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Abstract: We now found nine new topologies, such as: NonStandard Topology, Largest Extended 

NonStandard Real Topology, Neutrosophic Triplet Weak/Strong Topologies, Neutrosophic Extended 

Triplet Weak/Strong Topologies, Neutrosophic Duplet Topology, Neutrosophic Extended Duplet 

Topology, Neutrosophic MultiSet Topology, and recall and improve the seven previously founded 

topologies in the years (2019-2023), namely: NonStandard Neutrosophic Topology, NeutroTopology, 

AntiTopology, Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, 

SuperHyperTopology, and Neutrosophic SuperHyperTopology. They are called avantgarde 

topologies because of their innovative forms. 

Keywords: Classical Topology; Topological Space; NeutroSophication; AntiSophication; 

NeutroTopology; AntiTopology; Refined Neutrosophic Topology; Refined Neutrosophic Crisp 

Topology; SuperHyperTopology; Neutrosophic SuperHyperTopology; Extended NonStandard Real 

Set; NonStandard Topology; NonStandard Neutrosophic Topology; Largest Extended NonStandard 

Real Topology; left monad; Right Monad; Pierced Binad; Left Monad Closed to the Right; Right 

Monad Closed to the Left, Unpierced Binad; Neutrosophic OverTopology; Neutrosophic 

UnderTopology; Neutrosophic OffTopology; (Fuzzy & Fuzzy-Extensions) Over/Under/Off-

Topologies; Neutrosophic MultiSet Topology. 

 

1. Introduction 

The foundation of new topologies raised from development of other fields such as 

NeutroAlgebra and AntiAlgebra (that gave birth to NeutroTopology and AntiTopology), 

SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra (that gave birth to SuperHyperTopology 

and Neutrosophic SuperHyperTopology), Refined Crisp Set (that gave birth to the Refined Crisp 

Topology), and Refined Neutrosophic Set (that gave birth to refined Neutrosophic Topology), and 

NonStandard Set (that gives birth to NonStandard Topology and NonStandard Neutrosophic 

Topology), Neutrosophic Triplet Set, Neutrosophic Extended Triplet Set, Neutrosophic Dual Set, 

Neutrosophic Extended Dual Set, and Neutrosophic MultiSet. 

This is almost a virgin territory of research since little research has been done, mostly about the 

AntiTopology [8]. Nevertheless, it is a promising field to study in the future, since it better reflects 

our real world, where the laws (axioms) do not apply in the same degree to all people (powerful 

people are above the law, others immune to the law, and many feel the full hardship of the law); since 

the world as a dynamic system is formed by sub-systems, and each sub-system by sub-sub-systems 

and so on (whence the necessity to introduce the SuperHyperStructure based on the n-th PowerSet 

of a Set, whose particular cases are the SuperHyperAlgebra and SuperHyperTopology), etc. 
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We recall the classical definition of Topology, then the procedures of NeutroSophication and 

respectively AntiSophication of it, that result in adding in two new types of topologies: 

NeutroTopology and respectively AntiTopology. 

Then we define topology on Refined Neutrosophic Set (2013), Refined Neutrosophic Crisp Set 

[3]. Afterwards, we extend the topology on the framework of SuperHyperAlgebra [6], then the 

NonStandard Neutrosophic Set to NonStandard Topology and NonStandard Neutrosophic Topology 

(never defined before). 

The corresponding neutrosophic topological spaces are presented. 

This research is an improvement of paper [7] and book [12, sections 4.8 and 4.9]. 

  

2. Classical Topology 

Let 𝒰 be a non-empty set, and P(𝒰) the power set of 𝒰. 

Let 𝜏 ⊆ 𝑃(𝒰) be a family of subsets of 𝒰. 

Then 𝜏 is called a Classical Topology on 𝒰  if it satisfies the following axioms: (CT-1) 𝜙  and 𝒰 

belong to 𝜏. 

(CT-2) The intersection of any finite number of elements in 𝜏 is in 𝜏. 

(CT-3) The union of any finite or infinite number of elements in 𝜏 is in 𝜏.  

All three axioms are totally (100%) true (or T = 1, I = 0, F = 0). We simply call them (classical) Axioms. 

Then (𝒰, 𝜏) is called a Classical Topological Space on 𝒰. 

3. NeutroSophication of the Topological Axioms 

NeutroSophication of the topological axioms means that the axioms become partially true, 

partially indeterminate, and partially false. They are called NeutroAxioms. 

(NCT-1) Either {𝜙 ∉ 𝜏 and 𝒰 ∈ 𝜏}, or {𝜙 ∈ 𝜏 and 𝒰 ∉ 𝜏}. 

(NCT-2) There exist a finite number of elements in 𝜏 whose intersection belong to 𝜏 (degree of 

truth T); and a finite number of elements in 𝜏  whose intersection is indeterminate (degree of 

indeterminacy I); and a finite number of elements in 𝜏 whose intersection does not belong to 𝜏 

(degree of falsehood F); where (T, I, F) ∉  {(1, 0, 0), (0, 0, 1)}  since (1, 0, 0) represents the above 

Classical Topology, while (0, 0, 1) the below AntiTopology. 

(NCT-3) There exist a finite or infinite number of elements in 𝜏  whose union belongs to 𝜏 

(degree of truth T); and a finite or infinite number of elements in 𝜏 whose union is indeterminate 

(degree of indeterminacy I); and a finite or infinite number of elements in 𝜏 whose union does not 

belong to 𝜏 (degree of falsehood F); where of course (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}. 

4. AntiSophication of the Classical Topological Axioms 

AntiSophication of the topological axioms means to negate (anti) the axioms, the axioms become 

totally (100%) false (or T = 0, I = 0, F = 1). They are called AntiAxioms. 

(ACT-1) 𝜙 ∉ 𝜏 and 𝒰 ∉ 𝜏. 

(ACT-2) The intersection of any finite number (𝑛 ≥ 2) of elements in 𝜏 is not in 𝜏. 

(ACT-3) The union of any finite or infinite number (𝑛 ≥ 2) of elements in 𝜏 is not in 𝜏. 

5. <Topology, NeutroTopology, AntiTopology> 

As such, we have a neutrosophic triplet of the form: 

<Axiom(1, 0, 0), NeutroAxiom(T, I, F), AntiAxiom(0, 0, 1)>, 

where (T, I, F) ≠ (1, 0, 0) and (T, I, F) ≠ (0, 0, 1). 

Correspondingly, one has:  

<Topology, NeutroTopology, AntiTopology>. 
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Therefore, in general:  

(Classical) Topology is a topology that has all axioms totally true. We simply call them Axioms. 

NeutroTopology is a topology that has at least one NeutroAxiom and the others are all classical Axioms 

[therefore, no AntiAxiom]. 

AntiTopology is a topology that has one or more AntiAxioms, no matter what the others are (classical 

Axioms, or NeutroAxioms). 

6. Theorem on the number of Structures/NeutroStructures/AntiStructures 

If a Structure has m axioms, with m ≥ 1, then after NeutroSophication and AntiSophication one obtains 

3m types of structures, categorized as follows: 

1Classical Structure  +  (2m – 1)NeutroStructures  +  (3m – 2m)AntiStructures = 3m Structures. 

7. Consequence on the number of Topologies/NeutroTopologies/AntiTopologies 

As a particular case of the previous theorem, from a Topology which has m = 3 axioms, one makes, 

after NeutrosSophication and AntiSophication, 33 = 27 types of structures, as follows:  1 classical 

Topology,  23 – 1 = 7 NeutroTopologies,  and 33 – 22 = 19 AntiTopologies. 

