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Abstract: As a generalization of intuitionistic fuzzy sets, single-valued neutrosophic sets have certain 

advantages in solving indeterminate and inconsistent information. In this paper, we study the fuzzy 

inference full implication method based on single-valued neutrosophic t-representable t-norm. 

Firstly, single-valued neutrosophic fuzzy inference triple I principles for fuzzy modus ponens and 

fuzzy modus tollens are given. Then, single-valued neutrosophic R-type triple I solutions for FMP 

and FMT are given. Finally, the robustness of the full implication triple I method based on the left-

continuous single-valued neutrosophic t-representable t-norm is investigated. As a special case of the 

main results, the sensitivity of full implication triple I solutions based on three special single-valued 

neutrosophic t-representable t-norms are given.  

Keywords: Single Valued Neutrosophic Set; Single Valued Neutrosophic; t-representable t-norm; 

Full Implication Triple I Method. 

 

1. Introduction 

Fuzzy sets have been applied to deal with uncertain, vague, inaccurate information in the real 

world. However, it is widely known that fuzzy reasoning plays an important role in fuzzy set theory. 

Especially, the most basic forms of fuzzy reasoning are Fuzzy Modus Ponens (FMP for short) and 

Fuzzy Modus Tollens (FMT for short), which can be shown as follows [1, 2]:  

FMP (A, B, A∗) : given the fuzzy rule and premise A∗ , attempt to reason a suitable fuzzy 

consequent B∗. 

FMT (A, B, B∗) : given the fuzzy rule and premise B∗ , attempt to reason a suitable fuzzy 

consequent A∗. 

In the above models, andB, B∗ ∈ F(Y), where and denote fuzzy subsets of the universes and 

respectively. 

The most famous method to solve the above models is the Compositional Rule of Inference (CRI 

for short), which is presented by Zadeh [2, 3]. However, the CRI method lacks clear logic semantics 

and reductivity. To overcome this shortcoming, Wang [1] proposed the fuzzy reasoning full 

implication triple I method, which can bring fuzzy reasoning into the framework of logical semantic 

[4]. In recent years, many scholars have studied the fuzzy reasoning full implication method. Wang 

et al. [5] gave a unified form for fuzzy reasoning full implication method based on normal implication 

and regular implication. Pei [6] gave a unified form fuzzy reasoning full implication method based 

on residual implication induced by left continuous t-norms. Moreover, Pei [7] established the solid 

logical foundation for the fuzzy reasoning full implication method based on left continuous t-norms. 
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Liu et al. [8] gave the unified form of the solutions for fuzzy reasoning full implication method. Luo 

and Yao [9] studied the fuzzy reasoning triple I method based on Schweizer-Sklar operators. 

Although fuzzy set theory has been successfully applied in many fields, there are some defects 

in dealing with fuzzy and incomplete information. Atanassov [10] introduced intuitionistic fuzzy sets 

(IFSs), which are represented by a membership and a non-membership function. Intuitionistic fuzzy 

sets can represent not only the positive and negative aspects of the given information but also the 

hesitant information. Meanwhile, Gorzalczany [11] and Turksen [12] proposed interval-valued fuzzy 

sets, which represent a subinterval in the membership function. Intuitionistic fuzzy sets and interval-

valued fuzzy sets are equivalent [13]. In recent years, some research results on intuitionistic fuzzy 

reasoning and interval-valued fuzzy reasoning have been achieved. Zheng et al. [14] extended the 

triple I method on intuitionistic fuzzy sets. Li et al. [15] extended the CRI method on interval-valued 

fuzzy sets. Luo et al. [16-19] studied interval-value fuzzy reasoning full implication triple I method 

and reverse triple I method based on the interval-valued associated t-norm. Moreover, Luo et al.[20] 

studied fuzzy reasoning triple I method based on the interval-value t-representable t-norm. 

Although an intuitionistic fuzzy set has some advantages in dealing with fuzzy and incomplete 

information, it has defects in dealing with fuzzy, incomplete, and inconsistent information. To deal 

with this case, Smarandache [21] proposed a neutrosophic set, which is represented by a truth-

membership function, an indeterminacy-membership function, and a falsity-membership function. 

The neutrosophic set represents uncertain, incomplete, and inconsistent information in the real 

world. However, truth-membership, indeterminacy-membership, and falsity-membership functions 

are nonstandard fuzzy subsets, which are difficult to apply in practice. Smarandache [22] and Wang 

et al [23] proposed a single-valued neutrosophic set, the truth-membership, indeterminacy-

membership, and falsity-membership degrees are a real number in the unit interval [0,1]. The single-

valued neutrosophic set can be considered as a generalization intuitionistic fuzzy set. In recent years, 

Scholars have paid attention to the study of single-valued neutrosophic sets. Smarandache [21] 

studied a unifying field in logic. Smarandache [24] proposed n-norm and n-conorm in neutrosophic 

logic. Rivieccio [25] investigated neutrosophic logic. Alkhazaleh [26] gives some norms and conforms 

based on the neutrosophic set. Zhang et al. [27] gave a new inclusion relation for neutrosophic sets. 

Hu and Zhang [28] constructed the residuated lattices based on the neutrosophic t-norms and 

neutrosophic residual implications. So far, there is little research on fuzzy reasoning methods based 

on single-valued neutrosophic sets. In [29], Ghorai et al. studied the operations of the Cartesian 

product, composition, and union of two image fuzzy digraphs. In [30], Ghorai et al. proposed a 

bipolar fuzzy incidence graph and analyzed the properties of a bipolar fuzzy incidence graph. In [31], 

Ghorai et al. analyzed the properties of the complexity function and its importance in the network 

field and applied the complexity function to identify the period of COVID-19. Zhao et al. [32] study 

reverse triple I algorithms based on single-valued neutrosophic fuzzy inference. 

Therefore, we consider researching the fuzzy reasoning triple I method based on a class single 

valued neutrosophic triangular norm. An important criterion for judging an algorithm is whether the 

algorithm has a logical basis. Therefore, this paper proposes a logic-based fuzzy reasoning algorithm 

based on a class single valued neutrosophic triangular norm. The algorithm proposed in this paper 

is a new neutrosophic set fuzzy inference algorithm with a logical basis. 

 

1.1 The organization of the work 

The organization of this paper is as follows: some basic concepts for single-valued neutrosophic 

sets are reviewed in section 2. In section 3, we give fuzzy inference triple I principles based on left-

continuous single-valued neutrosophic t-representable t-norms for fuzzy modus ponens and fuzzy 

modus tollens, and the corresponding solutions of single-valued neutrosophic triple I methods. In 

section 4, the robustness of the triple I method based on left-continuous single-valued neutrosophic 

t-representable t-norm is investigated. Finally, the conclusions are given in Section 5. 
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2. Preliminaries 

In this section, we review some basic concepts for triangular norm, triangular conorm, and 

single-valued neutrosophic set, which will be used in this article. 

 

Definition 2.1. [33] A mapping  𝑇: [0,1] [0,1] [0,1]   is called a triangular norm (t-norm), if it 

satisfies associativity, commutativity, monotonicity, and boundary condition 𝑇(𝑥, 1)=𝑥 for any 𝑥 ∈

[0,1] . A mapping S: is called a triangular conorm (t-conorm), if it satisfies associativity, 

commutativity, monotonicity, and boundary condition 𝑆(𝑥, 0)=𝑥 for any 𝑥 ∈ [0,1]. A t-norm is called 

the dual t-norm of the t-conorm if 𝑇(𝑥, 𝑦) = 1 − 𝑆(1 − 𝑥, 1 − 𝑦). Similarly, a t-conorm is called the 

dual t-conorm of the t-norm, if 𝑆(𝑥, 𝑦) = 1 − 𝑇(1 − 𝑥, 1 − 𝑦). 

Definition 2.2. [33] A t-norm 𝑇 is called left-continuous (resp., right-continuous), if for any (𝑥0, 𝑦0) ∈

[0,1]2, and for each 𝜀 > 0 there is a 𝛿 > 0 such that 𝑇(𝑥, 𝑦) > 𝑇(𝑥0, 𝑦0) − 𝜀, whenever (𝑥, 𝑦) ∈ (𝑥0 −

𝛿, 𝑥0] × (𝑦0 − 𝛿, 𝑦0] (resp., 𝑇(𝑥, 𝑦) < 𝑇(𝑥0, 𝑦0) + 𝜀, whenever (𝑥, 𝑦) ∈ [𝑥0, 𝑥0 + 𝛿] × [𝑦0, 𝑦0 + 𝛿]). 

Proposition 2.1. [33] A t-norm 𝑇  is a left-continuous t-norm if and only if there exists a binary 

operation 𝑅𝑇  such that (𝑇, 𝑅𝑇) satisfies the residual principle, i.e., 𝑇(𝑥, 𝑧) ≤ 𝑦 iff 𝑧 ≤ 𝑅𝑇(𝑥, 𝑦) for 

all 𝑥, 𝑦, 𝑧 ∈ [0,1], where 𝑅𝑇(𝑥, 𝑦) = sup{𝑧|𝑇(𝑥, 𝑧) ≤ 𝑦} is called a residual implication induced by t-

norm 𝑇. 

Proposition 2.2. [33] A t-conorm 𝑆 is a right-continuous t-conorm if and only if there exists a binary 

operation 𝑅𝑆 on 𝐿 such that (𝑆, 𝑅𝑆) forms a co-adjoint pair, i.e., 𝑥 ≤ 𝑆(𝑦, 𝑧) iff 𝑅𝑆(𝑥, 𝑦) ≤ 𝑧 for all 

𝑥, 𝑦, 𝑧 ∈ [0,1] , where 𝑅𝑆(𝑥, 𝑦) = inf{𝑧|𝑥 ≤ 𝑆(𝑦, 𝑧)} is called a coresidual implication induced by t-

conorm 𝑆. 

Example 1. Three important t-norms and their residual implication, t-conorms, and their coresidual 

implication [32, 33] are in Table 1. 

 

Table 1. t-norms and their residual implications, t-conorms and their coresidual implications. 

