compute the normalization matrix. Then 

compute the weights of features as shown in Figure 5. 

 
Table 2. Comparison matrix between 13 features. 

 HDF1 HDF2 HDF3 

HDF1 1 ((1,1,1) ;0.50,0.50,0.50) ((6,7,8) ;0.90,0.10,0.10) 

HDF2 1/((1,1,1) ;0.50,0.50,0.50) 1 ((4,5,6) ;0.80,0.15,0.20) 

HDF3 1/((6,7,8) ;0.90,0.10,0.10) 1/((4,5,6) ;0.80,0.15,0.20) 1 

HDF4 1/((1,2,3) ;0.40,0.65,0.60) 1/((6,7,8) ;0.90,0.10,0.10) 1((2,3,4) ;0.30,0.75,0.70) 

HDF5 1/((2,3,4) ;0.30,0.75,0.70) 1/((9,9,9) ;0.100,0.00,0.00) 1/((4,5,6) ;0.80,0.15,0.20) 

HDF6 1/((2,3,4) ;0.30,0.75,0.70) 1/((3,4,5) ;0.60,0.35,0.40) 1/((1,1,1) ;0.50,0.50,0.50) 

HDF7 1/((1,2,3) ;0.40,0.65,0.60) 1/((3,4,5) ;0.60,0.35,0.40) 1/((1,2,3) ;0.40,0.65,0.60) 

HDF8 1/((9,9,9) ;0.100,0.00,0.00) 1/((9,9,9) ;0.100,0.00,0.00) 1/((5,6,7) ;0.70,0.25,0.30) 

HDF9 1/((7,8,9) ;0.85,0.10,0.15) 1/((6,7,8) ;0.90,0.10,0.10) 1/((7,8,9) ;0.85,0.10,0.15) 

HDF10 1/((3,4,5) ;0.60,0.35,0.40) 1/((4,5,6) ;0.80,0.15,0.20) 1/((3,4,5) ;0.60,0.35,0.40) 

HDF11 1/((5,6,7) ;0.70,0.25,0.30) 1/((2,3,4) ;0.30,0.75,0.70) 1/((9,9,9) ;0.100,0.00,0.00) 

HDF12 1/((4,5,6) ;0.80,0.15,0.20) 1/((4,5,6) ;0.80,0.15,0.20) 1/((1,2,3) ;0.40,0.65,0.60) 

HDF13 1/((4,5,6) ;0.80,0.15,0.20) 1/((1,1,1) ;0.50,0.50,0.50) 1/((1,1,1) ;0.50,0.50,0.50) 

 HDF4 HDF5 HDF6 

HDF1 ((1,2,3) ;0.40,0.65,0.60) ((2,3,4) ;0.30,0.75,0.70) ((2,3,4) ;0.30,0.75,0.70) 

HDF2 ((6,7,8) ;0.90,0.10,0.10) ((9,9,9) ;0.100,0.00,0.00) ((3,4,5) ;0.60,0.35,0.40) 

HDF3 ((2,3,4) ;0.30,0.75,0.70) ((4,5,6) ;0.80,0.15,0.20) ((1,1,1) ;0.50,0.50,0.50) 

HDF4 1 ((5,6,7) ;0.70,0.25,0.30) ((3,4,5) ;0.60,0.35,0.40) 

HDF5 1/((5,6,7) ;0.70,0.25,0.30) 1 ((3,4,5) ;0.60,0.35,0.40) 

HDF6 1/((3,4,5) ;0.60,0.35,0.40) 1/((3,4,5) ;0.60,0.35,0.40) 1 

HDF7 1/((1,2,3) ;0.40,0.65,0.60) 1/((5,6,7) ;0.70,0.25,0.30) 1/((7,8,9) ;0.85,0.10,0.15) 

HDF8 1/((1,2,3) ;0.40,0.65,0.60) 1/((7,8,9) ;0.85,0.10,0.15) 1/((5,6,7) ;0.70,0.25,0.30) 

HDF9 1/((1,1,1) ;0.50,0.50,0.50) 1/((6,7,8) ;0.90,0.10,0.10) 1/((6,7,8) ;0.90,0.10,0.10) 

HDF10 1/((1,2,3) ;0.40,0.65,0.60) 1/((1,1,1) ;0.50,0.50,0.50) 1/((4,5,6) ;0.80,0.15,0.20) 

