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Abstract: Numerous uncertainties exist in various electricity power system problems due to the size, 

complexity, geographical distribution, and influence of unforeseen events in these systems, making 

it difficult for traditional mathematics tools based on crisp set theory to have an impact on and solve 

many power system problems. As a new branch of mathematical uncertainty techniques, the 

neutrosophic expert systems approach has therefore emerged with the development of electric power 

systems and has proven successful when correctly linked. The expert typically uses ambiguous or 

neutrosophic language to describe their empirical knowledge, such as "very likely," "quite likely," "if 

x is large, then y is very likely to occur," "x should not be less than a," etc. To design an optimal radius 

of power supply in the electrical transformer substation, this article presents a new method for 

creating primal and dual neutrosophic geometric programming problems. It also provides a 

numerical example to evaluate the approximate optimal economic power supply radius.  

Keywords: Optimal Supply Radius; Neutrosophic Geometric Programming; Neutrosophic 

Coefficients; Transformer Substations. 

 
NOMENCLATURES 

TS Transformer Substation 

GPP Geometric Programming Problem 

SPP Signomial Programming Problem 

NGPP Neutrosophic Geometric Programming Problem 

𝑯 
An annual extraction coefficient is the annual running cost of the entire extracted 

investment. 

𝒂𝟏 Unconnected Part of TS's investment capacity  (𝑢𝑛𝑖𝑡, 𝐼𝑄) 

𝒂𝟐 Investment in (11𝑘𝑉) Line for Every Kilometre of Unconnected Wire (𝑢𝑛𝑖𝑡, 𝐼𝑄/𝑘𝑚) 

𝒃𝟏 Coefficient of the Section Associated with the TS's Capacity in Investing (𝑢𝑛𝑖𝑡, 𝐼𝑄/𝑘𝑉 𝐴) 

𝒃𝟐 
Coefficient of the Wire Section-Connected Part of the (11 𝑘𝑉) Line Investment 

(𝑢𝑛𝑖𝑡, 𝐼𝑄/𝑘𝑚 · 𝑚𝑚2) 

𝑬 Coefficient of Terrain Correction 
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𝝈 Average Load Density (𝑢𝑛𝑖𝑡, 𝑘𝑊/𝑘𝑚2) 

𝑲𝒄 Hold Ratio (𝑡ℎ𝑒 132𝑘 𝑉 − 𝑇𝑆 𝑡𝑎𝑘𝑒𝑠 2.2 ~2.5) 

𝑷𝒂𝒗 Mean Line Load Every Time (𝑢𝑛𝑖𝑡, 𝑘𝑊) 

𝑼𝑵 The Middle Voltage Distribution Network's Rated Voltage (11𝑘 𝑉) 

𝒋 Economical Current Density Wire (𝑢𝑛𝑖𝑡, 𝐴/𝑚𝑚2) 

𝝆 Wire in Resistivity (𝑢𝑛𝑖𝑡, Ω/𝑘𝑚 ·  𝑚𝑚2) 

𝝉 Annually Wasted Mean Maximum Load Hours 

𝑪𝟎 Price of Each Wasted Watt-Hour (𝑢𝑛𝑖𝑡, 𝐼𝑄/ 𝑘 𝑊. ℎ ) 

𝑲𝑭𝒆 Coefficient of Transformer Iron Loss(≈  0.0085𝑘𝑊/(𝑘𝑉 𝐴)3/4) 

𝝉𝒃 Equivalent Hours of Transformer Copper Loss 

𝑲𝒄𝒖 Transformer Copper Loss Coefficient (≈  0.055𝑘𝑊/(𝑘𝑉 𝐴)3/4) 

𝑺𝑵𝑳 Rated Load of Transformer (𝑢𝑛𝑖𝑡, 𝑘𝑉 𝐴) 

𝑺𝑵 Rated Capacity of Transformer (𝑢𝑛𝑖𝑡, 𝑘𝑉 𝐴) 

𝑸 Voltage Range in Electrically-Distributed Cities (𝑢𝑛𝑖𝑡, 𝑘𝑚2). 

𝒓 Mean Radius in the Supply Area, or it is the economic power supply radius 

IQ Iraqi Dinar 

 

1. Introduction 

The building of an optimal mathematical model for the annual cost function needs a geometric 

programming model because its variables have negative rational powers.  

It is well known that any classical geometric programming problem neglects the uncertainty part 

of the sophisticated practical environment. So, the neutrosophic model will be more flexible having 

more information. In Iraq, the services of electricity supply are very poor in almost all cities for many 

reasons, such as the cascade wars, for example, the Arab Gulf War in 1990, where the Iraqi community 

suffered from many setbacks:  

1. The economy block in the nineties of the last century,  

2. Replace the system of the government with a parliamentary system of government, 

3. In the twenty-one century the events of the sectarian and ethnic civil wars in Iraqi society. 

All previous reasons and more, lead to infrastructural destruction. 

