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Abstract: Graph structure is a developing field with many real-world applications and
advancements, particularly effective frameworks for integrative problem-solving in computer
networks and artificial intelligence systems. To define the idea of an Interval-Valued Complex
Neutrosophic Graph Structure (IVCNGS), the concept of an Interval-Valued Complex Neutrosophic
Set (IVCNS) is applied to the graph structure. Using the adjacency matrix to calculate the degree of
vertex, we have defined some findings about the IVCNGS. Further, we compute the energy and
Laplacian energy of IVCNGS. Moreover, we derive the lower and upper bounds for the energy and
Laplacian energy of IVCNGS, and we have discussed their application in IVCNGS. Finally, we
develop an algorithm that clarifies the fundamental processes of the application.

Keywords: Graph Structure; Interval-Valued Complex Neutrosophic Graph Structure; Energy and
Laplacian Energy; Applications.

1. Introduction

Real-world problems with uncertainty and ambiguity are not always amenable to the standard
techniques of classical mathematics. The concept of a fuzzy set (FS) was first proposed by Zadeh [1]
in 1965 as an extension of the conventional notion of sets. A gradual determination of an element's
membership in a set is allowed by the fuzzy set theory, as represented by a membership function
with a value in the real unit interval [0, 1]. Since then, numerous scholars have investigated the
concept of fuzzy logic and fuzzy sets to resolve a range of ambiguous and uncertain real-world
problems. Interval-valued fuzzy sets are the development that the author initiated in Turksen [2] in
1986. As a result of using numbers as the membership function, it also takes into account the values
of number intervals to account for uncertainty. Usually, it is indicated by the symbol [uy; (x), uhy (x)].
Use the equation 0 < uy; (x) + pjy(x) < 1 to represent the degree of membership of the fuzzy set
A.

Likewise, the membership function is single-valued and it is not always possible to use it to
capture both support and objection evidence. The intuitionistic fuzzy set (IFS) was developed by
Atanassov [3] as a generalization of Zadeh's fuzzy set. IFS, which has both a membership and a non-
membership function, can be created by deriving a new component, the degree of membership and
non-membership, from the fuzzy set's properties. When defining intuitionistic fuzzy sets, he also
included interval-valued intuitionistic fuzzy sets [4] for representing uncertainty, interval-valued
intuitionistic fuzzy sets instead of traditional fuzzy sets are preferred. Defuzzification, a technique
employed in fuzzy control in many ways, is the phase of the process that needs the most processing.
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To interpret the degree of true and false membership functions, it is defined as a pair of intervals
(wutl,o<puy +put<tland (1,21, 0<A + A< 1 withO0<ut+At <1

On the other hand, erroneous, inconsistent, and incomplete periodic information cannot be
handled by FSs, IFSs, or IVIFSs. Although these theories have applications in many different scientific
domains, they are all hampered by the inability to accurately describe two-dimensional events. Ramot
[5] proposed the concept of a complex fuzzy set (CES) in 2012 to address this problem. A helpful
generalization of FS is the membership grade of this concept, which is expressed as re'®, where r
stands for the amplitude term and 6 for the phase term. Values are restricted to only derived from
the complex plane's unit circle. The phase term of CFS is significant since it is better equipped to
control cyclical difficulties or recurrent troublesome phenomena. There will undoubtedly be
circumstances where the second dimension is required because the phase term is present in CFS. This
phrase distinguishes CFS from every other kind of information that is currently available. This use
best exemplifies the original notion with a CF representation of solar activity. The concepts of
complex intuitionistic fuzzy sets (CIFSs), which they translated to complex intuitionistic fuzzy sets
using the degree of complex-valued non-membership functions, were initially described by Alkouri
and Salleh [6] in 2012. Complex Interval-Valued Intuitionistic Fuzzy Sets (CIVIEFSs) and its associated
Aggregation Operator are novel concepts introduced by Harish Garg and Dimple Rani [9]. It is
defined as a pair of intervals [u'ei“_,u+ei“+],0 <u +ut<10<a +a*t<2m and
[17eP 1T |, 0< A+ At <1,0<p " +B"<2m with 0<pu*+1*<1 and 0<a*+p7 <1 to
interpret the complex degree of true and false membership functions.

Unfortunately, it is limited to processing incomplete and ambiguous data; it is unable to process
inconsistent and ambiguous data, which is common in situations in the real world. It cannot handle
the kind of ambiguous and indeterminate information that frequently arises in real-life situations; it
can only handle partial and ambiguous information. Thus, Florentin Smarandache introduces the
terms neutrosophic set, a unifying field in logics, and A Generalization of the intuitionistic fuzzy sets
[7-11] and they are used in many domains to handle contradictory and ambiguous data. Truth
membership, indeterminacy membership, and false membership are defined completely
independently if the sum of these values in the neutrosophic set lies between 0 and 3. This is known
as the indeterminacy value. Neutrosophy: Neutral Logic, Neutral Set, and Neutral Probability Give
a more thorough explanation of the ideas of neutrosophy, set, logic, and neutrosophic probability.
The neutrosophic set has quickly attracted the attention of many scholars because of the wide range
of descriptive situations it covers. Additionally, this new set aids in controlling the ambiguity
resulting from the neutrosophic scope. A comprehensive bibliometric examination of the
neutrosophic collection is showcased, encompassing the years from 1998 to 2017. Mumtaz Ali and
Florentin Smarandache developed the idea of a Complex neutrosophic set in 2016 [12]. When a set of
real-valued amplitude terms for truth, indeterminacy, and falsehood are combined with their
corresponding phase terms, we have a complex neutrosophic set. This set has a complex-valued truth
membership function, complex-valued indeterminacy membership function, and complex-valued
falsehood membership function. The complex neutrosophic set extends the neutrosophic set.
Moreover, Atige U. R.,, Muhammad.S, Florentin Smarandache, and Muhammad R. A. [13] present the
development of hybrids of hypersoft sets with complex fuzzy sets, complex intuitionistic fuzzy sets,
and complex neutrosophic sets in 2020.

Figure 1 presents the development of IVCNS, including the CS Crisp Set, FS Fuzzy Set, IFS
Intuitionistic Fuzzy Set, IVFS Interval-Valued Fuzzy Set, CFS Complex Fuzzy Set, NS Neutrosophic
Set, CIFS Complex Intuitionistic Fuzzy Set, CIVFS Complex Interval-Valued Fuzzy Set, CNS Complex
Neutrosophic Set, CIVIFS Complex Interval-Valued Intuitionistic Fuzzy Set, and IVCNS Interval-
Valued Complex Neutrosophic Set.
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Figure 1. The development of IVNCNS.

Ivan Gutman and Bo Zhou [14] introduced the idea of a graph's Laplacian energy in 2006. Its
definition is the sum of the absolute values of the adjacency matrix's eigenvalues for the graph. The
energy of a graph is used in quantum theory and many other applications in the context of energy,
and it is defined as the sum of the absolute values of the differences of the average vertex degree of
the graph to the Laplacian eigenvalues of the graph. This is done by connecting the edge of a graph
to the electron energy of a particular type of molecule. Rosenfeld [15] created fuzzy graph theory in
1975 and studied the fuzzy graphs that Kauffmann used to develop the basic idea in 1973. He
explored some basic concepts in graph theory and established some of their characteristics.
Bhattacharya [16] showed that the inferences from (crisp) graph theory are not always relevant to
FGs in his remarks on FGs. Intuitionistic fuzzy relations and intuitionistic fuzzy graphs were
introduced by Shannon and Atanassov in 1994. Fuzzy graphs with irregular interval values were
examined by Rashmanlou [17]. Additionally, they defined fuzzy graphs [18] and various features of
very irregular interval-valued fuzzy graphs. M.G. Karunambigai and K. Palanivel [19] first proposed
the Edge Regular Intuitionistic Fuzzy Graph in 2015.

Thirunavukarasu et al. [20] created complex fuzzy graphs (CFGs) to handle uncertain and
ambiguous relationships that have a periodic nature. According to Yaqoob et al. [21], complex
intuitionistic fuzzy graphs (CIFGs) were defined. They looked into the homomorphisms of CIFG and
demonstrated a CIFG application in cellular network provider companies to test their proposed
approach. To broaden the concept of neutrosophic graphs and CIFGs, Yaqoob and Akram introduced
complex neutrosophic graphs (CNGs) [22]. They covered several basic CNG functions and provided
examples to illustrate them. They also presented the energy of CNGs. The concept of Complex
Neutrosophic Hypergraphs: New Social Network Models was expounded upon in 2019 by Anam
Lugman, Muhammad Akram, and Florentin Smarandache [23]. The best examples and motivation
for CNS derive from two voting procedures, and they use this example to support the applicability
of their proposed model in their introduction. Laplacian energy of fuzzy graphs is a concept
introduced by Sharbaf and Fayazi [24], and some results on Laplacian energy bounds extend to fuzzy
graphs. For more details, see the research papers by Soumitra Poulik and Ganesh Ghorai [25-28] on
detour g-interior nodes and Detour g-boundary nodes in bipolar fuzzy graphs with applications,
pragmatic results in Taiwan education system-based IVFG & IVNG, and empirical results on
operations of Bipolar fuzzy graphs with their degree. Further, a note on "Bipolar fuzzy graphs with
applications" was proposed in 2020. A graph structure can be produced by enlarging an undirected
graph; this structure can then be used to investigate other sorts of structures, such as graphs and
signed graphs. The concept of graph structures was first proposed by Sampath Kumar in his essay
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from 2006 [29]. The concept of a fuzzy graph structure was first proposed by T. Dinesh and T. V.
Ramakrishnan in 2011 [30]. To use this model in IVCNGS, it can be rewritten in an abstract form.
Muhammad Akram recently proposed the idea of Operations on Intuitionistic Fuzzy Graph
Structures [31].

1.1 The framework of this research

This idea can be applied in IVCNGS after being restated abstractly. This work is structured as

shown in Figure 2 and as follows:

o The concept of Interval-Valued Complex Neutrosophic Graph Structures (IVCNGS) is
introduced in this work. Some results that we can share are that the IVCNGS adjacency
matrix and the degree of vertex presence are being further examined.

o Further, the energy and Laplacian energy of IVCNGS are calculated. Also, we determine
IVCNGS's energy and Laplacian energy upper and lower bounds.

e Moreover, IVCNGS applications and algorithm explanations were provided. Finally, an
explanation of all these studies is provided in conclusion and future works.

