

An Exhaustive Review of Neutrosophic Logic in Addressing Image Processing Issues

Samia Mandour 1 🕩

¹ Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt; samia.rmdan@fci.zu.edu.eg.

* Correspondence: samia.rmdan@fci.zu.edu.eg.

Abstract: Since the importance of images in our lives and the advancements in computer data gathering methods, anyone can collect a large number of images, but most of them cannot be processed manually. Image processing therefore becomes appealing since various types of data may be represented and processed digitally. Image processing has become the most popular processing method, employed in security camera films, healthcare images, images from remote sensors, and naturalistic image/videos because of fast computers and processors. In order to raise cognitive function and speed up decision-making, image processing is crucial to many information access systems. Since ambiguity now permeates every part of the world, including images, discussing the neutrosophic logic forms the central idea of this discussion, as it is able to handle this ambiguity. To apply the neutrosophic logic, this requires converting the image into neutrosophic reasoning. When using neutrosophic reasoning for image retrieval, average recall and precision measures improve over other approaches. As the image processing field covers several tracks such as image segmentation, noise reduction, image classification, and others. Because there are so many research articles published in this field every year, we thought it would be appropriate to introduce a survey study on this subject. As a result, this study offers a comprehensive assessment of the literature on applying neutrosophic logic to image processing problems that have surfaced during the previous five years (2019-2023).

Keywords: Neutrosophic Logic; Image Processing; Image Segmentation; Noise Reduction; Image Enhancement.

1. Introduction

The complex process of vision involves many different parts of both the brain and the eye cooperating. One of the most important senses regarding humanity's survival and adaptation has always been eyesight. The visual system is used by humans to view, gather, analyze, and comprehend visual information, as well as draw conclusions from it. The ultimate objective of the field of image processing is to automate the collection and processing of visual data. The process of converting an image into a digital format and carrying out specific operations on it in order to extract valuable information is known as image processing. We have seen a broad expansion in the number of image processing applications and methodologies throughout the years. In numerous applications including face recognition [1, 2], object identification [3, 4], medical images, and noise removal [5, 6], it is a crucial preliminary step. Image processing process includes a set of steps, which can be indicated in Figure 1. As mentioned above, the field of image processing encompasses a number of areas, including noise reduction, image clustering, and image segmentation. As a result, numerous approaches, including metaheuristics, machine learning, and deep learning, have been used to

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

address these issues. Recently, neutrosophic logic was added to them, because of its high ability to deal with blurring.

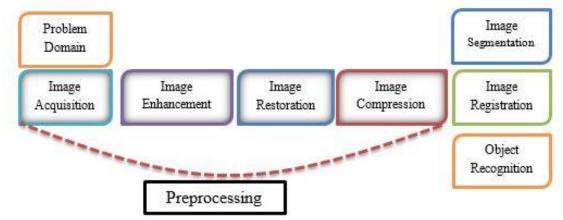


Figure 1. Phases in image processing preprocessing.

Neutrosophic set studies the nature, origins, and scope of impartialities as well as how they interact with other mental spectra. Neutrosophic sets are comparatively recent extensions of intuitionistic fuzzy sets. In Neutrosophic logic, a proposition is assigned three values, such as truth (T), indeterminacy (I), and falsity (F), to each proposition. Any set that falls between [0, 1] and has a grade of truth, indeterminacy, and falsity for each element of the cosmos is called a neutrosophic set. So, how can neutrosophic logic deal with digital images? – The digital image should be converted to a neutrosophic domain throughout a set of equations in [7], it also indicated in the following section. The conversion process from digital image to a neutrosophic image has opened the door for many researchers to solve image problems, because of its ability to handle ambiguity. Based on the previous, Neutrosophic logic has been a critical tool for image noise removal. So, Neutrosophic logic has been used and adapted by numerous scholars to solve image-related difficulties, which gave us the motivation to present a research paper that includes the publications on this era from 2019 through 2023. The primary contributions of this essay can be outlined as follows:

- Introducing a few significant difficulties with image processing that use neutrosophic logic.
- Survey the frequency of neutrosophic logic employed for image segmentation.
- Survey the frequency of neutrosophic logic employed for image classification.
- Survey the frequency of neutrosophic logic employed for image clustering.

2. Neutrosophic Logic

At the end of the nineties, Smarandache introduced neutrosophic theory for the first time [8]. Neutrosophic set is considered the generalization of fuzzy set. According to Zadeh [9], In order to account for database uncertainty, fuzzy sets were introduced. Fuzzy sets use a single-valued membership function in [0, 1] to display acceptance, rejection, and uncertainty portions. They cannot, however, each represent indeterminacy separately. Smarandache in 1998 established neutrosophic logic as a result. The membership functional values of truth, falseness, and indeterminism for every attribute are examples of single-valued neutrosophic. These three functions are independent of one another, meaning that they do not influence one another. To talk about the use of neutrosophic technology in image processing, we should discuss the fuzzy set concept. Fuzzy set concept can be discussed throughout the following. Suppose that we have a universal set U and C is a subset ofU. Subset *C* contains a set of elements*u*. Each element in set C has a membership degree indicates the belonging degree to set C, and this membership degree lies between [0, 1].

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

Moving to neutrosophic set, we can say that, it highlights three functions: membership, nonmembership, and indeterminacy. To form a neutrosophic set C in universal set U, three membership functions (truth (T_C (u), falseness F_C (u), indeterminacy I_C (u)) are needed for each element u in C, each membership function from these lies in range of [0,1]. The Figure 2 indicates the relationship between four sets: classical set, fuzzy set, intuitionistic fuzzy set, and neutrosophic sets.