HDF11 1/((5,6,7) ;0.70,0.25,0.30) 1/((3,4,5) ;0.60,0.35,0.40) 1/((9,9,9) ;0.100,0.00,0.00) 

HDF12 1/((1,1,1) ;0.50,0.50,0.50) 1/((7,8,9) ;0.85,0.10,0.15) 1/((5,6,7) ;0.70,0.25,0.30) 

HDF13 1/((1,2,3) ;0.40,0.65,0.60) 1/((2,3,4) ;0.30,0.75,0.70) 1/((3,4,5) ;0.60,0.35,0.40) 

 HDF7 HDF8 HDF9 

HDF1 ((1,2,3) ;0.40,0.65,0.60) ((9,9,9) ;0.100,0.00,0.00) ((7,8,9) ;0.85,0.10,0.15) 

HDF2 ((3,4,5) ;0.60,0.35,0.40) ((9,9,9) ;0.100,0.00,0.00) ((6,7,8) ;0.90,0.10,0.10) 

HDF3 ((1,2,3) ;0.40,0.65,0.60) ((5,6,7) ;0.70,0.25,0.30) ((7,8,9) ;0.85,0.10,0.15) 

HDF4 ((1,2,3) ;0.40,0.65,0.60) ((1,2,3) ;0.40,0.65,0.60) ((1,1,1) ;0.50,0.50,0.50) 

HDF5 ((5,6,7) ;0.70,0.25,0.30) ((7,8,9) ;0.85,0.10,0.15) ((6,7,8) ;0.90,0.10,0.10) 

HDF6 ((7,8,9) ;0.85,0.10,0.15) ((5,6,7) ;0.70,0.25,0.30) ((6,7,8) ;0.90,0.10,0.10) 
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HDF7 1 ((3,4,5) ;0.60,0.35,0.40) ((5,6,7) ;0.70,0.25,0.30) 

HDF8 1/((3,4,5) ;0.60,0.35,0.40) 1 ((3,4,5) ;0.60,0.35,0.40) 

HDF9 1/((5,6,7) ;0.70,0.25,0.30) 1/((3,4,5) ;0.60,0.35,0.40) 1 

HDF10 1/((2,3,4) ;0.30,0.75,0.70) 1/((6,7,8) ;0.90,0.10,0.10) 1/((9,9,9) ;0.100,0.00,0.00) 

HDF11 1/((6,7,8) ;0.90,0.10,0.10) 1/((1,1,1) ;0.50,0.50,0.50) 1/((1,2,3) ;0.40,0.65,0.60) 

HDF12 1/((3,4,5) ;0.60,0.35,0.40) 1/((9,9,9) ;0.100,0.00,0.00) 1/((6,7,8) ;0.90,0.10,0.10) 

HDF13 1/((5,6,7) ;0.70,0.25,0.30) 1/((7,8,9) ;0.85,0.10,0.15) 1/((3,4,5) ;0.60,0.35,0.40) 

 HDF10 HDF11 HDF12 

HDF1 ((3,4,5) ;0.60,0.35,0.40) ((5,6,7) ;0.70,0.25,0.30) ((4,5,6) ;0.80,0.15,0.20) 

HDF2 ((4,5,6) ;0.80,0.15,0.20) ((2,3,4) ;0.30,0.75,0.70) ((4,5,6) ;0.80,0.15,0.20) 

HDF3 ((3,4,5) ;0.60,0.35,0.40) ((9,9,9) ;0.100,0.00,0.00) ((1,2,3) ;0.40,0.65,0.60) 

HDF4 ((1,2,3) ;0.40,0.65,0.60) ((5,6,7) ;0.70,0.25,0.30) ((1,1,1) ;0.50,0.50,0.50) 

HDF5 ((1,1,1) ;0.50,0.50,0.50) ((3,4,5) ;0.60,0.35,0.40) ((7,8,9) ;0.85,0.10,0.15) 

HDF6 ((4,5,6) ;0.80,0.15,0.20) ((9,9,9) ;0.100,0.00,0.00) ((5,6,7) ;0.70,0.25,0.30) 

HDF7 ((2,3,4) ;0.30,0.75,0.70) ((6,7,8) ;0.90,0.10,0.10) ((3,4,5) ;0.60,0.35,0.40) 