In order for researchers to further investigate this theory using analysis of the energy and Laplacian
energies of IVCNGS, we recommended readers to read this article.

The Interval-Valued Complex Neutrosophic
Developing Set (IVCNS), an extension of the Interval-

. Valued Neutrosophic Set (IVNS) and
Neutrosophic Complex Neutrosophic Set (CNS), offers a
Set Theory more accurate description of uncertainty than
conventional fuzzy sets.

The concept of the Interval-
Valued Complex Neutrosophic
Set (IVCNS) is applied to the
graph structure in order to define
the idea of the Interval-Valued
Complex Neutosophic Graph
Structure (IVCNGS).

Analysis, IVCNGS adjacency
matrix, characteristics, and

constraints for the energy and
Laplacian energy of IVCNGS

According to the findings, the
- framework may handle
Application ambiguity and uncertainty well
and future enough to be applied in
IVCNGS.

Some limitations and ideas for
future work are discussed.

Development

Figure 2. The development of IVNCNS.

2. Preliminaries

The development of the research work will be helped by the deliberation of some fundamental
concepts and attributes in this field.
Definition 1. Let’s say that conversation is the universe Y. Interval-Valued Complex Neutrosophic
Set (IVCNS) A defined on Y is the object of the form.
A=
(@ [z, @e" B @, 1, (@)e" B @], [uz, (@)e" 4, uf, (@)% @], [z, (@4 @, i, (@)e' 5@ :a €
Y}, where
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i =v=1, uz, (@), ik, @), ux, @), 1k, (@), ua, (@), i, (@) € [0,1] '
ap, (@), ok, (a), oz, @), af, (a), oz, (a), af, (@) € [0,21],0 < <(”Xl(a)> + (”XZ (a)) + (“X3 (a))) =3

Definition 2. Let A = {(a, [u;l (a)e!*a: @) qu(a)ei“j‘r\l(a)] (M4, (a)e'*a2@ WA, (a)eiar\z(a)],
|17, @%@, uf (@)% @] :a € V) and B = {(a |15, (@)e"®:1®, 1} (a)e"5: ]
, [ugz (a)elB2@, ug, (a)eio‘gz(a)] , [u§3(a)ei°‘§3(3), u§3(a)ei°‘§3(a)] :a € Y} be the two IVCNSs in Y, then
* AcBifandonlyif uz (a) < pg, (@), ui, (@) < ug, (@), ua, (@) < pp, (@), ui,@) < p§, (@) and
s, (@) < g, (@), ua, (@) < pg,(a) for amplitude terms and ay, (a) < ag, (), ai, (@) < azx (a),
a3, (@) < ag,(@), a3, () < aj, (@) and ay,(a) < ag,(a), ax,(@) < az,(a) for phase terms, for
all a€ey;
e A=Bifand onlyif py (a) = pg,(a), ui, (@) = ug, @), Ka, (@) = g, (@), uz, @ = pg, (@) and
a, (@) = pg, (@), ui, (@) = pg,(a) for amplitude terms and ay (a) = g, (a), ax, (@) = ai (a),
a3,(@) = ag,(@), ai,(@) = af, (a) and ay,(a) = ag, (@), ai (@) = az, (a) for phase terms, for

all aey;

For simplicity, the

.- .+ P L+ L o— .+
(7, (@ 4@, i, (@™ 0 @], 1z, (@e™ B, uf, (e8|, [, (@)e™ @, uf, (@)e™ 4 @]) is
called the IVCNS, where, pj ,u,, i, € [0,1] such that uz + pi, +pi, <3 .

Definition 3. A Interval-valued complex Neutrosophic relation in Y is described as a IVCNS Xin Y X
Y and is characterised by:

X = {(ab, ['“)?1 (ab)eia)_(l(ab), 'u;l (ab)eia}l(ab)] ) [/’t)_(z (ab)eia)_(z(ab)’ 'u}z (ab)eia)*fz(ab)]’
[u,'(3 (ab)ei“)_fzz(ab), ¥, (ab)ei“’?s(ab)]) Jjab €Y XY} where the Inter-valued complex Neutrosophic truth-

membership, complex indeterminate-membership and complex false-membership functions of X are mapping to
[0,1], such that 0 < pg (rs) + px,(rs) + ux,(rs) <3 forall rs €Y X Y.

Definition 4. On a non-empty set X, a Interval-valued complex Neutrosophic graph is a pair G =
(A,B), where A and B are complex Neutrosophic sets on X and a Interval-valued complex
Neutrosophic relation on X, respectively, such that:

iapg, (rs) imin{agz, (N,az, ()}

(Duz, (rs)e < min{uz, (M, 4z, (e

(ii)#gl(rs)eiagl(rs) < min{ﬂzl(r)'le(S)}eimin{azl(r),azl(s)}
@iD)up, (r)e™ 5" < max(uy, (), uz, (5))e ™A D2
((0)ih, (rs)e B < max{uf, (), uf, ()} ™ AR ()
(W)ug, (rs)e'*ss rs) < max{uy, (1), uz,(s)}e imax{ay, (1)@, ()}
Wiu, (rs)e' 5™ < max{u}, (r), uf, (s)je ™ @ hs )

0 < ug, (rs) + ug,(rs) + ug,(rs) <3 forall rs €Y X Y.

3. Energy of IVCNGS

In this part, the concept of routine IVCNGS is introduced. To further explain some of the
fundamental IVCNGS features, examples are also provided.
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Definition 5. Let {={n,84,8,,...,8} is referred to as an IVCNGS of graph structure (GS) (" =
{QRy, Ry, o, Ry} if = (1,M2,M5) = ([n7e“T, ni el ] [nzez, n3el*d] [nzel®s, nied]) is an IVCNS
on Q and§; = (8,85, 83) = ([al—leiﬁﬁ,es;]eiﬁh],[agleiﬁi,s;,eiﬁil],[S;Ieiﬁi,s;,ei%]) are IVCNSs on Q
and R; such that

()85 (a, b)e Py < minfn7 (a), ny (b)}eminter @ai(®),

(i)63(a, b)e @D < min{ni (@), ni(b)}emin{ed @ai®)}
(iii) 875 (a, b)e 1" < max{n; (@), n; (b)}emax(ez (Waz (B},
(iv)5(a, b)ew;l(a‘b) < max{n3 (a), n}(b)}eimax{“;(a)'“;(b)},
(iv)63;(a, b)e'P+1 @) < max{y3 (a), 15 (b)}em>{ez @z ),
(iv)83)(a,b)e M) < max{ng (a), n3 (p)e meF i ®)],

0<(8h@b)+(s5@b)+(s5@b)<3 and (Bfiab)),(pL@b)), (B3(ab)) € [0,2n] vab €
R,J=12,...k

Note : &7j, 81}, 835 , 635 and 83 , 683 are function from R to [0,1] such that 83(a,b) <
8;](3; b) 7 82_](3! b) S 8;](31 b) 7 ng(ai b) S S;I(al b) 7 Bl_](at b) S B‘l“](a! b) 7 BZ_](aJ b) S B;](al b) and
B3(a,b) < B3;(a,b) forall (a,b) €R,]=12,....k

Definition 6. The adjacency matrix Al = {A8;,AS,, ..., A8y} of a IVCNGS (= {n,84,86,, ..., 8}, where
AS,(J=12,...,k) is a square matrix as [u]-k] in which Ujk =

([51_1011 w et 5t (uiuk)ei% (ujuk)], [551 (0w e, 5§I(Ujuk)ei8;’ (ujuk)].
[6§](ujuk)ei351(“i“k),Sgl(ujuk)em;l(“i“k)]), where 83(ujux), 87(ujui) is represent the strength of

interval-valued truth membership amplitude term and 8§](ujuk), 8;’](ujuk) is represent the strength
of interval-valued indeterminate membership amplitude term between u; and uy and
8§](ujuk),8§](ujuk) is represent the strength of interval-valued false membership amplitude term
between u; and uy and B[](ujuk),Bf](ujuk) is represent the strength of interval-valued truth
membership phase term and Bz_](ujuk),ﬁzl(ujuk) is represent the strength of interval-valued
indeterminate membership phase term between u; and uy and B;I(ujuk), B;I(ujuk) is represent the

strength of interval-valued false membership phase term between u; and uy.

Definition 7. The adjacency matrix Al = {A8;,AS,, ..., A8} of a IVCNGS (= {n,8,,86,, ..., 8;}. Then

the § - degree of wvertex u in A(Q is defined as Adsl(u)eiAdBI(u) =
iAdg— iAd 4 (w)
([Adq e 1™ Ady (e ]
J 1]
iAd g— (w) iAd ,+ (W) iAd = (w) iAd ,+ (W)
[Ad52—](u)e 55", Adyy e P ],[Ad(g;](u)e 55, Adgy e F)),
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k k
k - iAd (w) k
Ads, (u)elAdBU(u) Z 61 (u]Z exzzlﬁlj(uﬂ)v Adsir] (we = Z 81 (ujZ) ezt Bf](uﬁ)'

z=1
k k
oi4dpz, () _ ko1 B3 () Adgy (0 _ T S B3 (usz)
Ads;, (e %2 557 () | e18502), Adyy (ye” # 63 () | X1 P41,
z=1 z=1
k k
lAdB (u) Zk— B85 (u) iAdB+ (u) Zk— /3+ (u)
Ad(g;](u) 3] 263] (u;,) |e*z=1Pas(tiz ,Adsgf](u)e 3J 263] (u;,) | e2z=1PssMiz),
z= z=1

v/ =12,..., k.

