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Abstract: In this research, we created notions of a refined neutrosophic prime (completely prime,
semiprime, and completely semiprime) ideal in a refined neutrosophic ring. If R(l;,1,) is a refined
neutrosophic ring, then each ideal of R(l;,I,) has the form J+ KI;, +LI,, where J S L S K are
ideals of the classical ring R. The objective of this work is to find the necessary and sufficient
condition on classical ideals J,L,and K that makes ]+ KI; + LI, a prime (completely prime,
semiprime, and completely semiprime) ideal in R(I;,I;). We studied some of the elementary
properties of these concepts and the most important properties that link them.
We reached several results, the most important of which are as follows:
o If J+KI; + LI, € RNTp(, ), then | + KL + LI, € RNS@p(, 1,y © J, K, and L € Sgg.
o J+KI +Ll, € RN@gy, 1), then J,K,L € pg.
e Assuming that R(Iy,I;) is a finite unity commutation, then RNMp(, 1,y = RN@r(, 1,)-
e R(l;,1,) is a refined neutrosophic field & {0},RI; + RI,,Rl; ,R(I,I;) are only refined
neutrosophicidealsin R(Iy, ).
e We call R(I;,I;) a refined neutrosophic prime ring if RI; + RI; € RNy, 1,) and a fully
prime ring if RNT(;, 1,)\{0} = RN@r(, 1,)-

Keywords: Refined Neutrosophic Ring; Refined Neutrosophic Ideal; Completely Semiprime; Fully
Prime; Fully Semiprime.

1. Introduction

Neutrosophy is a broad view of intuitionistic fuzzy logic that represents a new development of
fuzzy notions. This strategy has a fascinating impact on applied science [1, 2, 3, 4, 5]. Neutrosophy
can be applied to algebraic structures as a new branch of philosophy, leading to a better
understanding and evolution of these structures. Kandasamy and Smarandache presented the
concept of neutrosophic groups, rings, and fields [6], which has been widely investigated [7, 8, 9, 10]
and is still being studied. Numerous intriguing discoveries about neutrosophic rings have recently
been discussed [11, 12, 13].

Adeleke et al. [14, 15] generalized neutrosophic sets by dividing the degree of indeterminacy I
into two degrees of indeterminacyl;, and [,. This concept has been widely employed in algebra by
analyzing refined neutrosophic rings [14, 15] and n-refined neutrosophic rings and modules [16, 17,
18], and many intriguing findings have been established [19]. Abobala [20] characterized the maximal
and minimal ideals in a refined neutrosophic ring.

We present a characterization of refined neutrosophic prime (completely prime, semiprime, and
completely semiprime) ideals by depending on the properties of classical ideals. This study aims to
describe the structure and properties of prime, completely prime, semiprime, and completely
semiprime ideals of refined neutrosophic rings.
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Our motivation is to close an important research gap by determining all prime, completely
prime, semiprime, and completely semiprime ideals and their properties in refined neutrosophic
rings. This paper continues the work begun in "On Neutrosophic Prime, Completely Prime,
Semiprime, and Completely Semiprime Ideals in Neutrosophic Ring."

2. Definitions and notations

Since most academics interested in the subject are already familiar with classical rings and their
ideals, this section will focus on numerous definitions and major results relevant to refined
neutrosophic rings and their ideals.

Definition 2.1: [14, 15] Let R be a ring, the collection R(I;,I,) = {a + bl ;a,b,c € Rand I,* = I,,I,* =
L, LI, = LI, =1;} is called a refined neutrosophic ring. R(I},I;) is referred to as a refined
neutrosophic field when R is a field.

Properties 2.2: [14, 15]

(i) Risaunity commutative ring iff R(I;,1,) is a unity commutative refined neutrosophic ring.

(i) ()" =1, and (I,)" = I, foreach n € Z*.

(iii) al; = LLa and al, = I,a Va € R.

(iv)0, =0=0, , L+L+ -+ =nl and L+ 1, +-+ 1, =nl,.

n time n time
Theorem 2.3: [20] If R(Iy, ;) is a refined neutrosophic ring, and J + KI; + LI, € R(l;,1,), then | +
KI, + LI, is aneutrosophic ideal iff J,K,and L are ideals of R, where | €L € K.

Theorem 2.4: [20] If R(I;, ;) is a refined neutrosophic ring, and J + KI; + LI, is anideal of R(I;, [;),
then J + KI; + LI, is a neutrosophic maximal ideal iff / is a maximal of R, where L =K = Ror ] +
KIl + LIZ = R(Il, 12).