This essay comes as an attempt to shed light on some important problems involving how can 

rebuild the Iraqi power electricity supply substations. The necessary point that this paper focused on 

is how to choose an optimal radius (r) of the electric power supply in the substations of Iraqi cities. 

The reader should pay attention that the monetary currency of the country is the Iraqi dinar (IQ). 

2. Classical Geometric Programming Problem (CGPP) 

To handle a class of non-linear optimization problems that are commonly seen in engineering 

design, an optimization technique known as geometric programming (GP) was developed. The GP 

technique was inspired by the work of Zener. Zener tried a novel approach in 1961 to solve a class of 

unconstrained non-linear optimization problems with polynomial terms in the objective function. To 

answer these problems, he used the well-known inequality between arithmetic and geometric means, 

which states that the arithmetic mean is greater than or equal to the geometric mean. Because the 

arithmetic-geometric mean inequality is applied, this method is referred to as the "GP technique". 

Only in cases when the objective function was unconstrained and the number of polynomial terms 

was one more than the number of variables did Zener employ this technique. Later in 1962, Duffin 
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expanded the application of this method to resolve issues when the objective function's number of 

polynomial terms is arbitrary. In 1967, Peterson enhanced the application of this technique to issues 

that also incorporate inequality restrictions expressed as posynomials with the aid of Zener and 

Duffin [1]. Additionally, Passy and Wilde (1967) extended this method to tackle issues where some 

of the posynomial terms have negative coefficients [2]. 

For instance, Duffin demonstrated that a function "duality gap" could not develop in geometric 

programming by condensing the posynomial functions to monomial form (1970) and converting 

them to linear form using a logarithmic transformation. Posynomial programming with (posy) 

monomial objective and constraint functions is equivalent to linear programming. Duffin and 

Peterson (1972) demonstrate that each of these posynomial programs GPP can be reformulated so 

that every constraint function is a (posy) binomial in that it includes at most two posynomial terms. 

An effective and extremely flexible way of solution was desired since geometric programming has 

become a popular optimization methodology. Several factors became crucial as the complexity of the 

sample geometric programs to be solved grew: Canonically, the problem's level of difficulty and 

inactive constraints [3] reported an algorithm that might take these factors into account. Later, in 1976, 

Mcnamara suggested a method for solving geometric programming problems that involved 

formulating an augmented problem with a degree of complexity zero. As a result, many algorithms 

have been proposed for solving GP, the majority of which were made before (1980); these algorithms 

are somewhat more efficient and reliable when applied to the convex problem and also avoid 

problems with derivative singularities as variables raised to fractional powers approach zero because 

logs of such variables will approach−∞, There should be significant negative lower bounds on those 

variables. A significant amount of interior point (IP) algorithms for general purpose (GP) were 

developed in the 1990s. An effective method for solving posynomial geometric programming was 

developed by Rajgopal and Bricker in 2002. Condensation was a concept that was employed in the 

method, which was integrated into an algorithm for the more broad (Signomial) GP issue. The 

reformulation's constraint structure sheds light on why this algorithm is effective in avoiding every 

computing issue usually connected to dual-based algorithms. A method for addressing (positive, 

zero, or negative) variables in SPP was put out by Li and Tsai in 2005. A linear or convex relaxation 

of the original problem is computed using the majority of current global optimization methods for 

SPP. These methods might occasionally offer an impractical answer, or they might constitute the 

genuine optimum to get around these restrictions. Shen, Ma, and Chen (2008) proposed a robust 

solution algorithm for the global algorithm optimization of SPP. This algorithm adequately ensures 

the achievement of a robust optimal solution that is both feasible and close to the actual optimal 

solution and is stable under small perturbations of the constraints [4].   

Huda E. Khalid [5] suggested an innovative GPP algorithm for discovering the ranging analysis 

by examining the impact of perturbations in the coefficients without solving the issue, as this 

proposed procedure had been caught on two coefficients at once. Additionally, the reference [6] 

investigated an original GPP employing substitution effects in a sensitivity analysis for two 

coefficients at once based on a new extended theorem and adjusted new constants. Huda E. Khalid 

[7] proposed one of the incremental procedures required to appropriately compare the results 

obtained from the incremental analysis methodology and the sensitivity analysis approach. 

Additionally, there was an effort to develop a novel computational approach that could be used to 

examine the sensitivity analysis of the geometric programming problem (GPP) and the signomial 

geometric programming problem (SPP), both of which had a difficulty level larger than zero. The 

studies [8, 9] cast a bad light on multi-objective geometric programming's degree of challenges. 