Example 1. An IVCNGS ¢ = (,84,6,) of a G5 ¢* = (Q, Ry, R,) given Figure 3 is a IVCNGS (=
(M, 84,8,) such that 1 = {u,([.4e*™,.7e'4™], [.3e"'™, .6e!3™], [.2e!1T, 4el3T)),

uy ([4e?™, .64, [.3e"57, 557, [4et3T, 62 4™)), us ([.5e437 , .6e4™], [.5et17, . 7eH27], [.3et4T, 4et5T)),

u4([. 3ei.61t , .6€i'7n], [ 4ei.47r, .5€i'5n], [ zei.3n, .Sei'S”]).

o 51([4€/27, 8] [ 3647, Be-r], [ 46T, BeHir]) 2
&
@
2 3
P —
L : '\5{\\\' —
% o :
TR 3
~ by ~
B _:.,f‘\' uE
\ Q\' W
2 - §
= b -<3 :.
L bﬁ- h_,
?; \ =1
-1 _}.f\\' “u
= o° o
B & 5
3, ¥ 3
¥ N =
1y (571([,38"-'3”,,683-'4”], [‘58"-'4”,.78’-'5”], [,SEi'l'T,,SeE':”]J iG]

Figure 3. The adjacency matrix of the amplitude term of an IVCNGS.
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The adjacency matrix of the amplitude term of an IVCNGS given in Figure 3 is:

r /0 0 .4 .6 0 0 0 0\ 7
(00) (3¢) (00) (oo
0 0 .4 .6 0 0 0 0
.4 .6 0 0 0 0 .3 .6
(s6) (0 0) (o] (%)
.4 .6 0 0 0 0 4 .6
0 0 0 0 0 0 .3 .6
(00) (o0 (00) (57
0 0 0 0 0 0 .3 .5
0 0 .3 .6 .3 .6 0 0
(00) (#5) (57) (oo
L \0 0 .4 .6 .3 .5 0 0/

The adjacency matrix of the amplitude term of an IVCNGS given in Figure 3 is

The &; — degree of vertex u; in A(Q) is (i=1, 2, 3, 4).
Ads, (u)) = ([Ads;, (uy), Adgy, (0], [Adsz, (uy), Adg, ()], [Adss, (uy), Adgs, (uy)])

Ads, (ug)=([. 4™, .6e"*™], [. 3e°™, .6€°™], [ 4€'3T, .6e!T]),

Ad51 (UZ) — ([ 7ei.4T[, 1.2ei.81'[], [ 7eil.01'[, 1.1ei1.01'[]’ [ 88i'6“, 1.2ei1.0ﬂ])’
Ad51 (U3) — ([ 3ei.3‘r[, .6ei.41'[]' [ 5ei.41r, .7ei'5“], [ 3ei.4n’ 'Sei.ST[]),

The adjacency matrix of the phase term of an IVCNGS given in Figure 3 is:

S0 0N /2 .4\ /0 0 0 0\ -
(a o> (.5 .5) (o o> (o o>
0o o/ \3 .4/ \o o 0 0

2 4\ /0 0 0 0\ /2 .4
(.5 .s> <o o> (0 o> (.5 .5>
3 .4/ \o o0 0 o/ \3 .6

AB=1"70 0 0 0 0 0N /3 .4
<o 0) <o o> (0 o> (.4 .5>
00 00 0 o/ \4 5
0 O\ /2 .4\ /3 .4\ /0 0
<o o> (.5 .5) (.4 .5) (0 o>

[\o o/ \3 6 \a 5/ \o o

Ads, (uy) = ([. 67, 1.2e87], [. 997, 1.2e107], [ 7e177, 1.117]).

Similarly, we calculate, the adjacency matrix of adjacency matrix of amplitude term of an IVCNGS

/0 0 0 0 0 0 .3 .6\
(O 0 (O O) (0 O> (.4 .6>
0 0 0 0 0 0 .2 .5
0 0 0 0 .4 .6 0 0
(0 0) (0 0) (.5 .7) (0 0)
0 0 0 0 .4 .6 0 0
0 0 4 .6 0 0 0 0
(0 0) (.5 .7) (0 0) (0 0)
0 0 4 .6 0 0 0 0
.3 .6 0 0 0 0 0 0
(4%¢) (00) (o0 (00

‘\.2 .5 0 0 0 0 0 0/ -

given in Figure 3 is:

A(SZ =
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The adjacency matrix of the phase term of an IVCNGS given in Figure 3 is:

r /0 0 0 0 0 0 .3 L4\
<o o) (o o) <o 0> (.4 .5>
0 0 0 0 0 0 .3 .5
0 0 0 0 .2 .4 0 0
(0 o) (o o) (.5 .5> (o 0>
0 0 0 0 .4 .5 0 0

ABz = 0 0 .2 .4 0 0 0 0
(0 o) (.5 .5) (o 0> (o 0>
0 0 .4 .5 0 0 0 0
.3 .4 0 0 0 0 0 0
(.4 .5> (o o) <o 0> <o 0>
\.3 .5 0 0 0 0 0 o/
The &, — degree of vertex u; in A(Q) is (i=1, 2, 3, 4).

Ads, () = ([Adsz, (uy), Adgy, (uy)|, [Adss, (uy), Adgy, ()], [Adss, (), Adss, ()]
Ad62 (ul):([' 3ei.3n, .6€i'4n], [ 4ei.4n, .6€i'5n], [ 261‘.371, .5€i'5n]),

Adé'z(uZ) — ([ 4€i'2n, .6ei.4—71'], [ Sei.STL', '7ei.5n], [ 4ei.4n, .6ei'5"]),
Ad62 (‘LL3) — ([ 4ei.2n, .6€i'4n], [ 561’.571, .7€i'5n], [ 4ei.4n, .6€i'5n]),

Ad62 (u4) — ([ 3ei.3n, .6€i'4n], [ 4ei.47r, .6€i'5n], [ 261‘.371, .Sei'S"]).

Definition 8. The spectrum of an adjacency matrix of an IVCNGS is defined as (P, Qq, P2, Q2. P5,Q3),
where P;,Q;,P,,Q,,P;,Q; is the amplitude term of the set eigenvalues of A({) and
(P{,Q1, P;,Q%, P35, Q%), where P/,Q%,P,,Q5 P;,Q5 is the phase term of the set eigenvalues of A(7)

respectively.
Example 2. The spectrum of IVCPFGS, given in Figure 3 follows.

Spec (465 (uj,u,)) = {05389, -0.2227,0.2227,0.5389},
Spec (464, (u;,u,)) = {~0.9708,-0.3708,0.3708,0.9708},
Spec (Aé'z'l(uj,uk)) = {-0.6708,-0.2236,0.2236,0.6708},
Spec (4631 (uj,u,)) = {~0.9514,-0.4415,0.4415,0.9514},
Spec (485 (uj,u,) ) = {~0.6093,-0.1970,0.1970,0.6093},

Spec (4631 (uj,u,)) = {-0.9306,-0.3224,0.3224,0.9306},
spec (4B (ujw)) = {-0.3811,-0.1575,0.1575,0.3811},
Spec (A,Bll(u],uk))

Spec (A,Bm(u},uk) = {-0.7697,—-0.2598,0.2598,0.7697},

= {-0.6472,—0.2472,0.2472,0.6472},

Spec (ABZl(uJ,uk)) = {-0.8090, —0.3090,0.3090,0.8090},
Spec (Aﬁ31(u,,uk ) = {-0.5389,-0.2227,0.2227,0.5389},
Spec (AB31(uj, uk)) = {—0.8450,—0.2367,0.2367,0.8450}.

Therefore, the spectrum of amplitude term is
Spec(A(8,)) = {{ —0.5389,—0.9708, —0.6708, —0.9514, —0.6093, —0.9306 ),
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(—0.2227,-0.3708,—0.2236,0.4415,—0.1970, —0.3224 ),
(0.2227,0.3708,0.2236,0.4415,0.1970,0.3224 ),
(0.5389,0.9708,0.6708,0.9514, 0.6093,0.9306 )}

The spectrum of phase terms is
Spec(A(B,)) = {{(—0.3811,—0.6472, —0.7697, —0.8090, —0.5389, —0.8450 ),

(—0.1575,-0.2472,-0.2598, 0.3090, —0.2227, —0.2367),
(0.1575,0.2472,0.2598,0.3090, 0.2227,0.2367 ),
(0.3811,0.6472,0.7697,0.8090, 0.5389, 0.8450)}

Similarly, we calculate
The spectrum of amplitude term is
Spec(A(6,)) = {( —0.4000, —0.6000, —0.5000, —0.7000, —0.4000, —0.6000 ),
(—0.3000,—0.6000,—0.4000, —0.6000, —0.2000, —0.5000),
(0.3000, 0.6000, 0.4000, 0.6000, 0.2000, 0.5000),
(0.4000, 0.6000, 0.5000, 0.6000, 0.4000, 0.6000 )}
The spectrum of phase terms is
Spec(A(B,)) = {{ —0.3000, —0.4000, —0.5000, —0.5000, —0.5000, —0.5000 ),
(—0.2000,—-0.4000,—-0.4000,—0.5000, —0.3000, —0.5000),
{(0.2000, 0.4000, 0.4000, 0.5000, 0.3000, 0.5000 ),
(0.3000, 0.4000, 0.5000, 0.5000, 0.5000, 0.5000)}

Definition 9. The energy of amplitude term of an IVCNGS ¢ = {n,84,6,,...,0x} is defined as the

following;
e —< €(A8,),€(Ab,), ..., €(A6y) >

€(48)) = (Z(“l oy Z(lh s Z(A s, Z(A?)a,,i(xf)a,,Zn:()(?)a,)\f] =12, ..,k

=1

and the energy of phase term of an IVCNGS {=1{n,84,6,,...,8} is defined as the following;
e(d) —< e(ABy), E(Aﬁz) E(Aﬂk) >

e(4p)) = (Z(a %, Zwﬂﬁ, Z(pl % Z(pl e Z(yl % Z(yr)g,) vj =

Example 3. The energy of amplitude term of an IVCNGS (¢ given in Figure 3 are as follows:
€(Q) =< €(Ab,),e(AS,) >
€(A6;) =< 1.5232,2.6833,1.7889,2.7857,1.6125,2.5060 >
€(A46,) =< 1.4000,2.4000,1.8000,2.6000,1.2000,2.2000 >
The energy of phase term of an IVCNGS ¢ given in Figure 3 are as follows:

€(¢) = < e(ABy),e(AB2) >
€(AB,) =< 1.0770,1.7889,2.0591,2.2361,1.5232,2.1633 >
€(Ap,) =< 1.0000,1.6000,1.8000,2.0000,1.6000,2.0000 >