3. Results

In a refined neutrosophic ring R(I;,I;), we indicate by RNz, ;) is the set of refined
neutrosophic ideals, RN§g(, 1,) the set of refined neutrosophic prime ideals, RNC§r(, ;,) the set of
refined neutrosophic completely prime ideals, RNSgg(,,) the set of refined neutrosophic
semiprime ideals, RNCSgp(, 1,y the collection of refined neutrosophic completely semiprime ideals,
and RNMp(, 1,) the collection of refined neutrosophic maximal ideals. In addition, in classical ring
R, we indicate by T the collection of ideals, 5 the collection of prime ideals, Cgp the collection
of completely prime ideals, Sy the collection of semiprime ideals, SCfy the collection of
completely semiprime ideals, and M}, the collection of maximal ideals.

Definition 3.1: If / + KI; + LI, € RNZ(, 1,y ] € L € K, then

(i) J+ KI; + LI, is a refined neutrosophic semiprime ideal if the following condition is satisfied:
Vi + Kyl + Lyl € RNSgg ) Jy € Ly S Ky (Jy + Koy + LiL)?> S ]+ KL + LI, = ], +
K0, + LI, ] +KIL +LI,.

(if) J + KI; + LI, is a refined neutrosophic completely semiprime ideal if the following condition
is satisfied: Va + bl +cl, € R(I;,1,); (a+ bl +cl,)> €]+ Kl + LI, > a+bl; +cl, €] +
KL + LI, .

(iii) J + KI; + LI, is a refined neutrosophic prime ideal if the following condition is satisfied:

V], + Kol + Lyl ) + Koly + Lyl € RNTgq, 1y J1 S Ly € Ky and J, € L, € Koy;
U+ KL+ L L)(J, + KL +L,1,) €]+ KI, + LI,
> L +KL+L,S]+KL+L or],+ K, +L,], €] +KI, +LI,

(iv) J + KI; + LI, is a refined neutrosophic completely prime ideal if the following condition is

satisfied:Va + bl; + cl, and e + fI; + gl, € R(I3,1,); (a + bl + cl,)(e + fI, + gl;) €] + KI

> a+bl,+chL €] +KL +Ll, Ve+fl,+gl, €] +KI, +L
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Theorem 3.2: If | + KI; + LI, € RNTR(, 1,), then [+ KI; + LI, € RNS@r, 1,y © ], K,and L € Sgop.
Proof.

Firstly, V] +KI, + LI, € RNS$g(,1,) - Now, suppose that J;,K;, L, € Tz , where Jf €], K’ C
K,and L C L. Subsequently, JZ € L S K and L% C K.

We have J; + JiI; +]1I; € N¥p(, 1,)- and we note

Ur+hh+ LB =JF+ E+JE+JE+JF+IDL + U2 +JF + DL S ]+ KL + L,
Since | + KI; + LI, € RNS§g(, 1,), 80 J1 +J1l1 + J1I; €] + KI; + LI, and from which J; € /.
Therefore, | € Sgop.
On the other hand, {0} + Ly I; + L, I, € NIy, 1), and wenote ({0} + L, I + Ly I,)* = {0} +
({0}.Ly + L. {0} + L3 + L5 + L)L, + ({0}. L, + L. {0} + L3)], < ] + KI, + LI,

Since ] + KIl + LIZ € RNS@R(ILIZ), SO {0} + Ll [1 + L1 12 g ] + Kll + LIZ al’ld from WhiCh L1 g L .
Therefore, L € Sgop.

And on the other hand, {0} + K;I; + {0}/, € N¥(, ;,), and we note

({0} + K11y +{031;)* = {0}* + ({0}. Ky + K;.{0} + K + K. {0} + {0}. K1) I, + ({0}* + {0} + {0}*)1,
CJ+KI +LL

Since ] + KII + LIZ € RNS(@R(Il,Iz) 7 {0} + Klll + {0}12 g] + K11 + LIZ and from WhiCh K1 c K .
Therefore, K € Sgp.

Conversely, suppose that J,K,L € Sgp.

Now, if J; + KiI; + LyI, € N, 1,); J1 € Ly € K, where

U+ Kily + LiB)? €]+ Kl + L, = J + (1K + KiJy + KE + KLy + LiK)L + Ly + Loy + LD
CJ+KI + LI,

Therefore, J? € J and J1K; + K;J, + K2 + K;L; + LiK; S K and J;L, + L;J; + L S L

Since J2€JCSLand J;L; +LJ; +[3CSLCSK,s0 J?+ L+ LJ; +15=(,+L)?>SLand]? +

LK+ KJ; + K+ KLy + LKy + ;L + L, + 12 =, + K; + L))? S K.

Since /,Kand L € Sgpg,s0 J; € Jand J;+L, S LS Kand]; +K; +L; € K.

Since ;€ JCL,so L; €S LS Kand K; € K.