1Classical Topology + 7NeutroTopologies + 19AntiTopologies = 33 Topologies are presented below: 

There is 1 (one) type of Classical Topology, whose axioms are listed below: 

1 Classical Topology 

(
𝐶𝑇 − 1
𝐶𝑇 − 2
𝐶𝑇 − 3

) 

8. Definition of NeutroTopology [4, 5] 

It is a topology that has at least one topological axiom which is partially true, partially 

indeterminate, and partially false, or (T, I, F), where T = True, I = Indeterminacy, F = False, and no 

topological axiom is totally false, in other words: ( , , ) {(1,0,0), (0,0,1)}T I F  , where (1, 0, 0) 

represents the classical Topology, while (0, 0, 1) represents the below AntiTopology. 

Therefore, the NeutroTopology is a topology in between the classical Topology and the 

AntiTopology. 

There are 7 types of different NeutroTopologies, whose axioms, for each type, are listed below: 

7 NeutroTopologies 

(
𝑁𝐶𝑇 − 1
𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1

𝑁𝐶𝑇 − 2
𝐶𝑇 − 3

) , (
𝐶𝑇 − 1
𝐶𝑇 − 2

𝑁𝐶𝑇 − 3
), 

(
𝑁𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1

𝑁𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

) , (
𝑁𝐶𝑇 − 1
𝐶𝑇 − 2

𝑁𝐶𝑇 − 3
), 

(
𝑁𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

). 

9. Definition of AntiTopology [4, 5] 

It is a topology that has at least one topological axiom that is 100% false (T, I, F) = (0, 0, 1). The 

NeutroTopology and AntiTopology are particular cases of NeutroAlgebra and AntiAlgebra [4] and, 

in general, they all are particular cases of the NeutroStructure and AntiStructure respectively, since 

we consider "Structure" in any field of knowledge [5]. 
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There are 19 types of different AntiTopologies, whose axioms, for each type, are listed below: 

19 AntiTopologies 

(
𝐴𝐶𝑇 − 1
𝐶𝑇 − 2
𝐶𝑇 − 3

), (𝐴
𝐶𝑇 − 1
𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1
𝐶𝑇 − 2

𝐴𝐶𝑇 − 3
), 

 

(
𝐴𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1

𝐴𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), (
𝐴𝐶𝑇 − 1
𝐶𝑇 − 2

𝐴𝐶𝑇 − 3
), 

(
𝐴𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), 

 

(
𝐴𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), (
𝐴𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), 

(
𝐴𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1

𝐴𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝐶𝑇 − 2

𝐴𝐶𝑇 − 3
), 

 

(
𝐴𝐶𝑇 − 1
𝐶𝑇 − 2

𝑁𝐶𝑇 − 3
), (

𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝐶𝑇 − 3

), 

 

(
𝐴𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

). 

 

10. Refined Neutrosophic Set 

Let 𝑈 be a universe of discourse, and a non-empty subset R of it,  

𝑅 = {

𝑥 (𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑝(𝑥)) ;

(𝐼1(𝑥), 𝐼2(𝑥), … , 𝐼𝑟(𝑥));

(𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑠(𝑥));

} 

with all , , [0,1],j k lT I F  1 ,1 ,1 ,j p k r l s      and no restriction on their sums

0 3m m mT I F    , with 1 max{ , , }m p r s  , where p, r, s ≥ 0 are fixed integers, and at least 

one of them is ≥ 2, in order to ensure the refinement (sub-parts) or multiplicity (multi-parts) – 

depending on the application, of at least one neutrosophic component amongst T (truth), I 

(indeterminacy), F (falsehood); and of course 𝑥 ∈ 𝒰. 

By notation we consider that index zero means the empty-set, i.e. 0 0 0T I F     (or zero), 

and the same for the missing sub-parts (or multi-parts). 

For example, the below (2,3,1)-Refined Neutrosophic Set is identical to a (3,3,3)-Refined Neutrosophic 

Set: 1 2 1 2 3 1 1 2 1 2 3 1( , ; , , ; ) ( , ,0; , , ; ,0,0)T T I I I F T T I I I F , where the missing components T3, and F2, F3 

were replaced each of them by 0 (zero) R is called a (p, r, s)-refined neutrosophic set { or (p, r, s)-RNT }. 

The neutrosophic set has been extended to the Refined Neutrosophic Set (Logic, and Probability) 

by Smarandache [1] in 2013, where there are multiple parts of the neutrosophic components, as such 

T was split into subcomponents T1, T2, ..., Tp, and I into I1, I2, ..., Ir, and F into F1, F2, ...,Fs, with p + r + s 
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= n ≥ 2 and integers p, r, s ≥ 0 and at least one of them is ≥ 2 in order to ensure the refinement (or 

multiplicity) of at least one neutrosophic component amongst T, I, and F.   

Even more: the subcomponents Tj, Ik, and/or Fl can be countable or uncountable infinite subsets 

of [0, 1]. 

This definition also includes the Refined Fuzzy Set, when r = s = 0 and p ≥ 2;  

and the definition of the Refined Intuitionistic Fuzzy Set, when r = 0, and either p ≥ 2 and s ≥ 1, or p ≥ 1 

and s ≥ 2. 

All other fuzzy extension sets (Pythagorean Fuzzy Set, Spherical Fuzzy Set, Fermatean Fuzzy Set, q-

Rung Orthopair Fuzzy Set, etc.) can be refined/multiplicated in a similar way. 

11. Definition of Refined Neutrosophic Topology 

Let 𝒰 be a universe of discourse, and 𝒫(𝒰) be the family of all (p, r, s)-refined neutrosophic subsets 

of 𝒰. 

Let 𝜏𝑅𝑁𝑇 ⊆ 𝒫(𝒰)  be a family of (p, r, s)-refined neutrosophic subsets of 𝒰.  

Then 𝜏𝑅𝑁𝑇  is called a Refined Neutrosophic Topology (RNT) if it satisfies the axioms: 

(RNT-1) 𝜙 and 𝒰 belong to 𝜏𝑅𝑁𝑇 ; 

(RNT-2) The intersection of any finite number of elements in 𝜏𝑅𝑁𝑇  is in 𝜏𝑅𝑁𝑇 ; 

(RNT-3) The union of any finite or infinite number of elements in 𝜏𝑅𝑁𝑇  is in 𝜏𝑅𝑁𝑇 ; 

Then (𝒰, 𝜏𝑅𝑁𝑇) is called a Refined Neutrosophic Topological Space on 𝒰. 

 

The Refined Neutrosophic Topology is a topology defined on a Refined Neutrosophic Set.  

{Similarly, the Refined Fuzzy Topology is defined on a Refined Fuzzy Set, while the Refined 

Intuitionistic Fuzzy Topology is defined on a Refined Intuitionistic Fuzzy Set, etc. 

And, as a generalization, on any type of fuzzy extension set [such as: Pythagorean Fuzzy Set, 

Spherical Fuzzy Set, Fermatean Fuzzy Set, q-Rung Orthopair Fuzzy Set, etc.] one can define a 

corresponding fuzzy extension topology}.  

12. Neutrosophic Crisp Set 

The Neutrosophic Crisp Set was defined by Salama and Smarandache in 2014 and 2015. 

Let X be a non-empty fixed space. And let D be a Neutrosophic Crisp Set [2],  

where D = <A, B, C>, with A, B, C as subsets of X. 