Name t-norms 
Residual 

Implications 
t-conorms 

Coresidual 

Implications 

Łukasiewicz 
𝑇𝐿(𝑥, 𝑦) 

=0 ∨ (𝑥 + 𝑦 − 1) 

𝑅𝑇𝐿(𝑥, 𝑦)

= 1 ∧ (1 − 𝑥 + 𝑦) 

𝑆𝐿(𝑥, 𝑦)

= (𝑥 + 𝑦) ∧ 1 

𝑅𝑆𝐿(𝑥, 𝑦) 

= (𝑥 − 𝑦) ∨ 0 

Gougen 𝑇𝐺𝑜(𝑥, 𝑏) = 𝑥𝑦 𝑅𝑇𝐺𝑜(𝑥, 𝑦) = 1 ∧
𝑦

𝑥
 

𝑆𝐺𝑜(𝑥, 𝑦)= 𝑥 +

𝑦 − 𝑥𝑦 
𝑅𝑆𝐺𝑜(𝑥, 𝑦) =

𝑥 − 𝑦

1 − 𝑦
∨ 0 

𝑮�̈�𝒅𝒆𝒍 𝑇𝐺(𝑥, 𝑦) = 𝑥 ∧ 𝑦 
𝑅𝑇𝐺(𝑥, 𝑦)

= {
1, 𝑖𝑓 𝑥 ≤ 𝑦,
𝑦, 𝑖𝑓 𝑥 > 𝑦.

 
𝑆𝐺(𝑥, 𝑦) = 𝑥 ∨ 𝑦 

𝑅𝑆𝐺𝑜(𝑥, 𝑦)

= {
0, 𝑖𝑓 𝑥 ≤ 𝑦,
𝑥, 𝑖𝑓 𝑥 > 𝑦.

 

 

Definition 2.3. [22] Let 𝑋 be a universal set. A neutrosophic set 𝐴 on 𝑋 is characterized by three 

functions, i.e., a truth-membership function 𝑡𝐴(𝑥) , an indeterminacy-membership function 𝑖𝐴(𝑥) 

and a falsity-membership function 𝑓𝐴(𝑥). Then, a neutrosophic set A can be defined as follows: 

𝐴 = { 〈𝑥, 𝑡𝐴(𝑥), 𝑖𝐴(𝑥), 𝑓𝐴(𝑥)〉 ∣∣ 𝑥 ∈ 𝑋 }, 

where 𝑡𝐴(𝑥): 𝑋 →]
− 0, 1+[ , 𝑖𝐴(𝑥): 𝑋 →]

− 0, 1+[,  𝑓𝐴(𝑥): 𝑋 →]
− 0, 1+[ , such that 0− ≤ 𝑡𝐴(𝑥) + 𝑖𝐴(𝑥) +

𝑓𝐴(𝑥) ≤ 3+, 𝑡𝐴(𝑥), 𝑖𝐴(𝑥), 𝑓𝐴(𝑥) ∈ [0,1] and satisfy the condition 0 ≤ 𝑡𝐴(𝑥) + 𝑖𝐴(𝑥) + 𝑓𝐴(𝑥) ≤ 3 for each 

𝑥 in 𝑋. 
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The family of all single valued neutrosophic sets is denoted by 𝑆𝑉𝑁𝑆(𝑋). 

Definition 2.4. [22] Let 𝐴, 𝐵 be two single valued neutrosophic sets on universal 𝑋, the following 

relations are defined as follows: 

(i). 𝐴 ⊆ 𝐵 if and only 𝑡𝐴(𝑥) ≤ 𝑡𝐵(𝑥), 𝑖𝐴(𝑥) ≥ 𝑖𝐵(𝑥) and 𝑓𝐴(𝑥) ≥ 𝑓𝐵(𝑥) for all 𝑥 ∈ 𝑋; 

(ii). 𝐴 = 𝐵 if and only 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴; 

(iii). 𝐴 ∩ 𝐵 = 〈min(𝑡𝐴(𝑥), 𝑡𝐵(𝑥)),max(𝑖𝐴(𝑥), 𝑖𝐵(𝑥)),max(𝑓𝐴(𝑥), 𝑓𝐵(𝑥))〉 for all 𝑥 ∈ 𝑋 for all 𝑥 ∈ 𝑋; 

(iv). 𝐴 ∪ 𝐵 = 〈max(𝑡𝐴(𝑥), 𝑡𝐵(𝑥)),min(𝑖𝐴(𝑥), 𝑖𝐵(𝑥)),min(𝑓𝐴(𝑥), 𝑓𝐵(𝑥))〉 for all 𝑥 ∈ 𝑋; 

(v). 𝐴𝑐 = {〈𝑓𝐴(𝑥),1 − 𝑖𝐴(𝑥), 𝑡𝐴(𝑥)〉|𝑥 ∈ 𝑋}. 

 

Remark 2.1. For arbitrary single valued neutrosophic set 𝐴 ∈ 𝑆𝑉𝑁𝑆(𝑋), we can obtain: 

(i). If 𝑡𝐴(𝑥) + 𝑖𝐴(𝑥) + 𝑓𝐴(𝑥) = 1 , then a single-valued neutrosophic set 𝐴  reduces to an 

intuitionistic fuzzy set. 

(ii). If 𝑡𝐴(𝑥) + 𝑖𝐴(𝑥) + 𝑓𝐴(𝑥) = 1 and 𝑖𝐴(𝑥) = 0, then a single-valued neutrosophic set 𝐴 reduces 

to a fuzzy set. 

 

The set of all single valued neutrosophic numbers denoted by 𝑆𝑉𝑁𝑁, i.e. 𝑆𝑉𝑁𝑁 = {Ž𝑡, 𝑖, 𝑓ž ∣

𝑡, 𝑖, 𝑓 ∈ [0,1]}. Let 𝛼 = 〈𝑡𝛼 , 𝑖𝛼 , 𝑓𝛼〉, 𝛽 = 〈𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽〉 ∈ 𝑆𝑉𝑁𝑁, an ordering on 𝑆𝑉𝑁𝑁 as 𝛼 ≤ 𝛽 if and only 

if 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 ≥ 𝑖𝛽 , 𝑓𝛼 ≥ 𝑓𝛽 ,  𝛼 = 𝛽  iff 𝛼 ≤ 𝛽  and 𝛽 ≤ 𝛼 .Obviously, 𝛼⋀𝛽 = 〈𝑡𝛼 ∧ 𝑡𝛽 , 𝑖𝛼 ∨ 𝑖𝛽 , 𝑓𝛼 ∨ 𝑓𝛽〉 , 

𝛼⋁𝛽 = 〈𝑡𝛼 ∨ 𝑡𝛽 , 𝑖𝛼 ∧ 𝑖𝛽 , 𝑓𝛼 ∧ 𝑓𝛽〉 , ⋀ 𝛼𝑖𝑖∈𝐼 = 〈∧𝑖∈𝐼 𝑡𝛼𝑖 ,∨𝑖∈𝐼 𝑖𝛼𝑖 ,∨𝑖∈𝐼 𝑓𝛼𝑖〉 , ⋁ 𝛼𝑖𝑖∈𝐼 =

〈∨𝑖∈𝐼 𝑡𝛼𝑖 ,∧𝑖∈𝐼 𝑖𝛼𝑖 ,∧𝑖∈𝐼 𝑓𝛼𝑖〉0
∗ = 〈0,1,1〉  and 1∗ = 〈1,0,0〉  are the smallest element and the greatest 

element in 𝑆𝑉𝑁𝑁, respectively. It is easy to verify that (𝑆𝑉𝑁𝑁, ≤) is a complete lattice [29].  

 

After introducing single-valued neutrosophic numbers, we will then introduce the properties of 

single-valued neutrosophic t-norm. 

 

Definition 2.5. [28] A function 𝒯: 𝑆𝑉𝑁𝑁 × 𝑆𝑉𝑁𝑁 → 𝑆𝑉𝑁𝑁 is called a single-valued neutrosophic t-

norm if the following four axioms are satisfied, for all 𝛼, 𝛽, 𝛾 ∈ 𝑆𝑉𝑁𝑁, 

(i). 𝒯(𝛼, 𝛽) = 𝒯(𝛽, 𝛼), (commutativity) 

(ii). 𝒯((𝛼, 𝛽), 𝛾) = 𝒯(𝛼, (𝛽, 𝛾)), (associativity) 

(iii). 𝒯(𝛼, 𝛾) ≤ 𝒯(𝛽, 𝛾) if 𝛼 ≤ 𝛽, (monotonicity) 

(iv). 𝒯(𝛼, 1∗) = 𝛼. (boundary condition) 

 

Example 2. [32] The function 𝒯 : 𝑆𝑉𝑁𝑁 × 𝑆𝑉𝑁𝑁 → 𝑆𝑉𝑁𝑁  defined by 𝒯(𝛼, 𝛽) =

〈𝑇(𝑡𝛼 , 𝑡𝛽), 𝑆(𝑖𝛼 , 𝑖𝛽), 𝑆(𝑓𝛼 , 𝑓𝛽)〉 is a single-valued neutrosophic t-norm, which is called a single-valued 

neutrosophic t-representable t-norm, where 𝑇 is a t-norm and 𝑆 is its dual t-conorm on [0, 1]. 𝒯 is 

called a left-continuous single valued neutrosophic t-representable t-norm if 𝑇 is left-continuous and 

𝑆 is right-continuous. 

 

Definition 2.6. [32] A single valued neutrosophic residual implication is defined by ℛ𝒯(𝛼, 𝛽) =

sup{𝛾 ∈ 𝑆𝑉𝑁𝑁 ∣ 𝒯(𝛾, 𝛼) ≤ 𝛽} , ∀𝛼, 𝛽 ∈ 𝑆𝑉𝑁𝑁 , where 𝒯  is a left-continuous single valued 

neutrosophic t-representable t-norm. 

 

Proposition 2.3. [32] Let 𝒯 be a single-valued neutrosophic t-representable t-norm, the following 

statements are equivalent: 

(i). 𝒯 is left-continuous; 

(ii). 𝒯 and ℛ𝒯 form an adjoint pair, i.e., they satisfy the following residual principle 

 

𝒯(𝛾, 𝛼) ≤ 𝛽 ⇔ 𝛾 ≤ ℛ𝒯(𝛼, 𝛽), 𝛼, 𝛽, 𝛾 ∈ 𝑆𝑉𝑁𝑁. 
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Proposition 2.4. [32] Let 𝛼 = 〈𝑡𝛼 , 𝑖𝛼 , 𝑓𝛼〉 , 𝛽 = 〈𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽〉 ∈ 𝑆𝑉𝑁𝑁 , then ℛ𝒯(𝛼, 𝛽) =

〈𝑅𝑇(𝑡𝛼 , 𝑡𝛽), 𝑅𝑆(𝑖𝛽 , 𝑖𝛼), 𝑅𝑆(𝑓𝛽 , 𝑓𝛼)〉, which is the single-valued neutrosophic residual implication induced 

by left-continuous single-valued neutrosophic t-representable t-norm, where 𝑅𝑇  is residual 

implication induced by left-continuous t-norm 𝑇, 𝑅𝑆  is coresidual implication induced by right-

continuous t-conorm 𝑆. 