Therefore, J; + KyIy + LI, € ] + KL + LI,. Thus ] + K1, + LI, € RNS@gq,1)-

Theorem 3.3: If ] + KI; + LI, € RNTg(, 1), then J + KI; + LI, € RNCS@gq, 1) < J, K, L € CSop.
Proof.

Firstly, V] + KI; + LI, € RNCSgg(, 1,)-

Now, if j,k,l €R, where j2€JSLand I?€ LS Kandk?€K.

Wehave j+jl +jI, € R(I;,I;) and we note

G+Jjh +j12)2 =j2 + (jz +j2 +j2 +j2 +j2)11 + (]-2 +j2 +j2)12 € J+KL +LL
Since |+ KI; + LI, € RNCS@gr(, 1,), 50 j +jli +jI; € ] + KI; + LI, and from which j € J.
Therefore, | € CSgog.
On the other hand, we have 0+ 11, + I, € R(I;,1;), and we note

O+1L+1L)?=024+0.1+L0+1P+12+13) +(0.l+ 1.0+, S]+KI + LI,
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Since |+ KI, + LI, € RNCSfr,1,) » 80 0+11+11, €]+ Kl +LI, and from which [€L.
Therefore, L € CSgp.

And on the other hand, we have 0 + kI, + 01, € R(I, I,), and we note
(0+kl+0,)2=0+(0.k+k0+k*+k.0+0.k); +(024+0%2+ 0%, €]+ KI, + LI,

Since |+ KI, + LI, € RNCS§gr,1,) » 80 0+kl; +0, €] +KI; + LI, and from which k€K .
Therefore, K € CSgy.

Conversely, suppose that /,K,and L € CSgp.

Now, if j; + kil + LI, € R(I3, 1), where (j; + kil + L1)? € ] + KI, + LI, = j? + (jiky + kqyj; +
K2+ kL + LkDL + (ol + Ly + 1)L, €] + KL + LI,

Therefore, j2 € J and jiky + kyj; + k? + ki ly + ks € Kand j 1, + Lj; + B €L

Since j2€J S Land jl, + Lj; + 2 €LCSK,s0 j2+ jili +1j,+1?2=(,+1)%€Landj?+jk; +
ki + k2 + kil + Lk +j o + L+ 2=+ k +1)? EK.

Since J,L,and K € CSgg,s0 J; €EJand J;+ L € LS Kandj, +k; +1; €EK.

Since j; €] €L,so l; €L S Kand k, € K. Subsequently, j; + kI, + 1,1, € ] + KI, + LI,. Thus J +
KI; + LI, € RNCSog(, 1,)-

Theorem 3.4:If ]+ KI; + LI, € RN§g(, 1,), then ], K,L € .
Proof.
Suppose that Ji,/,, K1, K;, Ly, L, € T, where J; J, € ], K1 K, € K,and L,L, € L.

Firstly, we have J; + /i1, + J1I; and ], + J,1; + J,1; € RN, 1,), and we note

U1+l + 1)Uz + 2l + 121) =z + U2 + 2 H e + o + Jd2)h + Uz + 2 + 1)1
CJ+KIL +LL
Since J + KI, + LI, € RN@gq 1), 50 Jo + oIy + Jily €] + KL + Ll or J, + J,1y + Jo1, € ] + KL + LI,
Subsequently, J; €] or J, € J.Thus ] € .
On the other hand, we have {0} + L;I; + L;l,and {0} + L,I; + LI, € NTp, 1,), and we note
({0} + LiI; + L) (0} + LIy + LyI,) = {03? + ({0}. L, + L. {0} + L L, + L L, + LiL,)I; + ({0}. L, +
L.{0} + Ly L,)], € ] + K1, + LI,
Since | + K1y + LI, € RN 1), 50 {0} + Lily + LIy € ] + Kl + LI, or {0} + LIy + Lyl €] +
KI, + LI,. Subsequently, L; € Lor L, € L. Thus L € 5.

Also, we have {0} + K;I; + {0}/, and {0} + K;I; + {0}I; € N, 1,), and we note

({0} + K114 + {0}1,) ({0} + K> 1, + {0}1;)
= {0}? + ({0}. K, + K,.{0} + K, K, + K;.{0} + {0}. K,)I; + ({0} + {0} + {0},
C J+KIL + LI

Since ]+ KI; + LI, € RN§g(, 1,), 50 {0} + KiI; + {0}, © ]+ KI; + LI, or {0} + K,I; + {0}, S ] +
K1, + LI, and from which K; € K or K, € K. Thus K € ;.