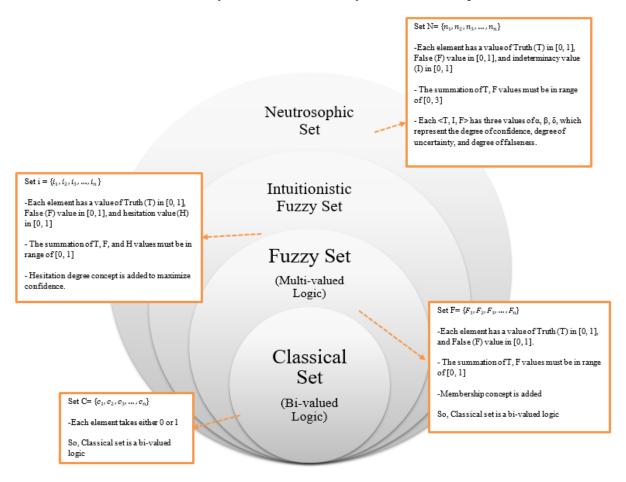


Figure 2. Generalization from classical set to neutrosophic set.

3. Image processing problems

Image processing process covers different areas such as: image segmentation, image enhancement, and image noise removal. The following subsections will cover each problem formulation and also the research trends in each topic.

3.1 Neutrosophic logic image segmentation

The well-known proverb "A picture is worth a thousand words" suggests that analyzing an image can reveal more information than analyzing written content. Image segmentation, or the division of an image into its component objects or region of interest, is the primary research field in computer vision. In general, it groups comparable parts of the image pixels together. It is a stage of pre-processing for a lot of image-based applications, such as recognition of patterns, object detection, healthcare imaging, and biometric authentication [10]. The digital image should be converted to a neutrosophic domain throughout a set of equations from 1 to 4.

Suppose that U be a discourse universe and let A be a set of bright pixels included in U. Truth (T), Indeterminacy (I), and Falseness (F) are the three subsets that define a neutrosophic image. In an image, a pixel P is identified as P(T, I, F) and is a part of A in the following manner: Where t changes

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

in T, i changes in I, and f changes in F, each bright pixel set has t% truth, i% undetermined(indeterminate), and f% falseness. Every component gets a value between 0 and 1. The image domain's pixel P (a, b) is converted to the domain of neutrosophic as follows: PNS (a, b) = {T (a, b), I (a, b), F (a, b)}. The probabilities associated with the white, indeterminate, and non-white sets are represented by T (a, b), I (a, b), F (a, b), can be defined as follows:

$$T(a,b) = \frac{g_{a,b} - g_{min}}{g_{max} - g_{min}},\tag{1}$$

$$I(a,b) = 1 - \frac{h_{a,b} - h_{min}}{h_{max} - h_{min}}$$
(2)

$$F(a,b) = 1 - T(a,b)$$
 (3)

 $h_{a,b} = |e(a,b)| \tag{4}$

Where $g_{a,b}$ represents the value of the pixel and the homogeneous value of T at (a, b) is denoted by $h_{a,b}$ and is represented by the local gradient value e(a, b), which is derived by applying the Sobel operation.

After converting the digital image into a neutrosophic field, researchers raced to compile many research papers in this regard, including those related to image segmentation. So, it gave us a motivation to introduce this survey paper. From 2019 to 2023, some of neutrosophic image segmentation research articles were listed in Table 1.

No	Ref	Main Idea	Data	Merit	Shortcomings	De-noising method
1	[11]	This research suggests an image segmentation module with neutrosophic that is based on a set of steps: First, use min/max normalization to reduce noise. Secondly, the image non-linearities are counted using activation functions. Third, membership functions are calculated to identify various regions and create neutrosophic sets. Lastly, the neutrosophic sets and Dice's coefficients are merged to guarantee an accurate assessment of the uncertainty surrounding the missing data and its indeterminacy for the purpose of segmenting images.	- Crow images	 Less time and computing power Efficient for segmenting and processing images. This method can be applied to any number of images and any type of typical problem (blurred images). 	- No requirement for training	- Min-Max Normalization

Table 1. An overview of some Neutrosophic logic for image segmentation.

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

2	[12]	In this study, The picture is	- Lena image	The algorithm	- No appreciable	- NSS
-	[+-]	initially converted into a	- rice grain	has the	decrease in the	
		neutrosophic image in the	image	following	program's	
		suggested technique. It is	- Warship	attributes:	execution time	
		suggested to use a combined	image	- An adequate		
		FCM based on particle		mage		
		swarm optimization (PSO) to		segmentation		
		increase the effectiveness of		effectiveness		
		global search. Ultimately, the		-A powerful		
		suggested approach is		global search		
		utilized for the segmentation		capability.		
		of neutrosophic images. The		-Workable and		
		results of the studies		has strong		
		demonstrate that the new		noise reduction		
		method is more effective		capabilities.		
		than the FCM algorithm in				
		removing picture noise and				
		improving the clarity of the segmentation region border.				
2	[12]		- The	- The suggested	- There is a limit to	- Ns domain +
3	[13]	, 00	experiment's	approach may	objective	Filter
		0 0	picture source	effectively	performance.	1 iiter
		images by fusing the	was the	suppress	Performancer	
		neutrosophic set (NS) theory	MSRA10K	multiple		
		with a saliency map. The	image library	primary noises.		
		methodology of this study as	0 ,	- Effective at		
		follows: first, applying a		handling		
		filter to address the image's		massive		
		weak edges, second, after		amounts of		
		creating saliency map, gray		picture data.		
		scale and local entropy maps				
		are created, saliency is				
		converted to NS space. The				
		segmentation results are				
		obtained using threshold.				
4	[14]	Two offset-based methods	- Geometric	- Effectiveness		- Neutrosophic
		were presented in this	image and	- Noise		offsets
		research. For image	brain	reduction		- Neutrosophic
		segmentation, the	image	- Calculation		offuninorms
		preliminary one operates on		simplification		
		neutrosophic offsets. For		through using		
		edge identification, the		offset		
		second is built on				
		neutrosophic offuninorms.				
		r r				