 

Proposition 2.5. Let ℛ𝒯  be single valued neutrosophic residual implication induced by left-

continuous single valued neutrosophic t-representable t-norm 𝒯, then 

(i). ℛ𝒯(𝛼, 𝛽) = 1
∗ iff 𝛼 ≤ 𝛽; 

(ii). 𝛾 ≤ ℛ𝒯(𝛼, 𝛽) iff 𝛼 ≤ ℛ𝒯(𝛾, 𝛽); 

(iii). ℛ𝒯(1
∗, 𝛼) = 𝛼; 

(iv). ℛ𝒯(𝛼, ℛ𝒯(ℛ𝒯(𝛼, 𝛽), 𝛽) = 1
∗; 

(v). ℛ𝒯(⋁ 𝛽𝑖𝑖∈𝐼 , 𝛼) = ⋀ ℛ𝒯𝑖∈𝐼 (𝛽𝑖 , 𝛼); 

(vi). ℛ𝒯(𝛽, ⋀ 𝛼𝑖∈𝐼 ) = ⋀ ℛ𝒯𝑖∈𝐼 (𝛽, 𝛼𝑖); 

(vii). ℛ𝒯 is antitone in the first variable and isotone in the second variable.  

 

After introducing the properties of single-valued neutrosophic t-representable t-norm, to better 

understand its usage, we will use the following examples to introduce three important single-valued 

neutrosophic t-representable t-norms and their residual implications. 

 

Example 3. [32] The following are three important single-valued neutrosophic t-representable t-

norms and their residual implications. 

(i). The single valued neutrosophic Łukasiewicz t-norm and its residual implication: 

𝒯𝐿(𝛼, 𝛽) = 〈(𝑡𝛼 + 𝑡𝛽 − 1) ∨ 0, (𝑖𝛼 + 𝑖𝛽) ∧ 1, (𝑓𝛼 + 𝑓𝛽) ∧ 1〉 

ℛ𝒯𝐿
(𝛼, 𝛽) = 〈1 ∧ (1 − 𝑡𝛼 + 𝑡𝛽), (𝑖𝛽 − 𝑖𝛼) ∨ 0, (𝑓𝛽 − 𝑓𝛼) ∨ 0〉. 

(ii). The single valued neutrosophic Gougen t-norm and its residual implication: 

 

𝒯𝐺𝑜(𝛼, 𝛽) = 〈𝑡𝛼𝑡𝛽 , 𝑖𝛼 + 𝑖𝛽 − 𝑖𝛼𝑖𝛽 , 𝑓𝛼 + 𝑓𝛽 − 𝑓𝛼𝑓𝛽〉. 

 

ℛ𝒯𝐺𝑜(𝛼, 𝛽) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

〈1,0,0〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈1,0,
𝑓𝛽 − 𝑓𝛼

1 − 𝑓𝛼
〉 , 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛼 < 𝑓𝛽 ,

〈1,
𝑖𝛽 − 𝑖𝛼

1 − 𝑖𝛼
, 0〉 , 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈1,
𝑖𝛽 − 𝑖𝛼

1 − 𝑖𝛼
,
𝑓𝛽 − 𝑓𝛼

1 − 𝑓𝛼
〉 , 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛼 < 𝑓𝛽 ,

〈
𝑡𝛽

𝑡𝛼
, 0,0〉 , 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈
𝑡𝛽

𝑡𝛼
, 0,
𝑓𝛽 − 𝑓𝛼

1 − 𝑓𝛼
〉 , 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛼 < 𝑓𝛽 ,

〈
𝑡𝛽

𝑡𝛼
,
𝑖𝛽 − 𝑖𝛼

1 − 𝑖𝛼
, 0〉 , 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈
𝑡𝛽

𝑡𝛼
,
𝑖𝛽 − 𝑖𝛼

1 − 𝑖𝛼
,
𝑓𝛽 − 𝑓𝛼

1 − 𝑓𝛼
〉 , 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛼 < 𝑓𝛽 .

 

(iii). The single valued neutrosophic t-norm and its residual implication: 

 

𝒯𝐺(𝛼, 𝛽) = 〈𝑡𝛼 ∧ 𝑡𝛽 , 𝑖𝛼 ∨ 𝑖𝛽 , 𝑓𝛼 ∨ 𝑓𝛽〉. 
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ℛ𝒯𝐺
(𝛼, 𝛽) =

{
 
 
 
 

 
 
 
 
〈1,0,0〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈1,0, 𝑓𝛽〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛼 < 𝑓𝛽 ,

〈1, 𝑖𝛽 , 0〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈1, 𝑖𝛽 , 𝑓𝛽〉, 𝑖𝑓 𝑡𝛼 ≤ 𝑡𝛽 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛼 < 𝑓𝛽 ,

〈𝑡𝛽 , 0,0〉, 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈𝑡𝛽 , 0, 𝑓𝛽〉, 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛽 ≤ 𝑖𝛼 , 𝑓𝛼 < 𝑓𝛽 ,

〈𝑡𝛽 , 𝑖𝛽 , 0〉, 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛽 ≤ 𝑓𝛼 ,

〈𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽〉, 𝑖𝑓 𝑡𝛽 < 𝑡𝛼 , 𝑖𝛼 < 𝑖𝛽 , 𝑓𝛼 < 𝑓𝛽 .

 

 

To further demonstrate the robustness of single-valued neutrosophic t-norm, we will now introduce 

a distance metric 𝑑. 

 

Definition 2.7. [34] A metric space is an ordered pair (𝑋, 𝑑), where 𝑋 is a set and 𝑑 is a metric on 𝑋, 

i.e., a function 𝑑: 𝑋 × 𝑋 → [0,+∞) such that for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following holds: 

(𝐷1) 𝑑(𝑥, 𝑦) ≥ 0; 

(𝐷2) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦; 

(𝐷3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧). 

The function 𝑑 is called a distance. 

3. Single-Valued Neutrosophic Fuzzy Inference Triple I Method 

In this section, we will study the single-valued neutrosophic fuzzy inference triple I method 

based on left-continuous single-valued neutrosophic t-representable t-norm 𝒯 . Suppose ℛ  is a 

single-valued neutrosophic residuated implication induced by left-continuous single-valued 

neutrosophic t-representable t-norm 𝒯. A single valued neutrosophic set 𝐴 on universe 𝑋 is called 

normal if there exists 𝑥0 ∈ 𝑋 such that 𝐴(𝑥0) = 1
∗. A single valued neutrosophic set 𝐴 on universe 

𝑋 is called co-normal if there exists 𝑥0 ∈ 𝑋 such that 𝐴(𝑥0) = 0
∗. 

 

Definition 3.1. (Single valued neutrosophic fuzzy inference triple I principle for 𝐹𝑀𝑃) Suppose that 

ℛ is a single-valued neutrosophic residual implication induced by a left-continuous single-valued 

neutrosophic t-representable t-norm 𝒯 , 𝐴, 𝐴∗ ∈ 𝑆𝑉𝑁𝑆(𝑋)  and 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑌) . Let 𝑃(𝑥, 𝑦) =

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐴∗(𝑥), 1∗)) , andB(𝐴, 𝐵, 𝐴∗) = {𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑌) ∣ ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐴∗(𝑥), 𝐶(𝑦))) =

𝑃(𝑥, 𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}. 

If there exist the smallest element of the set B(𝐴, 𝐵, 𝐴∗) (denoted by 𝐵∗), then 𝐵∗ is called the 

single-valued neutrosophic fuzzy inference triple I solution for 𝐹𝑀𝑃. 

 

Definition 3.2. (Single valued neutrosophic fuzzy inference triple I principle for 𝐹𝑀𝑇) Suppose that 

ℛ is a single-valued neutrosophic residual implication induced by a left-continuous single-valued 

neutrosophic t-representable t-norm 𝒯 . 𝐴 ∈ 𝑆𝑉𝑁𝑆(𝑋) and 𝐵, 𝐵∗ ∈ 𝑆𝑉𝑁𝑆(𝑌) . Let 𝑄(𝑥, 𝑦) =

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(0∗, 𝐵∗(𝑥))) , and A(𝐴, 𝐵, 𝐵∗) = {𝐷 ∈ 𝑆𝑉𝑁𝑆(𝑋) ∣

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐷(𝑥), 𝐵∗(𝑥))) = 𝑄(𝑥, 𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}. 

If there exists the greatest element of the set A(𝐴, 𝐵, 𝐵∗) (denoted by 𝐴∗), then 𝐴∗ is called the 

single-valued neutrosophic fuzzy inference triple I solution for 𝐹𝑀𝑇. 

After introducing the single-valued neutrosophic fuzzy inference triple I principle for 𝐹𝑀𝑃 and 

𝐹𝑀𝑇, we can now derive the single-valued neutrosophic fuzzy inference triple I solution of 𝐹𝑀𝑃 and 

𝐹𝑀𝑇. 

 

Theorem 3.1. Let 𝐴, 𝐴∗ ∈ 𝑆𝑉𝑁𝑆(𝑋) , 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑌) , ℛ  be single valued neutrosophic residual 

implication induced by a left-continuous single valued neutrosophic t-representable t-norm 𝒯, then 

the single-valued neutrosophic fuzzy inference triple I solution 𝐵∗ of 𝐹𝑀𝑃 is as follows: 
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𝐵∗(𝑦) = sup
𝑥∈𝑋

𝒯(𝐴∗(𝑥), ℛ(𝐴(𝑥), 𝐵(𝑦)))(∀𝑦 ∈ 𝑌) (1) 

 

Proof:  

Firstly, we prove 𝐵∗ ∈ B(𝐴, 𝐵, 𝐴∗). It follows from equation (1), we have 𝒯(𝐴∗(𝑥), ℛ(𝐴(𝑥), 𝐵(𝑦))) ≤

𝐵∗ (y). By the residuation property, we obtain ℛ(𝐴(𝑥), 𝐵(𝑦))) ≤ ℛ(𝐴∗(𝑥), 𝐵∗(𝑦))) . Therefore, 

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐴∗(𝑥), 𝐵∗(𝑦))) = 1∗, i.e., 𝐵∗ ∈ B(𝐴, 𝐵, 𝐴∗). 

Secondly, we prove that 𝐵∗ is the smallest single valued neutrosophic fuzzy subset of B(𝐴, 𝐵, 𝐴∗). 

Suppose 𝐶  is an arbitrary single-valued neutrosophic fuzzy subset in B(𝐴, 𝐵, 𝐴∗) , 

i.e.ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐴∗(𝑥), 𝐶(𝑦))) = 1∗.  

By the residuation property, then ℛ(𝐴(𝑥), 𝐵(𝑦)) ≤ ℛ(𝐴∗(𝑥), 𝐶(𝑦)) . we have 

𝒯(𝐴∗(𝑥), ℛ(𝐴(𝑥), 𝐵(𝑦)) ≤ 𝐶(𝑦) , hence 𝐵∗ ≤ 𝐶 , i.e., 𝐵∗  is the smallest single valued neutrosophic 

fuzzy subset of B(𝐴, 𝐵, 𝐴∗), and 𝐵∗ is the single-valued neutrosophic fuzzy inference triple I solution 

for 𝐹𝑀𝑃.  