Definition 2.1: [10]: The vector 𝑥∗ that makes the constraint inequalities 𝑔𝑗 (𝑥) ≤ 1, 𝑗 =

1,2…… , 𝑝 𝑎𝑛𝑑 𝑥 > 0  into exact equalities is the optimal solution to a GPP. We refer to the constraint 

set in such issues as being tight or active. As a result, we can assess any inactive constraints by 

assessing those for which 𝑔𝑗 (𝑥) > 1 or 𝑔𝑗 (𝑥) < 1. 
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Definition 2.2: [11] Let 𝑅++
𝑚  stand for the set of real m-vectors with positive component values. Let 

there be 𝑚 real positive vectors, 𝑥1, … , 𝑥𝑚.  A function with the definition 𝑓 ∶ 𝑅++
𝑚 → 𝑅 is called a 

monomial, and is defined as 𝑓(𝑥) = 𝑐 ∏ 𝑥
𝑗

𝑎𝑗𝑚
𝑗=1 , 𝑐 > 0 where  𝑎𝑗 ∈ 𝑅 . A polynomial is a sum of 

monomials or a function of the type (𝑥) = ∑ 𝑐𝑘
𝑛
𝑖=1 ∏ 𝑥

𝑗

𝑎𝑖𝑗𝑚
𝑗=1  , with 𝑐𝑘 > 0 and  𝑎𝑗𝑘 ∈ 𝑅. 

3. Neutrosophic Geometric programming problems ( NGPP) [4] 

In 2016, Florentin Smarandache and Huda E. Khalid developed unconstrained neutrosophic 

geometric programming, where the models were constructed as posynomials. For this subject, the 

following definitions are thought to be fundamental: 

3.1 Definition: Let h(𝑥) be any linear or non-linear neutrosophic function, where 𝑥𝑖 ∈ [0,1] ∪ [0, nI] 

and 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚)
T an m-dimensional fuzzy neutrosophic variable vector. 

We have the inequality 

h(𝑥) < ₦1                                              (1) 

where " < ₦" denotes the neutrosophic version of " ≤ " with the linguistic interpretation being 

"less than (the original claimed), greater than (the anti-claim of the original less than), equal 

(neither the original claim nor the anti-claim)". 

The inequality (1) can be redefined as follows:  

h(x) < 1
anti (h(x)) > 1

neut( h(x)) = 1

}                                                (2) 

3.2 Definition: Let  
N
(P)

                 h(x)min
N  

xi ∈ FNs

}                                                               (3) 

The neutrosophic unconstrained  posynomial  geometric programming, where 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑚) 
T  is an m-dimensional fuzzy neutrosophic variable vector, "T"  represents a 

transpose symbol and h(𝑥) = ∑ ck
J
k=1 ∏ xl

γklm
l=1  is a neutrosophic posynomial GP function of 𝑥 , 

ck ≥ 0 a constant, γkl  an arbitrary real number,  h(𝑥) < ₦ z → g(𝑥)min
N  ; the objective function 

h(𝑥) can be written as a minimizing goal to consider 𝑧 as an upper bound; 𝑧 is an expectation 

value of the objective function h(𝑥)," < ₦ " denotes the neutrosophic version of " ≤ " with the 

linguistic interpretation (see Definition 3.1), and do > 0 denotes a flexible index of h(𝑥). 

Note that the above program is undefined and has no solution in the case of  γkl < 0 with some 

xl′s taking indeterminacy value, for example, 

          h(𝑥)min
N  = 2𝑥1

−.2x2
.3𝑥4

1.5 + 7𝑥1
3x2

−.5𝑥3,                                              (4)                        

where  𝑥𝑖 ∈ FNs, 𝑖 = 1,2,3,4. This program is not defined at 𝑥 = (.2I, .3, .25, I)T ,  h(𝑥) =

2(. 2I)−.2(. 3).3I1.5 + 7(. 2I)3(. 3)−.5(.25) is undefined at  𝑥1 = .2I with  γ1 = −0.2. 

3.3 Definition: Let A0  be the set of all neutrosophic non-liner functions h(𝑥)  that are 

neutrosophically less than or equal to 𝑧, i.e.  

A0 = {xi ∈ FNm, h(x) < ₦ z}.  