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

5	[15]	In this study, we have combined the notion of weak continuity constraints with an NS-based multiclass segmentation technique. The border information is handled by the weak continuity constraints, which aid in precisely localizing the segmentation boundaries. By taking into account the location of segment boundaries, the suggested method assists in overcoming the drawbacks of existing methods for picture segmentation in the NS domain. Without requiring any prior knowledge of the number of classes, the accurate threshold values are computed repeatedly in the proposed method by	- Synthetic images - Non- destructive testing (NDT) images - Kaggle 2018 Data Science Bowl dataset	Onbothsyntheticandrangeofnaturalandnon-adddestructivetestingdestructivetestingtestingbotos,theprocedureworkedfairlywell.Theapproachapproachexhibitssuperiorquantitativeand qualitativeperformance.The suggestedsolutiontheperformstheontheextremelyuncertainKagglenucleiphotos.solution	- Intricately textured photos are not processed. - Slower in comparing with a non-repetitive procedure.	- The weak continuity constraints in the NS domain.
6	[16]	function. An innovative method based on neutrosophic logic for segmenting dental radiography images. Using neutrosophic logic, the first region of interest is chosen. Using the local binary pattern, gradient feature, entropy feature, and patch level feature, the input dental radiography image is transformed into the neutrosophic domain. Localizing the initial region of interest is aided by the application of neutrosophic reasoning. Then, to segment a more precise region of	- Panoramic Dental X-rays with Segmented Mandibles' and 'Digital Dental X-ray Database for Caries Screening.	- Elevated degree of performance	- The suggested method's dependence on image resolution is one of its main shortcomings. It cannot operate in the same manner with images of varying resolutions. It is necessary to adjust system parameters to a specific image resolution.	-NSS

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

		interest, a fuzzy c means method is used.				
7	[17]	This paper proposes an adaptive region growth strategy for segmenting Brest ultrasound scans based on the neutrosophic set (NSSRG). Each of the pixels in the BUS image is characterized by computing the level of homogeneity score along with similarity set score once the images are converted into the NS domain. The seed regions are created using an adaptive Otsu-based thresholding approach and morphological techniques, after which an adaptable region growing methodology is adjusted depending on the neutrosophic set for the creation of potential tumor regions. To reach the ultimate segmentation result, a deep convolutional neural network based on VGG-16 net is employed for false positive reduction.	This study uses a dataset of clinical 384 BUS pictures that were gathered using a 4-5 MHz linear probe by VIVID 7 (GE, Horten, Norway).	- For the segmentation of breast tumors on BUS pictures, it is reliable and efficient, particularly when the tumors have blurry and low contrast borders.	- Not mentioned	-NSS
8	[18]	This work enhanced the general effectiveness of skin lesion segmentation in dermoscopic images and proposed novel concepts for the NS subgroup. The suggested definition was tested using various filter mixtures, including the standard Sobel with median filter combination. Furthermore, several combinations and methods of segmentation such as GC	- Ninety dermoscopic images from the ISIC2016 skin lesion dermoscopic images were used.	- High segmentation accuracy	- High computational time.	- Neutrosophic filters.

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

		and k-means were investigated.				
9	[19]	Havingdefinedtheiraggregateoperatorsandaggregateoperatorsandprocedures, this paper thenutilizetheutilizethelinguisticneutrosophiccubicset(LNCS)forimageprocessing.Usingthreemembershipdegrees, noisygreyscaleimagesconvertedintotheinvestigation,andaggregationprocedureswerethen usedto sumimages.The Lenaimagehavetheirnoisecleinedusingthe suggestedmethod.thesuggested	- grey-scale Lena image - images with Edge detection - images with minute object's detailing	- Uses less memory and operates more quickly than the current techniques	-Not mentioned	- Linguistic neutrosophic cubic set
10	[20]	This research aims to identify brain tumors as benign or malignant in order to create an effective automatic brain tumor segmentation system. The neutrosophic set - expert maximum fuzzy-sure entropy (NS-EMFSE) approach was used to segment brain tumors. After Alexnet extracted the segmented image features using CNN architectures, SVM and KNN classifiers were used to classify the images.	- MRI images of 80 benign and 80 malignant brain tumors	-High accuracy -The module is effective in terms of in terms of Sensitivity, Precision, Accuracy	- Not mentioned	- The neutrosophic set - expert maximum fuzzy- sure entropy (NS- EMFSE) approach
11	[21]	This research proposes a gradient-based structural similarity based spuerpixel- neutrosophic C-means clustering for color image segmentation. To obtain precise target contours, the SLIC method combines numerous morphological	-three datasets are used (EORSSD, BSDS500, and MSRC)	-This technique can efficiently and accurately segment pictures into clean and noisy ones.	-The number of super pixel must be known in advance	- gradient-based structural similarity based spuerpixel- neutrosophic C- means clustering