Depending on the intersections and unions between these three sets A, B, C one gets several: 

Types of Neutrosophic Crisp Sets [2, 3]. 

The object having the form D = <A, B, C> is called: 

(a) A neutrosophic crisp set of Type 1 (NCS-Type1) if it satisfies:  

A∩ B = B∩ C = C∩ A =   (empty set). 

(b) A neutrosophic crisp set of Type 2 (NCS-Type2) if it satisfies:  

A∩ B = B∩ C = C∩ A =   and A∪ B ∪ C = X. 

(c) A neutrosophic crisp set of Type 3 (NCS-Type3) if it satisfies:  

A∩ B ∩ C =  and A∪ B ∪ C = X. 

Of course, more types of Neutrosophic Crisp Sets may be defined by modifying the intersections and 

unions of the subsets A, B, and C. 
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13. Refined Neutrosophic Crisp Set 

The Refined Neutrosophic Crisp Set [3] was introduced by Smarandache in 2019, by 

refining/multiplication of D (and denoting it by RD = Refined D) by refining/multiplication of its sets 

A, B, C into sub-subsets/multi-sets as follows: 

RD = (A1, ..., Ap; B1, ..., Br; C1, ..., Cs), with p, r, s ≥ 1 be positive integers and at least one of them be ≥ 2 

in order to ensure the refinement/multiplication of at least one component amongs A, B, C, where 

1 1 1
, ,

p r s

i j k
i j k

A A B B C C
  

       

and many types of Refined Neutrosophic Crisp Sets may be defined by modifying the intersections 

or unions of the subsets/multisets , , ,1 ,1 ,1i j kA B C i p j r k s      , depending on each 

application. 

14. Definition of Refined Neutrosophic Crisp Topology 

Let 𝒰 be a universe of discourse, and 𝒫(𝒰) be the family of all (p, r, s)-refined neutrosophic crisp 

subsets of 𝒰. 

Let 𝜏𝑅𝑁𝐶𝑇 ⊆ 𝒫(𝒰)  be a family of (p, r, s)-refined neutrosophic crisp subsets of 𝒰.  

Then 𝜏𝑅𝑁𝐶𝑇  is called a Refined Neutrosophic Crisp Topology (RNCT) if it satisfies the axioms: 

(RNCT-1) 𝜙 and 𝒰 belong to 𝜏𝑅𝑁𝐶𝑇 ; 

(RNCT-2) The intersection of any finite number of elements in 𝜏𝑅𝑁𝐶𝑇  is in 𝜏𝑅𝑁𝐶𝑇 ; 

(RNCT-3) The union of any finite or infinite number of elements in 𝜏𝑅𝑁𝐶𝑇  is in 𝜏𝑅𝑁𝐶𝑇 . 

Then (𝒰, 𝜏𝑅𝑁𝐶𝑇) is called a Refined Neutrosophic Crisp Topological Space on 𝒰. 

Therefore, the Refined Neutrosophic Crisp Topology is a topology defined on the Refined Neutrosophic 

Crisp Set. 

15. Definition of the nth-PowerSets ( )nP H and
* ( )nP H . 

The nth-PowerSets ( )nP H and
* ( )nP H  of the set H, that the SuperHyperTopology and respectively 

Neutrosophic SuperHyperTopology are based on, better describe our real world, since a system H 

(that may be a set, company, institution, country, region, etc.) is organized in sub-systems, which in 

their turn are organized each of them in sub-sub-systems, and so on.  

The nth-PowerSet ( )nP H  is defined recursively: 

0

1

2

3 2

1

( )

( ) ( )

( ) ( ( ))

( ) ( ( )) ( ( ( )))

.................................................................

( ) ( ( )) ( (... ( )...))

def

n n

n

P H H

P H P H

P H P P H

P H P P H P P P H

P H P P H P P P H







 

 

 

where P is repeated n times into the last formula, and the empty-set   (that represents 

indeterminacy, uncertainty) is allowed in all sequence terms:  

2 3, ( ), ( ), ( ),..., ( )nH P H P H P H P H . 
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Similarly, 

The nth-PowerSet
* ( )nP H  is defined recursively: 

0

*

1

* *

2

* * *

3 2

* * * * * *

1
* * * * * *

( )

( ) ( )

( ) ( ( ))

( ) ( ( )) ( ( ( )))

.................................................................

( ) ( ( )) ( (... ( )...))

def

n n

n

P H H

P H P H

P H P P H

P H P P H P P P H

P H P P H P P P H







 

 

 

where P is repeated n times into the last formula, and the empty-set   (that represents 

indeterminacy, uncertainty) is not allowed in none of the sequence terms: 

2 3

* * * *, ( ), ( ), ( ),..., ( )nH P H P H P H P H . 

16. SuperHyperOperation 

We recall our 2016 concepts of SuperHyperOperation, SuperHyperAxiom, SuperHyperAlgebra, 

and their corresponding Neutrosophic SuperHyperOperation Neutrosophic SuperHyperAxiom and 

Neutrosophic SuperHyperAlgebra [6]. 

Let 𝑃∗
𝑛(𝐻) be the nth-powerset of the set H such that none of P(H), P2(H), …, Pn(H) contain the 

empty set . 

Also, let 𝑃𝑛(𝐻) be the nth-powerset of the set H such that at least one of the P(H), P2(H), …, Pn(H) 

contain the empty set . For any subset A, we identify {A} with A. 

The SuperHyperOperations are operations whose codomain is either 𝑃∗
𝑛(𝐻) and in this case one 

has classical-type SuperHyperOperations, or 𝑃𝑛(𝐻)  and in this case one has Neutrosophic 

SuperHyperOperations, for integer 2n  . 

17. The nth-PowerSet better describe our real world 

The nth-PowerSets ( )nP H and
* ( )nP H , that the SuperHyperTopology and respectively 

Neutrosophic SuperHyperTopology are based on, better describe our real world, since a system H 

(that may be a set, company, institution, country, region, etc.) is organized in sub-systems, which in 

their turn are organized each in sub-sub-systems, and so on. 

18. SuperHyperAxiom 

A classical-type SuperHyperAxiom or more accurately a (m, n)-SuperHyperAxiom is an axiom 

based on classical-type SuperHyperOperations. 

Similarly, a Neutrosophic SuperHyperAxiom {or Neutrosphic (m, n)-SuperHyperAxiom} is an 

axiom based on Neutrosophic SuperHyperOperations. 

There are: 

 Strong SuperHyperAxioms, when the left-hand side is equal to the right-hand side as in non-

hyper axioms. 

 And Week SuperHyperAxioms, when the intersection between the left-hand side and the 

right-hand side is non-empty. 
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19. SuperHyperAlgebra and SuperHyperStructure 

A SuperHyperAlgebra or more accurately (m-n)-SuperHyperAlgebra is an algebra dealing with 

SuperHyperOperations and SuperHyperAxioms. 

Again, a Neutrosophic SuperHyperAlgebra {or Neutrosphic (m, n)-SuperHyperAlgebra} is an 

algebra dealing with Neutrosophic SuperHyperOperations and Neutrosophic 

SuperHyperOperations. 

In general, we have SuperHyperStructures {or (m-n)-SuperHyperStructures}, and corresponding 

Neutrosophic SuperHyperStructures. 

For example, there are SuperHyperGrupoid, SuperHyperSemigroup, SuperHyperGroup, 

SuperHyperRing, SuperHyperVectorSpace, etc. 