HDF8 ((6,7,8) ;0.90,0.10,0.10) ((1,1,1) ;0.50,0.50,0.50) ((9,9,9) ;0.100,0.00,0.00) 

HDF9 ((9,9,9) ;0.100,0.00,0.00) ((1,2,3) ;0.40,0.65,0.60) ((6,7,8) ;0.90,0.10,0.10) 

HDF10 1 ((1,1,1) ;0.50,0.50,0.50) ((4,5,6) ;0.80,0.15,0.20) 

HDF11 1/((1,1,1) ;0.50,0.50,0.50) 1 ((2,3,4) ;0.30,0.75,0.70) 

HDF12 1/((4,5,6) ;0.80,0.15,0.20) 1/((2,3,4) ;0.30,0.75,0.70) 1 

HDF13 1/((3,4,5) ;0.60,0.35,0.40) 1/((1,1,1) ;0.50,0.50,0.50) 1/((1,2,3) ;0.40,0.65,0.60) 

 HDF13 

HDF1 ((4,5,6) ;0.80,0.15,0.20) 

HDF2 ((1,1,1) ;0.50,0.50,0.50) 

HDF3 ((1,1,1) ;0.50,0.50,0.50) 

HDF4 ((1,2,3) ;0.40,0.65,0.60) 

HDF5 ((2,3,4) ;0.30,0.75,0.70) 

HDF6 ((3,4,5) ;0.60,0.35,0.40) 

HDF7 ((5,6,7) ;0.70,0.25,0.30) 

HDF8 ((7,8,9) ;0.85,0.10,0.15) 

HDF9 ((3,4,5) ;0.60,0.35,0.40) 

HDF10 ((3,4,5) ;0.60,0.35,0.40) 

HDF11 ((1,1,1) ;0.50,0.50,0.50) 

HDF12 ((1,2,3) ;0.40,0.65,0.60) 

HDF13 1 
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Figure 5. Weights of 13 features. 

4.3 Association Rules 

Table 3 shows the association rules between the target and other variables. Table 3 presents the 

support, confidence, and lift values. 
Table 3. Comparison matrix between 13 features. 

Column 

name in 

dataset 

Target 

class 

antecedent 

support 

consequent 

support 
Support confidence lift leverage Conviction 

Age 
0 0.8537 0.9756 0.8293 0.9714 0.9957 -0.0036 0.8537 

1 0.9756 0.8537 0.8293 0.8500 0.9957 -0.0036 0.9756 

Sex 
0 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

1 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

CP 
0 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

1 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

trestbps 
0 0.7755 0.7959 0.5714 0.7368 0.9258 -0.0458 0.7755 

1 0.7959 0.7755 0.5714 0.7179 0.9258 -0.0458 0.7959 

fbs 
0 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

1 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

restecg 
0 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

1 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

thalach 
0 0.7363 0.7802 0.5165 0.7015 0.8991 -0.058 0.7363 

1 0.7802 0.7363 0.5165 0.6620 0.8991 -0.058 0.7802 

exang 
0 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

1 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

oldpeak 
0 0.650 0.875 0.525 0.8077 0.9231 -0.0437 0.650 

1 0.875 0.650 0.525 0.6000 0.9231 -0.0437 0.875 

slope 

 

0 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

1 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

ca 
0 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

1 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

thal 
0 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

1 1.0 1.0 1.0 1.0 1.0 0.0 Inf 

0.1299

0.1888
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4.4 Performance Measurements 

Every confusion matrix provides a description of the operation of a classification algorithm on a 

set of test data for which the measured values are completely understood. The confusion matrix was 

used in the computation of the parameters stated in Table 4, which may be seen below. From Table 4 

the random forest and decision tree have the best accuracy with 100% accuracy. We divide the dataset 

into train and test, the train set has 80% and the test set has 20% data. Figure 6 shows the confusion 

matrices. 

Table 4. The results of machine learning algorithms. 

 
Logistic 

Regression 

Random 

Forest 
KNN SVM AdaBoosting Bagging 

Gradient 

Boosting 
NB 

Decision 

Tree 

Accuracy 0.8439 1.0000 0.9805 0.6780 0.8927 0.9902 0.9756 0.8390 1.0000 

Precision 0.8155 1.0000 0.9604 0.6165 0.9121 1.0000 0.9894 0.8333 1.0000 

Recall 0.8660 1.0000 1.0000 0.8454 0.8557 0.9794 0.9588 0.8247 1.0000 

F1-score 0.8400 1.0000 0.9798 0.7130 0.8830 0.9896 0.9738 0.8290 1.0000 

 

 

Figure 6. The confusion matrices. 
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5. Managerial Implications 

The administrative implications of heart disease prediction for healthcare organizations and 

providers are many. Among the repercussions of this are: 

Effective resource allocation is possible with the use of heart disease prediction models. 