Samia Mandour, An Exhaustive Review of Neutrosophic Logic in Addressing Image Processing Issues

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

		reconstructions. There are fewer clusters while the target contour is kept intact. Furthermore, the NCM algorithm is enhanced by using adaptive neighborhood information, resulting in a more accurate determination of doubtful super pixels.				
13	[22]	In order to segment images, this research suggests a Neutrosophic C-means Clustering with local information and noise distance-based kernel metric (NKWNLICM). First, in order to strengthen the robustness of noise picture segmentation, fuzzy spatial information and noisy distance information are added to the NCM model. After then, the distance across pixels is calculated using the kernel function. The classification performance is additionally improved by mapping low- dimensional data into high- dimensional data. Finally, a new definition of the fuzzy factor is based on the separation between the center pixel and its surrounding pixels.	- Berkeley University image library	- improved segmentation outcomes for photos with noise	- Its segmentation performance has little advantage since the local data of the image, the spread of the noise, plus the kernel function are incorporated for image segmentation modeling.	- Local fuzzy information and noise distance
14	[23]	This work presents a novel method for handling uncertainty based on the neutrosophic set (NS) in order to segment nondestructive testing NDT image. By encoding an image as a true, false, and indeterminate subset, the NS controls the uncertainty. The two processes α – mean and β – enhancement are	- NDT images from [24]	- manage the ambiguities for the segmentation	-Not mentioned	- NS + bat algorithm

Samia Mandour, An Exhaustive Review of Neutrosophic Logic in Addressing Image Processing Issues

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

15	[25]	necessaryforaccuratedepictionofNSvalues.Usingthebatalgorithm(BA), we can determine theappropriatevaluesofa basedonthe statistics ofthe image.ThisworkpresentsThisworkpresentssegmentationandidentificationofbraintumortissuefeaturesanewlydesigned(type-2)neutrosophicset)T2NS.T2NSEIF,animagesegmentationtechnique, wasproposedbasedonproposedT2NS.ThesuggestedT2NSEIFapproachalsoincludedintegrationsoftheT2NSEIFandimageapproachalsoincludedintegrationsoftheT2NSEIFapproachalsoandimagefusionprinciples.ThesuggestedapproachalsoincludedintegrationsoftheThesuggestedapproachapproachalsoproachandimagefusionproposedfusionprinciples.andimagefusionproposedfusionprinciples.andimagefusionprinciples.forthesuggestedapproach <th>- A collection of 3064 T1- weighted contrast- enhanced pictures [26] is used to pick three distinct brain tumors: meningioma, glioma, and pituitary</th> <th>-High performance -consumes less CPU time.</th> <th>-Not mentioned</th> <th>-Type Two Neutrosophic set(T2NS)</th>	- A collection of 3064 T1- weighted contrast- enhanced pictures [26] is used to pick three distinct brain tumors: meningioma, glioma, and pituitary	-High performance -consumes less CPU time.	-Not mentioned	-Type Two Neutrosophic set(T2NS)
		neutrosophication of MRI grey levels, and T2NSE was used to quantify the inherent uncertainties.				
16	[27]	The residue procedure, which indicates the residual values of neutrosophic membership intensities, was used in the article. This paper will investigate a brand-new concept for picture thresholding known as RNS. Three different RNS technique kinds will be available: minimum, average, and maximal. This approach takes into consideration the principles of current thresholding methods in neutrosophic solvation. In order to give an integrated visionary route	- A fingerprint picture.	- achieves a higher mean accuracy rating.	- Not mentioned	- Residue Neutrosophic Set

Samia Mandour, An Exhaustive Review of Neutrosophic Logic in Addressing Image Processing Issues

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

		segmentation methodology, this article employs unique methodologies.				
17	[28]	The two key components of the new MR image segmentation method reported in this study were the HSV color system and the neutrosophic-entropy based clustering algorithm (NEBCA). In this study, the NEBCA was utilized to segment the MR regions, and the HSV color scheme was employed to improve the visual representation of the features inside the segmented regions.	- 30 distinct Parkinson's disease (PD) MR pictures.	- Less time in terms of CPU time -efficiently segment several MR image regions	- The proposed method is validated only with MR images of PD patients.	- Neutrosophic- entropy based clustering algorithm (NEBCA).
18	[29]	A novel fuzzy clustering technique that utilizes non- local information is presented here to enhance the image segmentation algorithm's capacity to process boundaries and its anti-noise effectiveness. To find the fuzzy subset's clustering center, the suggested method first employs the data distribution of a deterministic subset. Also, the neutrosophic fuzzy mean clustering technique incorporates the fuzzy non- local pixel correlation.	- Three types of images are used as synthetic image, medical image and natural image	-Effective image segmentation method.	- The study of the bias field in the original image between the true value and the observed value is not done.	- Fuzzy clustering approach using neutrosophic and non-local information (NLNFC).
19	[30]	This study suggested a hybrid segmentation method for automatically identifying liver tumors from abdominal CT scans that combines the watershed algorithm, fast fuzzy c- means algorithm, and neutrosophic sets.	- Over 105 patients with CT scans of their abdomens and more than 150 slices per patient are included in the dataset [31]	- Precise precision, reduced time spending, and reduced noise sensitivity. - has outstanding precision as well as efficiency on noisy and non-	 Many CT scans are not processed in order to assess performance. This method's primary flaw is that it requires a lot of computer power and is not suitable 	-NSS