20. Distinction between SuperHyperAlgebra vs. Neutrosophic SuperHyperAlgebra 

 If none of the power sets 𝑃𝑘(𝐻), 1 ≤ 𝑘 ≤ 𝑛, do not include the empty set  , then one has a 

classical-type SuperHyperAlgebra; 

 If at least one power set, 𝑃𝑘(𝐻) , 1 ≤ 𝑘 ≤ 𝑛 , includes the empty set  , then one has a 

Neutrosophic SuperHyperAlgebra. 

21. Definition of SuperHyperTopology (SHT) [6] 

It is a topology designed on the nth-PowerSet of a given non-empty set 𝐻, that excludes the 

empty-set, denoted as 
* ( )nP H , built as follows: 

*( )P H is the first powerset of the set H, and the index *  means without the empty-set (Ø); 

2

* * *( ) ( ( ))P H P P H is the second powerset of H (or the powerset of the powerset of H), without 

the empty-sets; and so on, the n-th powerset of H, 
1

* * * * * *( ) ( ( )) ( (... ( )...))n n

n

P H P P H P P P H  , where *P  is repeated n time ( n ≥ 2 ), and 

without the empty-sets. 

Let consider 𝜏𝑆𝐻𝑇 be a family of subsets of 
* ( )nP H .  

Then 𝜏𝑆𝐻𝑇  is called a Neutrosophic SuperHyperTopology on 
* ( )nP H , if it satisfies the 

following axioms: 

(SHT-1) 𝜙 and
* ( )nP H  belong to SHT . 

(SHT-2) The intersection of any finite number of elements in SHT  is in SHT . 

(SHT-3) The union of any finite or infinite number of elements in SHT is in SHT . 

Then
*( ( ), )n

SHTP H   is called a SuperHyperTopological Space on 
* ( )nP H . 

22. Definition of Neutrosophic SuperHyperTopology (NSHT) [6] 

It is, similarly, a topology designed on the n-th PowerSet of a given non-empty set H, but 

includes the empty-sets [that represent indeterminacies] too. 

As such, in the above formulas, *( )P H  that excludes the empty-set, is replaced by ( )P H that 

includes the empty-set. 

( )P H  is the first powerset of the set H, including the empty-set (Ø); 
2 ( ) ( ( ))P H P P H is the second powerset of H (or the powerset of the powerset of H), that includes 

the empty-sets; and so on, the n-th powerset of H, 
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1( ) ( ( )) ( (... ( )...))n n

n

P H P P H P P P H   

where P is repeated n times ( n ≥ 2 ), and includes the empty-sets (Ø). 

Let consider 𝜏𝑁𝑆𝐻𝑇  be a family of subsets of ( )nP H .  

Then 𝜏𝑁𝑆𝐻𝑇 is called a Neutrosophic SuperHyperTopology on ( )nP H , if it satisfies the following 

axioms: 

(NSHT-1) 𝜙 and ( )nP H  belong to NSHT . 

(NSHT-2) The intersection of any finite number of elements in NSHT  is in NSHT . 

(NSHT-3) The union of any finite or infinite number of elements in NSHT is in NSHT . 

Then ( ( ), )n

NSHTP H  is called a Neutrosophic SuperHyperTopological Space on ( )nP H . 

23. Introduction to NonStandard Analysis [9-12] 

An infinitesimal [or infinitesimal number] ( ) is a number   such that | | 1 / n  , for any non-

null positive integer n. An infinitesimal is close to zero, and so small that it cannot be measured.  

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero. 

Infinitesimals are used in calculus. 

An infinite [or infinite number] ( ω ) is a number greater than anything:  

1 + 1 + 1 + … + 1 (for any finite number terms)    

The infinites are reciprocals of infinitesimals. 

The set of hyperreals (or non-standard reals), denoted as R*, is the extension of set of the real numbers, 

denoted as R, and it comprises the infinitesimals and the infinites, that may be represented on the 

hyperreal number line  

1/ε = ω/1.            

The set of hyperreals satisfies the transfer principle, which states that the statements of first order 

in R are valid in R* as well. 

A monad (halo) of an element a ∊ R*, denoted by μ(a), is a subset of numbers infinitesimally close 

to a. 

24. First Extension of NonStandard Analysis [13] 

Let’s denote by R+* the set of positive nonzero hyperreal numbers. 

We consider the left monad and right monad, and the (pierced) binad that we have introduced as 

extension in 1998 [5]: 

Left Monad { that we denote, for simplicity, by (-a) or only –a } is defined as: 

μ(-a) = (-a) = –a = a


= {a - x, x ∊ R+* | x is infinitesimal}.   

Right Monad { that we denote, for simplicity, by (a+) or only by a+ } is defined as: 

μ(a+) = (a+) = a+ = a


= {a + x, x ∊ R+* | x is infinitesimal}.   

Pierced Binad { that we denote, for simplicity, by (-a+) or only –a+ } is defined as: 

μ(-a+) = (-a+) = -a+ = a


= 
 = {a - x, x ∊ R+* | x is infinitesimal} {a + x, x ∊ R+* | x is infinitesimal} 

= { a x , x ∊ R+* | x is infinitesimal}.    

The left monad, right monad, and the pierced binad are subsets of R*. 

25. Second Extension of NonStandard Analysis 
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For necessity of doing calculations that will be used in NonStandard neutrosophic logic in order 

to calculate the NonStandard neutrosophic logic operators (conjunction, disjunction, negation, 

implication, equivalence) and in order to have the NonStandard Real MoBiNad Set closed under 

arithmetic operations, Smarandache extended in 2019: the left monad to the Left Monad Closed to 

the Right, the right monad to the Right Monad Closed to the Left; and the Pierced Binad to the 

Unpierced Binad, defined as follows: 

Left Monad Closed to the Right 
0 0 0

a a a
     

     
   

{a – x | x = 0, or x ∊ R+*  

and x is infinitesimal} = μ(-a)  {a} = (-a)  {a}  

= –a  {a}. 

Right Monad Closed to the Left 
0 0 0

a a a
     
     

   
{a + x | x = 0, or x ∊ R+*  

and x is infinitesimal} = μ(a+)  {a} = (a+)  {a}  

= a+  {a}.  

Unpierced Binad 
0 0 0

a a a
        

     
   

{a – x | x ∊ R+* and x is infinitesimal} 

 {a + x | x ∊ R+* and x is infinitesimal} {a} =  

= { a x  | x = 0, or x ∊ R+* and  x is infinitesimal}  

= μ(-a+) {a} = (-a+) {a} = -a+  {a} 

The element {a} has been included into the left monad, right monad, and pierced binad 

respectively. 

26. NonStandard Neutrosophic Topology 

The previous two extensions of NonStandard Analysis, used in the construction of NonStandard 

Neutrosophic Logic, NonStandard Neutrosophic Set, and NonStandard Neutrosophic Probability, 

were defined on the NonStandard Unit Interval  

Inontandard = ] 0,1 [ 
,  

we have founded [13] since 1998, and we have previously [13-15] proposed it, where: 

Inontandard =
0 0 0 0

] 0,1 [ { ; , , , , , , ;0 , }x x x x x x x x x x R
      

      , where R is the set of real numbers. 

Let (] 0,1 [)P  
be the powerset of ] 0,1 [ 

. 

Let τ = (] 0,1 [)P  
, which means that τ is the family of all subsets of (] 0,1 [)P  

. Of course: 

(i). 


 and 
] 0,1 [ 

belong to τ. 

(ii). The intersection of any finite number of elements in τ is in τ. 