Corollary 3.5: If | + KI; + LI, € RNZg(y, 1), and J, K, L € fp, then not necessarily | + KI; + LI, €

RN, 1,)-
Because.
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Suppose that J,K, and L € gg. Now, if J; + K;I; + LiI;, and ], + K;1; + L,I, € RNZ(, 1,), Where,
U, + KL+ L L)(J, + KL +L,1,) € J+KL + LI
= Ji)o + UKz + KiJo + K1 Ky + Ky Ly + LK) + (JiLo + LyJy + LyiLo)1,
€ J+KI, +Ll,so
JiJ2 €], Jily + Ly, +LL, €L, and J1K, + KiJ, + K;K, + K;L, + LK, € K
Since J;J, €J < L,so JiJ, +JiL, + L, +LiL, = +L)(J,+L,) S LcK
and JJ, + 1 Ko + KiJ, + KiK, + KLy + LKy + J1Ly + LyJ, + LiLy, = (Jy + Ky + L) (J, + K, +Ly,) €K
Since J,K,and L € g, so
ycjorj, e, (J;+LiSLor],+L, € L), and (J; + K, + L S KorJ, + K, + L, € K). Thus
not necessarily J; + K11, + LI, € ]+ K, + LI, or J, + K1, + L,I, © ]+ KI, + LI,
Subsequently, not necessarily | + KI; + LI, € RN@g(, 1,)-

Theorem 3.6: If ] + K1, + LI, € RNC§p(, 1), then ], K,and L € Cgp.
Proof.
If ji,j2 ke, ko, Ui, 1, € R, where jij, €], kik, €K, and 1, € L.

Firstly, j, + jily + jil, and j, + j,I; + j,I, € R(I,I;) and we note

U1 il + 1) Gz +J2h + J212) = jujo + Guja + 2 + 2 vz i)k + Gz + iz )k
€J+KI, +LI,
Since ]+ KI; + LI, € RNC§g(, 1,), SO
Jy 4 il + il € J + KL + LIy or j, + jol, + ol € ] + KL, + L.
Therefore, j; € J or j, € J. Thus | € Cgop.
On the other hand, 0+ [;I; + [;,and 0 + 1,1, + I,I, € R(I;,I,), and we note
O+ 0LL +1L,L)O+ LI +1L,L)=0%+ 0.1, + 1,.0+ L1, + L1, + 1L+ (0.1, +1,.0+ L, L),
€J+KIL + L,
Since J + KI; + LI, € RNCfg(, 1), 50 0+ Ly + L1, € ] + KLy + LIy or 0+ LIy + L, € ] + KI; + LI,.
Therefore, |, € L or I, € L. Thus L € Cgp.

Also, we have 0+ kqI; + 0l,and 0 + k,1; + 01, € R(I,1,), and we note

(0 + kyI; + 01L)(0 + kyIy + 01) = 0% + (0. ky + kq. 0 + kyky + k1.0 + {0} k)1, + (02 4+ 02 + 02)1,
€ J+KI, + LI

since J + KI; + LI, € NC@g, 1), 50 0+ ksl + 0L, € J + KIy + LI, or 0+ kyIy + 01, € ] + KL, + LI,
and from which k; € K or k, € K. Thus K € Cgp.

Corollary 3.7: If /] + KI; + LI, € RNTg(, ) and J,K,and L € Cgpy, then not necessarily ]+ KI; +
LI, € RNC@p(, 1)
Because.
Suppose that j; +kily + L1, j, + koI + 1,1, € R(L3, 1), where,
Ui+ koly + L) (o + koly + 1,1,) € ]+ KL + LI,
= jijo + Uik + kij, + kik, + kily + k)L + (Gl + Lj, + L)L, € J+ K1 + L, so
Jij2 € Jand jil, + lj, + L1, € Land jik, + kqj, + kik, + kil + Lk, €K
Since jij, €] € L,so jij, + il +Lj, v Ll =G+ L), +1L,)ELSK
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and jij; + jiky + kijo + kiky +kyly + lLky +jilo + Ljp + il = G+ ki + )0 H ke + ) EK
Since J,K,L€Cgpr, so (j€Jorj,€]), j1+l;€Lorj,+1,€L), and (j; +k,+1l, EKorj, +
k, +1, € K) . So not necessarily
Jit ki + U1, € J+ KL + LI or j, + kply + 1,1, € ]+ K1 + LI,. Therefore, not necessarily
J +KIy + LI, € RNC§pq, 1)-
Theorem 3.8: If | + KI; + LI, € RNZg(;, then
(i) J+KI, + LI, € RNCS@g ) =] +KIy + LI, € RNS@gq 1)
(ii) J + KI, + LI, € RNCg, 1,y = ] + Kl + L, € RN@gq 1)
Proof.
(i) Since ]+ KI, + LI, € RNCS§gr, 1,), 80 ], K, and L € CSgy according to Theorem.3.3.
Therefore, J,K,and L € S@g. Thus ]+ KI; + LI, € RNS§g(, 1,) according to Theorem.3.2.
(i) Suppose that |+ KI; + LI, € RNCg(, 1,y- Now, if [ + Kil; + LI, and ], + K, 1, + L,1; €
RNZg, 1,y inwhich (; + Kyl + LiL) (U, + Kol + Ly1) € ]+ KL + LI,
Firstly, suppose that
i+ KL+L L% ]J+KL+ L and ], + K1 + L,I, € ]+ KI + LI,. Therefore,
3, + ko0, + L €], + K I + L1, and j, + koI, + L1, € Jo + K1, + LyI,, where
ji+ ki, + 4L € J+ KL +LL,and J, + Ko1y + LI, € ] + K1, + LL,.
On the other hand, we have (j; + kI, + L), + ko [y + L) € (J + K L + L), + KoL + Ly1)
C J+KIL + LI,
Since | + KI; + LI, € RNC§g(, 1,), SO
Jji+ ki + I, €]+ KL + LI, orj, + k1, + 1,1, € ]+ K1, + LI,. This is a contradiction. Therefore,
J+KI + L, € ]+ KL + LI or [, + K1, + LI, € ] +KIy + LL,. Thus ] + KI, + LI, € RN@g, 1,)-