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

				uniform pictures, reducing over- segmentation.	for real-time applications.	
20	[32]	This paper segments the dermoscopic images in the neutrosophic set (NS) domain and suggests an efficient method for dermoscopic skin lesion segmentation employing a neutrosophic set-based kernel graph cut (NKGC).	- International Skin Imaging Collaboration (ISIC) 2016 skin lesion dataset.	- best average segmentation accuracy	-Not mentioned	- Neutrosophic set-based kernel graph cut (NKGC).
21	[33]	In this article, the author suggested a novel exemplar- based image completion method that finds the best match to fill the hole by segmenting an image using neutrosophic sets and applying segmentation information along with similarity measures that take neighborhood and similarity information into account.	-Two datasets (Kaggle dataset, Dhar and Kundu (2021)	-The suggested approach performs both qualitatively and quantitatively well for photos that are corrupted.	-Noise is not considered in this research	- Noise is not take into consideration in this study
22	[34]	This study combines two potent methodologies, such as expert maximum fuzzy- sure entropy (EMFSE) and neutrosophic set (NS), to present an effective edge detection method known as neutrosophic set – expert maximum fuzzy-sure entropy (NS-EMFSE).	- MRI images with 100 different brain tumors	- Efficient segmentation tool.	- Not mentioned	- Maximum fuzzy- sure entropy (EMFSE) + neutrosophic set

3.2 Neutrosophic logic in image classification and clustering

The effectiveness of Neutrosophic set categorization can be attributed to the use of straightforward processes. To control the gain noise and indeterminacy, the NS classifier makes use of neutrosophic logic. With regard to image classification and clustering, a set of research papers were listed in Table 2.

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

 Table 2. An overview of some neutrosophic logic for image classification / clustering.

No	Ref	Main Idea	Data	Merit	Shortcomings	Task
1	[35]	This work suggests a novel method of integrating genetic algorithms and neutrosophic logic in a rule- based classification system to diagnose COVID19 patients based on chest X-ray pictures.	1885 image were collected from three repositoris Github- COVID chest X-ray -Kaggle- COVID radiography - Radiopaedia	-The module performs well in terms of accuracy, precision, sensitivity, and specificity.	- Time complexity	Classification Medical : Chest
2	[36]	In order to control uncertainty when classifying multimodal input, this work uses neutrosophic fuzzy sets for information retrieval tasks. This work aims to identify the images using neutrosophic classification algorithms, drawing inspiration from previous methods of embedding text over images. It makes use of both image and text data. Neutrosophic Convolutional Neural Networks (NCNNs) are used to train feature representations of the generated images for	- Two large scale multi- modal categorization datasets	- Good classification tool	- Not mentioned	Classification Text image
3	[37]	classification tasks. This study solves the texture classification problem by reinterpreting the innovative neutrosophic set-based Completed Local Binary Pattern (CLBP) hybrid approaches based on the neutrosophic set and a novel feature extraction method by using neutrosophic set components. The original input image has been replaced in the suggested technique	- CURET dataset - Poly-class texture datasets - A LOT and STex datasets	-It is suitable for real-time applications. -Good classification accuracy. -The suggested approach has produced excellent classification	-The suggested method's inability to be used directly to color images due to theoretical and mathematical issues is one of its drawbacks. -Time cost	Classification Texture problem

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

4	[38]	with the neutrosophic truth and false components of the image. As a result, there are less noise effects and a more meaningful image. A unique, reliable, automatic, and intelligent system for COVID-19 classification utilizing chest X-rays has been proposed in this study. The suggested pipeline combines neutrosophic and machine learning methodologies in a hybrid fashion.	- A public database in Github have been built [39] - The Kaggle Chest X-ray [40]	results at a reasonable computing cost. -The module performs well in terms of The classification accuracy, precision, sensitivity, and specificity.	- The shortcoming of our suggested pipeline is that it only provides a clear-cut positive or negative COVID-19	Classification Medical : Chest
5	[41]	This study presents the Breast Cancer Classification Strategy, a novel approach to classify breast cancer utilizing Neutrosophic approaches (NTs) and machine learning approaches.	-Brest cancer images	-Performs well in terms of accuracy, precision, recall, and F-measure	-Not mentioned	Classification Medical: Breast
6	[42]	In order to determine the final mammographic micro-calcification clusters MCCs, this study used a density-based clustering approach in conjunction with a DCNN classifier to construct an automatic detection method. As the FP MCs reduction stage, the DCNN1 classifier was utilized since it is specifically trained to distinguish between individual MCs. To quicken learning, a novel adaptive NB technique based on NS theory is used.	 A publicly accessible INbreast database and Nanfang Hospital (NFH) in Guangzhout China are the primary sources of FFDMs of solely MCs [43] 	- Plays a vital part in enhancing the efficiency of the automatic identification and categorization of MCCs.	-Time consume.	Classification Medical: Breast
7	[44]	In order to categorize BUS pictures more precisely, the author offer in this research unique Neutrosophic Gaussian Mixture Models (NGMMs) that combine a Deep Neural Network (DNN), neutrosophic logic, and an enhanced Expectation Maximization (EM) algorithm.	-Two public datasets of Breast Ultrasound Images.	- Greatest classification outcomes	- Not mentioned	- Classification Medical: Breast