(iii). The union of any number of finite or infinite number of elements in τ is in τ. 

 

Therefore, τ is a NonStandard Neutrosophic Topology. 

Then ( ] 0,1 [ 
, τ) is called a NonStandard Neutrosophic Topological Space. 

27. NonStandard Topology 

As a generalization of NonStandard Neutrosophic Topology one propose now the NonStandard 

Topology. 
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Let’s consider the real numbers ,a b R and the real interval [ , ]a b . Let’s extend it to a non-

standard interval ] , [a b 
is the same way as for the NonStandard Neutrosophic Logic and Set. 

Let’s have by convention the same meaning of the following notations:  
0def

x x , and x x


  , also x x


   for any real number x. 

Then: 
0 0 0 0

] , [ { ; , , , , , , ; , }a b x x x x x x x x a x b x R
      

      , where R is the set of real numbers. 

Let UNonStandard = ] , [a b 
 be a NonStandard interval, for a < b, where a and b are real numbers, 

and P(UNonStandard) be the power set of UNonStandard. 

Then P(UNonStandard) is formed by the empty set ( ) and itself UNonStandard, together with all standard 

and NonStandard subsets of ] , [a b 
.  

The finite intersections, and finite or infinite unions of any standard and NonStandard subsets 

are still (standard or NonStandard) subsets of UNonStandard. 

Let  τNonStandard   P(UNonStandard) be a family of standard or NonStandard subsets of P(UNonStandard). 

Then τNonStandard is called a NonStandard Topology on UNonStandard if it satisfies the following axioms: 

(i). The empty set ( ) and UNonStandard belong to τNonStandard. 

(ii). The intersection of finite number of elements in τNonStandard is stil in τNonStandard. 

(iii). The union of any finite or infinite number of elements in τNonStandard is stil in τNonStandard. 

Then (UNonStandard, τNonStandard) is called a NonStandard Topological Space. 

28. Extended NonStandard Real Set ( 
0

ER
 

 ) 

We introduce it now for the first time: 
0 0 0 00

{ ; , , , , , , ; }x x x x x x x x x RER
       

  , actually: 

0 0 0 0 0

ER R R R R R R R
        

       , 

where one uses the notations:  

0 def

R R  

{ , }R x x R
 

   

{ , }R x x R
 

   

0 0

{ , }R x x R
 

   

0 0

{ , }R x x R
 

   

{ , }R x x R
 

   

0 0

{ , }R x x R
   

   
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29. Largest Extended NonStandard Real Topology 

0

P ER
  

 
 

, which is the powerset of 
0

ER
 

, generates the Largest Extended NonStandard Real Topology 

on the whole Extended NonStandard Real Set 
0

ER
 

. 

 

30. Over/Under/Off-Sets and Logics and Probabilities 

The Neutrosophic Set was extended [Smarandache, 2007] to Neutrosophic Overset (when some 

Neutrosophic component is > 1), since we observed that, for example, an employee working overtime 

deserves a degree of membership > 1, with respect to an employee that only works regular full-time 

and whose degree of membership = 1; 

and to Neutrosophic Underset (when some Neutrosophic component is < 0), since, for example, 

an employee making more damage than benefit to his company deserves a degree of membership < 

0, with respect to an employee that produces benefit to the company and has the degree of 

membership > 0; 

and to and to Neutrosophic Offset (when some Neutrosophic components are off the interval [0, 

1], i.e. some Neutrosophic component > 1 and some Neutrosophic component < 0).  

Similarly for Over/Under/Off-Logic and respectively Over/Under/Off-Topology [16 - 19]. 

Since these ideas look counter-intuitive and totally different from the mainstream framework, we 

present below elementary examples from our real world of such degrees that are outside the box {we 

mean outside the interval [0, 1]}. 

31. Real Example of OverMembership and UnderMembership 

In a company a full-time employer works 40 hours per week. Let’s consider the last week period. 

Helen worked part-time, only 30 hours, and the other 10 hours she was absent without payment; 

hence, her membership degree was 30/40 = 0.75 < 1. 

John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with respect to this 

company. 

But George worked overtime 5 hours, so his membership degree was (40+5)/40 = 45/40 = 1.125 > 

1.  

Thus, we need to make distinction between employees who work overtime, and those who 

work full-time or part-time. That’s why we need to associate a degree of membership strictly greater 

than 1 to the overtime workers. 

Now, another employee, Jane, was absent without pay for the whole week, so her degree of 

membership was 0/40 = 0. 

Yet, Richard, who was also hired as a full-time, not only didn’t come to work last week at all (0 

worked hours), but he produced, by accidentally starting a devastating fire, much damage to the 

company, which was estimated at a value half of his salary (i.e. as he would have gotten for working 

20 hours that week). Therefore, his membership degree has to be less that Jane’s (since Jane produced 

no damage). Whence, Richard’s degree of membership, with respect to this company, was - 20/40 = 

- 0.50 < 0. 

Consequently, we need to make distinction between employees who produce damage, and those 

who produce profit, or produce neither damage no profit to the company. 

Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to take them 

into consideration. 
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Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to 

respectively Neutrosophic Over-/Unde-r/Off-Logic, -Measure, -Probability, - Statistics etc. (Smarandache, 

2007). 

32. Definition of the Single-Valued Neutrosophic OverSet 

Let overU  be an OverUniverse of Discourse {i.e. there exist some elements in overU  whose 

degrees of membership are > 1 }, and the Neutrosophic OverSet over overA U . 

Let T(x), I(x), F(x) be the functions that describe the degrees of membership, indeterminate-

membership, and nonmembership respectively, of a generic element x ∈ overU , with respect to the 

Neutrosophic OverSet overA : 

( ), ( ), ( ) : [0, ]overT x I x F x U   where 0 1  , and   is called OverLimit, 

( ), ( ), ( ) [0, ]T x I x F x   , for all overx U . 

A Single-Valued Neutrosophic OverSet overA  is defined as:  

overA  = {(x, <T(x), I(x), F(x)>), x ∈ Uover}, such that there exist some elements in overA  that have at 

least one neutrosophic component that is > 1. 

33. Definition of the Single-Valued Neutrosophic OverTopology 

Let overU  be an OverUniverse of Discourse, and ( )overP U the powerset of overU . 

Let ( )overover P U  be a family of Single-Valued Neutrosophic OverSets of overU . 

Then over is called a Single-Valued Neutrosophic OverTopology on overU if it satisfies the 

following axioms: 

(i).   and overU belong to over . 

(ii). The intersection of any finite number of single-valued Neutrosophic OverSets in over is 

in over . 

(iii). The union of any finite or infinite number of single-valued Neutrosophic OverSets in 

over is in over . 

Then ( overU , over ) is called a Neutrosophic OverTopological Space. 

34. Definition of the Single-Valued Neutrosophic UnderSet 

The previous two extensions of NonStandard Analysis, used in the construction of NonStandard 

Neutrosophic Logic, NonStandard Neutrosophic Set, and NonStandard Neutrosophic Probability, 

were defined on the NonStandard Unit Interval. 

Let underU  be an UnderUniverse of Discourse { i.e. there exist some elements in underU  whose 

degrees of membership are < 0 }, and the Neutrosophic UnderSet underunderA U . 

Let T(x), I(x), F(x) be the functions that describe the degrees of membership, indeterminate-

membership, and nonmembership respectively, of a generic element x ∈ underU , with respect to the 

Neutrosophic UnderSet underA : 

( ), ( ), ( ) : [ ,1]underT x I x F x U    

where 0 1  , and  is called UnderLimit, 

( ), ( ), ( ) [ ,1]T x I x F x   , for all underx U . 