After obtaining the solution for single valued neutrosophic fuzzy inference triple I solution of 

𝐹𝑀𝑃 , we can now obtain the single-valued neutrosophic residual implication induced by a left-

continuous single valued neutrosophic t-representable t-norm 𝒯 triple I solution for 𝐹𝑀𝑃. 

 

Corollary 3.1. Let ℛ be single valued neutrosophic residual implication induced by a left-continuous 

single-valued neutrosophic t-representable t-norm 𝒯 , then the single-valued neutrosophic fuzzy 

inference triple I solution 𝐵∗ = {〈𝑦, 𝑡𝐵∗(𝑦), 𝑖𝐵∗(𝑦), 𝑓𝐵∗(𝑦)〉 ∣ 𝑦 ∈ 𝑌} for FMP can be shown as follows: 

𝑡𝐵∗(𝑦) = ⋁ 𝑇𝑥∈𝑋 (𝑡𝐴∗(𝑥), 𝑅𝑇(𝑡𝐴(𝑥), 𝑡𝐵(𝑦)))(∀𝑦 ∈ 𝑌), 

𝑖𝐵∗(𝑦) = ⋀ 𝑆𝑥∈𝑋 (𝑖𝐴∗(𝑥), 𝑅𝑆(𝑖𝐵(𝑦), 𝑖𝐴(𝑥)))(∀𝑦 ∈ 𝑌), 

𝑓𝐵∗(𝑦) = ⋀ 𝑆𝑥∈𝑋 (𝑓𝐴∗(𝑥), 𝑅𝑆(𝑓𝐵(𝑦), 𝑓𝐴(𝑥)))(∀𝑦 ∈ 𝑌). 

 

Corollary 3.2. Let ℛ be the single-valued neutrosophic Łukasiewicz residual implication ℛ𝒯𝐿, then 

the single-valued neutrosophic fuzzy inference triple I solution 𝐵∗ = {〈𝑦, 𝑡𝐵∗(𝑦), 𝑖𝐵∗(𝑦), 𝑓𝐵∗(𝑦)〉 ∣ 𝑦 ∈

𝑌} of 𝐹𝑀𝑃as follows: 

 𝑡𝐵∗(𝑦) = ⋁ {𝑥∈𝑋 [𝑡𝐴∗(𝑥) + ((1 − 𝑡𝐴(𝑥) + 𝑡𝐵(𝑦)) ∧ 1) − 1] ∨ 0}(∀𝑦 ∈ 𝑌), 

 𝑖𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 [𝑖𝐴∗(𝑥) + ((𝑖𝐵(𝑦) − 𝑖𝐴(𝑥)) ∨ 0)] ∧ 1}(∀𝑦 ∈ 𝑌), 

 𝑓𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 [𝑓𝐴∗(𝑥) + ((𝑓𝐵(𝑦) − 𝑓𝐴(𝑥)) ∨ 0)] ∧ 1}(∀𝑦 ∈ 𝑌). 

 

Corollary 3.3. Let ℛ be the single-valued neutrosophic Gougen residual implication ℛ𝒯𝐺𝑜 , then the 

single-valued neutrosophic fuzzy inference triple I solution 𝐵∗ = {〈𝑦, 𝑡𝐵∗(𝑦), 𝑖𝐵∗(𝑦), 𝑓𝐵∗(𝑦)〉 ∣ 𝑦 ∈ 𝑌} of 

𝐹𝑀𝑃 as follows: 

 𝑡𝐵∗(𝑦) = ⋁ {𝑥∈𝑋 𝑡𝐴∗(𝑥) ⋅ (
𝑡𝐵(𝑦)

𝑡𝐴(𝑥)
∧ 1)}(∀𝑦 ∈ 𝑌), 

 𝑖𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 𝑖𝐴∗(𝑥) + [
𝑖𝐵(𝑦)−𝑖𝐴(𝑥)

1−𝑖𝐴(𝑥)
∨ 0] − 𝑖𝐴∗(𝑥) ⋅ [

𝑖𝐵(𝑦)−𝑖𝐴(𝑥)

1−𝑖𝐴(𝑥)
∨ 0]}(∀𝑦 ∈ 𝑌), 

 𝑓𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 𝑓𝐴∗(𝑥) + [
𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0] − 𝑓𝐴∗(𝑥) ⋅ [

𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨ 0]}(∀𝑦 ∈ 𝑌). 

 

Corollary 3.4. Let ℛ be the single-valued neutrosophic 𝐺�̈�𝑑𝑒𝑙 residual implications ℛ𝒯𝐺, then the 

single-valued neutrosophic fuzzy inference triple I solution 𝐵∗ = {〈𝑦, 𝑡𝐵∗(𝑦), 𝑖𝐵∗(𝑦), 𝑓𝐵∗(𝑦)〉 ∣ 𝑦 ∈ 𝑌} of 

𝐹𝑀𝑃 as follows: 

𝑡𝐵∗(𝑦) = ⋁ {𝑥∈𝑋 (𝑡𝐴∗(𝑥) ∧ 𝑅𝑇𝐺(𝑡𝐴(𝑥), 𝑡𝐵(𝑦)))}(∀𝑦 ∈ 𝑌), 

𝑖𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 (𝑖𝐴∗(𝑥) ∨ 𝑅𝑆𝐺(𝑖𝐵(𝑦), 𝑖𝐴(𝑥)))}(∀𝑦 ∈ 𝑌), 

𝑓𝐵∗(𝑦) = ⋀ {𝑥∈𝑋 (𝑓𝐴∗(𝑥) ∨ 𝑅𝑆𝐺(𝑓𝐵(𝑦), 𝑓𝐴(𝑥)))}(∀𝑦 ∈ 𝑌). 

 



Neutrosophic Systems with Applications, Vol. 14, 2024                                                 8 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Minxia Luo, Ziyang Sun, Donghui Xu, and Lixian Wu, Fuzzy Inference Full Implication Method Based on Single Valued 

Neutrosophic t-representable t-norm: Purposes, Strategies, and a Proof-of-Principle Study 

Theorem 3.2. Let 𝐴 ∈ 𝑆𝑉𝑁𝑆(𝑋)  , 𝐵, 𝐵∗ ∈ 𝑆𝑉𝑁𝑆(𝑌) , ℛ  be single valued neutrosophic residual 

implication induced by a left-continuous single-valued neutrosophic t-representable t-norm 𝒯, then 

the single-valued neutrosophic fuzzy inference triple I solution 𝐴∗ of 𝐹𝑀𝑇 is as follows: 

𝐴∗(𝑥) =⋀ℛ

𝑦∈𝑌

(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦))(∀𝑥 ∈ 𝑋) (2) 

Proof: 

Firstly, we prove 𝐴∗ ∈ A(𝐴, 𝐵, 𝐵∗) . It follows from equation (2), we obtain 𝐴∗(𝑥) ≤

ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦)) . By the residuation property, we have 𝒯(𝐴∗, ℛ(𝐴(𝑥), 𝐵(𝑦))) ≤ 𝐵∗ , and 

ℛ(𝐴(𝑥), 𝐵(𝑦)) ≤ ℛ(𝐴∗(𝑥), 𝐵∗(𝑦)) . Therefore, ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐴∗(𝑥), 𝐵∗(𝑦))) = 1∗ , i.e., 𝐴∗ ∈

A(𝐴, 𝐵, 𝐵∗). 

Secondly, we show that 𝐴∗ is the greatest single valued neutrosophic fuzzy subset of A(𝐴, 𝐵, 𝐵∗). 

Suppose 𝐷  is an arbitrary single-valued neutrosophic fuzzy subset in A(𝐴, 𝐵, 𝐵∗) , 

i.e.,ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), ℛ(𝐷(𝑥), 𝐵∗(𝑦))) = 1∗, then ℛ(𝐴(𝑥), 𝐵(𝑦)) ≤ ℛ(𝐷(𝑥), 𝐵∗(𝑦)) by the residuation 

property. We have 𝒯(𝐷(𝑥), ℛ(𝐴(𝑥), 𝐵(𝑦)) ≤ 𝐵∗(𝑦)  and 𝐷(𝑥) ≤ ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦))  by 

Proposition 2.3, hence 𝐷 ≤ 𝐴∗ , i.e., 𝐴∗  is the greatest single valued neutrosophic fuzzy subset of 

A(𝐴, 𝐵, 𝐵∗), and 𝐴∗ is the single-valued neutrosophic fuzzy inference triple I solution for 𝐹𝑀𝑇.  

 

After obtaining the solution for single valued neutrosophic fuzzy inference triple I solution of 

𝐹𝑀𝑇 , we can now obtain the single-valued neutrosophic residual implication induced by a left-

continuous single valued neutrosophic t-representable t-norm 𝒯 triple I solution for 𝐹𝑀𝑇. 

 

Corollary 3.5. Let ℛ  be a single-valued neutrosophic residual implication induced by a left-

continuous single-valued neutrosophic t-representable t-norm 𝒯 , then the single-valued 

neutrosophic fuzzy inference triple I solution 𝐴∗ = {〈𝑥, 𝑡𝐴∗(𝑥), 𝑖𝐴∗(𝑥), 𝑓𝐴∗(𝑥)〉 ∣ 𝑥 ∈ 𝑋} for 𝐹𝑀𝑇 can be 

shown as follows: 

 𝑡𝐴∗(𝑥) = ⋀ 𝑅𝑇𝑦∈𝑌 (𝑅𝑇(𝑡𝐴(𝑥), 𝑡𝐵(𝑦)), 𝑡𝐵∗(𝑦))(∀𝑥 ∈ 𝑋), 

 𝑖𝐴∗(𝑥) = ⋁ 𝑅𝑆𝑦∈𝑌 (𝑖𝐵∗(𝑦), 𝑅𝑆(𝑖𝐵(𝑦), 𝑖𝐴(𝑥)))(∀𝑥 ∈ 𝑋), 

 𝑓𝐴∗(𝑥) = ⋁ 𝑅𝑆𝑦∈𝑌 (𝑓𝐵∗(𝑦), 𝑅𝑆(𝑓𝐵(𝑦), 𝑓𝐴(𝑥)))(∀𝑥 ∈ 𝑋). 