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

8	[45]	A novel CVOID-X system based on	-Covid-19	- Efficient tool that	- Architectures that	Classification
		deep learning classifiers has been	evaluated	can be used to	need a lot of	Medical: Chest:
		suggested in this study to	dataset; for	other significant	heterogeneous	COVID-19
		automatically recognize or COVID-	example, the	areas of healthcare	devices, like those for	
		19. The COVID-19 diagnosis neural	images in the	like hepatitis,	healthcare	
		network employing Neutrosophic	dataset were	diabetes, and	applications, still have	
		classifier is a model based on deep	taken using	cancer.	problems with	
		learning designed for extracting	various	- Good	interoperability, data	
		visual features during volumetric	imaging	classification	processing, CPU	
		tests for COVID-19 identification.	clinics'	accuracy.	control, memory and	
		The suggested system makes it	equipment		disc resources, and	
		easier for people to communicate	and image		big data.	
		with medical facilities so that the	collection			
		right COVID-19 patient can be	settings.			
		contacted promptly.				
9	[46]	This research proposes a new	-Fifty images	-The suggested	Not mentioned	Clustering
		clustering approach using	were used to	strategy is more		Medical: Breast
		Neutrosophic Set (NS) to	validate the	accurate and		
		extract/segment the lesion/region of	suggested	efficient at		
		interest in mammography pictures.	strategy, and	segmenting the		
		Because NS can manage	these images	mammography		
		indeterminate information, the	were obtained	pictures.		
		images' level of uncertainty is	from Google.			
		decreased. In our study, a new				
		method based on Shannon entropy				
		and standard deviation is used to				
		compute indeterminate degree.				
		Next, using the neutrosophic				
		similarity function, an image based				
		on neutrosophic similarity is				
		created, which is subsequently				
		grouped to identify lesions or				
		tumors.				
10	[47]	An innovative skin lesion	-Dermoscopic	- The experimental	-The unsuccessful	Clustering
		segmentation approach, known as	skin lesion	findings	cases that involve the	Medical: Skin
		the optimized clustering estimation	image dataset	demonstrated the	use of different colors	lesions
		for neutrosophic graph cut	from the	recommended	in the same lesion	
		algorithm (OCE-NGC), was	International	OCE-NGC	areas are not	
		presented in this paper. First, the	Skin Imaging	approach's	addressed.	
		HBCE process is optimized using the	Collaboration	superiority.		

Samia Mandour, An Exhaustive Review of Neutrosophic Logic in Addressing Image Processing Issues

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

		genetic algorithm (GA). Next, using the neutrosophic c-means (NCM) algorithm, the skin lesion dermoscopic pictures are mapped onto the neutrosophic set (NS) domain. Lastly, during the procedure of segmentation, a cost function of the graph cut (GC) algorithm is defined in the NS	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		domain.	pictures, respectively).			
11	[48]	This study examines the cluster ability of the breast cancer dataset using the commonly utilized c- means clustering algorithm, as well as its improved fuzzy and neutrosophic variations. A range of measures are employed in this comparison study to objectively assess the clustering effectiveness of the breast cancer dataset. The best clustering effectiveness is obtained by the proposed neutrosophic c- means clustering with regard to of silhouette score, precision, and Rand index.	- WDBC datasets, which are breast cancer datasets. Prior data was collected from the University of Wisconsin Hospitals.	- The results of the study demonstrate the advantage of neutrosophic c- means clustering in grouping together comparable cases of breast cancer.	-A multidimensional dataset.	Clustering Medical: breast lesions
12	[49]	A novel edge detection method based on the NS scheme category has been proposed in this research. The frame of picture fusion with edge detection allowed for this to be accomplished. The indeterminate conditions and uncertainties present in the photographs can be handled by this approach. The Sobel operator and the BS function are used by the NS framework to replicate images. A new binarized image is created by integrating the subgroups and the calculated	- MR Brain images.	- The suggested strategy is more accurate and efficient	- Image de-noising are not handled	Clustering Medical: MR Brain

Samia Mandour, An Exhaustive Review of Neutrosophic Logic in Addressing Image Processing Issues

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

thresholds after that. After the		
binarized picture has undergone		
morphological procedures, the		
edges of the image are obtained.		
Every entropy is subjected to the		
same method, which displays many		
discovered edges.		

4. Conclusions

Neutrosophic logic provides a potent tool for describing the image with imprecise information. The value of neutrosophic theory in image segmentation, image classification/clustering, and noise reduction is discussed in this work. Because the neutrosophic set can handle indeterminacy stronger than the fuzzy/non-fuzzy sets, it has been found that the outcomes obtained using the neutrosophic set are significantly better. When neutrosophic sets are used in image processing, accuracy improves because of more precise segmentation, which leads to more precise outcomes, including correctly diagnosing medical images. Some real-world applications for this include the diagnosis of skin lesions, brain tumors, breast cancer, and dental X-ray pictures, among others. Neutrosophic set produces superior results, even in photos with weak contrast and hazy borders. The work mentioned above demonstrates how more image processing applications can benefit from the use of Neutrosophic based techniques. It also aids in the resolution of issues if a membership function is imprecisely defined because human error is absent.

Acknowledgments

The author is grateful to the editorial and reviewers, as well as the correspondent author, who offered assistance in the form of advice, assessment, and checking during the study period.

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the privacy-preserving nature of the data but are available from the corresponding author upon reasonable request.