The membership functions of h(𝑥) and  anti(h(𝑥)) are:  

μAo( h(x)) = {
1                                             0 ≤ h(x) ≤ z

(e
−1

do
(g(x)−z)

+ e
−1

do
(anti (g(x))−z)

− 1) ,      z < h(x) ≤ z − do ln 0.5
                 (5)  

μAo(anti(h(x))) = {
0                                    0 ≤ h(x) ≤ z

(1 − e
−1

do
(anti (h(x))−z)

− e
−1

do
(h(x)−z)

) , z − do ln 0.5 ≤ h(x) ≤ z + do
          (6)      

Eq. (6) can be changed into  

h(x) < ₦ z,       x = (x1, x2, … , xm), xi ∈ FNs                                             (7) 

The above program can be redefined as follows: 
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h(x) < z                                      

anti(h(x)) > z                         

neut(h(x)) = z                        

x = (x1, x2, … , xm), xi ∈ FNs }
 
 

 
 

                                                           (8) 

It is clear that μAo(neut(h(𝑥))) consists of the intersection of the following functions: 

e
−1

do
(h(x)−z)

      &  1 − e
−1

do
(anti(h(x))−z)

                                                    (9) 

μAo(neut(h(x))) = {
1 − e

−1

do
(anti( h(x))−z)

            z ≤ h(x) ≤ z − do ln 0.5

e
−1

do
(h(x)−z)

                    z − do ln 0.5 < h(x) ≤ z + do

                        (10) 

 

3.4 Definition: Let Ñ be a fuzzy neutrosophic set defined on [0,1] ∪ [0, nI], 𝑛 ∈ [0,1]; if there exists 

a fuzzy neutrosophic optimal point set Ao
∗  of h(𝑥) such that  

Ñ(𝑥) =
min{μ(neut h(x))}

x = (x1, x2, … , xm), xi ∈ FNs
                                              (11) 

Ñ(x) = e
−1

do
(∑ ck

J
k=1 ∏ x

l

γklm
l=1 −z)

Ʌ  1 − e
−1

do
(anti( ∑ ck

J
k=1 ∏ x

l

γklm
l=1 )−z)

,                            (12) 

Then maxÑ(𝑥)  is said to be a neutrosophic geometric programming (the unconstrained case) 

concerning Ñ(𝑥) of h(𝑥). 

 

3.5 Definition: Let 𝑥∗ be an optimal solution to Ñ(𝑥), i.e.  Ñ(x∗) = maxÑ(x) , x = (x1, x2, … , xm), xi ∈

FNs, and the fuzzy neutrosophic set Ñ satisfying Eq. (11) is a fuzzy neutrosophic decision in Eq. (8). 

4. Designing an Optimal Radius of Power Supply in Transformers Substation Using Classical 

Geometric Programming Problems GPP [12] 

The annual-cost way had been built with consideration to the following assumptions: 

1. 132 KV-TS power supply to its consumers in a city by the direct-step-down method of 

11 KV. 

2. The load density is even over the whole electrified wire netting cover. Therefore, a static 

model is built using an annual cost as follows: 

𝐹 =
𝑍

𝑁
+ 𝜇                                                                 (13)                                                                                                                                       

Where 𝑍  denotes the cost of total investment, 𝜇  is the annual cost of investment 

operational under a certain load level, 𝑁(8 − 10 𝑦𝑒𝑎𝑟𝑠)  is an investment-recovery 

deadline, i.e., the total investment is returned within (8 − 10) redeemable years. 

The annual cost function in a unit capacity is denoted by  

𝐹𝑜 =
𝐹

𝑆
=

(𝑍𝑏+𝑍𝑙)

𝑁
+𝜇1+𝜇2+𝜇3

𝑆
                                                   (14)                                                                                                                             

Where, 

𝑍𝑏 = 𝑎1 + 𝑏1𝑆     (𝐼𝑄)                                                      (15)                                                                                                              

Is the investment in the construction of 132 KV-TS [14].  

𝑍𝑙 = 𝐿(𝑀𝑎2 + 𝑏2𝑆𝑙)   (𝐼𝑄)                                                  (16)                                                                                                                                           

Denotes the construction investment in the main-supply lines of the (11 KV) middle voltage 

distribution network, where 𝑀 = 𝑆 cos𝜙 /Ρ𝑎𝑣  is a circle line of (11𝐾𝑉) middle voltage distribution 

network, 𝐿 = 𝐸𝑟 (𝑘𝑚) is each circle-line length of it, and 𝑆𝑙 =
𝑆

√3𝑈𝑁𝑗
 (𝑚𝑚2) denotes the wire total 

selection in the main-supply lines of all (11 𝐾𝑉) middle voltage distribution net-work in (132 𝐾𝑉) −

 𝑇𝑆; 𝑆 is the capacity in the 𝑇𝑆 (𝑢𝑛𝑖𝑡, 𝐾𝑉𝐴). 

𝜇1 = 𝐻(𝑍𝑏 + 𝑍𝑙)                                                                     (17) 
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Behaves as a direct proportion function of the unchangeable part in operations cost (large repair, 

small repair, and depreciation charge) and in the total investment of (132 𝐾𝑉 − 𝑇𝑆) and (11 𝐾𝑉) 

middle voltage distribution net line. 