 

Corollary 3.6. Let ℛ be the single-valued neutrosophic Łukasiewicz residual implication ℛ𝒯𝐿, then 

the single-valued neutrosophic fuzzy inference triple I solution 𝐴∗ = {〈𝑥, 𝑡𝐴∗(𝑥), 𝑖𝐴∗(𝑥), 𝑓𝐴∗(𝑥)〉 ∣ 𝑥 ∈ 𝑋} 

for 𝐹𝑀𝑇 as follows: 

 𝑡𝐴∗(𝑥) = ⋀ {𝑦∈𝑌 [1 − ((1 − 𝑡𝐴(𝑥) + 𝑡𝐵(𝑦)) ∧ 1) + 𝑡𝐵∗(𝑦)] ∧ 1}(∀𝑥 ∈ 𝑋), 

 𝑖𝐴∗(𝑥) = ⋁ {𝑦∈𝑌 [𝑖𝐵∗(𝑦) − ((𝑖𝐵(𝑦) − 𝑖𝐴(𝑥)) ∨ 0)] ∨ 0}(∀𝑥 ∈ 𝑋), 

 𝑓𝐴∗(𝑥) = ⋁ {𝑦∈𝑌 [𝑓𝐵∗(𝑦) − ((𝑓𝐵(𝑦) − 𝑓𝐴(𝑥)) ∨ 0)] ∨ 0}(∀𝑥 ∈ 𝑋). 

 

Corollary 3.7. Let ℛ be the single-valued neutrosophic Gougen residual implication ℛ𝒯𝐺𝑜 , then the 

single-valued neutrosophic fuzzy inference triple I solution 𝐴∗ = {〈𝑥, 𝑡𝐴∗(𝑥), 𝑖𝐴∗(𝑥), 𝑓𝐴∗(𝑥)〉 ∣ 𝑥 ∈ 𝑋} 

for 𝐹𝑀𝑇 as follows: 

 𝑡𝐴∗(𝑥) = ⋀ {𝑦∈𝑌
𝑡𝐵∗(𝑦)

(
𝑡𝐵(𝑦)

𝑡𝐴(𝑥)
∧1)
∧ 1}(∀𝑥 ∈ 𝑋), 

 𝑖𝐴∗(𝑥) = ⋁ {𝑦∈𝑌

𝑖𝐵∗(𝑦)−(
𝑖𝐵(𝑦)−𝑖𝐴(𝑥)

1−𝑖𝐴(𝑥)
∨0)

1−(
𝑖𝐵(𝑦)−𝑖𝐴(𝑥)

1−𝑖𝐴(𝑥)
∨0)

∨ 0}(∀𝑥 ∈ 𝑋), 

 𝑓𝐴∗(𝑥) ⋁ {𝑦∈𝑌

𝑓𝐵∗(𝑦)−(
𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨0)

1−(
𝑓𝐵(𝑦)−𝑓𝐴(𝑥)

1−𝑓𝐴(𝑥)
∨0)

∨ 0}(∀𝑥 ∈ 𝑋). 
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Corollary 3.8. Let 𝐵 be the single-valued neutrosophic 𝐺�̈�𝑑𝑒𝑙 residual implications ℛ𝒯𝐺 , then the 

single-valued neutrosophic fuzzy inference triple I solution 𝐴∗ = {〈𝑥, 𝑡𝐴∗(𝑥), 𝑖𝐴∗(𝑥), 𝑓𝐴∗(𝑥)〉 ∣ 𝑥 ∈ 𝑋} 

for 𝐹𝑀𝑇 as follows: 

 𝑡𝐴∗(𝑥) = ⋀ {𝑥∈𝑋 𝑅𝑇𝐺(𝑅𝑇𝐺(𝑡𝐴(𝑥), 𝑡𝐵(𝑦)), 𝑡𝐵∗(𝑦))}(∀𝑥 ∈ 𝑋), 

 𝑖𝐴∗(𝑥) = ⋁ {𝑥∈𝑋 𝑅𝑆𝐺(𝑖𝐵∗(𝑦), 𝑅𝑆𝐺(𝑖𝐵(𝑦), 𝑖𝐴(𝑥)))}(∀𝑥 ∈ 𝑋), 

 𝑓𝐴∗(𝑥) = ⋁ {𝑥∈𝑋 𝑅𝑆𝐺(𝑓𝐴∗(𝑥), 𝑅𝑆𝐺(𝑓𝐵(𝑦), 𝑓𝐴(𝑥)))}(∀𝑥 ∈ 𝑋). 

To prove the single-valued neutrosophic fuzzy inference triple I method is recoverable, we 

define reducibility. 

 

Definition 3.3. [4] A method for 𝐹𝑀𝑃 is called recoverable if 𝐴∗ = 𝐴 implies 𝐵∗ = 𝐵. similarly, a 

method for 𝐹𝑀𝑇 is called recoverable if 𝐵∗ = 𝐵 implies 𝐴∗ = 𝐴.} 

 

Theorem 3.3. The single-valued neutrosophic fuzzy inference triple I method for 𝐹𝑀𝑃 is reductive if 

𝐴 is a normal single-valued neutrosophic set. 

 

Proof:  

Suppose 𝐴∗ = 𝐴 and there exists an element 𝑥0 ∈ 𝑋 such that 𝐴(𝑥0) = 𝐴∗(𝑥0) = 〈1,0,0〉 = 1∗. Then 

we have 

𝐵∗(𝑦) = ⋁𝒯

𝑥∈𝑋

(𝐴∗(𝑥), ℛ(𝐴(𝑥), 𝐵(𝑦)))

≥ 𝒯(𝐴∗(𝑥0), ℛ(𝐴(𝑥0), 𝐵(𝑦)))

= 𝒯(1∗, ℛ(1∗, 𝐵(𝑦))) = 𝐵(𝑦).

 

On the other hand, by Proposition 2.6 (5) for any 𝑦 ∈ 𝑌, 

ℛ(𝐵∗(𝑦), 𝐵(𝑦)) = ℛ(⋁𝒯

𝑦∈𝑌

(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐴∗(𝑥)), 𝐵(𝑦)) =⋀ℛ

𝑦∈𝑌

(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐴(𝑥)), 𝐵(𝑦)) = 1∗, 

 

we have, 𝐵∗(𝑦) ≤ 𝐵(𝑦). 

Therefore, 𝐵∗ = 𝐵. This shows that the single-valued neutrosophic fuzzy inference triple I method 

for 𝐹𝑀𝑃 is recoverable. 

 

Theorem 3.4. The single-valued neutrosophic fuzzy inference triple I method for 𝐹𝑀𝑇 is reductive 

if single-valued neutrosophic residual implication ℛ  satisfies ℛ(ℛ(𝐴, 0∗), 0∗) = 𝐴, and 𝐵  is a co-

normal single-valued neutrosophic set. 

Proof:  

Suppose 𝐵∗ = 𝐵 is a co-normal single-valued neutrosophic set, i.e. there exists an element 𝑦0 ∈ 𝑌 

such that 𝐵∗(𝑦0) = 𝐵(𝑦0) = 〈0,1,1〉 = 0
∗, then we have: 

𝐴∗(𝑥) = ⋀ℛ

𝑦∈𝑌

(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦))

≤ ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦0)), 𝐵
∗(𝑦0))

= ℛ(ℛ(𝐴(𝑥), 0∗), 0∗) = 𝐴(𝑥).

 

 

On the other hand, by Proposition 2.5(3) and (4) for any 𝑥 ∈ 𝑋, 

ℛ(𝐴(𝑥), 𝐴∗(𝑥)) = ℛ(𝐴(𝑥),⋀ℛ

𝑦∈𝑌

(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦))) =⋀ℛ

𝑦∈𝑌

(𝐴(𝑥), ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵(𝑦))) = 1∗, 

we have 𝐴(𝑥) ≤ 𝐴∗(𝑥). 

Therefore, 𝐴∗ = 𝐴. This shows that the single-valued neutrosophic fuzzy inference triple I method 

for 𝐹𝑀𝑇 is recoverable. 
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4. Robustness of Single-Valued Neutrosophic Fuzzy Inference Triple I Method 

In this section, we introduce a new distance between single-valued neutrosophic sets. Through 

this distance, we can prove the robustness of the single-valued neutrosophic fuzzy inference triple I 

method. We study the robustness of the single-valued neutrosophic fuzzy inference triple I method 

based on left-continuous single-valued neutrosophic t-representable t-norms with this new distance. 

 

Theorem 4.1. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, for all 𝐴, 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑋), then 

𝑑(𝐴, 𝐵) = max{⋁ |

𝑥𝑖∈𝑋

𝑡𝐴(𝑥𝑖) − 𝑡𝐵(𝑥𝑖)|,⋁ |

𝑥𝑖∈𝑋

𝑖𝐴(𝑥𝑖) − 𝑖𝐵(𝑥𝑖)|,⋁ |

𝑥𝑖∈𝑋

𝑓𝐴(𝑥𝑖) − 𝑓𝐵(𝑥𝑖)|} 

is a metric on 𝑆𝑉𝑁𝑆(𝑋) and (𝑆𝑉𝑁𝑆(𝑋), 𝑑) is a metric space. 𝑑 is called a distance on 𝑆𝑉𝑁𝑆(𝑋). 

 

Proof: By Definition 2.7, (1) (2) are obvious for any 𝐴, 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑋). Therefore, we only prove (3). For 

any 𝐴, 𝐵, 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑋) 
𝑑(𝐴, 𝐵)

= max{⋁ |

𝑥𝑖∈𝑋

𝑡𝐴(𝑥𝑖) − 𝑡𝐵(𝑥𝑖)|,⋁ |

𝑥𝑖∈𝑋

𝑖𝐴(𝑥𝑖) − 𝑖𝐵(𝑥𝑖)|,⋁ |

𝑥𝑖∈𝑋

𝑓𝐴(𝑥𝑖) − 𝑓𝐵(𝑥𝑖)|}

= max{⋁ |

𝑥𝑖∈𝑋

𝑡𝐴(𝑥𝑖) − 𝑡𝐶(𝑥𝑖) + 𝑡𝐶(𝑥𝑖) − 𝑡𝐵(𝑥𝑖)|,

⋁ |

𝑥𝑖∈𝑋

𝑖𝐴(𝑥𝑖) − 𝑖𝐶(𝑥𝑖) + 𝑖𝐶(𝑥𝑖) − 𝑖𝐵(𝑥𝑖)|,⋁ |

𝑥𝑖∈𝑋

𝑓𝐴(𝑥𝑖) − 𝑓𝐶(𝑥𝑖) + 𝑓𝐶(𝑥𝑖) − 𝑓𝐵(𝑥𝑖)|}

≤ max{⋁ |

𝑥𝑖∈𝑋

𝑡𝐴(𝑥𝑖) − 𝑡𝐶(𝑥𝑖)|,⋁ |

𝑥𝑖∈𝑋

𝑖𝐴(𝑥𝑖) − 𝑖𝐶(𝑥𝑖)|,⋁ |

𝑥𝑖∈𝑋

𝑓𝐴(𝑥𝑖) − 𝑓𝐶(𝑥𝑖)|}

+max{⋁ |

𝑥𝑖∈𝑋

𝑡𝐶(𝑥𝑖) − 𝑡𝐵(𝑥𝑖)|,⋁ |

𝑥𝑖∈𝑋

𝑖𝐶(𝑥𝑖) − 𝑖𝐵(𝑥𝑖)|,⋁ |

𝑥𝑖∈𝑋

𝑓𝐶(𝑥𝑖) − 𝑓𝐵(𝑥𝑖)|}

≤ 𝑑(𝐴, 𝐶) + 𝑑(𝐶, 𝐵)

 

Therefore, 𝑑 is a metric on 𝑆𝑉𝑁𝑆(𝑋), and (𝑆𝑉𝑁𝑆(𝑋), 𝑑) is a metric space. 