A Single-Valued Neutrosophic UnderSet underA is defined as:  
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underA  = {(x, <T(x), I(x), F(x)>), x ∈ Uunder}, such that there exist some elements in underA  that have 

at least one neutrosophic component that is < 0. 

35. Definition of the Single-Valued Neutrosophic UnderTopology 

Let underU  be an UnderUniverse of Discourse, and ( )underP U the powerset of underU . 

Let ( )under underP U  be a family of Single-Valued Neutrosophic UnderSets of underU . 

Then under is called a Single-Valued Neutrosophic UnderTopology on underU if it satisfies the 

following axioms: 

(i).   and underU
belong to under

. 

(ii). The intersection of any finite number of single-valued neutrosophic undersets in under

is in under . 

(iii). The union of any finite or infinite number of single-valued neutrosophic undersets in 

under is in under . 

Then ( underU , under ) is called a Neutrosophic UnderTopological Space. 

36. Definition of the Single-Valued Neutrosophic OffSet 

Let 
offU  be an OffUniverse of Discourse {i.e. there exist elements of 

offU  whose degrees of 

membership are outside the interval [0, 1], some < 0 and others > 1}, and the Neutrosophic OffSet 

offA U . 

Let T(x), I(x), F(x) be the functions that describe the degrees of membership, indeterminate-

membership, and nonmembership respectively, of a generic element x ∈ 
offU , with respect to the 

neutrosophic offset 
offA : 

( ), ( ), ( ) : [ , ]offT x I x F x U     

where 0 1   , and   is called UnderLimit, while   is called OverLimit, 

( ), ( ), ( ) [ , ]T x I x F x    , for all 
offx U . 

A Single-Valued Neutrosophic Offset 
offA  is defined as:  

offA  = {(x, <T(x), I(x), F(x)>), x ∈ Uoff}, such that there exist some elements in 
offA  that have at 

least one neutrosophic component that is > 1, and at least one neutrosophic component that is < 0. 

37. Definition of the Single-Valued Neutrosophic OffTopology 

The previous two extensions of NonStandard Analysis, used in the construction of NonStandard 

Neutrosophic Logic, NonStandard Neutrosophic Set, and NonStandard Neutrosophic Probability, 

were defined on the NonStandard Unit Interval. 

Let 
offU  be an OffUniverse of Discourse, and ( )offP U the powerset of 

offU . 

Let ( )off offP U  be a family of Single-Valued Neutrosophic OffSets of 
offU . 

Then 
off  is called a Single-Valued Neutrosophic OffTopology on 

offU if it satisfies the 

following axioms: 

(i).   and offU
belong to off

. 
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(ii). The intersection of any finite number of single-valued neutrosophic offsets in 
off is in 

off . 

(iii). The union of any finite or infinite number of single-valued neutrosophic offsets in 
off

is in 
off . 

Then (
offU , 

off ) is called a Neutrosophic OffTopological Space. 

38. Neutrosophic Triplet Weak/Strong Set (N) 

Let (N, *) be a groupoid, or non-empty set endowed with a well-defined binary operation *. 

A Neutrosophic Triplet is an object of the form <x, neut(x), anti(x)>, for x ∈ N,  

where neut(x) ∈ N is the neutral of x, different from the classical algebraic unitary element if any, such 

that: 

x * neut(x) = neut(x) * x = x 

and anti(x) ∈ N is the opposite of x such that: 

x * anti(x) = anti(x) * x = neut(x). 

In general, an element x may have more neutrals (neut's) and more opposites (anti's). 

The neutrosophic triplets and their neutrosophic triplet algebraic structures were first introduced by 

Florentin Smarandache and Mumtaz Ali [20 - 23] in 2014 - 2016. 

39. Definition of the Neutrosophic Triplet Weak Set (NTS, *) is a set such that each element 

a NTS is part of a neutrosophic triplet <b, neut(b), anti(b)>, i.e. a = b, or a = neut(b), or a = anti(b). 

40. Definition of the Single-Valued Neutrosophic Triplet Weak Topology 

Let 
Triplet WeakU 

 be a Universe of Discourse which has the structure of a Neutrosophic Triplet Weak 

Set, and ( )Triplet WeakP U 
the powerset of 

Triplet WeakU 
. 

Let ( )Triplet Weak Triplet WeakP U    be a family of Single-Valued Neutrosophic Triplet Weak Sets of 

Triplet WeakU 
. 

Then 
Triplet Weak 

 is called a Single-Valued Neutrosophic Triplet Weak Topology on 
Triplet WeakU 

if it 

satisfies the following axioms: 

(i).   and Triplet WeakU  belong to Triplet Weak  . 

(i). The intersection of any finite number of single-valued neutrosophic triplet weak sets in 

Triplet Weak 
is in 

Triplet Weak 
. 

(ii). The union of any finite or infinite number of single-valued neutrosophic triplet weak sets in 

Triplet Weak 
is in 

Triplet Weak 
. 

Then (
Triplet WeakU 

, 
Triplet Weak 

) is called a Neutrosophic Triplet Weak Topological Space. 

41. Definition of Neutrosophic Triplet Strong Set (or Neutrosophic Triplet Set) 

The groupoid (N, *) is called a neutrosophic triplet strong set if for any a ∈ N there exist some 

neutral of a, denoted neut(a) ∈ N, different from the classical algebraic unitary element (if any), and 

some opposite of a, called anti(a) ∈ N. 
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Table 1. Example of Neutrosophic Triplet Strong Set. 

* 1 2 

1 2 1 

2 1 1 

 

The set ({1,2}, * ) is a groupoid, without classical unit element.  

Then <1, 2, 1> and <2, 1, 2> and are neutrosophic triplets. 

The neutrosophic triplet strong set is N = {1, 2}. 

42. Theorem on the Neutrosophic Triplet Strong and Weak Sets 

Any neutrosophic triplet strong set is a neutrosophic triplet weak set, but not conversely. 

Proof. 

Let (N, *) be a neutrosophic triplet strong set. If a ∈ N, then is also included in N, therefore there 

exists a neutrosophic triplet in N that includes a, whence N is a neutrosophic triplet weak set. 

Conversely, we prove by using a counterexample.  

Let Z3 = {0, 1, 2}, embedded with the multiplication  modulo 3, which is a well-defined law. The 

classical unitary element in Z3 is 1. 

(Z3,  ) is a neutrosophic triplet weak set, since the neutrosophic triplets formed in Z3 with respect 

to the law  contain all elements 0, 1, 2, 

i.e. <0, 0, 0>, <0, 0, 1>, and <0, 0, 2>.  

But (Z3,  ) is not a neutrosophic triplet strong set, since, for example, for 2 ∈ Z3 there is no neut(2)  1 

and no anti(2). 

43. Definition of the Single-Valued Neutrosophic Triplet Strong Topology 

Let 
Triplet StrongU 

 be a Universe of Discourse which has the structure of a Neutrosophic Triplet 

Strong Set, and ( )Triplet StrongP U 
the powerset of 

Triplet StrongU 
. 

Let ( )Triplet Strong Triplet StrongP U    be a family of Single-Valued Neutrosophic Triplet Strong Sets 

of 
Triplet StrongU 

. 

Then 
Triplet Strong 

 is called a Single-Valued Neutrosophic Triplet Strong Topology on

Triplet StrongU 
 if it satisfies the following axioms: 

(i).   and Triplet StrongU  belong to Triplet Strong  . 