Theorem 10. Let A(7) = {A8;,AS,,..., A8y} be an adjacency matrix of an IVCNGS ¢ = {n, 6,6, ..., 8}
If (us = (HE)&, 2 (s (WD = (D) 2. = (mn)s; and (AD)s; = (A5, 2.2 (W),
ADs; 2 A)g) 2.2 (7\+)5, and (X1)s; = ()5, =---= Om)s;, (s; = 03)s; 2. = (s, are the
eigenvalues of the amplitude terms, (97)g, = (82)51 >...= (9)g,, (’SDBJ > (8;’)5] >...> (93)g, and
(P1)g, = (p2)g; =---= (pndg, » (P1)g, = (p3)p; == (pn)g, and  (v1)g, = (v2)g; =---= (Yndg,
(v, = (v3)g, =...= (va)p, are the eigenvalues of the phase terms. Then
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0. XEawis; = 2w, = Liei(A)s, = Xiea@Ds; = 2iea(xi)s; = Lii(xi s, = 0
211‘1=1(19i_)51 = i=1(19i+),8] = ?:1(Pi_)ﬁ] = ?:1(.‘7;-)3] =

i(%‘_)ﬁ, = i()’;f)g] =0

(ii). ?:1(#{)%1 = 221<j<k<n (61_](uj'uk))2 1(#1 )5] 2z:1<j<k<n (61+](uj' uk))z

Z(A )51 =2 Z 62](u],uk) Z(A+)5l =2 Z 62](uj,uk))

1<j<ksn 1<j<ksn
Z(XL )5] =2 Z 62](upuk) Z(Xf)s, =2 Z 62](“puk)) and
1<j<ksn 1<j<ksn

2(19 ), =2 Z ﬁu(upuk) 2(19+)5] =2 Z ﬁ1](uj:uk))
1<j<ksn 1<j<ksn

Z(PL )ﬁ] =2 Z ﬁz}(upuk) Z(P;r)ﬁ, =2 z .sz(upuk))
1sj<ksn 1<j<ksn

Z(VL )ﬁ] 2 Z ﬁz](upuk) Z(V;r);;] =2 z ﬁz;(upuk))
B v]=1,.2, ...,k. e

and

Proof (i) since A({) is a symmetric matrix with zero trace, its eigenvalues are real and have a total

value of zero. (ii) By the trace properties of the matrix, we have:

<( (61](u]uk) ) ) Z(Mf)sj , where
tr ((A (5f](ujuk)))2> = (0+ (5f](u1u2)) 4ot (‘Sigj(ulun))z,

(ot 4+ (5 ),

+ (5f](unu1))2 + (515](unu2))2 + 4 0)

=2 z (5f](uj,uk))2

1<sj<ksn
Similarly, we prove that

Z(As)a,—z Z Szj(u],uk) Z(Xls)aj_z Z (5§J(uj'uk))2

1<j<ksn 1<j<ksn
and z(ﬁs)ﬁj =2 Z ﬁl](uj'uk) Z(Pls)/;] =2 Z ﬁZ](u]fuk))
1<j<ksn 1<j<ksn
Z(yf),;,—z Z [)’3](u,,uk)) VS=—+and] =12, ..,k
1sj<ksn

Example 4. Next, we show the example of the above Theorem 10. Let us consider A({) = {AS;,AS,}

be an adjacency matrix of an IVCNGS ¢ = (1, 6,,6,) as shown in Figure 3 in Example 1. Then:

(i) SEas, = 0,55, = 0,55, (s, = O and
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n n n
Z(ﬁf)ﬂ] = o,Z(pf)ﬁ] = O,Z(yf)ﬁ] =0,¥S=—+and] =12
i=1 i=1 i=1

2

(). Sujuger, (43, = 06800 = 2(0.34) = 2 Sy uer, (871 (w11c) )
2
Z (13, = 21600 = 2(1.08) = 2 Z (8t:(w ),

Ujur€ERy Ujukr€Ry
—\2 _ 2
Z (A%, = 1.0000 = 2(0.5) = 2 Z (621(uj,uk)) ,
UjuR€Ry Ujug€Ry
2
Z ()%, = 22000 = 2(1.1) = 2 Z (85w w0))
Ujur€Ry Ujug€Ry
—\2 _ 2
Z ()3, = 0.8200 = 2(0.41) = 2 Z (85:(w ),
UjuR€Ry Ujug€Ry
2
Z (2, = 1.9400 = 2(0.97) = 2 Z (83:(w, o)) and
Ujug€Ry Ujup€Ry
2
z (9;7)3, = 3.4000 = 2(0.17) = 2 Z ﬁn(u,,uk))
ujukER1 ujukERl
2
z (972, = 0.9600 = 2(0.48) = 2 Z (Bt (o)),
ujukER1 ujukERl
2
(p)3, = 1.3200 = 2(0.66) = 2 Z (B (wui))
ujukER1 ujukERl
2
Z (p)3, = 1.5000 = 2(0.75) = 2 Z (B2 (o))
Ujug€Ry Ujug€Ry
2
Z ()3, = 0.6800 = 2(0.34) = 2 Z (B2 () )
Ujug€Ry Ujug€Ry
2
Z ()3, = 1.3200 = 2(0.66) = 2 Z (B ()

Ujug€Ry Ujug€Ry

Similarly, we calculate | = 2.

Theorem 11. Let A(Q) = {A8;,AS,,...,A8} be an adjacency matrix of an IVCPFGS (=
{T]l 61; 62, ceey (Sk} Then:

(i). \/ 2 Yuueen; (65(w uk))z +n(n—1) mod (det (A (85w, uk))))ﬁ < e (85 () <
\/zn ZujukeR] (6fj(uj' uk))z/

B

(id). \/ 2 Syuery (85)(w)) +nn—1) mod <det (A (5;,(uj,uk)))) < e (55 (ww)) <
(2 e, (65 )’

(ii). J 2 Bjueer; (85w, u,c))2 +n(n — 1) mod (det (A (53S,(uj,uk)))) < € (85 (i) <
(2 S, (85, ,00))

3N
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I~

(iv). \/2 Loujuyer, (ﬁf](uj,uk))z + n(n — 1) mod <det <A (ﬁf](uj,uk)>))n <e (ﬁf](uj,uk)) <

\/Zn Zujuk_ER] (ﬁf](uj,uk))z,

|~

(v). \/2 Loujuyer, (ﬁfj(uj,u,{))z + n(n — 1) mod <det <A (ﬁ’f](uj,uk)»)n <e (ﬁf](uj,uk)) <

2
7

JZn Lujuer, (ﬂ;] (w, uk))

(vi). \/ 2 Y uger,) (gg,(uj,uk))z +n(n—1) mod <det (A (ﬁgj(uj,uk)»)ﬁ <e (ﬁg,(u,,uk)) <

2
JZn ZujukER] ([)’gj(uj,uk)) ,VS=—+and ] =12, .., k.

Proof. (i) Upper bound:
The following results are obtained by applying the Cauchy-Schwarz inequality to the vectors

(1,1,...,1) and ( mod (i), mod (k3),..., mod (ursl)) with n entries, we get:

> mod (@) < v | Y’ mod ()2 @)
i=1 i=1

2

(iuf) =Zn: mod (17)* + 2 Z uius @)

i=1 1<i<jsn

By comparing the coefficients of (u®)"~? in the characteristic polynomial:

1_[(;15 —uf) = mod (A(Q) — u5I), we have:
=1

S == > (65 w) ®

1<isjsn 1<j<ksn

Substituting 3 in 2, we obtain:

Y mod@?=2 Y () @
i=1

1<j<ksn

Substituting 4 in 1, we obtain:

i mod (u}) =\/Z\/2 Z (6f](uj'uk))2 =J2n Z (6f](uj'uk))2

1<j<ksn 1<j<ksn

Therefore,e(6f](uj,uk))s\/Zn Z (6f](uj,uk))2

1gj<ksn

Lower bound:
5 n 2 n
(e (6f](uj,uk))> = (Z ,uf) = Z mod (u)? + 2 Z mod ()
i=1 i=1 1<i<jsn

2 Z (6f](uj,uk))2 + MAM{ mod (ufu?)}

1<sj<ksn 2
Since, AM{ mod (y/i5)} = GM{ mod (pfuf)}, 1<i<j<n,
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So, € (8f](u]~, uk)) > \/2 Z (6f](uj, uk))z +n(n — 1)GM{ mod (ufuf)}

1<j<ksn

Also since:

n- g on A=)
om{mod (i)} = ( [ mod (utus) =(ﬂ mod )

1<i<jsn

(ﬁ[ mod (uf)f — mod (det (A (515,(ujuk))>>

Therefore € (Sf](uj, uk)) > |2 Z (Sf](uj’uk))z +n(n — 1) mod (det (A (5f](ujuk))))n

1<j<ksn

2

2

Thus, (2 Z (5f](uj,uk))2 +n(n—1) mod <det (A (5fj(u]-,uk))>>” <

uj,ukER]

€ (aig](uj'uk)) =< \/Zn z (5f](uj,uk))2,VS =—+and ] =1,2,..,k.

uj,ukeR]

Likewise, we can demonstrate that (ii), (iii), (iv), (v), and (vi).