 

Definition 4.1. Suppose that 𝔉 is a n-tuple mapping form to 𝑆𝑉𝑁𝑁𝑛 to 𝑆𝑉𝑁𝑁, ∀𝜀 ∈ (0,1). For any 

〈t, i, f〉 = (〈𝑡1, 𝑖1, 𝑓1〉, 〈𝑡2, 𝑖2, 𝑓2〉, . . . , 〈𝑡𝑛, 𝑖𝑛, 𝑓𝑛〉) ∈ 𝑆𝑉𝑁𝑁
𝑛, 

△𝔉 (〈t, i, f〉, 𝜀) = ⋁{𝑑(𝔉〈t, i, f〉, 𝔉〈t′, i′, f ′〉)|〈t′, i′, f ′〉 ∈ 𝑆𝑉𝑁𝑁𝑛, 𝑑(〈t, i, f〉, 〈t′, i′, f ′〉) ≤ 𝜀} 

 is called the sensitivity of the point 〈t, i, f〉, where 𝑑(〈t, i, f〉, 〈t′, i′, f ′〉) = max{⋁ |𝑗 𝑡𝑗 − 𝑡𝑗
′|, ⋁ |𝑗 𝑖𝑗 −

𝑖𝑗
′|, ⋁ |𝑗 𝑓𝑗 − 𝑓𝑗

′|}. 

 

Definition 4.2. The biggest 𝜀 sensitivity of 𝔉 denoted by △𝔉 (𝜀) = ⋁ △𝔉〈i,t,f〉∈𝑆𝑉𝑁𝑁𝑛 (〈t, i, f〉, 𝜀) is called 

sensitivity of 𝔉. 

 

Definition 4.3. Let 𝔉 and 𝔉′ be two n-tuple single-valued neutrosophic fuzzy connectives. We say 

that 𝔉 at least as robust as 𝔉′ at point 〈t, i, f〉, if ∀𝜀 ∈ (0,1), △𝔉 (〈t, i, f〉, 𝜀) ≤△𝔉′ (〈t, i, f〉, 𝜀). We say that 

𝔉 is more robust than 𝔉′ at point 〈t, i, f〉, if there exists 𝜀 > 0 such that △𝔉 (〈t, i, f〉, 𝜀) <△𝔉′ (〈t, i, f〉, 𝜀). 

 

Definition 4.4. Let 𝔉 and 𝔉′ be two n-tuple single-valued neutrosophic fuzzy connectives. We say 

that 𝔉 at least as robust as 𝔉′, if ∀𝜀 ∈ (0,1), △𝔉 (𝜀) ≤△𝔉′ (𝜀). We say that 𝔉 is more robust than 𝔉′ 

if there exists 𝜀 > 0 such that △𝔉 (𝜀) <△𝔉′ (𝜀). 

 

Proposition 4.1. For a binary single valued neutrosophic fuzzy connectives 𝔉: 𝑆𝑉𝑁𝑁 × 𝑆𝑉𝑁𝑁 →

𝑆𝑉𝑁𝑁, we can obtain: 
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(i). Let 𝔉 be a left-continuous single valued neutrosophic t-representable t-norm on 𝑆𝑉𝑁𝑁, 

𝒯(𝛼, 𝛽) = 〈𝑇(𝑡𝛼 , 𝑡𝛽), 𝑆(𝑖𝛼 , 𝑖𝛽), 𝑆(𝑓𝛼 , 𝑓𝛽)〉 for all 𝛼 = 〈𝑡𝛼 , 𝑖𝛼 , 𝑓𝛼〉, 𝛽 = 〈𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽〉 ∈ 𝑆𝑉𝑁𝑁, then 

 

(ii). Let 𝔉  be single valued neutrosophic residuated implication ℛ𝒯  induced by left-

continuous single valued neutrosophic t-representable t-norm 𝒯 , ℛ𝒯(𝛼, 𝛽)  = 

〈𝑅𝑇(𝑡𝛼 , 𝑡𝛽)), 𝑅𝑆(𝑖𝛽 , 𝑖𝛼), 𝑅𝑆(𝑓𝛽 , 𝑓𝛼)〉 for all 𝛼 = 〈𝑡𝛼 , 𝑖𝛼 , 𝑓𝛼〉, 𝛽 = 〈𝑡𝛽 , 𝑖𝛽 , 𝑓𝛽〉 ∈ 𝑆𝑉𝑁𝑁, then 

 

where 𝑅𝑇 is residual implication induced by left-continuous t-norm 𝑇, 𝑅𝑆 is coresidual implication 

induced by right-continuous t-conorm 𝑆. 

 

Corollary 4.1. The 𝜀  sensitivity of the single-valued neutrosophic Łukasiewicz t-representable t-

norm is △𝒯𝐿 (𝜀) = 2𝜀 ∧ 1. 

 

Corollary 4.2. The 𝜀 sensitivity of the single-valued neutrosophic Łukasiewicz residual implication 

is △ℛ𝒯𝐿
= 2𝜀 ∧ 1. 

 

Definition 4.5. Let 𝐴 and 𝐴′ be two single valued neutrosophic fuzzy sets on universal 𝑋. If ∥ 𝐴 −

𝐴′ ∥=⋁ 𝑑𝑥∈𝑋 (𝐴(𝑥), 𝐴′(𝑥)) ≤ 𝜀 for all 𝑥 ∈ 𝑋, then 𝐴′ is called 𝜀-perturbation of 𝐴 denoted by 𝐴′ ∈

𝑂(𝐴, 𝜀). 

 

Theorem 4.2. Let 𝐴, 𝐴′, 𝐵, 𝐵′, 𝐴∗ and 𝐴′∗ be single-valued neutrosophic fuzzy sets. If ∥ 𝐴 − 𝐴′ ∥≤

𝜀 , ∥ 𝐵 − 𝐵′ ∥≤ 𝜀 , ∥ 𝐴∗ − 𝐴′∗ ∥≤ 𝜀 , 𝐵∗  and 𝐵′∗  are the single-valued neutrosophic fuzzy inference 

triple I solutions of 𝐹𝑀𝑃(𝐴, 𝐵, 𝐴∗) and 𝐹𝑀𝑃(𝐴′, 𝐵′, 𝐴′∗) given in Theorem 3.1 respectively, then the 

𝜀 sensitivity of the single-valued neutrosophic fuzzy inference triple I solution 𝐵∗ for 𝐹𝑀𝑃 is 

 

△𝐵∗ (𝜀) =∥ 𝐵
∗ − 𝐵′∗ ∥≤△𝒯 (△ℛ (𝜀)). 

 

Proof: Let 𝐴, 𝐴′, 𝐴∗, 𝐴′∗ ∈ 𝑆𝑁𝑉𝑆(𝑋), 𝐵, 𝐵′ ∈ 𝑆𝑁𝑉𝑆(𝑌). If ∥ 𝐴 − 𝐴′ ∥≤ 𝜀, ∥ 𝐵 − 𝐵′ ∥≤ 𝜀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 𝜀, 

then we have, 
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△𝐵∗ (𝜀) =∥ 𝐵
∗ − 𝐵′∗ ∥

=⋁𝑑

𝑦∈𝑌

(𝐵∗(𝑦), 𝐵′∗(𝑦))

=⋁𝑑

𝑦∈𝑌

(⋁𝒯

𝑥∈𝑋

(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐴∗(𝑥)),⋁𝒯

𝑥∈𝑋

(ℛ(𝐴′(𝑥), 𝐵′(𝑦)), 𝐴′∗(𝑥)))

≤⋁⋁𝑑

𝑥∈𝑋𝑦∈𝑌

(𝒯(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐴∗(𝑥)), 𝒯(ℛ(𝐴′(𝑥), 𝐵′(𝑦)), 𝐴′∗(𝑥)))

≤△𝒯 (△ℛ (𝜀))

 

 

Corollary 4.3. Suppose ℛ  is residuated implication induced by single valued neutrosophic 

Łukasiewicz t-representable t-norm 𝒯, then △𝐵∗ (𝜀) = 3𝜀 ∧ 1. 

 

Proof: Let 𝐴∗(𝑥) = 〈𝑡1, 𝑖1, 𝑓1〉 , 𝐴(𝑥) = 〈𝑡2, 𝑖2, 𝑓2〉 , 𝐵(𝑦) = 〈𝑡3, 𝑖3, 𝑓3〉 , 𝐴′∗(𝑥) = 〈𝑡1
′ , 𝑖1

′ , 𝑓1
′〉 , 𝐴′(𝑥) =

〈𝑡2
′ , 𝑖2

′ , 𝑓2
′〉, 𝐵′(𝑦) = 〈𝑡3

′ , 𝑖3
′ , 𝑓3

′〉. Suppose that ∥ 𝐴 − 𝐴′ ∥≤ 𝜀, ∥ 𝐵 − 𝐵′ ∥≤ 𝜀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 𝜀, according to 

Proposition 4.1, then we have:  
𝑑(𝒯(𝐴∗(𝑥), ℛ(𝐴(𝑥), 𝐵(𝑦))), 𝒯(𝐴′∗(𝑥), ℛ(𝐴′(𝑥), 𝐵′(𝑦))))

= 𝑚𝑎𝑥{|(0 ∨ (𝑡1 + 𝑅𝑇(𝑡2, 𝑡3) − 1)) − (0 ∨ (𝑡1
′ + 𝑅𝑇(𝑡2

′ , 𝑡3
′ ) − 1))|,

|((𝑖1 + 𝑅𝑆(𝑖3, 𝑖2)) ∧ 1) − ((𝑖1
′ + 𝑅𝑆(𝑖3

′ , 𝑖2
′ )) ∧ 1)|,

|((𝑓1 + 𝑅𝑆(𝑓3, 𝑓2)) ∧ 1) − ((𝑓1
′ + ℛ𝑆(𝑓3

′, 𝑓2
′)) ∧ 1)|}

≤ 𝑚𝑎𝑥{|(0 ∨ (𝑡1 + 𝑅𝑇(𝑡2, 𝑡3) − 1)) − (0 ∨ ((𝑡1 + 𝜀) + 𝑅𝑇(𝑡2, 𝑡3) +△ℛ (𝜀) − 1))|,

|((𝑖1 + 𝑅𝑆(𝑖3, 𝑖2)) ∧ 1) − ((𝑖1 + 𝜀 + 𝑅𝑆(𝑖3, 𝑖2) +△ℛ (𝜀)) ∧ 1)|,

|((𝑓1 + 𝑅𝑆(𝑓3, 𝑓2)) ∧ 1) − ((𝑓1 + 𝜀 + 𝑅𝑆(𝑓3, 𝑓2) +△ℛ (𝜀)) ∧ 1)|}

≤ 𝜀 +△ℛ (𝜀)