𝜇2 = ∆𝑃𝜏𝐶𝑜 = 7.26
𝐸𝜌𝑗𝜏𝐶𝑜

𝑈𝑁𝑐𝑜𝑠
2𝜙

1

√𝜎
𝑆
3
2⁄  10−5                                                  (18)                                                                                                    

Stands for the depreciation charge of (11 𝐾𝑉) line in a year, while by [15], the depreciation charge to 

transformers of  

(132 𝐾 𝑉 − 𝑇𝑆)  is 𝜇3 = (𝐶0𝐾𝐹𝑒8760 + 𝐶0𝜏𝑏𝐾𝑐𝑢) × 𝛾𝑆
3
4⁄  𝑁𝐿                    (19)                                                                                       

Where 𝛾 denotes the number of transformers. When the rated capacity as 𝑆𝑁 hours for a chosen 

transformer is 11 kV-TS, 𝛾  is taken to denote an average number of transformers 𝑆 /𝑆𝑁  in 

the11𝑘 𝑉 − 𝑇𝑆. 

Substitute (15)-(19) for (14), then 

𝐾0 = (
1

𝑁
+ 𝐻) (

𝑎1

𝑆
+ 𝑏1) + 𝐸 [(

1

𝑁
+ 𝐻)√

1

𝜋𝜎𝐾𝑐
(
𝑎2 cos∅

𝑃𝑎𝑣
+

𝑏2

√3 𝑈𝑁𝑗
) + 7.26 

𝑝𝑗𝜏𝐶0

𝑈𝑁 cos
2 ∅
 
10−5

√𝜎
] 𝑆

1

2 + (8760𝐶0𝐾𝐹𝑒 +

𝐶0𝜏𝑏𝐾𝑐𝑢)
𝑆
3
4⁄  𝑁𝐿

𝑆𝑁
                                                                      (20) 

The determination of the objective function of a static (classical) model aims at making unit capacity 

annual cost minimum, i.e., 𝑖𝑛 𝐾0  , with the limits to constraint 𝑆 >  0 , such that we have the 

following model: 
min𝐾0

𝑠. 𝑡.    𝑆 > 0
                                                                         (21) 

Where 𝐾0 is illustrated in Eqs. (20), and (21) are called classical geometric programming models, 

concerned with the model I. 

5. Geometric Programming with Neutrosophic Coefficients 

In this section, the objective function 𝐾0 will be reformulated from classical annual coast in unit 

capacity into minimum neutrosophic function. We expect that there are many vague or incomplete 

factors in load, investment process, and electricity prices, where they hold many neutrosophic 

phenomena. 

It is well known that the transformer substations’ capacity is non-negative (i.e. 𝑆 > 0), also 𝐾0 is 

an exponential polynomial function having neutrosophic coefficients with respect to 𝑆 , therefore the 

classical model can be changed into finding an answer to a neutrosophic minimum of annual cost 

under the capacity 𝑆 > 0 in constraint, such that the geometric programming with neutrosophic 

coefficients can be written as a forthcoming model (22). 

5.1 Building a Neutrosophic GPP Model in an Iraqi's Transformer Substation Depending Upon 

Neutrosophic Truth Membership Function Related to the Coefficient 𝑪𝟐 

Solve the following problem 
𝑚𝑖𝑛 𝐾0
 𝑠. 𝑡.    𝑆 > 0

                                                                        (22) 

Where, 

𝐾0 = 91800𝑆
−1 + 0.77𝜎−0.5𝑆0.5                                                        (23) 

Having the first coefficient 𝑐1 = 91800 as an ordinary real number, while the second coefficient 𝑐2 =

0.77𝜎−0.5  is a neutrosophic number varying in a certain interval. Suppose the truth membership 

function 𝜇𝐴, indeterminacy membership function 𝜎𝐴, and falsity of membership function 𝑣𝐴 for the 

coefficient 𝑐2 are defined as follows: 

Let 𝐴 = [0.008, 0.03] be a certain neutrosophic interval in which 𝑐2 ∈ 𝐴, 

𝜇𝐴(𝑐2) = {

0                                                 𝑐2 ≤ 0.008

(
𝑐2−0.008

0.022
)2             0.008 < 𝑐2 < 0.03

1                                                 𝑐2 > 0.03 

                                          (24)           
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𝜎𝐴(𝑐2) = {

(
𝑐2−0.008

0.011
)2                                       0.008 < 𝑐2 < 0.011

1

2
− (

𝑐2−0.011

0.03
)2                                    0.011 ≤ 𝑐2 ≤ 0.03

0                                           0.008 ≥  𝑐2 ≥ 0.03 

                               (25) 

 

𝑣𝐴(𝑐2) = {

1                                                  𝑐2 ≤ 0.008

1 − (
𝑐2−0.008

0.022
)2                                 0.008 < 𝑐2 < 0.03

0                                                   𝑐2 > 0.03 

                                (26) 

It is easy to draw the above truth, indeterminacy, and falsity membership functions. 