Conflict of interest

The authors declare that there is no conflict of interest in the research.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

- 1. Bah, S.M. and F. Ming, An improved face recognition algorithm and its application in attendance management system. Array, 2020. 5: p. 100014. https://doi.org/10.1016/j.array.2019.100014
- 2. Kortli, Y., et al., Face recognition systems: A survey. Sensors, 2020. 20(2): p. 342. https://doi.org/10.3390/s20020342
- 3. Hossain, M.D. and D. Chen, Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 2019. 150: p. 115-134. https://doi.org/10.1016/j.isprsjprs.2019.02.009
- 4. Jin, X., J. Che, and Y. Chen, Weed identification using deep learning and image processing in vegetable plantation. IEEE Access, 2021. 9: p. 10940-10950. https://doi.10.1109/ACCESS.2021.3050296.

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

- 5. Akyel, C. and N. Arıcı, LinkNet-B7: noise removal and lesion segmentation in images of skin cancer. Mathematics, 2022. 10(5): p. 736. https://doi.org/10.3390/math10050736
- Shah, A., et al., Comparative analysis of median filter and its variants for removal of impulse noise from gray scale images. Journal of King Saud University-Computer and Information Sciences, 2022. 34(3): p. 505-519. https://doi.org/10.1016/j.jksuci.2020.03.007
- Mostafa, N., K. Ahmed, and I. El-Henawy, Hybridization between deep learning algorithms and neutrosophic theory in medical image processing: A survey. Neutrosophic Sets and Systems, 2021. 45(1): p. 25.
- 8. Smarandache, F., A unifying field in Logics: Neutrosophic Logic, in Philosophy. 1999, American Research Press. p. 1-141.
- 9. Zadeh, L.A., G.J. Klir, and B. Yuan, Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers. Vol. 6. 1996: World scientific.
- Zaitoun, N.M. and M.J. Aqel, Survey on image segmentation techniques. Procedia Computer Science, 2015.
 65: p. 797-806. https://doi.org/10.1016/j.procs.2015.09.027
- 11. Jha, S., et al., Neutrosophic image segmentation with dice coefficients. Measurement, 2019. 134: p. 762-772. https://doi.org/10.1016/j.measurement.2018.11.006
- Zhao, J., X. Wang, and M. Li, A novel Neutrosophic image segmentation based on improved fuzzy C-means algorithm (NIS-IFCM). International Journal of Pattern Recognition and Artificial Intelligence, 2020. 34(05): p. 2055011. https://doi.org/10.1142/S0218001420550113
- 13. Song, S., et al., A fast image segmentation algorithm based on saliency map and neutrosophic set theory. IEEE Photonics Journal, 2020. 12(5): p. 1-16. https://DOI: 10.1109/JPHOT.2020.3026973
- 14. Smarandache, F., et al., Application of neutrosophic offsets for digital image processing. 2020: Infinite Study.
- 15. Dhar, S. and M.K. Kundu, Accurate multi-class image segmentation using weak continuity constraints and neutrosophic set. Applied Soft Computing, 2021. 112: p. 107759. https://doi.org/10.1016/j.asoc.2021.107759Get rights and content
- 16. Datta, S., N. Chaki, and B. Modak, A novel technique for dental radiographic image segmentation based on neutrosophic logic. Decision Analytics Journal, 2023. 7: p. 100223. https://doi.org/10.1016/j.dajour.2023.100223
- 17. Jiang, X., et al., An adaptive region growing based on neutrosophic set in ultrasound domain for image segmentation. IEEE Access, 2019. 7: p. 60584-60593.
- Ashour, A.S., et al., A novel neutrosophic subsets definition for dermoscopic image segmentation. IEEE Access, 2019. 7: p. 151047-151053.https://doi. 10.1109/ACCESS.2019.2946762
- 19. Kaur, G. and H. Garg, A new method for image processing using generalized linguistic neutrosophic cubic aggregation operator. Complex & Intelligent Systems, 2022. 8(6): p. 4911-4937. https://doi.org/10.1007/s40747-022-00718-5
- 20. Özyurt, F., et al., Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy. Measurement, 2019. 147: p. 106830. https://doi.org/10.1016/j.measurement.2019.07.058
- 21. Ji, B., et al., An effective color image segmentation approach using superpixel-neutrosophic C-means clustering and gradient-structural similarity. Optik, 2022. 260: p. 169039. https://doi.org/10.1016/j.ijleo.2022.169039
- Lu, Z., Y. Qiu, and T. Zhan, Neutrosophic C-means clustering with local information and noise distancebased kernel metric image segmentation. Journal of Visual Communication and Image Representation, 2019. 58: p. 269-276. https://doi.org/10.1016/j.jvcir.2018.11.045
- 23. Dhar, S., M.K. Kundu, and H. Roy. Nondestructive testing image segmentation based on neutrosophic set and bat algorithm. in 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). 2020. IEEE. https://doi.org/ 10.1109/icrcicn50933.2020.9295965
- 24. Sezgin, M. and B.l. Sankur, Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 2004. 13(1): p. 146-168. https://doi.org/10.1117/1.1631315