Remark 3.9: Figure 1 shows the resulting relationship between the prime (completely prime,
semiprime, and completely semiprime) ideals in any refined neutrosophic and classical ring, as
follows:

[ JK,and L € @ J <::| [ J,K,and L € Cop J
ih) {

e 3

j + KII + LIZ E RNSOR(IIJZ) <:I [] + K]]_ + LIZ E RNCgJRUlJIZJ

. J

< <

r A s 3

]+ Kly + L1y € RNSoary | {3 (1 + Kl + Ll € RNCSpgq,

o vy L J

r @ ~ s ~
J.K,and L € Sgg <:| J.K,and L € CSpg

. J \ J

Figure 1. The relationship between the ideals of the refined neutrosophic and classical ring.
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Theorem 3.10: If R(I;,1;) is a unity, and ]+ K, + LI, € RNZR, 1,y , then J+KI + LI, €
RNS$ra, 1) © V11 + 131y + 131, € R(I, L); (ry + 121y + 13L)R(U, ) (ry + 121y +131) €] + KL +

LI, =1 410y + 130, € J + KL, + L,

Proof.

Firstly, suppose that ] + KI; + LI, € RNSgp(,, 1,), and we will prove that the condition is satisfied.
Vr + 1Dy + 131, € R(L, 1L); (np + 1oy + 3L)RU, L)y + 1oLy +131,) €] + KL + LI,
= (n + 1y +3L)R(L, L) + 1]y +3L)RU, L) € (J + KL + LIL)R(,, L) €] + KL, + LI,
= [(n + 10y + 3L)R(,, L)]> €] + KL + LI,
Since ] + K11 + LIZ € RNSpR(Il,Iz)/ SO (T1 + T2[1 + 7"312)R(11, 12) g] + Kll + le.
On the other hand, we have
r+nl il =0+l +130).1€ (p + 1]y +3L)RUL, L) €]+ KL +LL =+l + 130,
€ J+KIL +LI,
Conversely, suppose that the condition is true and we will prove that | + KI; + LI, € RNS@g, 1,)-
Suppose that J; + KiI; + LyI, € RNTg(, 1,), where,

Ui + Kyl + LiL)2 € + K + LI,.

If we assume the argument J; + K;I; + LI, € ] + KI; + LI,. Therefore, there is an element r, + r,I; +
r3l, €1 + Kily + Lil, and ry + o]y + 131, € ] + K1 + LI,