 

For Łukasiewicz implication, for all 𝐴∗(𝑥) = 〈𝑡1, 𝑖1, 𝑓1〉, we can tack 𝐴′∗(𝑥) = 〈𝑡1 + 𝜀, 𝑖1 + 𝜀, 𝑓1 + 𝜀〉, 

ℛ(〈𝑡2, 𝑖2, 𝑓2〉, 〈𝑡3, 𝑖3, 𝑓3〉) = 〈1,0,0〉 , ℛ(〈𝑡2
′ , 𝑖2

′ , 𝑓2
′〉, 〈𝑡3

′ , 𝑖3
′ , 𝑓3

′〉) = 〈1 −△ℛ (𝜀),△ℛ (𝜀),△ℛ (𝜀)〉  satisfy the 

above equation, i.e. △𝐵∗ (𝜀) = 𝜀 +△ℛ (𝜀). Therefore, △𝐵∗ (𝜀) = 3𝜀 ∧ 1 by Corollary 4.2. 

 

Corollary 4.4. Suppose ℛ is a residuated implication induced by single valued neutrosophic Goguen 

t-representable t-norm 𝒯, then △𝐵∗ (𝜀) = 𝜀 + (1 − 𝜀) △ℛ (𝜀). 

 

Proof: Let 𝐴∗(𝑥) = 〈𝑡1, 𝑖1, 𝑓1〉 , 𝐴(𝑥) = 〈𝑡2, 𝑖2, 𝑓2〉 , 𝐵(𝑦) = 〈𝑡3, 𝑖3, 𝑓3〉 , 𝐴′∗(𝑥) = 〈𝑡1
′ , 𝑖1

′ , 𝑓1
′〉 , 𝐴′(𝑥) =

〈𝑡2
′ , 𝑖2

′ , 𝑓2
′〉, 𝐵′(𝑦) = 〈𝑡3

′ , 𝑖3
′ , 𝑓3

′〉. Suppose that ∥ 𝐴 − 𝐴′ ∥≤ 𝜀, ∥ 𝐵 − 𝐵′ ∥≤ 𝜀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 𝜀, according to 

Proposition 4.1, then we have:  
𝑑(𝒯(𝐴∗(𝑥), ℛ(𝐴(𝑥), 𝐵(𝑦))), 𝒯(𝐴′∗(𝑥), ℛ(𝐴′(𝑥), 𝐵′(𝑦))))

= |𝑡1 ⋅ ℛ𝑇(𝑡2, 𝑡3) − 𝑡1
′ ⋅ ℛ𝑇(𝑡2

′ , 𝑡3
′ )|

∨ |(𝑖1 + ℛ𝑆(𝑖3, 𝑖2) − 𝑖1 ⋅ ℛ𝑆(𝑖3, 𝑖2)) − (𝑖1
′ + ℛ𝑆(𝑖3

′ , 𝑖2
′ ) − 𝑖1

′ ⋅ ℛ𝑆(𝑖3
′ , 𝑖2

′ ))|

∨ |(𝑓1 + ℛ𝑆(𝑓3, 𝑓2) − 𝑓1 ⋅ ℛ𝑆(𝑓3, 𝑓2)) − (𝑓1
′ +ℛ𝑆(𝑓3

′, 𝑓2
′) − 𝑓1

′ ⋅ ℛ𝑆(𝑓3
′, 𝑓2

′)|
≤ |𝑡1 ⋅ ℛ𝑇(𝑡2, 𝑡3) − (𝑡1 − 𝜀) ⋅ (ℛ𝑇(𝑡2, 𝑡3) −△ℛ (𝜀))|

∨ |(𝑖1 + ℛ𝑆(𝑖3, 𝑖2) − 𝑖1 ⋅ ℛ𝑆(𝑖3, 𝑖2)) − ((𝑖1 + 𝜀) + (ℛ𝑆(𝑖3, 𝑖2) −△ℛ (𝜀)) − ((𝑖1 + 𝜀) ⋅ (ℛ𝑆(𝑖3, 𝑖2) −△ℛ (𝜀)))|

∨ |(𝑓1 + ℛ𝑆(𝑓3, 𝑓2) − 𝑓1 ⋅ ℛ𝑆(𝑓3, 𝑓2)) − ((𝑓1 + 𝜀) + (ℛ𝑆(𝑓3, 𝑓2) −△ℛ (𝜀)) − ((𝑓1 + 𝜀) ⋅ (ℛ𝑆(𝑓3, 𝑓2) −△ℛ (𝜀)))|

≤ 𝜀 + (1 − 𝜀) △ℛ (𝜀)

 

For Goguen implication, we can take 𝐴∗(𝑥) = 〈𝑡1, 𝑖1, 𝑓1〉 = 〈1,0,0〉 , 𝐴′∗(𝑥) = 〈1 − 𝜀, 𝜀, 𝜀〉 , 

ℛ(〈𝑡2, 𝑖2, 𝑓2〉, 〈𝑡3, 𝑖3, 𝑓3〉) = 〈1,0,0〉, satisfy the above equation, i.e. △𝐵∗ (𝜀) = 𝜀 + (1 − 𝜀) △ℛ (𝜀). 

 

Corollary 4.5. Suppose ℛ is residuated implication induced by single valued neutrosophic 𝐺�̈�𝑑𝑒𝑙 t-

representable t-norm 𝒯, then △𝐵∗ (𝜀) =△ℛ (𝜀). 

 

Proof: According to Theorem 4.1, we have △𝐵∗ (𝜀) ≤△𝒯 (△ℛ (𝜀)) , since 𝒯  is single-valued 

neutrosophic 𝐺�̈�𝑑𝑒𝑙  t-norm, then we have △𝐵∗ (𝜀) ≤△ℛ (𝜀) . Let 𝐴∗(𝑥) = 1∗ , then 𝐵∗(𝑦) =

⋁ 𝒯𝑥∈𝑋 (1∗, ℛ(𝐴(𝑥), 𝐵(𝑦))) = ⋁ ℛ𝑥∈𝑋 (𝐴(𝑥), 𝐵(𝑦)), i.e., △𝐵∗ (𝜀) ≥△ℛ (𝜀). Therefore, △𝐵∗ (𝜀) =△ℛ (𝜀). 
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Theorem 4.3. Let 𝐴, 𝐴′, 𝐵, 𝐵′, 𝐵∗ and 𝐵′∗ be single-valued neutrosophic fuzzy sets. If ∥ 𝐴 − 𝐴′ ∥≤

𝜀 , ∥ 𝐵 − 𝐵′ ∥≤ 𝜀 , ∥ 𝐵∗ − 𝐵′∗ ∥≤ 𝜀 , 𝐴∗  and 𝐴′∗  are single-valued neutrosophic ℛ -type triple I 

solutions of FMT (𝐴, 𝐵, 𝐵∗) and FMT(𝐴′ , 𝐵′ , 𝐵′∗) given in Theorem 3.2 respectively, then the 𝜀 

sensitivity of the single-valued neutrosophic ℛ-type triple I solution 𝐴∗ for FMT is 

 

△𝐴∗ (𝜀) =∥ 𝐴
∗ − 𝐴′∗ ∥≤△ℛ (△ℛ (𝜀)). 

 

Proof: Let 𝐴, 𝐴′ ∈ 𝑆𝑁𝑉𝑆(𝑋), 𝐵, 𝐵′, 𝐵∗, 𝐵′∗ ∈ 𝑆𝑁𝑉𝑆(𝑌). If ∥ 𝐴 − 𝐴′ ∥≤ 𝜀, ∥ 𝐵 − 𝐵′ ∥≤ 𝜀, ∥ 𝐵∗ − 𝐵′∗ ∥≤ 𝜀, 

then we have, 
△𝐴∗ (𝜀) =∥ 𝐴

∗ − 𝐴′∗ ∥

=⋁𝑑

𝑥∈𝑋

(𝐴∗(𝑥), 𝐴′∗(𝑥))

=⋁𝑑

𝑥∈𝑋

(⋀ℛ

𝑦∈𝑌

(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦)),⋀ℛ

𝑦∈𝑌

(ℛ(𝐴′(𝑥), 𝐵′(𝑦)), 𝐵′∗(𝑦)))

≤⋁⋁𝑑

𝑦∈𝑌𝑥∈𝑋

(ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦)), ℛ(ℛ(𝐴′(𝑥), 𝐵′(𝑦)), 𝐵′∗(𝑦)))

≤△ℛ (△ℛ (𝜀))

 

 

Corollary 4.6. Suppose ℛ  is residuated implication induced by single valued neutrosophic 

Łukasiewicz t-representable t-norm 𝒯, then △𝐴∗ (𝜀) = 3𝜀 ∧ 1. 