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

- 25. Singh, P., A type-2 neutrosophic-entropy-fusion based multiple thresholding method for the brain tumor tissue structures segmentation. Applied Soft Computing, 2021. 103: p. 107119. https://doi.org/10.1016/j.asoc.2021.107119
- 26. Cheng, J., et al., Enhanced performance of brain tumor classification via tumor region augmentation and partition. PloS one, 2015. 10(10): p. e0140381. https://doi.org/10.1371/journal.pone.0144479
- 27. Devarasan, E., A Novel Approach of Residue Neutrosophic Technique for Threshold Based Image Segmentation. Neutrosophic Sets and Systems, 2023. 58(1): p. 24.
- 28. Singh, P., A neutrosophic-entropy based clustering algorithm (NEBCA) with HSV color system: A special application in segmentation of Parkinson's disease (PD) MR images. Computer methods and programs in biomedicine, 2020. 189: p. 105317. https://doi.org/10.1016/j.cmpb.2020.105317
- 29. Wen, J., et al., Image segmentation algorithm based on neutrosophic fuzzy clustering with non-local information. IET Image Processing, 2020. 14(3): p. 576-584. https://doi.org/10.1049/iet-ipr.2018.5949
- 30. Anter, A.M. and A.E. Hassenian, CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm. Artificial intelligence in medicine, 2019. 97: p. 105-117. https://doi.org/10.1016/j.artmed.2018.11.007
- 31. Anter, A.M., et al. Automatic computer aided segmentation for liver and hepatic lesions using hybrid segmentations techniques. in 2013 Federated Conference on Computer Science and Information Systems. 2013. IEEE.
- 32. Guo, Y. and A. Ashour, Neutrosophic sets in dermoscopic medical image segmentation. Neutroscophic Set Med Image Anal 11 (4): 229–243. 2019. https://doi.org/10.1016/B978-0-12-818148-5.00011-4
- 33. Talouki, A.G., A. Koochari, and S.A. Edalatpanah, Image completion based on segmentation using neutrosophic sets. Expert Systems with Applications, 2024. 238: p. 121769. https://doi.org/10.1016/j.eswa.2023.121769
- 34. Sert, E. and D. Avci, Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches. Biomedical Signal Processing and Control, 2019. 47: p. 276-287. https://doi.org/10.1016/j.bspc.2018.08.025
- 35. Basha, S.H., et al., Hybrid intelligent model for classifying chest X-ray images of COVID-19 patients using genetic algorithm and neutrosophic logic. Soft Computing, 2023. 27(6): p. 3427-3442. https://doi.org/10.1007/s00500-021-06103-7
- 36. Wajid, M.A., et al., Neutrosophic-CNN-based image and text fusion for multimodal classification. Journal of Intelligent & Fuzzy Systems, 2023. 45(1): p. 1039-1055. https://doi.org/10.3233/JIFS-223752
- 37. Alpaslan, N., Neutrosophic set based local binary pattern for texture classification. Expert Systems with Applications, 2022. 209: p. 118350. https://doi.org/10.1016/j.eswa.2022.118350
- 38. Yasser, I., et al., A hybrid automated intelligent COVID-19 classification system based on neutrosophic logic and machine learning techniques using chest X-Ray images. Advances in Data Science and Intelligent Data Communication Technologies for COVID-19: Innovative Solutions Against COVID-19, 2022: p. 119-137. https://doi.org/10.1007/978-3-030-77302-1
- 39. Cohen, J.P., et al., Covid-19 image data collection: Prospective predictions are the future. arXiv preprint arXiv:2006.11988, 2020. https://doi.org/10.48550/arXiv.2006.11988
- 40. Mooney, P., Chest x-ray images (pneumonia). kaggle, Marzo, 2018. https://doi.org/10.3390/app10020559
- 41. Shaban, W.M., Classification of Breast Cancer Using Neutrosophic Techniques and Deep Neural Network. 2021. https://doi.org/10.21203/rs.3.rs-771965/v1
- 42. Cai, G., et al., Computer-aided detection and diagnosis of microcalcification clusters on full field digital mammograms based on deep learning method using neutrosophic boosting. Multimedia Tools and Applications, 2020. 79: p. 17147-17167. https://doi.org/10.1007/s11042-019-7726-x
- 43. Moreira, I.C., et al., Inbreast: toward a full-field digital mammographic database. Academic radiology, 2012. 19(2): p. 236-248.https://doi.org/10.1016/j.acra.2011.09.014
- 44. Huang, K., M. Xu, and X. Qi. NGMMs: Neutrosophic Gaussian mixture models for breast ultrasound image classification. in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2021. IEEE. https://doi.org/10.1109/embc46164.2021.9630448
- 45. Yasser, I., et al., COVID-X: novel health-fog framework based on neutrosophic classifier for confrontation covid-19. Neutrosophic Sets and Systems, 2020. 35(1): p. 1.

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

- 46. Chaira, T., Neutrosophic set based clustering approach for segmenting abnormal regions in mammogram images. Soft Computing, 2022. 26(19): p. 10423-10433.https://doi.org/10.1007/s00500-022-06882-7
- 47. Hawas, A.R., et al., OCE-NGC: A neutrosophic graph cut algorithm using optimized clustering estimation algorithm for dermoscopic skin lesion segmentation. Applied Soft Computing, 2020. 86: p. 105931. https://doi.org/10.1016/j.asoc.2019.105931
- 48. Abdelhafeez, A., et al., A Neutrosophic based C-Means Approach for Improving Breast Cancer Clustering Performance. Neutrosophic Sets and Systems, 2023. 53(1): p. 19.
- 49. Rathnasabapathy, P. and D. Palanisam, An innovative neutrosophic combinatorial approach towards the fusion and edge detection of MR brain medical images. Neutrosophic Sets and Systems, 2022. 50(1): p. 34.

Received: 05 Aug 2023, **Revised:** 04 Nov 2023, **Accepted:** 28 Nov 2023, **Available online:** 01 Dec 2023.

© 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).