On the other hand, we have

= (r +1ply + 13L)R(Uy, L) (ry + 1y +131) © (o + Ko by + L) + 1oly + 1315)
CUh+KL+LL)(J+KL+LL)=[+KL+ L112]2 CJ+KL +LL
Therefore, ry + 1,1, + 131, € J + KI; + LI,, which is a contradiction.
So Jy + Kyly + Ly, € ] + Ky + Ll,. Thus ] + KI, + LI, € RNS@g, 1,)-
Theorem.3.11 If R(I;,I;) isaunity,and ]+ KI; + LI, € RNTg(, 1,), then | + KI; + LI, €
RN@gr,1,) iff the condition is satisfied:
vy + 1l + 3l and r{ + 1y + 131, € R(1,, 1);
(ry + iy + 3R, L) (] +ryly +13l) S+ KI + LI,
>n+nrl+rl, €] +KL +LLorr +rd +r3l, €] +KI, + LI,
Proof. In a similar way to proof of the theorem.3.10.
Corollary 3.12: Let R(I3,1;) be a unity commutation.
(1) If ] + K11 + LIZ E RNpR(Il‘IZ), then] + KIl + LIZ E RNC@R(ILIZ).
(11) If ] + K11 + LIZ E RNSpR(Il‘IZ), then] + KIl + LIZ E RNCS@R(ILIZ).
Proof.
1. Suppose that ] + K11 + LIZ E RN@R(ILIZ), and T'1 + T211 + 7"312, TI’ + 7"2’11 + r3’12 E R(Il,lz), Where,
(rp + iy + 131, )] + 1ryly +131,) €] + KI + LI,.
>+l +r3l))r ]y +3L)RUL L) € (J+ KL+ LIL)R(,, L) €]+ KI + LI,
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Since R(I,1,) is a commutative, so
(rn + 1y + 3L )R, L) (| + ol +13L,) €] + KL + LI,
And since | + KI; + LI, € N§g(, 1,), and according to theorem.3.11, so
1+ 1ol + 13l €] + KL + Ll or vf + 130y + 131, € ] + K1y + Ll,. Thus | + K1, + LI, € RNC@gq 1)
2. In a similar way to proof.1. Or in another way, since R(I;,1,) is a unity commutative, so R is a
unity commutative ring.
We have ] + KI; + LI, € RNSgg(, 1), therefore, J,K,and L € S, according to Theorem.3.2.
Since R is a unity commutative ring, so J, K, and L € CSgp. Using the Theorem.3.3, | + KI, + LI, €
RNCS$r(, 1,)-

Theorem 3.13: Assuming that R(l;,[;) is aunity. If ]+ KI; + LI, € RNMg, 1,), then ] + KI; +

LI, € RN®g, 1,)-

Proof.

Since J + KI; + LI, € RNMg(, 1,), 50 (J € Mg and K =L = R) or ] + KI, + LI, = R(I;,I;) according
to theorem.2.4. If | + KI, + LI, = R(I, I;), then the desired is achieved. Now, suppose that J +

KL, + LI, # R(I, ).

We have R(Iy,1;) is a unity, therefore, we may apply the condition specified in the theorem.3.11.

vry + 1y + 3l and ] + 1y + 130, € R(1L,, 1);
(n +rly + 3R, L) (| + 1]y +131) S ]+ KI + LI,
Now, we will prove that r; + 1y + 131, € ] + RI; + Rl or v{ + 131 + 131, € ] + RI; + RI,.
In fact, it suffices to demonstrate that r; € ] orr{ € J.
Firstly, (rq +1ly +13,)(R+ RI; + RL)(ry + o1y +131,) €]+ R, + RI,

= ryRr{ + [r,Rr{ + r,Rr{ + r,Rr{ + ,Rr{ + r3Rr{ + ryRry + r,Rry + r,Rry + 1,Rry + r,Rry + r3R1;
+ Ry + 3Ry + 3Ry + 1Ry + ryRry + rpRry + 1Ry + 13 R3]l + [ Rr{ + 13Rr{
+ r3Rr] + ryRr; + ryRr; + r3Rry + R3], © ] + Rl + R,

Therefore, r,Rr{ < J.

Suppose that 1y & J. Since | € My, s0 /] + mR =R = Jr{ + nRr{ = Rr{

On the other hand, we have Jr{ € J and r;Rr{ S J. Therefore, r{ = 1.7{ € Rr] S ].
Subsequently, 1/ + 1,1, + 13, € ]+ RI; + RI,. Thus ]+ K1, + LI, € N@g(, 1,)-

Remark 3.14: Figure 2 shows the resulting relationship between the prime (completely prime,
semiprime, completely semiprime, and maximal) ideals in the unity refined neutrosophic and classical
rings, as follows:
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[ J,K,and L € pp <::>[ J,K,and L € Cgog ]

[ RNMg, 1) ] ) [ ] +KI + LI, € RNgg, 1) <:>[ ] +KI, + LI, € RNC§ogq, 1)

g s ,

[ J +KI, + LI, € RNS@gq 1) <::>[ J +KI, + LI, € RNCSfoR 1)

[ 1K, and L € Spog ]<::>[ J.K,and L € CSgy

Figure 2. The relationship between the ideals of the unity refined neutrosophic and classical ring.

J/

Theorem 3.15: Assuming that R(/;,1;) is a finite unity commutation, then RNMp(, 1,y = RN, 1,)-
Proof.

Since R(l;, 1) is aunity, so RNMg(, 1,y S RN§g(, 1,) according to theorem.3.13.