 
Figure 1: The blue linear function represents the region covered by 𝜇𝐴(𝑐2), while the orange function 

represents the region covered by 𝑣𝐴(𝑐2), and finally, the intersection region (yellow-shaded color) is 

the intersection region between 𝜇𝐴(𝑐2) and 𝑣𝐴(𝑐2) represents the region covered by 𝜎𝐴(𝑐2). 

On the other hand, and depending upon [16], we have 

(
𝑐2−0.008

0.022
)2 = 1 − 𝛼 ⇒ 𝑐2 = 0.008 + 0.022√1 − 𝛼                                          (27) 

Here,𝛼 denotes the 𝛼 − 𝑐𝑢𝑡 related to the truth membership functions 𝜇𝐴(𝑐2). 

Consequently, the program (22) is turned into  

min𝐾0 = {91800𝑆
−1 + (0.008 + 0.022√1 − 𝛼 )𝑆0.5}

𝑠. 𝑡.  𝑆 > 0                                                            
                                       (28)                       

 

Program (28) is called neutrosophic polynomial geometric programming problems (NPGPP), we 

should not forget that the degree of the dual program for eq. (28) is equal to zero, so it is immediate 

to find the solution by means of the dual program. To solve this problem more easily way, we try to 

rewrite this program (i.e. eq. 28) in its dual form as follows: 

max     𝐷 = (
91800

𝜔0
)𝜔0(

0.008+0.022√1−𝛼

𝜔1
)𝜔1

  

𝑠. 𝑡.                                      𝜔0 +𝜔1 = 1
                                    −𝜔0 + 0.5𝜔1 = 0

𝜔0, 𝜔1 > 0,   𝛼 ∈ [0,1]                           

                                                  (29)                         

 

By solving the above (normality and orthogonality conditions), the values 𝜔0 =
1

3
 , 𝜔1 =

2

3
 are 

obtained. 

The well-known relationship between the primal of the GPP and its dual program is concluded by 

the below theorem: 

Theorem [13]: If (𝑃) is canonical and there exists a �̅� such that 𝑔𝑘(�̅�) < 1 for = 1,2, … , 𝑝 , then the 

following mathematical phrases are true: 

i. The dual program (𝐷) has a maximizing point 𝛿∗, 
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ii. The maximum value 𝑣(𝛿∗) of problem(𝐷) equals to the minimum value 𝑔∘(𝑥
∗) of (𝑃), {i.e. 

the primal and the dual problems are related through the fact that, for the optimal solution, 

min 𝑔∘(𝑥) = max 𝑣(𝛿)}. 

iii. Each minimizing point 𝑥 for (𝑃) for the optimal solution min 𝑔0 (𝑥) = max 𝑣(𝛿) satisfies 

𝑢𝑖(𝑥) = {

𝛿𝑖
∗𝑣(𝛿∗)                                  for          i = 0

𝛿𝑖
∗

𝜆𝑘(𝛿
∗)
         ∀ 𝑖 = 1,2, …𝑘 𝑎𝑛𝑑 𝜆𝑘(𝛿

∗) ≠ 0
 

However, there is a good opportunity to study the various values of the dual objective function 𝐷  

depending on the values of 𝛼. The following formulas are:  

- 𝑟 is the mean radius in the supply area, or it is the economic power supply radius, 

𝑟 = √
𝑆𝑎𝑣

𝜋𝜎𝐾𝑐
                                                               (30) 

Suppose that the mean load density of Telafer township / Nineveh province/ Iraq country will raised 

to 𝜎 = 5195 𝑘𝑊/𝑘𝑚2 by the year 2025, suppose the economic capacity of the specific transformer 

substation as 𝑆𝑎𝑣 . 

Average item 𝑁𝑏 (which denotes the amount of 132 kV-TS that needs to be built up in Telafer district 

to meet the growing demand for electricity) given by the following formulas 

𝑁𝑏 =
𝜎𝑄𝐾𝑐

𝑆
=

𝜎𝑄𝐾𝑐

𝑟𝑖
2𝜋𝜎𝐾𝑐

=
𝑄

𝜋𝑟𝑖
2                                                    (31)                                                                             

Keep in mind, the fact that, the area of the electrical supply on Telafer township station cover 𝑄 =

1743.69 𝑘𝑚2. 