Theorem 12. Let A()) = {A8,, AS,, ..., A&} be an adjacency matrix of an IVCNGS { = {n, 81,85, ..., 8i}-
If 0 <28y uer, (850w w) s 0 < 2 Tuuer, (85w w)) s 0 < 2Ty uen (85(w,w)) ) and n<
2 Yujuyer, (B?](uj'uk))z'n < 2 Xujuper (Bgl(ujruk))zr N < 2 Yyuper (Bg](uj’uk))zl Then:

2% juyer; (85 (wjan))” N

n

2
2 2%y uger; (63 (wjuk)
(n = 1) 42 Xy uer, (5f](uj,uk)) —< LA R](n” Tk ) )

). e (5f,(uj,uk)) <

2

2
2 Zul-ukeR] (ng(uj'uk))

i) e (65 (uu)) <

n
(o) \
2 2%uu 83 (ujuk)
n-1) ZZu,-ukER, (52'5](u]-,uk)) _< j kER]an ik )
S . 2
(iii). € (5?f](uj'uk)) = Rty (:31(“1'”))
() \
2 2%uu &3 (ujuk)
n-1) ZZujukeR] (5§gj(uj,uk)) _< j keR]nzl j Uk )

2
2 ZujukER] (Bf](ujvuk)) n

n

iv).  e(B5(ww)) <

n

2. 2
S uju
(n-1) ZZujukER] (ﬁlsj(uj: uk))z - (2 2ty (B”( ) k)) )
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2
ZZujukeR](ﬁig](ujruk)) n

n

. (B8 wu) <

2

2
2 ZujukER] (ﬁzsj(uj‘uk)) >

n

(n—-1) ZZujukeR] (ﬁégj(ujvuk))z - (

2
2 ZujukER] (ﬁ??](ujruk)) n

n

). e(B5(ww)) <

2

s 2
2 ZujukER] <B3](uj‘uk)) )

n

2
(n - 1) 2 ZujukeR] (ﬁ:f](u]’ uk)) - (
VS=—+and] =12, ..,k
. . . . S 2 Eu]-ukER] ajk s .
Proof. 1If A= [ajk]nxn is a symmetric matrix with zero trace, then pp ., = — where pp.x 1S

the maximum eigenvalue of A. If A(Q) is the adjacency matrix of an IVCNGS , then pf >

2 ZujukER] Sij(ujruk)

- , where p§ > 15 >...> .

n
Moreover, since Z(yf)z =2 Z (6f](uj, uk))z
i=1

ujug€Ry

Yanr=2 Y (65(ww)) - @ ®)
i=2

Ujug€Ry
With the vectors (1,1,...,1) and ( mod (n{), mod (13),..., mod (3)) with n—1 entries, the

Cauchy-Schwarz inequality is applied, and the following result is obtained:

e(87)(wow)) — i =) mod (@) < [m=1D ) mod @2 (6)

Substituting 5 in 6, we must have:

e(63(wu))-i < |-z D (85(ww)) - @)

UjURER]

e(63(wu)) <u+ |m-D(2 Y (s50w)) —wH?| @

UjURER]

Now, since the function:

FW=u+ [(n—-1)|2 Z (5f](uj, uk))z — 2

ujukeR]

decreases on the interval:

JZZujukeRJ (Sf](uj,uk))z\/z Z (5f](uj'uk))2 )

ujukER]
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2
2 ZujukER] (6fj(u]’ u’k))

Also,n <2 Z (6f](u]~, uk))z,l < .Therefore,
Ujug€Rj n
2 2
\/ZZuJ-ukeRJ (Sis](u]'uk)) < ZZujukeR] (5f](u]’uk)) < ZZujukeR] (6f](u]luk))
n - n - n
2
sus 2 ) (65ww).
ujukER]

Therefore, Eq. (7) implies:

2
2 ZujukeR] (5]:5‘] (u]’ uk)) n

€ (Sf](uj,uk)) < m

20 2
2 2 ZujukER] (5f1(uj' uk))
n

(n—1){2 Z (6f](uj,uk))

Ujug€Rj

,VS=—4+and ] =12, ..,k

Likewise, we can demonstrate that (ii), (iii), (iv), (v), and (vi).

Theorem 13. Let A(() = {AS;,AS,,...,A8} be an adjacency matrix of an IVCNGS (=
{n,81,8,..., 8} Then, €(Q) <2 (1 +Vn).
Proof. Let A({) = {A8,,A6,,...,AS,} be an adjacency matrix of an IVCNGS { = {n,8;,65,..., 6} If

2
n<?2 ZujukER ; (Sf](uj, uk)) = 2z, it is simple to demonstrate using standard calculus that f(z) =

2
273’ + \/(n -1z - (2_2) is maximized when z =

n

n?+nvn
.

We must have € (6f](uj, uk)) < 2(1 ++/n)

if we replace this value of z with z = ZujukeR ; (6f](uj, uk))z in Theorem 12. Similarly, to that, it is
simple to demonstrate that € (625](11]-, uk)) < 2(1 +n), € (535](uj, uk)) < 2(1 +

Vn), e (ﬁf](uj, uk)) < g(l +Vn), € (ﬁfj(uj, uk)) < 2(1 +n), € (ﬁgg](uj,uk)) < 2(1 +n), VS =
—+ and ] =1,2,...,k. Hence, €(0) < 2(1 ++/n).

4. Laplacian Energy of IVCNGS

The Laplacian energy of an IVCNGS is defined and examined, and its specific properties are

given in this section.
Definition 14. Let { = {n, §,,6,, ..., 8} be an IVCNGS on n vertices. The degree matrix in amplitude
term D&;(Q) = ([D83;(u;uy), D& (uuy)], [0 (uivy), D83 (usw;)], [D83; (usuy), D83 (wuy)]) = D8;(if)
The degree matrix in amplitude term

D) = (D5 (i), DB (wiy;)] [DBz; (wiyy), DBz (wi)], [D B3 (wiy), DB (way)]) = DBy (i)

ds (W), L

{ isan n X n diagonal matrix of amplitude term, which is defined as D&, (ij) = {061 (ul? oy teJ

, , . . g dg, (uy), i=j
¢ isan n X n diagonal matrix of phase term, which is defined as D, (ij) = 0 / Iy

Definition 15. The Laplacian matrix of an IVCNGS (= {n,8,,6,,...,8} is defined as L(Q) =
(L84, L8, ..., L8y), where L&y = D§; — A§j, and D§; is a degree matrix of an IVCNGS ¢ and Agy is

an adjacency matrix forall J = 1,2, ...,k
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Example 5. The Laplacian matrix of IVCNGS is shown in Figure 3 in Example 1. The DA; degree
matrix of amplitude term of an IVCNGS

/.4 .6 0 0 0 0 0 0\ 7
(s56) (oo) (00) (00
4 .6 0 0 0 0 0 0
0 0 .7 1.2 0 0 0 0
(0 O) (.7 1.1) (0 0) (0 0)
0 0 .8 1.2 0 0 0 0
0 0 0 0 .3 .6 0 0
(00) (00 (57) (o9
0 0 0 0 .3 .5 0 0
0 0 0 0 0 0 .6 1.2
(0 0) (0 0) (0 0) (.9 1.2)
- \0 O 0 0 0 0 .7 1.1/

The D2A; degree matrix of phase term of an IVCNGS

/.2 .4 0 0 0 0 0
(s35) (00) (o0o] (s
.3 .4 0 0 0 0 0

0 0 .4 .8 0 0 0
(00) (1 1) (00) (o
0 0 .6 .9 0 0 0
DBy = 0 0 0 0 .3 .4 0
(00) (o0] (% 5) (o

0 0 0 0 .4 .5 0

0 0 0 0 0 0 .5

(00) (o0 (00 (o
L \0 O 0 0 0 0 .7

The Laplacian matrix of amplitude term of an IVCNGS is

r /.4 .6 -4 -6 0 0
(3%) (=5 =) (o9
.4 .6 -4 -6 0 0
4 -6 .7 1.2 0 0
3 —.6) (.7 1.1) (O 0
4 -6 .8 1.2 0
0 0 0 0 .3 .
(00) (00
0 0 0 0 .
0 0 -3 -6 -.
(00) (=2 =5 (-
0 0 -4 -6 -.

Laplacian matrix of phase term of an IVCNGS is

hm,gpgOOoQooocooO

W uUl1Tww U1l wo
U1 O
v\_/
I T I B
R
NOOwunnwd hwo oo
I co o
(S BN C —
N——

NN

L61 =
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(2 ) Gy Gy
oGzt G 6) G2

bo Gy () (o
bo ) By

Similarly, we can calculate L&, and Lf, Laplacian matrix
Definition 16. The spectrum of the Laplacian matrix of an IVCNGS is defined as

N0 Ul s W

[
S~
7

(P, Qi P21, Qar, Par, Qzr, ), where Py, Q1 Pop, Qur, Pap, Qap, is the amplitude term of the set
eigenvalues of L(Q) and (P, Qir, P, Q5r, Psr, Q51), where Py, Qiy, Pop, Qby, Psp, Q5p, is the phase term

of the set eigenvalues of L({) respectively.

Example 6. The Laplacian spectrum of an IVCNGS shown in Figure 3 in Example 1 are as follows:
Laplacian Spectrum (L(83;)) = (0.0000,0.1866,0.6819,1.1314),
Laplacian Spectrum (L(87;)) = (—0.0000,0.3515,1.2000,2.0485),
Laplacian Spectrum (L(83;)) = (—0.0000,0.2236,0.7553,1.4211),
Laplacian Spectrum (L(83,)) = (—0.0000,0.3289,1.2879,1.9832),
Laplacian Spectrum (L(Sgl)) = (—0.0000,0.2149,0.6896,1.2955),
Laplacian Spectrum (L(8%,)) = (—0.0000,0.3339,1.0925,1.9735),
Laplacian Spectrum (L(B7;)) = (0.0000,0.1268,0.4732,0.8000),
Laplacian Spectrum (L(B$;)) = (0.0000,0.2343,0.8000,1.3657),
Laplacian Spectrum (L(B3;)) = (0.0000,0.2746,0.8913,1.6341),
Laplacian Spectrum (L(B3;)) = (0.0000,0.2929,1.0000,1.7071)
Laplacian Spectrum (L(B3;)) = (0.0000,0.1866,0.6819,1.1314),
Laplacian Spectrum (L(B3;)) = (—0.0528,0.2861,0.8466,1.7200)
Therefore, the Laplacian spectrum of amplitude term is Laplacian
spec(LA,) = {(0,—0,—0,—0,—0,—0), (0.1866,0.3515,0.2236,0.3289,0.2149,0.3339),
(0.6819,1.2000,0.7553,1.2879, 0.6896,1.0925), (1.1314,2.0485,1.4211,1.9832,1.2955,1.9735)}
And the Laplacian spectrum of phase term is
spec(LB;) = {(0,0,0,0,0,—0.0528), (0.1268,0.2343,0.2746,0.2929,0.1866,0.2861),
(0.4732,0.8000,0.8913,1.0000,0.6819,0.8466), (0.8000,1.3657,1.6341,1.7071,1.1314,1.7200)}

Similarly, we can calculate Laplacian spec(L§,) and spec(Lf,)