 

Proof: Let 𝐵∗(𝑦) = 〈𝑡1, 𝑖1, 𝑓1〉 , 𝐴(𝑥) = 〈𝑡2, 𝑖2, 𝑓2〉 , 𝐵(𝑦) = 〈𝑡3, 𝑖3, 𝑓3〉 , 𝐵′∗(𝑦) = 〈𝑡1
′ , 𝑖1

′ , 𝑓1
′〉 , 𝐴′(𝑥) =

〈𝑡2
′ , 𝑖2

′ , 𝑓2
′〉, 𝐵′(𝑦) = 〈𝑡3

′ , 𝑖3
′ , 𝑓3

′〉. Suppose that ∥ 𝐴 − 𝐴′ ∥≤ 𝜀, ∥ 𝐵 − 𝐵′ ∥≤ 𝜀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 𝜀, according to 

Proposition 4.1, then we have:  
𝑑(ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦)), ℛ(ℛ(𝐴′(𝑥), 𝐵′(𝑦)), 𝐵′∗(𝑦)))

= 𝑚𝑎𝑥{|(1 ∧ (1 − 𝑅𝑇(𝑡2, 𝑡3) + 𝑡1)) − (1 ∧ (1 − 𝑅𝑇(𝑡2
′ , 𝑡3

′ ) + 𝑡1
′))|,

|((𝑖1 − 𝑅𝑆(𝑖3, 𝑖2)) ∨ 0) − ((𝑖1
′ − 𝑅𝑆(𝑖3

′ , 𝑖2
′ )) ∨ 0)|,

|((𝑓1 − 𝑅𝑆(𝑓3, 𝑓2)) ∨ 0) − ((𝑓1
′ − ℛ𝑆(𝑓3

′, 𝑓2
′)) ∨ 0)|}

≤ 𝑚𝑎𝑥{|(1 ∧ (1 − 𝑅𝑇(𝑡2, 𝑡3) + 𝑡1)) − (1 ∧ (1 − (𝑅𝑇(𝑡2, 𝑡3) −△ℛ (𝜀)) + (𝑡1 + 𝜀)))|,

|((𝑖1 − 𝑅𝑆(𝑖3, 𝑖2)) ∨ 0) − ((𝑖1 − 𝜀 − (𝑅𝑆(𝑖3, 𝑖2) +△ℛ (𝜀))) ∨ 0)|,

|((𝑓1 − 𝑅𝑆(𝑓3, 𝑓2)) ∨ 0) − ((𝑓1 − 𝜀 − (𝑅𝑆(𝑓3, 𝑓2) +△ℛ (𝜀))) ∨ 0)|}

≤ 𝜀 +△ℛ (𝜀)

 

 

For the single-valued neutrosophic Lukasiewicz implication, for all 𝐴∗(𝑥) = Ž𝑡1, 𝑖1, 𝑓1ž, we can tack 

𝐴′∗(𝑥) = 〈𝑡1 + 𝜀, 𝑖1 − 𝜀, 𝑓1 − 𝜀〉 , ℛ(〈𝑡2, 𝑖2, 𝑓2〉, 〈𝑡3, 𝑖3, 𝑓3〉) = 〈1,0,0〉 , ℛ(〈𝑡2
′ , 𝑖2

′ , 𝑓2
′〉, 〈𝑡3

′ , 𝑖3
′ , 𝑓3

′〉) = 〈1 −

△ℛ (𝜀),△ℛ (𝜀),△ℛ (𝜀)〉 satisfy the above equation, i.e. △𝐴∗ (𝜀) = 𝜀 +△ℛ (𝜀). Therefore, △𝐴∗ (𝜀) = 3𝜀 ∧

1 by Corollary 4.2. 

 

Corollary 4.7. Suppose ℛ is a residuated implication induced by single valued neutrosophic Goguen 

t-representable t-norm 𝒯, then △𝐴∗ (𝜀) =
𝜀

1−△ℛ(𝜀)
. 

 

Proof: Let 𝐵∗(𝑦) = 〈𝑡1, 𝑖1, 𝑓1〉 , 𝐴(𝑥) = 〈𝑡2, 𝑖2, 𝑓2〉 , 𝐵(𝑦) = 〈𝑡3, 𝑖3, 𝑓3〉 , 𝐵′∗(𝑦) = 〈𝑡1
′ , 𝑖1

′ , 𝑓1
′〉 , 𝐴′(𝑥) =

〈𝑡2
′ , 𝑖2

′ , 𝑓2
′〉, 𝐵′(𝑦) = 〈𝑡3

′ , 𝑖3
′ , 𝑓3

′〉. Suppose that ∥ 𝐴 − 𝐴′ ∥≤ 𝜀, ∥ 𝐵 − 𝐵′ ∥≤ 𝜀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 𝜀, according to 

Proposition 4.1, then we have:  
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𝑑(ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦)), ℛ(ℛ(𝐴′(𝑥), 𝐵′(𝑦)), 𝐵′∗(𝑦)))

= 𝑚𝑎𝑥{|(1 ∧ (
𝑡1

𝑅𝑇(𝑡2, 𝑡3)
)) − (1 ∧ (

𝑡1
′

𝑅𝑇(𝑡2
′ , 𝑡3

′ )
)|,

|
(𝑖1 − 𝑅𝑆(𝑖3, 𝑖2)) ∨ 0

1 − 𝑅𝑆(𝑖3, 𝑖2)
−
(𝑖1
′ − 𝑅𝑆(𝑖3

′ , 𝑖2
′ )) ∨ 0

1 − 𝑅𝑆(𝑖3
′ , 𝑖2

′ )
|,

|
(𝑓1 − 𝑅𝑆(𝑓3, 𝑓2)) ∨ 0

1 − 𝑅𝑆(𝑓3, 𝑓2)
−
(𝑓1

′ − 𝑅𝑆(𝑓3
′, 𝑓2

′)) ∨ 0

1 − 𝑅𝑆(𝑓3
′, 𝑓2

′)
|,

≤ 𝑚𝑎𝑥{|(1 ∧ (
𝑡1

𝑅𝑇(𝑡2, 𝑡3)
)) − (1 ∧ (

𝑡1 − 𝜀

𝑅𝑇(𝑡2, 𝑡3) +△ℛ (𝜀)
))|,

|
(𝑖1 − 𝑅𝑆(𝑖3, 𝑖2)) ∨ 0

1 − 𝑅𝑆(𝑖3, 𝑖2)
−
((𝑖1 − 𝜀) − (𝑅𝑆(𝑖3, 𝑖2) +△ℛ (𝜀))) ∨ 0

1 − (𝑅𝑆(𝑖3, 𝑖2) +△ℛ (𝜀)
|,

|
(𝑓1 − 𝑅𝑆(𝑓3, 𝑓2)) ∨ 0

1 − 𝑅𝑆(𝑓3, 𝑓2)
−
((𝑓1 − 𝜀) − (𝑅𝑆(𝑓3, 𝑓2) +△ℛ (𝜀))) ∨ 0

1 − (𝑅𝑆(𝑓3, 𝑓2) +△ℛ (𝜀)
}

≤
𝜀

1 −△ℛ (𝜀)

 

 

For the single-valued neutrosophic Goguen implication, we can tack 𝐵∗(𝑦) = 〈𝜀, 1,1〉 , 𝐵′∗(𝑦) =

〈0,1 − 𝜀, 1 − 𝜀〉, ℛ(〈𝑡2, 𝑖2, 𝑓2〉, 〈𝑡3, 𝑖3, 𝑓3〉) = 〈1 −△ℛ (𝜀),0,0〉 , satisfy the above equation, i.e. △𝐴∗ (𝜀) =
𝜀

1−△ℛ(𝜀)
. 

 

Corollary 4.8. Suppose ℛ is residuated implication induced by single valued neutrosophic 𝐺�̈�𝑑𝑒𝑙 t-

representable t-norm 𝒯, then △𝐴∗ (𝜀) = 1. 

 

Proof: Let 𝐵∗(𝑦) = 〈𝑡1, 𝑖1, 𝑓1〉 , 𝐴(𝑥) = 〈𝑡2, 𝑖2, 𝑓2〉 , 𝐵(𝑦) = 〈𝑡3, 𝑖3, 𝑓3〉 , 𝐵′∗(𝑦) = 〈𝑡1
′ , 𝑖1

′ , 𝑓1
′〉 , 𝐴′(𝑥) =

〈𝑡2
′ , 𝑖2

′ , 𝑓2
′〉, 𝐵′(𝑦) = 〈𝑡3

′ , 𝑖3
′ , 𝑓3

′〉. Suppose that ∥ 𝐴 − 𝐴′ ∥≤ 𝜀, ∥ 𝐵 − 𝐵′ ∥≤ 𝜀, ∥ 𝐴∗ − 𝐴′∗ ∥≤ 𝜀, according to 

Proposition 4.1, then we have:  
𝑑(ℛ(ℛ(𝐴(𝑥), 𝐵(𝑦)), 𝐵∗(𝑦)), ℛ(ℛ(𝐴′(𝑥), 𝐵′(𝑦)), 𝐵′∗(𝑦)))

= 𝑚𝑎𝑥{|𝑅𝑇(𝑅𝑇(𝑡2, 𝑡3), 𝑡1) − 𝑅𝑇(𝑅𝑇(𝑡2
′ , 𝑡3

′ ), 𝑡1
′))|,

|𝑅𝑆(𝑖1, 𝑅𝑆(𝑖3, 𝑖2)) − 𝑅𝑆(𝑖1
′ , 𝑅𝑆(𝑖3

′ , 𝑖2
′ ))|,

|𝑅𝑆(𝑓1, 𝑅𝑆(𝑓3, 𝑓2)) − 𝑅𝑆(𝑓1
′, ℛ𝑆(𝑓3

′, 𝑓2
′))|}

≤ 1

 

 

For the single-valued neutrosophic 𝐺�̈�𝑑𝑒𝑙 implication, we can tack 𝐵∗(𝑦) = 〈𝜀, 1,1〉,𝐴(𝑥) = 〈
𝜀

2
, 1 −

𝜀, 1 − 𝜀〉, 𝐵(𝑦) = 〈
𝜀

4
, 1 −

𝜀

2
, 1 −

𝜀

2
〉, 𝐵′∗(𝑦) = 〈0,1 − 𝜀, 1 − 𝜀〉, 𝐴′(𝑥) = 〈𝜀, 1 − 2𝜀, 1 − 2𝜀〉, 𝐵′(𝑦) = 〈

𝜀

2
, 1 −

𝜀, 1 − 𝜀〉 , then ℛ(𝐴(𝑥), 𝐵(𝑦)) = 〈
𝜀

4
, 0,0〉 , ℛ(𝐴′(𝑥), 𝐵′(𝑦)) = 〈

𝜀

2
, 0,0〉 , satisfy the above equation, i.e., 

△𝐴∗ (𝜀) = 1. 

5. Conclusions 

In this paper, we extend the fuzzy inference triple I method on single-valued neutrosophic sets. 

Single valued neutrosophic fuzzy inference triple I Principle for and are proposed. Moreover, the 

single-valued neutrosophic fuzzy inference triple I solutions for and are given respectively. The 

reductivity and the robustness of the single-valued neutrosophic fuzzy inference triple I methods are 

studied. 

This article only conducts research on fuzzy reasoning algorithms at the theoretical level and has 

not been applied in databases; when using t-representable t-norm, this article only considers the case 

of 𝑅𝑇 = 𝑅𝑆, without analyzing and demonstrating the case of 𝑅𝑇 ≠ 𝑅𝑆. 

The logical basis of a fuzzy inference method is very important. In the future, we will consider 

building the strict logic foundation for the triple I method based on left-continuous single-valued 

neutrosophic t-representable t-norms, and bring the single-valued neutrosophic fuzzy inference 
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method within the framework of logical semantic. Not only that, analyze and discuss the case of 

𝑅𝑇 ≠ 𝑅𝑆 for the algorithm, and apply the algorithm to pattern recognition in the database. 
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