(ii). The intersection of any finite number of single-valued neutrosophic triplet strong sets in 

Triplet Strong 
is in 

Triplet Strong 
. 

(iii). The union of any finite or infinite number of single-valued neutrosophic triplet strong 

sets in 
Triplet Strong 

is in 
Triplet Strong 

. 

Then (
Triplet StrongU 

, 
Triplet Strong 

) is called a Neutrosophic Triplet Strong Topological Space. 

44. Neutrosophic Extended Triplet 

A neutrosophic extended triplet is a neutrosophic triplet, defined as above, but where the neutral 

of x {denoted by eneut(x) and called "extended neutral", where “e” in front stands for ‘extended’} is 
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allowed to be equal to the classical algebraic unitary element (if any) of the law * defined on the set. 

Therefore, the restriction "different from the classical algebraic unitary element if any" is released. 

Thus, a neutrosophic extended triplet is an object of the 

form <x, eneut(x), eanti(x)>, for x∈N, where eneut(x)∈N is the extended neutral of x, which can be equal 

or different from the classical algebraic unitary element if any, such that: 

X * eneut(x) = eneut(x) * x = x 

and anti(x)∈N is the extended opposite of x such that: 

x*eanti(x) = eanti(x) * x = eneut(x). 

In general, for each x ∈ N there are exist many eneut's (extended neutrals) and eanti's (extended 

opposites). The neutrosophic extended triplets were introduced by Smarandache in 2016. 

45. Definition of Neutrosophic Extended Triplet Weak Set 

The set N is called a neutrosophic extended triplet weak set if for any x∈N there exist a 

neutrosophic extended triplet <y, eneut(y), eanti(y)> included in N, such that x = y or x = eneut(y) or x 

= eanti(y). 

46. Definition of the Single-Valued Neutrosophic Extended Triplet Weak Topology 

Let 
Extended Triplet WeakU  

 be a Universe of Discourse which has the structure of a Neutrosophic 

Extended Triplet Weak Set, and ( )Extended Triplet WeakP U  
the powerset of 

Extended Triplet WeakU  
. 

Let ( )Extended Triplet Weak Extended Triplet WeakP U      be a family of Single-Valued Neutrosophic 

Extended Triplet Weak Sets of 
Extended Triplet WeakU  

. 

Then 
Extended Triplet Weak  

 is called a Single-Valued Neutrosophic Extended Triplet Weak 

Topology on 
Extended Triplet WeakU  

if it satisfies the following axioms: 

(i).   and Extended Triplet WeakU   belong to Extended Triplet Weak   . 

(ii). The intersection of any finite number of single-valued neutrosophic extended triplet 

weak sets in 
Extended Triplet Weak  

is in 
Extended Triplet Weak  

. 

(iii). The union of any finite or infinite number of single-valued neutrosophic extended triplet 

weak sets in 
Extended Triplet Weak  

is in 
Extended Triplet Weak  

. 

Then (
Extended Triplet WeakU  

, 
Extended Triplet Weak  

) is called a Neutrosophic Extended Triplet Weak 

Topological Space. 

47. Definition of Neutrosophic Extended Triplet Strong Set 

The set N is called a neutrosophic extended triplet strong set if for any x ∈  N there exist eneut(x) 

∈  N and eanti(x) ∈  N. 

48. Definition of the Single-Valued Neutrosophic Extended Triplet Strong Topology 

Let
Extended Triplet StrongU  

 be a Universe of Discourse which has the structure of a Neutrosophic 

Extended Triplet Strong Set, and ( )Extended Triplet StrongP U  
the powerset of 

Extended Triplet StrongU  
. 

Let ( )Extended Triplet Strong Extended Triplet StrongP U      be a family of Single-Valued Neutrosophic 

Extended Triplet Strong Sets of 
Extended Triplet StrongU  

. 
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Then
Extended Triplet Strong  

 is called a Single-Valued Neutrosophic Extended Triplet Strong 

Topology on 
Extended Triplet StrongU  

if it satisfies the following axioms: 

(i).   and Extended Triplet StrongU   belong to Extended Triplet Strong   . 

(ii). The intersection of any finite number of single-valued neutrosophic extended triplet 

strong sets in 
Extended Triplet Strong  

is in 
Extended Triplet Strong  

. 

(iii). The union of any finite or infinite number of single-valued neutrosophic extended triplet 

strong sets in 
Extended Triplet Strong  

is in 
Extended Triplet Strong  

. 

Then (
Extended Triplet StrongU  

, 
Extended Triplet Strong  

) is called a Neutrosophic Extended Triplet Strong 

Topological Space. 

49. Neutrosophic Duplets 

The Neutrosophic Duplets and the Neutrosophic Duplet Algebraic Structures were introduced 

by Florentin Smarandache in 2016. 

Let U be a universe of discourse, and a set D included in U, endowed with a well-defined law #. 

50. Definition of the Neutrosophic Duplet 

We say that <a, neut(a)>, where a, and its neutral neut(a) belong to D, is a neutrosophic duplet if: 

(i). neut(a) is different from the unitary element of D with respect to the law # (if any); 

(ii). a # neut(a) = neut(a) # a = a; 

(iii).  there is no opposite anti(a) belonging to D for which  

a # anti(a) = anti(a) # a = neut(a). 

51. Example of Neutrosophic Duplets 

In (Z8, #), the set of integers with respect to the regular multiplication modulo 8, one has the 

following neutrosophic duplets: 

<2, 5 >, <4, 3>, <4, 5>, <4, 7>, and <6, 5>. 

 Proof: 

Let Z8 = {0, 1, 2, 3, 4, 5, 6, 7}, having the unitary element 1 with respect to the 

multiplication # modulo 8. 

2 # 5 = 5 # 2 = 10 = 2 (mod 8), so neut(2) = 5 ≠ 1. 

There is no anti(2) ∈ Z₈, because: 

2 # anti(2) = 5 (mod 8), or 2y = 5 (mod 8) by denoting anti(2) = y, is equivalent to: 

2y - 5 = M8 {multiple of 8}, or 2y - 5 = 8k, where k is an integer, or 2(y - 4k) = 5, where 

both y and k are integers, or: even number = odd number, which is impossible. 

 

Therefore, we proved that <2, 5> is a neutrosophic duplet. 

Similarly for <4, 5>, <4, 3>, <4, 7>, and <6, 5>. 

A counter-example: <0, 0> is not a neutrosophic duplet, because it is a neutrosophic triplet: <0, 0, 

0>, where there exists an anti(0) = 0. 

52. Definition of the Single-Valued Neutrosophic Duplet Topology 

Let 
DupletU  be a Universe of Discourse which has the structure of a Neutrosophic Duplet Set, 

and ( )DupletP U  the powerset of 
DupletU . 

Let ( )Duplet DupletP U   be a family of Single-Valued Neutrosophic Duplet Sets of 
DupletU . 



Neutrosophic Systems with Applications, Vol. 13, 2024                                                 63 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Florentin Smarandache, Foundation of Revolutionary Topologies: An Overview, Examples, Trend Analysis, Research 

Issues, Challenges, and Future Directions 

Then 
Duplet  is called a Single-Valued Neutrosophic Duplet Topology on 

DupletU if it satisfies the 

following axioms: 

(i).   and DupletU
belong to Duplet

. 

(ii). The intersection of any finite number of single-valued neutrosophic duplet sets in 
Duplet

is in 
Duplet . 