Example 7. The Laplacian energy of amplitude term of an IVCNGS ( given Figure 3 are as follows:
€(0) =< e(Lé,), e(Ls,) >
€(Ls;) =< 1.6267,2.8971,1.9528,2.9423,1.7702,2.7321 >
The Laplacian energy of phase term of an IVCNGS  given Figure 3 are as follows:
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€(0) =< e(Lé,), e(Lsy) >

€(L6;) =< 1.1464,1.9314,2.2507,2.4142,1.6267,2.3334 >

Similarly, we can calculate Laplacian €(L6,) and e(LB,)

Theorem 17. Let L(Q) ={L§;,L5,,...,L8,} be the Laplacian matrix of an IVCNGS (=

.81, 82,.... 8} If (u)s; = (25 == (Mndsp, (HD)s; = (D)5 2.2 (p)s; and (As; = (A7)
= sy, Mgy = (g 2.2 M)y and () = () 22 Om)sy . 0D s = (0G5 2
= (9D, (91)g; = (93
> (19;)3] and (p1)g; = (p2)p; =.--= (Pn)p;, (91)3, = (pf)sl 2.2 (PDB, and (v1)g = (v2)g,

(Xn)gl are the eigenvalues of the amplitude terms, (97 )B] > (192)3]

= (Ya)gy/ (yf)gl > (y}“)gl >..> )p, are the eigenvalues of the phase terms. Then

n n

® D wy=2 ) (o). D whs=2 > (shwmuw)),

i=1.(u{)5]EP1L ujukERy i=1.(ui+)5]EQ1L

n n

Ujug€Rj

(Ai)s; =2 z (62_](uj'uk)): z (s, =2 Z (52+](uj:uk)),

izl’(}‘i_)5]ERL UjuRER] i:1,(/13')6]eSL

n

i=1-(Xi_)5]ERL Uujug€Ry i=1.()(i+)5]ESL

n n

Z W )p, =2 Z (51_1(ujruk))» Z (9)p, =2 Z (517(%" uk))'

1=1,(97) €P1s ujuKER] i=1,(57) 5 Q1L
n n
(pi_)ﬁ] =2 Z (Bz_](uj: uk)): Z (pi )g]
i=1(pi) g €P21 ujuicERy i=1(p{) 5 €21
n n
(vidp, =2 z (ﬁs_](uj. uk)): Z (i )g;
izlr(Vi_)B]EPBCL ujukER] izl'(y;)ﬁ]EQ3L
n
(ii) z (:uz )é‘] =2 z 61](u], uk) + Z d51](u])
i=1,(ui_)6]eP1L UjugERy
n

(15, =2 Z 61](u],uk) +st+ (),

i=1r(ﬂi+)5]EQ1L UjuRERy

n

03 =2 ) (s50wuw)) +Zd52](uj)

izl'(}“i_)(s]EPZL Ujur€ERy

n

(N3, =2 Z (63 (i) +Zd5+(u])

=101, o e

Ujug€Rj

i )s; = 2 Z (63‘/(uj,uk)), Z (s =2 Z (6;1(uj,uk)),and

Ujug€R;

Ujug€Ry

2 z (83 (. w)),

u]ukER]

=2 z (83w, w))

ujug€Ry

=

VAR,

v
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n
(i )5, =2 Z 63](u],uk) +Zd6 (),
izl’(Xi_)5]EP3L UjuR€R;
n
Yooang=2 Y () + Zd5+ (), and
i=1,()(i+)5jeQ3L UjugER)y
n
@i )BJ =2 Z ﬁ1](u1'uk) +Zdﬁ ](uj)
i=1'(’9i_)BJEP1L UjuKERy
n
@ =2 > (b)) +Zdﬁ+ (),
i=1,(9), €011 UjUkER)
n
Z (o )ﬁ] 2 Z ﬁzj(u]:uk) +Zdﬁ2](u1)
i=1,(pi_)B]EP2L Ujug€ERy

Proof. (i) Given that L({) is a symmetric matrix with positive Laplacian eigenvalues, the following

is true:

0 Z (,u{)(g]=tr(L6{])=zn:d5;J(uj)=2 z COED)

i=1(k ) 5,€PL j=t UjUKER]

Likewise, we can demonstrate that

n n
Ws; =2 z 511(“11uk)) z (A7), =2 Z (52_](“7': uk)),
i:L(HiJr)(;]EQu, Uujuk€ERy i= 1,(){)516RL UjugERy
n n
(s =2 Z (62*,(u,-,uk)) z (i ds, =2 z (53_](u,-,uk)),
i=11(/1;r)5]eSL Ujug€Ry izl'()fi_)6]ERL Ujug€ERy
n n
=2 Y (Hu)) Y @h=2 . (B5(ww)),
i=1,(x} )5 €sy UjURERy i=1,(19i_)BJEP{L UjURERy
n n
g, =2 Z ('Bfl(uj' uk)) Z (pi g, =2 Z (ﬁ{](uj, uk)),
i=1(9) 5 €011 ujukER] i=1.(p7) g P21 ujURER)
n n
Wm=2 Y (Byuw)) > 0=z Y (Blu),
i=1r(Pi+)B]EQZL Ujug€Ry izl,(yi‘)E]eP_,fL UjuR€Ry
n

e =2 ) (BH0ww))

izlr(YiJr)B]EQu ujug€Ry
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(ii) By the Definition 15 of Laplacian matrix, we have:

[ dsr (u1) =65 (uuy) o _61_](21211)]
L6;, = I 61](u2u1) ds;,:(uz) _61_/(:Zzzn)|
l 61](unu1) —61_](unu2) dsl‘](un) J

By the trace properties of a matrix, we have:

o((16)) = > @,

i=1'(/‘i_)5]EP1L
o ((16))°) = (@, ) + (85 Gua))” + o+ (850 +
(6{](u2u1))2 + d?g;}(uz) ot (51_](Zzzn))2 et

(85 unu))” + (85 Gente)) + -+ 3 ()

=2 z 61](u],uk) +Zd51](u])

ujukER]

2
Therefore, Z?=1'(#i_)5]€P1L(Hi_)‘ZSI = ZZujukER] (51‘](11]-, uk)) + 20 d,gl—](uj)

Likewise, we can demonstrate that

n
U3, =2 Z 51](u]'uk) + zd6+ (w),
i=1,(u) 5 €01 ujukER]
n
A7 )5] =2 Z 521(u]:uk) +zd6 (u])
i=1,(/1i_)6]EP2L Ujur€Ry
n
/1+)5] =2 Z 62](u],uk) + de (uj)
i:1.(/1i+)5]eau UjurER;
n
G )6] =2 Z 531(111'“1() + st (w),
i=1,()(i_)5]€P3L ujukER]
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Z (M3, =2 Z 53](u],uk) +Zd5+ (w),and

i=1,(x; )5 €Q3L Ujuk€Ry

n

% =2 > (b)) +Zdﬁ,(u,)

i=1'(‘9i_)5]EP1L UjuR€ERy

n

@ =2 > (Bhww)) +Zd ().

i=1'(’9z+)ﬁ]€Q1L UjuR€ERy

n

Z (pi g, =2 Z ﬁZJ(uJ'uk) Zdﬁzj(u]) vi=1z2.

i=1(p7)g €P2r UjUkER]

Definition 18. The Laplacian energy of amplitude term of an IVCNGS ¢ = {n,8;,6,,..., 6y} is defined
as: Le(0) =< Le(8,),Le(8,),...,Le(8y) >

n

Le(s)) = (z mod ((L,“i_ )5,):2 mod (LH )61)

i=1
> mod (A)s,), ). mod (WA )), ) mod (L )s,) D mod (L), )), where
= =1 i=1 i=1
Ujuk€ 61(1;, UjuRE 815 (w;,
(Lu7)s, = i) = 2oty gl”(“f “k)),wm] = i) - 2 Lujuery Sl 15y uk)),
(LA s, = (A5, — 2 Zujuery sz_](uj’uk))’ (LA?L){S] _ (/1?)5] 3 2 Y juyer, E:S;j(uj'uk))'
Lxi)ds, = ids, — 22IujukERJ (531(u],uk)) (Lt s, = (Xi+)5] _ ZZujukeR] E:S;](uj'uk))'

For all ] = 1,2, ...,k. And the Laplaaan energy of phase term of an IVCNGS ¢ = {n,84,6,,...,8} is

defined as:

LE({) =< LE(Bl)I LE(BZ)"'HLE(:BI() >

Le(B)) = ). mod ((L67)g,). ). mod (L8)y))

n n

Z mod ((Lpi_),g]),z mod ((Lp;—)ﬁ])):

i=1 i=1

n n

Z mod ((LVi_)Bj)'Z mod ((Lyi+)ﬁj))' where

i=1 i=1
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2 Youjuper, (ﬁf] (w, uk))

2 UjURE 1] jr
Z JUKER] (ﬁl](U] uk))'(Lﬁl-{—)B] — (191-4—)‘8] _ :

(LI ), = ;g —

n n
2 Zujuger (Bas (e 2 S pugeny (B3
(Lpi)g, = (o), ——— - n 2 k)).(Lpi*)B, = (pg —— = Slzj( : k)),
ZZu-u € ﬂ_ (u~,u ) ZZuu € B+ (u',u )
Lyidp = (g, —— ),chﬁ, = (g~ — ﬁ 0y w))

v =12,...k

Example 8. In Example 6, the Laplacian spectrum is found. An IVCNGS is Laplacian energy is shown

in Figure 3 as follows:

_ 2(1.0) 2(1.0) 2(1.0)
(Lui)s, = mod (0 — 2 + mod ( 0.1866 — 2 + mod 0'6819_T
2(1.0)
+mod | 1.1314 — —— | = 1.6267
2(1.8 2(1.8 2(1.8
(Lui)s, = mod (0— (4 )) + mod (0.3515— (4 )>+ mod <1.2000—%)

2(1.8)
+ mod | 2.0485 = = 2.897

(LA;)s, = mod (0 — 2(1'2)> + mod <0.2236 - —2(2'2)) + mod (0.7553 - —2(1'2)>

2(1.2)
+mod (14211 == ) = 19528

(LAf)s, = mod (o - 2(1'8)> + mod <0.3289 - @) + mod <1.2879 - @)

2(1.8)
+ mod {19832 - — = | = 2.9422

(Lx{)s, = mod <0 - 2(21)) + mod (0.2149 - @) + mod (0.6896 - —2(21))

2(1.1)
+mod (12955 - == | = 1.7702

2(1.7) 2(1.7) 2(1.7)

) + mod (0.3339 - T) + mod (1.0925 - —)

(LxNs,

d(0-
mo< 7

2(1.7)
+mod {1.9735 —— =) = 2.7321

(L9;)p, = mod <0 —@) + mod <0.1268 — @) + mod <0.4732 —@)

2(.7)
+ mod ( 0.8000 — 4 = 1.1464
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(L9{")p, = mod <o - 2(2'2)) + mod (0.2343 - 2%’”) + mod <0.8000 — —2(1'2))

2(1.2)
+mod (13657 - — =) = 19314

(Lpi)g, = mod (0—22%) + mod (0.2746 —2%2) + mod (0.8913 — 202)
+mod (1.6341 — 2(1'4)) = 2.2508
2(1.5) 2(1.5) 2(1.5)
(Lpi)p, = mod |0 — ) + mod (0.2929 — 7 + mod ( 1.0000 7

2(1.5)
+ mod | 1.7071 — — /= 2.4142

(Lyi)p, = mod <0 - @> + mod <0.1866 - ?) + mod (0.6819 - ?)