- The numbers 𝑛𝑏in a unit area  in the specific transformers substation TS, 

𝑛𝑏 =
𝑁𝑏

𝑄
=

𝜎𝑄𝐾𝑐

𝑆
=

1

𝜋𝑟𝑖
2                                                      (32)                                                                                      

- Note that 𝑐2 = 0.008 + 0.022√1 − 𝛼 , 𝛼 ∈ [0,1], at 𝛼 = 0 ⟹ 𝑐2 = 0.03, while at 𝛼 = 1 ⟹

𝑐2 = 0.008, as 0 < 𝛼 < 1 ⟹ 0.008 < 𝑐2 < 0.03. 

The following Table 1 illustrates the max𝐷  are the approximate optimal solutions and optimal 

values for (29), 

Table 1. The range values of 𝐷. 

Index 𝒊 
𝜶𝒊

∈ [𝟎, 𝟏] 
𝐦𝐚𝐱𝑫 = (

𝟗𝟏𝟖𝟎𝟎

𝝎𝟎

)𝝎𝟎(
𝟎. 𝟎𝟎𝟖 + 𝟎. 𝟎𝟐𝟐√𝟏 − 𝜶𝒊

𝝎𝟏

)𝝎𝟏  

𝒓𝒊 = √
𝑺𝒂𝒗𝒊
𝝅𝝈𝑲𝒄

 

𝑲𝒄 = 𝟐. 𝟐 𝒌𝑽 ;  𝝈

= 𝟓𝟗𝟏𝟓 𝒌𝑾/𝒌𝒎𝟐 

1 0 𝑑1 = 8.23119687 0.641439553 𝑘𝑚 

2 0.1 𝑑2 = 8.02337386 0.649671351 𝑘𝑚 

3 0.3 𝑑3 = 7.56001993 0.66923184 𝑘𝑚 

4 0.5 𝑑4 = 7.00574202 0.695134289 𝑘𝑚 

5 0.7 𝑑5 = 6.29202210 0.733404644 𝑘𝑚 

6 0.8 𝑑6 = 5.82046397 0.762466041 𝑘𝑚 

7 0.9 𝑑7 = 5.17541713 0.808481231 𝑘𝑚 

8 1 𝑑8 = 3.41016566 0.995585028 𝑘𝑚 

 

Note that, the values of 𝛼’s were selected depending on the author’s decision. To evaluate the values 

of 𝑟𝑖 . Now we need to determine the average values 𝑆𝑎𝑣𝑖 , by the previous theorem. we have the 
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following relationship between the terms of the primal program and its corresponding terms of dual 

program: 

91800 𝑆−1 =
1

3
 𝑑𝑖       ∀ 𝑖 = 1,2, … ,8                                                      (33) 

(0.008 + 0.022√1 − 𝛼𝑖)𝑆
0.5 =

2

3
𝑑𝑖        ∀ 𝑖 = 1,2, … ,8                                        (34) 

Suppose that all evaluated S through Eq. (33) are symbolized by 𝑆1, and all computed  𝑆 through 

eq. (34) symbolized by 𝑆2. The following Table 2 illustrates all values of 𝑆1 and 𝑆2, this is for each 

𝑖 = 1,2, … 8: 

Table 2. The Average Values of 𝑆1 and 𝑆2 Denoted by 𝑆𝑎𝑣 . 

index 𝒊 

𝑺𝟏 =
𝟗𝟏𝟖𝟎𝟎

𝟏
𝟑⁄ 𝒅𝒊

=
𝟐𝟕𝟓𝟒𝟎𝟎

𝒅𝒊
 

𝑺𝟐

= (

𝟐
𝟑
𝒅𝒊

𝟎. 𝟎𝟎𝟖 + 𝟎. 𝟎𝟐𝟐√𝟏 − 𝜶𝒊
)

𝟐

 
𝑺𝒂𝒗𝒊 =

𝑺𝟏 + 𝑺𝟐
𝟐

 

1 33458.0747 182.915482 16820.4951 

2 34324.7124 185.269297 17254.9909 

3 36428.4754 190.862453 18309.669 

4 39310.6111 198.269037 19754.4401 

5 43769.7128 209.212124 21989.4625 

6 47315.8156 217.52199 23766.6688 

7 53213.1021 230.679653 26721.8909 

8 80758.54 284.180472 40521.3603 

 

Substituting all amounts of 𝑆𝑎𝑣𝑖 , in the Table 1 to enumerate the values of 𝑟𝑖. Now, the last duty is to 

determine the optimal value of 𝑆𝑎𝑣𝑖 that gives the optimal solution for problem (28), tracking the 

concluded values of the below Table 3: 

Table 3. The approximate values of the primal program. 