(iii). The union of any finite or infinite number of single-valued neutrosophic duplet sets in 

Duplet is in 
Duplet . 

Then (
DupletU , 

Duplet ) is called a Neutrosophic Duplet Topological Space. 

53. Definition of the Neutrosophic Extended Duplet 

Let U be a universe of discourse, and a set D included in U, endowed with a well-defined law #. 

We say that <a, eneut(a)>, where a, and its extended neutral eneut(a) belong to D, such that: 

(i). eneut(a) may be equal or different from the unitary element of D with respect to the 

law # (if any); 

(ii). a # eneut(a) = eneut(a) # a = a; 

(iii). There is no extended opposite eanti(a) belonging to D for which  

a # eanti(a) = eanti(a) # a = eneut(a). 

54. Definition of the Single-Valued Neutrosophic Extended Duplet Topology 

Let 
Extended DupletU 

 be a Universe of Discourse which has the structure of a Neutrosophic 

Extended Duplet Set, and ( )Extended DupletP U 
 the powerset of 

Extended DupletU 
. 

Let ( )Extended Duplet Extended DupletP U    be a family of Single-Valued Neutrosophic Duplet Sets of 

Extended DupletU 
. 

Then 
Extended Duplet 

 is called a Single-Valued Neutrosophic Duplet Topology on  
E x t e n d e d D u p l e tU 

 

if  it satisfies the following axioms: 

(i).   and Extended DupletU  belong to Extended Duplet  . 

(ii). The intersection of any finite number of single-valued neutrosophic extended duplet sets 

in 
Extended Duplet 

is in 
Extended Duplet 

. 

(iii). The union of any finite or infinite number of single-valued neutrosophic extended duplet 

sets in 
Extended Duplet 

is in 
Extended Duplet 

. 

Then (
Extended DupletU 

,
Extended Duplet 

) is called a Neutrosophic Extended Duplet Topological Space. 

55. Definition of Neutrosophic MultiSet 

The Neutrosophic MultiSet and the Neutrosophic Multiset Algebraic Structures were introduced 

by Florentin Smarandache [23] in 2016. 

Let 𝒰 be a universe of discourse, and a set M U .  

A Neutrosophic Multiset 𝑀 is a neutrosophic set where one or more elements are repeated with the 

same neutrosophic components, or with different neutrosophic components.  

It is an extension of the classical multiset, fuzzy multiset, intuitionistic fuzzy multiset, etc. 

56. Examples of Neutrosophic MultiSets 
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𝐴 = {(0.6, 0.3, 0.1), (0.8, 0.4, 0.2), 𝑐(0.5, 0.1, 0.3)} is a neutrosophic set (not multiset).  

But 𝐵 = {(0.6, 0.3, 0.1),(0.6, 0.3, 0.1),𝑏(0.8, 0.4, 0.2)} is a neutrosophic multiset, since the element a is 

repeated; we say that the element a has the neutrosophic multiplicity 2 with the same neutrosophic 

components.  

While 𝐶 = {(0.6, 0.3, 0.1), (0.7, 0.1, 0.2), 𝑎(0.5, 0.4, 0.3), 𝑐(0.5, 0.1, 0.3)} is also a neutrosophic multiset, 

because the element a is repeated (it has the neutrosophic multiplicity 3), but with different 

neutrosophic components, since, for example, during the time, the neutrosophic membership of an 

element may change.  

If the element 𝑎 is repeated 𝑘 times, keeping the same neutrosophic components (𝑡𝑎,,𝑓𝑎), we say 

that a has multiplicity 𝑘.  

But if there is some change in the neutrosophic components of a, we say that a has the neutrosophic 

multiplicity 𝑘.  

Therefore, we define in general the Neutrosophic Multiplicity Function (nm):  

𝑛𝑚: 𝒰 → ℕ = {1, 2, 3, …, ∞}, and for any 𝑎 ∈ 𝐴 one has  

             (𝑎) = {(𝑘1, 〈𝑡1, 𝑖1, 𝑓1〉), (𝑘2, 〈𝑡2, 𝑖2, 𝑓2〉), …, (𝑘𝑗, 〈𝑡𝑗, 𝑖𝑗, 𝑓𝑗〉), …} which means that  

a is repeated 𝑘1 times with the neutrosophic components 〈𝑡1, 𝑖1, 𝑓1〉;  

a is repeated 𝑘2 times with the neutrosophic components 〈𝑡2, 𝑖2, 𝑓2〉, ...,  

a is repeated 𝑘𝑗 times with the neutrosophic components 〈𝑡𝑗, 𝑖𝑗, 𝑓𝑗〉, ..., and so on.  

 

Then, a neutrosophic multiset A can be written as:  

A = {(𝑎, (𝑎)), for 𝑎 ∈𝐴)}. 

57. Examples of operations with neutrosophic multisets 

Let's have:  

𝐴 = {5〈0.6, 0.3, 0.2〉, 5〈0.6, 0.3, 0.2〉, 5〈0.4, 0.1, 0.3〉, 6〈0.2, 0.7, 0.0〉};  

𝐵 = {5〈0.6, 0.3, 0.2〉, 5〈0.8, 0.1, 0.1〉, 6〈0.9, 0.0, 0.0〉};  

𝐶 = {5〈0.6, 0.3, 0.2〉, 5〈0.6, 0.3, 0.2〉}.  

Then:  

Intersection of Neutrosophic Multisets.  

𝐴 ∩ 𝐵 = {5〈0.6, 0.3, 0.2〉}.  

Union of Neutrosophic Multisets  

𝐴 ∪ 𝐵 ={5〈0.6, 0.3, 0.2〉, 5〈0.6, 0.3, 0.2〉, 5〈0.4, 0.1, 0.3〉, 5〈0.8, 0.1, 0.1〉, 6〈0.2, 0.7, 0.0〉, 6〈0.9, 0.0, 0.0〉}. 

Inclusion of Neutrosophic Multisets  

𝐶 ⊂ 𝐴, but 𝐶 ⊄ 𝐵. 

58. Definition of the Single-Valued Neutrosophic MultiSet Topology 

Let MultiSetU  be a Universe of Discourse which has the structure of a Neutrosophic MultiSet, and 

( )MultiSetP U  the powerset of MultiSetU . 

Let ( )MultiSet MultiSetP U   be a family of Single-Valued Neutrosophic MultiSets of MultiSetU . 

Then MultiSet  is called a Single-Valued Neutrosophic MultiSet Topology on MultiSetU if it satisfies the 

following axioms: 

(i).   and MultiSetU
belong to MultiSet

. 

(ii). The intersection of any finite number of single-valued neutrosophic multisets in MultiSet

is in MultiSet . 
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(iii). The union of any finite or infinite number of single-valued neutrosophic multisets in 

MultiSet is in MultiSet . 

 Then ( MultiSetU , MultiSet ) is called a Neutrosophic MultiSet Topological Space. 

59. Conclusion 

These eight new avantgarde topologies, together with the previous six new topologies and their 

corresponding topological space, were introduced by Smarandache in 2019-2023, but they have not 

yet been much studied and applied, except the NeutroTopologies and AntiTopologies [8] which got 

some attention from researchers. While NonStandard Neutrosophic Topology, Neutrosophic Triplet 

Weak/Strong Topologies, Neutrosophic Extended Triplet Weak/Strong Topologies, Neutrosophic 

Duplet topology, Neutrosophic Extended Duplet Topology, Neutrosophic MultiSet Topology are 

proposed now for the first time. As future research would be to study their large applications in our 

real world. 
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