4
2(1)
+ mod 1.1314—T = 1.6267
2(1.4) 2(1.4) 2(1.4)
(Ly{’)ﬁ1 = mod | —0.0528 — 2 + mod ( 0.2861 — 2 + mod 0.8466—T

+ mod <1.7200 —2(%4)) = 2.2805

Theorem 19. Let L({) = {L6,,L8,,..., L8y} be the Laplacian matrix of an IVCNGS { = {n,§;,6,,...,8}.
If (uDs; = (M2)s; == (Hdsy » (MDD s; = (05 2.2 (Mn)s; and (A7) = (A)s; =002 (Mg,
ADs; = ADg; 2.2 (A)s; and (1), = (2)sy =---= (s, (s = 03)s; 2.2 ()5, are the
eigenvalues of the amplitude terms L&7;(ujuy), L83 (ujuy), L83 (ujui), L83 (ujuy) and L83 (ujuy),
L8§’](ujuk) respectively, and (97)g, = (97)p; =...= (On)g, (ﬁf)gl > (19;)3] >..> (19;;)(3] and
(pD)g; = (P2)g; == (prdg; » (P1)g; = (P3)g, 2.2 (p)g, and  (vi)g, = (vz)g, =...= (Yn)g, -
(v1)g, = (v3)g, 2... = (v1)p, are the eigenvalues of the phase terms LB (uju), L3 (ujuy), LB (ujuy),
LB3;(ujux) and LB3;(ujux), LR3(ujuy) respectively,

ZZujukeR] (51_](u]!uk)) ZZujukeR] (Sf](u]’ uk))

’ (Lur)ﬁj = (M:)ﬁj - ’

Lu)s; = Wids; —

n n
_ _ 2% upery (02, (u "uk) 2% uyp€er 8% (u "uk)
(LA7)s, = (A7)s, ——1 ]1(1 — ); (LADs, = (A)s, — —5 ],E — ),
(LXD)sy = (A)gy — 2 (050y10) Lt )s, = 1f)s, — e (85 )
i /o) ™ i Joy n ’ 1/6; = i Joy n
2 Y uer, (B (wy we) 2w wer, (B (w),ue)
and (L9] ), = (87 ), = ———— Sl ) L0y 0y = ——— El )
2zu-u €R .Bz_j(uj:uk) ZZu-u €R .Bz-'-j(uj'uk)
Lpidg = (pidg; = —— Eq )' (Lpi+)ﬁ] = (P;)Bj - — El )

2 Yuuy€eR (ﬁ;](uj.uk))
L Ly, = g ——— )

n

_ _ 2w juyeR (B;](ujruk))
LyDp, =g, —— . ]n
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then: X7 1(Lﬂf)6] =0,X7 1(L/13)6] =0, X7 1(LXLS)6] =07 1(L195)ﬁ] =0,

n n
> Wodg =0.Y (g, =0,
i=1 i=1

n n n
Z(Luf)gl = 2Ms, Z(uf)g] _ 2M6§],Z(fo)§] = 2M5
i=1 i=1 i=1

n n

n
Y S\2 s\2
Z(Lﬁi )ﬁ] = ZMﬂf], Z(Lpi )ﬁ] = ZM[;EV]‘Z(LVL' )ﬁ] = ZM[;g]

i=1 i=1 i=1
where:

ZujukER] 61](u]'uk)

Z (6f](uj, uk))z + %i

Ujug€Rj i=1

dsf] (w) -

—

Zu]ukezej 62](u]1uk)

n
2 1
i 3 )35 (100
ujukeR] =1
n
2 1 Zu Uug€ER 53](u],uk
e 3, ) 35 a2
ujukER] =1

Zu]ukeRl .81] (u]' Uy

INGE

Mg, = (B5u0) +5)

ujug€Ry

dps | () -

1l
_

™M=

M= Y (B +

u]-ukER] i

dﬁf ’ (uj)

I
Jay

)
)
Zu]ukeR] ﬁu (wj, ui)
)

Zu,ukeRJ '32] (up U

M= 3 () +

Uujug€Ry i

dps | () -

Zu,ukeRJ '33] (up uk)

M=

NNgh
P e e

M= 2 (Bwm)) +

ujug€Ry i

dpgs J (w) -

)
)
)
)
)
)
)

Il
[y

VS=—+4+and ] =12,...,k.

Theorem 20. Let L(7) = {L84,L38,,...,L8} be the Laplacian matrix of an IVCNGS { = {n,84,8,,...

on n vertices. Then,

W Wy (20 Y (55 u)) +ny | dys (uj)_zzu,.ukeg, (85 (w,we)

ujukER] i=1

n

’ 8k}
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(i) (L/lf)(gls 2n Z (2](u],uk) +nz dss](uj)—

n

ZZujukeR] 2](u]’uk) )

ujukER] i=1
c 2¥u. U, u
(iii) (L)(f)5] < [2n Z ( 3](u],uk) _l_nz dggj(uj)— ujugeR; 31( j k))
ujukER] i=1
n
Z R B (u,uk)
(iv) (L97)g, < |2n Z (ﬁlj(u]:uk) +nz<dﬁf](uj)— wjuger; \P1y\Uj
ujukER] i=1
C Zu]ukeR] (ﬁz](u], Uk )

) (Lpilg < [2n Z (ﬁzj(u],uk)) +nz dﬁzs](uj)_

ujukeR] i=1
. S - ZZujukeR] (Bg](u]'uk))
(vi) (Ly; )ﬁjS 2n Z ([)’3](u],uk)) +nz dﬁgj(u]-)— "
ujukER] i=1

VS=—+and ] =1,2,...,k.
Proof. (i) By applying Cauchy-Schwarz inequality to the n numbers 1,1,...,1 and

mod ((Luf)sl), mod ((Lug)sl),..., mod ((Ll,lrsl)(s]), we have:

n

> mod ((L)s,) < Vi [ mod (ups,)’
1

i= i=1

Lud)s, < \/EJZM,% = \/ZnMsf]

n

. ZZu aer; (677 (wjuk)
Since, My, = Zupnen, (53 0))” + 1214 (g ) - st ")),

Therefore,

2 2%uu &5 (wjur)
(L#f)z;, \/Zn Zu]ukER] (Sf](uj,uk)) +nYh, (dgf](u]-) —— kERIE Y >> for all
S=—+and J=12,...,k.
We can verify the other sections (ii), (iii), (iv), (v), and (vi) in a similar manner.

Theorem 21. Let L(Q) = {L84,L8,,...,L8y} be the Laplacian matrix of an IVCNGS { = {n, 84, 6,,..., 6x}

on n vertices. Then,
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forall S =—,+ and J = 1,2,..., k. We can verify the other section (ii), (iii),(iv),(Vv),

and (vi) in a similar manner.
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Theorem 22. Let L(Q) = {L6;,L3,,...,L8;} be the Laplacian matrix of an IVCNGS T = {n, 84, 8,,..., 5y}

on n vertices. Then,

@ @i, < mod ((Lu)s,) + J(n ) (2My5, — mod (ud)s,))
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|
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2
Therefore, (Luf)(g] — mod ((Luf)(;]) + \/(n -1 (ZMsf] < mod ((Luf)(;]) ) forall S=—,+and/ =
1,2,..., k. We can verify the other sections (ii), (iii), (iv), (v), and (vi) in a similar manner.

Theorem 23. If the IVCNGS (= {n,6,,6,,...,8;} is regular, then:

u]ukeR]

D (Lu)s, < mod ((L.Hf)a] + |(n— 1)( 1](uj' uk) (Lﬂf)s,)
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Proof.
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n
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Substituting 9 in 8, we get

W5, < mod (g, ) + |- 2 > (85 (ww)) - @3, |

ujukER]
We can verify the other sections (ii), (iii), (iv), (v), and (vi) in a similar manner.

5. Application

We evaluate the effectiveness of the proposed IVCNGS policies with real-world examples of
medicine resource analyses based on the clinical field. The modern human life is heavily reliant on
medicine. In the present context, it is the most important essential in the world. In our daily lives, we
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use a variety of medications, including herbal, homeopathic, and generic medications. Satisfying
human demand and supplying a sufficient number of medicines at a reasonable cost to the market is
extremely significant for the pharmaceutical industry.