Healthcare expenses may be reduced and resource utilization improved by targeting people at the 

highest risk via preventative measures like screens and treatments. 

Healthcare administrators are able to create more effective preventative care programs because 

of heart disease prediction. High-risk patients might be targeted for preventative measures such as 

lifestyle changes, medication management, and routine monitoring by healthcare administrators. By 

taking preventative measures, healthcare outcomes for patients and costs for healthcare systems may 

both improve. 

Workflow and Care Coordination: Prediction models for cardiovascular disease may help with 

both. Managers can pinpoint those patients most at risk and swiftly arrange them for the necessary 

preventative measures. Better patient care and results are the results of this effort to standardize care 

pathways and guarantee timely interventions. 

Patient Engagement and Education: Prediction models for cardiovascular disease may help with 

both goals. Managers may utilize prognostic data to teach patients about their unique risk factors, the 

value of sticking to their treatment regimens, and the advantages of adopting healthier habits. 

Patients' desire and ability to make educated choices about their own heart disease prevention and 

treatment may both be improved by patient engagement. 

The efficiency of preventative measures and the quality of treatment as a whole may be tracked 

using performance metrics such as heart disease prediction models. Managers may monitor the 

progress of high-risk people to see whether the interventions they've put in place are having the 

intended effect. With this information, we can make more educated choices about how to best treat 

cardiac disease. 

Insurance firms and other payers may use heart disease prediction algorithms in risk-based 

contracts and insurance policies. Insurers may adjust customers' premiums, levels of coverage, and 

methods of payment to account for each person's unique estimated risk of cardiovascular disease by 

integrating predictive information. This method encourages individualized and economically viable 

medical protection. 

Data generated by heart disease prediction models may be utilized for scientific inquiry and 

technological advancement. Data produced by prediction models may be analyzed by managers and 

researchers together to discover new risk factors, verify current models, and improve predictive 

algorithms. Working together, we can better understand how to anticipate and treat cardiac disease. 

Predicting cardiovascular disease has broad administrative implications, including but not 

limited to budgeting, planning for preventative treatment, streamlining operations, increasing 

patient participation, enhancing product quality, reducing risk, and facilitating new studies. In the 

context of heart disease prevention and management, predictive models may help healthcare 

administrators make better choices, enhance the quality of treatment provided, and improve patient 

outcomes. 

6. Conclusions 

Predicting heart disease is important for several reasons, including bettering patient outcomes, 

maximizing resources, and permitting individualized treatment. By drawing from several data sets 

to build disease-specific prognostic models, machine learning algorithms have already shown their 

worth in this area. Better heart disease management and prevention are possible because of these 

models' ability to stratify risk, diagnose it early, and direct treatment accordingly. 

Several administrative considerations arise from using machine learning to the problem of 

predicting cardiac disease. By focusing on those most at risk and implementing preventative 
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measures first, healthcare systems may make better use of their limited resources. Predictive models 

are used in personalized care plans to increase patient involvement and treatment compliance. Care 

coordination and optimization of workflow allow for prompt screenings and treatments for those at 

high risk. Additionally, cardiovascular disease prediction models allow for better performance 

tracking, quality enhancement, and groundbreaking new research. 

The use of machine learning algorithms for the prediction of heart disease has enormous 

potential to improve cardiovascular treatment. Risk stratification, individualized care planning, and 

early identification of cardiac disease are all made possible by these models, which make use of 

massive datasets and sophisticated computational approaches. We used the neutrosophic AHP as a 

feature selection to select the best feature, then we applied the association rules to get importance 

from the rules between datasets. Finally, we used the nine machine learning algorithms to predict 

heart disease. From our data, we know that the highest accuracy is achieved by random forests and 

decision trees (100%), then by bagging, k-nearest neighbors, and gradient boosting (98%, 97%, and 

89%, respectively), then by AdaBoosting (89%), then by logistic regression and Naive Bayes (84%), 

and finally by support vector machines (68%). 
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