Now, if ]+ KI; + LI, € RN, 1), then J,K,and L € ¢y according to theorem.3.4. Since | € g,
and R is a finite unity commutation, so | € M. Since /€L S K, so K =L =R. Thus J+KI; +
LI, € RNMg(, 1,)-

Examples and Notes 3.16:

(1) In Z(I), we have 10Z + 10Z1; + 10ZI, € RNS§,(, 1,), because V1, + 1,1y + 131, € Z(Iy, I,); (1 +
10, + 131,)% € 10Z + 10Z1; + 10Z1,, then 7,2 € 10Z and (1 +13)2 € 10Z and (1, + 1, + 13)? € 10Z.
Since 10Z € Sg,, so r; € 10Z,1, + 5 € 10Z,and r; + 1, + 13 € 10Z. Therefore 1, 1,,153 € 10Z. Thus
1, + 1,1, + 131, € 10Z 4+ 10Z1, + 10Z1, € RNSgp,.

By the same way we find that < 0> +< 0> ,+< 0> [, = {0} € RNS©(, 1,)-

(2) By the same way we find that <2 > +<2>L,+<2 > 1, € RNS§z,, 1,)-

(3 In Z,(I;,;), we have <2>={0,2}€ §5,, but <2>+<2>L+<2>1,={020,2[,2, +
215,2,2 + 21,2 + 21,2 + 21, + 2I,} € RNz, , 1,y , because we have (I; +L)(2 +1;) =2, €<2 >
+<2> L4<2> 1,

but [L+Land2+ 1 ¢<2>+<2>0L+<2> I,

@) In Z(,,I;), we have <0> and <3 >€Ep,;, but <0>4+<3>L+<0>,=<3>1 ¢
RNz, 1,) because we have (0 +21;)(3 +1;) =9I, €E<3>1;, but 3+ and 2I; ¢< 3 > I;. By the
same way, we find <3 > 1,+<3 > 1, € RN§z, 1,)-

(5) In Z¢(I4,1;), we have <3 >+ Zgli+ <3 > 1, ¢ RN§; (4, 1,), because we have (0+ 1L,)(2+1;) =
3, E<3>+ZJ,+<3>I,but Land2+1, €<3 >+ Z,+ <3 > 1I,.

(6) We note < 2> + Zgly + Zgl, = {0,2} + ZsI, + Zgl, € N7, 1, 1,), because <2 >€ My, so <2 >
+Zgly + Zgl, € RNMy, (g, 1,y according to theorem.2.7. Therefore, <2 >+4Z;, + Zgl, €
RN, 1,1,y according to Theorem.3.13.

(7) In Z;(I;,I;), wehave <0 >+<0>L+<0>1,={0} ¢ RNpz (, 1,), because we have
6+L)L+1L)=0€Z,(;,,),but 6+ Land [ +, €<0>+<0> L+ <0 > [,
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(8) In any refined neutrosophic field R(I;,1,), RI; + RI; € RN§rg(, 1,), because RI; + Rl =< 0 >
+RI; + RI,, where < 0 >€ NMj. Using theorem.3.13, we find RI; + RI, € RN§g(, 1,)-
It can be proven in another way:
If a+ bl +cl,and d + el + fI, € R(I;,I;) where (a + bl, +cl,)(d + el; + fI,) € RI; + RI, = 3r,
r' € Rinwhich (a+ bl; +cl))(d+el; + fL,) =rl, +1'I,
So ad + [ae + bd + be + bf +cell, + [af +cd +cf]l, =0+l +71'l,
Therefore, ad =0.So a=0 ord =0

if a=0then a+bl, +cl, € Rl; +RI,

if d = 0then d +el, + fl, € RI, + RI,
(9) Generally, in refined neutrosophic rings, RI; + RI, is not necessarily belongs to RNy, 1,)-
(10) Zgl, + Zol, &€ RN§z, (1, 1), because we have (3 +1; + 21,)% = 21, + 41, € ZyI, + Zol,, but 3 +
L + 21, & Zol, + Zol,.
(A1) In Z(Iy, 1), we have <0 > +ZI; + ZI, and <p > +ZI; + ZI, € RNy, 1,), where p is prime.

Theorem 3.17: Assuming that R(I,I;) is a unity. Then R(I, 1) is a refined neutrosophic field <
{0},Rl; + RL,,RI, ,R(1;, 1) are only refined neutrosophicidealsin R(Iy, ;).
Proof.
Firstly, suppose that | + KI; + LI, € RNTg(, 1,)- Since R(I;,1;) is a refined neutrosophic field, so R
is a field. Therefore, R contains only two ideals {0} and R. Thus
J,K,and L = {0} or R
We have ] € L € Kand we note
if ] =L =K ={0},then ] + KL, + LI, = {0}
if ]={0} A K=L=R,then] +KI, + LI, = RI, + RI,
ifJ=L={0} A K=R,then] +KI, + LI, = RI,

ifJ=L=K=R, then]+KIL +Ll,=R+RIL +RI,
Subsequently, RNTpq, 1,y = {0}, Rl + R, RI, ,R(Iy, 1,)}.
Conversely, suppose that RNTg(, 1,y = {{0}, Rl; + Rl RI; ,R(I;,1,)}.
Now, If ] + KI; + LI, € RNZg(, 1,), then