Let's investigate how our IVCNGS concepts are applied to the pharmaceutical industry, which
encompasses generic, homeopathic, herbal, and allopathic products, to explain its exceptional
performance. The vertices in this example represent generic (u;), homeopathic (u,), herbal (us),
and allopathic (u,) . We examine the network analysis of best best-edition drugs in the
pharmaceutical industry. The two intended relationships between the pharmaceutical effect of the
introduced unit's impact on global demand R;and the damage to medications R,. According to the
provided definition 5, impact on global demand R; and the damage to medications R,. The offered
definition 5 can be applied in any situation because it helps to take into account everything that has
an uncertain value. In this case, a set of relations R; and a vertex set Q are considered. Examine
Q ={ generic (u;), homeopathic (u,), herbal (u3), and allopathic(u,)}, as well as the effects on global
demand R; and the relationships between components in the pharmaceutical industry that affect
medication damage R,. We assume in Example 1 and Figure 3 ¢ = (1,64, 5,) isIVCNGSofaGS {* =
(Q, R4, R;). The greatest value of an IVCNGS amplitude term's energy ¢ is max(e({ )) =2.6833 and
the greatest value of an IVCNGS phase term's energy { is max(e({)) = 2.2361. In this illustration, it
is obvious that the components have a greater impact on each other when there is a greater quantity
of energy present in their relationships. It is obvious that more energy exists in R;. As aresult, generic,
homeopathic, herbal, and allopathic all have a greater impact on one another.

To assess each of these, we instructed two relation e,(k = 1,2) Interval-valued complex
Neutrosophic Preference Relations (IVCNPRs) [32] to increase the degree of components in the
pharmaceutical industry. Following is a formula to determine each expert's weight:

€ € €

__e(an3)) _e(as3)) A G)
e(As5) i e(a85) e(A53)) o 32 (a65)) e(A53)) o Zi-c(463)

Yi-1€ (453 Y7453 X3 (453 ’

VS=—+and] =12.

W]:

Amplitude term of IVCNGS:

W, = ((0.5210,0.5278), (0.4984,0.5172), (0.5733,0.5325)),
W, = ((0.4789,0.4721), (0.5015,0.4827), (0.4266,0.4674))

Phase term of IVCNGS:

w; = ((0.5185,0.5278), (0.5335,0.5278), (0.4877,0.5196)),
w, = ((0.4814,0.4721), (0.4664,0.4721), (0.5122,0.4803))

By using the Interval-Valued Complex Neutrosophic Averaging (IVCNA) \label{0.1} operator,
compute the averaged Interval-Valued Complex Neutrosophic element (IVCNE) uf of the
pharmaceutical industry u;={generic (u;), homeopathic (u,), herbal (u3), and allopathic (u,)} over
all other testing venues for the experts e;, (k=1,2):

uL’-‘ = IVCNA(u{‘l,ui‘z, o, uk ) =

mn

(|1- (ﬂ (1- (af,)zi,-))ﬁ’ (ﬁ(aﬁ)u)ﬁ eij (e ({6 (e,

i=1
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1

([l () e o

i=1

3=

\/1 _ ( ( (53]) )) ( ?:1(5;])”)%ei‘/l_(H?:1(1_(ﬁ;])2ij))ﬁ‘(n?ﬂ(ﬁ;])ij) )for all [ =12, .. k.

Displays the findings as an aggregate Table 1 and 2. Calculate a collective IVCNE u; (i = 1,2,3,4) of
the generic (u;), homeopathic (u,), herbal (u3), and allopathic (u,)using the Interval-Valued
Complex Neutrosophic Weighted Averaging IVCNWA) Operator.

uk = IVCNA},u?, ..., uf) =

(\/1_<H12<=1( - (657) ) ) (Hk 1(51])%1) jl—(ﬂi=1(1—(ﬁf])k) 11)‘(1.[%:1(‘?;]):,1] )

1- (ﬁ (1 - (62_])k)W2_]> ‘ (ﬁ(é‘;]):;]> ei\/l—(ﬂlzcﬂ(l—(B{])R)WE]>’(H}zc=1(ﬁ;-])"’("§r]),

k=1 k=1

7

\/ 1- (Hi=1 (1- (53‘/)R)W3_]) : (Hi=1(6;,):;/ ) ei\/ {05 )")WS_])(Hiﬂ(B;’):;]),v J=12, ...k

Table 1 The expert aggregation results in amplitude term.

Experts The Owverall Results of the Experts
ul = (0.2065, 0.8801, 0.1526, 0.8801, 0.2065, 0.8801)
€1 ul = (0.2548,0.7745, 0.2548, 0.7406, 0.2889, 0.7745)
ul = {0.1526,0.8801, 0.2634, 0.9146, 0.1526, 0.8408)
ui = (0.2146,0.7745, 0.3302, 0.7691, 0.2548, 0.7406)
uf = (0.1526, 0.8801, 0.2065, 0.8801, 0.1007, 0.8408)
€9 us = {0.2065, 0.8801, 0.2634, 0.9146, 0.2065, 0.8801)
ui = (0.2065, 0.8801, 0.2634, 0.9146, 0.2065, 0.8801)
uy = (0.1526,0.8801, 0.2065, 0.8801, 0.1007, 0.8408)

Table 2 The expert aggregation results in phase term.

Experts The Owverall Results of the Experts
ui = (0.1007,0.7952, 0.2634, 0.8408, 0.1526, 0.7952)
€1 us = (0.1426, 0.6324, 0.3660, 0.7071, 0.2146, 0.6999)
ul = {0.1526,0.7952, 0.2065, 0.8408, 0.2065, 0.8408)
ui = (0.1822,0.6324,0.3302,0.7071, 0.2548, 0.7400)
ui = (0.1526,0.7952, 0.2065, 0.8408, 0.1526, 0.8408)
€a us = (0.1007,0.7952, 0.2634, 0.8408, 0.2065, 0.7952)
ui = (0.1007,0.7952, 0.2634, 0.8408, 0.2065, 0.8408)
uy = (0.1526,0.7952, 0.2065, 0.8408, 0.1526, 0.8408)

Therefore, generic (u;), = (0.1828, 0.8801, 0.1817, 0.8801, 0.1700, 0.8615), homeopathic (u,),
(0.2330, 0.8226, 0.2591, 0.8200, 0.2574, 0.8222), herbal (u;) = (0.1805, 0.8801, 0.2633, 0.9146, 0.1777,
0.8589), and allopathic (u,) = (0.1876, 0.8226, 0.2762, 0.8208, 0.2047, 0.7858). Evaluate the score

S.N. Suber Bathusha, Sowndharya Jayakumar and S. Angelin Kavitha Raj, The Energy of Interval-Valued Complex
Neutrosophic Graph Structures: Framework, Application and Future Research Directions



Neutrosophic Systems with Applications, Vol. 13, 2024 98
An International Journal on Informatics, Decision Science, Intelligent Systems Applications

2 2 2 2 2 2
function 5@ = ((ads,)) - (ad, )+ ((adz,) - (adz,)") + (4ds,,) - (adz,,)) \citelat)
of uy, (k =1,2,3,4) and rated all the testing venues (u;),i = 1,2,3,4.

S(uy) = —2.1960, S(u,) = —1.8374, S(us) = —2.2152, S(u_4) = —1.8144.
Then S(uy) > S(uy) > S(uy) > S(uz). Therefore, S(u,) is the best test venue.
Phase terms: Similarly, We can verify the phase terms.

5.1 Algorithm

We now explain our method's step-by-step computation process, which is used in the algorithm that

follows.

(1). Input the set Q ={ay,a,,...,a,} use a variety of medications (vertices) and put the
membership values 1 = (115, 7,13) = ([n7 !, n{ 1], [n7 1%, nfei®?], [n5 €%, nie®]) of
the nodes a;'s, n5,75,13 € [0,1] and af, a3, a5 € [0,2n] forall S = —, +.

(ii). Input the membership values §; = (8,8, 83)) = ([61‘161'31_,6;]6"3;], [62‘16"132_,6;]6"3;]) of
the edges a;a; € R, such that

ng(aiaj)eiﬁ‘;](aiaj) < max{ng(ai),ng(aj)}eimax{ag(ai)vag(aj)}

ng(aiaj)eiﬁgj(aiaj) < max{ni(ai),ng(aj)}eimax{ag(ai)vag(aj)}
0< (65]((1,:0.])) + (65‘]((1!'(11')) + (6§](aiaj)) < 3 and (Bf](aiaj)), (Bjs](aiaj)),(ﬁ_g](aiaj)) €
[02n] VS =—,+and a;a; €R;, ] = 1,2,...,k.

(iii). On the set used variety of medications Q, develop mutually disjoint, irreflexive, symmetric
relations Ry, R,,..., Ry . Give each relation an identity that reflects a particular stage of
development between the two types of medications it represents.

(iv). Construct a graph structure on a set of medications with relation, then calculate the energy

of each Anq, An,,..., Any.
(V). Input a calculation like IVCNPRs

e(a7))  e(4B5))  e(a85))
_e(A0)  we(aes) _€(485) i cans) _€(A85) N c(ass)

w; = , )
! Yj-1€ (A5f] Yio.€ (A(S‘f] Yio.€ (Aaégj)

’

VS=—,+and] =12.

(vi). Calculate IVCNA and IVCNWA
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(vii). Evaluate the score function S(uy) = ((Ad,gu)z — (Adglj)z) + ((Adgzj)z - (Ad§2])2> +
((Adg3])2 h (Ad§3])2)

(viii). Provide an optimal testing venue output.

6. Conclusions and Future Works

The idea of IVCNGS has been developed in this research article by the authors. A more realistic
description of uncertainty is offered by the Set IVCNS, an extension of the CNS and IVNS, compared
to conventional fuzzy sets. It can be applied in many different contexts through fuzzy control. Many
of the mathematical properties of the energy graph have been studied. The integration of the
adjacency matrix IVCNGS, the energy of IVCNGS, and Laplacian energy IVCNGS with their
intriguing properties has been proposed in this paper. Using the adjacency matrix's eigenvalues, we
computed the IVCNGS's spectrum and determined its energy. Moreover, we presented the
application of the energy IVCNGS in decision-making, specifically in determining the optimal level
of pharmaceutical sources. If the adjacency matrix IVCNGS is used, there are several possible
directions for this field's further investigation. Extension of the graph Structures energy to Complex
Bipolar Picture Fuzzy Graph Structures, Interval-Valued Spherical Fuzzy Graph Structures, and
dominating Complex bipolar neutrosophic graph structures are recommended areas of future
research. Some of the limitations of this work are as follows:

e IVCNGS was the main focus of the study and related network systems.

e This approach is only applicable when there are symmetric, irreflexive, and mutually disjoint

relations on the IVCNGS.

e The IVCNGS idea is not relevant if the membership values of the characters are provided in

distinct environments.

e Obtaining accurate data could sometimes not be possible.
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