J+KI, 4+ LI, =R+RI, +RI,V {0} +RI, + {0}, V {0} + RI, + R, V {0} + {0}, + {0}1,

In every case, we see that J,K,and L = {0} V R . Therefore, R contains only two ideals {0} and R.
Subsequently, R is a field. Thus R(I, ;) is a refined neutrosophic field.

Definition 3.18: Assuming that R(l;,1,) is a refined neutrosophic ring.
(i) We call R(I;,I;) a refined neutrosophic semiprime ring if {0} € RNSfr(, 1,y and a fully
semiprime ring if RNTr(;, 1,) = RNS§r, 1,)-
(ii) We call R(I;,I;) a refined neutrosophic prime ring if RI; + RI, € RNgg(, 1,y and a fully
prime ring if RNTr(;, 1,)\{0} = RN§r(, 1,)-
(iii) We call R(I;,1;) a refined neutrosophic fully idempotent if all its neutrosophic ideals are
idempotent.

Examples 3.19:

(1) Z(1;,1,) is arefined neutrosophic semiprime ring.
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(2) R(13,1,) is a refined neutrosophic semiprime (fully semiprime) ring, where R is a field.
(3) R(I3, 1) is a refined neutrosophic prime (fully prime) ring, where R is a field.

Theorem 3.20: Assuming that R(I3, ;) is a refined neutrosophic ring,

R(13,1,) is arefined neutrosophic fully semiprime < R(I},],) is a refined neutrosophic fully
idempotent.

Proof.

Firstly, suppose that J + KI; + LI, € RNy, 1,)- Now, we have (J + KI; + LI,)* € RNy, 1,)-
Therefore, it belongs to RNS§g(, 1,)-

Also, we have (J + KI, + LI,)*> € (J + KI; + LI;)? =

(]+K11+L12)2zRNSgoR(11'12)'
J+ KL + LI, € (J +KI + LI,)?
On the other hand, (J + KI, + LI,)* €] + KI, + LI,.So (J + KI, + L1,)> =] + KI, + LI,. Thus ] +
KI, + LI, is arefined neutrosophic idempotent ideal.
Conversely, suppose that | + KI; + LI, € RNTg(, 1,)-
Now, let's prove that
VP + QL + Sl € NTgq, 1,), where, (P + QI +SL)? €] +KI, + L,
then P + QI + SI, € ] + KI, + LI,
Since (P + QI + SI,)* = P + QI, + SI, (because it is idempotent), then
P+ QI +SI, €] + KI, + LI,. Thus ] + KI, + LI, € RNS@g, 1,)-

Example.3.21 According to the theorem 3.17, in Z3;(I},I;), we have {0}, Zs;I; + Z3I,, Z3I;, and
Z3(I1, 1) are the only neutrosophic ideals. Now we note {0}, Z3l; + Z3l,, Z3I;, and Z3(I;,I,) are
refined neutrosophic idempotent ideals. According to definition.3.18, Z3(I},I,) is a refined
neutrosophic semiprime ideals. Conversely, according to the theorem.3.20, Z3(I;,1,) is a refined
neutrosophic fully semiprime.

Finally, Table 1 depicts the key distinctions between the classical and refined neutrosophic rings.

Table 1. Key distinctions between the classical and refined neutrosophic rings.

R R(y, 1)

R isa field & {0},Rare only ideals in R. R(I4,1,) is a refined neutrosophic field
< {0}, RI; + RI,, RI; ,R(14,1,) are only
refined neutrosophic ideals.
R is a prime ring if {0} € & R(1,,1,) is a refined neutrosophic prime
ring if RI; + RI; € RN@g(, 1,)

R(I3,1;) is a fully prime ring if Ty = fog. R(I,1,) is a fully prime ring if

RNZg(, 1,)\{0} = RN@rq, 1,)-

4. Conclusion and future works

In this study, the structure and properties of all prime, completely prime, semiprime, and
completely semiprime ideals in refined neutrosophic rings were determined. Herein, we present the
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concept of fully prime (fully prime) and fully semiprime (fully semiprime) refined neutrosophic
rings. In addition, many examples were built to clarify the validity of this work. Certainly, these ideals
will find applications in all places where they find their applications, with some indeterminacy. In
the future, we plan to generalize the prime (completely prime, semiprime, and completely
semiprime) ideals of the n-refined neutrosophic rings.
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