index 

𝒊 
𝑺𝒂𝒗𝒊 =

𝑺𝟏 + 𝑺𝟐
𝟐

 𝐦𝐢𝐧𝑲𝟎 = {𝟗𝟏𝟖𝟎𝟎(𝑺𝒂𝒗𝒊)
−𝟏 + (𝟎. 𝟎𝟎𝟖 + 𝟎. 𝟎𝟐𝟐√𝟏 − 𝜶 )(𝑺𝒂𝒗𝒊)

𝟎.𝟓} 

1 16820.4951 9.34844324 

2 17254.9909 9.11264828 

3 18309.669 8.58689587 

4 19754.4401 7.95791296 

5 21989.4625 7.14789479 

6 23766.6688 6.61264497 

7 26721.8909 5.88038304 

8 40521.3603 3.87586527 

 

From Tables 2 and 3, and in terms of Eqs. (33) and (34), the approximate optimal value of 𝐾0 ≅

3.8758627  which holds at the optimal economic capacity 𝑆𝑎𝑣8 = 40521.3603  of 132 kV- TS. 

Moreover, by the results of Table 1, we can see that the value of the approximate optimal economic 
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power supply radius is 𝑟8 = 0.995585028 𝑘𝑚, as well as the optimal value of 𝑁𝑏 ≅ 559.96332 occurs 

at 𝑟8 (i.e., about (560) 132 𝑘𝑉 − 𝑇𝑆 needs to build up in Telafer township). 

 

5.2 Building a Neutrosophic Model Depending Upon Either Falsity or Indeterminacy Membership 

Functions Related to the Coefficient 𝑪𝟐 

The fact that many researchers in the field of neutrosophic optimization may ignore or may have 

been unaware of it, is that the indeterminacy membership function exactly represents the intersection 

region of the truth membership function and the falsity membership function as we sighted it by the 

representing diagram (1). Hence, for this manuscript, we took the vagueness for the second 

coefficient𝑐2, so the following mathematical intersection is completely true: 

𝜎𝐴(𝑐2) = 𝜇𝐴(𝑐2) ∩ 𝑣𝐴(𝑐2)                                                              (35) 

 

For solving the program (22) with respect to its falsity membership function and depending upon the 

thoughts presented in [  ], we can suppose: 

1 − (
𝑐2−0.008

0.022
)
2

= 𝛽 ⇒  (
𝑐2−0.008

0.022
)
2

= 1 − 𝛽 = 𝛼                                           (36) 

Here, 𝛽 is the 𝛽- cut related to the falsity membership function 𝑣𝐴(𝑐2), eq. (29) is exactly given the 

same solution as Eq. (27), which means Eq. (36) is somehow considered a dual form to Eq. (27). Also, 

there is another unfathomable program that gives the solution of neutrosophic polynomial geometric 

programming (22) by using the indeterminacy membership function 𝜎𝐴(𝑐2): 
1

2
− (

𝑐2−0.008

0.022
)
2

= 𝛾                                                                   (37) 

Where 𝛾 ∈ [0,1] is the 𝛾- cut corresponding to 𝜎𝐴(. ), Eq. (30) implies that :(
𝑐2−0.008

0.022
)
2

=
1

2
− 𝛾 ⇒   𝑐2 −

0.011 = 0.0009√0.5 − 𝛾  ⇒  

𝑐2 = 0.011 + 0.0009√0.5 − 𝛾. 

Consequently, the program (15) can be reformulated as: 

min𝐾0 = {91800𝑆
−1 + (0.011 + 0.0009√0.5 − 𝛾 )𝑆0.5}

𝑠. 𝑡.  𝑆 > 0                                                            
                                     (38) 

Program (38) is defined as a neutrosophic posynomial geometric programming problem, and the 

main difference between program (28) and program (38): is that program (28) is NPGP related to the 

truth-membership function of the coefficient𝑐2 , while the program (38) is NPGP related to the 

indeterminacy membership function of the same coefficient𝑐2. Also, the same previous analysis tables 

(1, 2, 3) that were for 𝛼,max𝐷, 𝑟𝑖 can be re-written and re-analysis for 𝛾,max𝐷 , 𝑟𝑖 . 

6. Conclusions 

This manuscript discussed an innovative trying to analyze the annual cost of investment in the 

power supply systems with respect to the validity of some uncertainty by assuming the neutrosophic 

coefficient 𝑐2, to be able to calculate the mean of the economic capacity and economic supply radius 

of 132 kV- transformer substation in Telafer township, all these issues held by building mathematical 

non-linear programming named Neutrosophic Geometric Programming Problems (NGPP) this was 

for the first time, also there more analyzing techniques can be made for the same geometric 

programming problems with the neutrosophic point of view, either by a truth membership function, 

or by a falsity membership function, or by an indeterminacy membership function, to their 

corresponding 𝛼, 𝛽, 𝛾- cuts. 
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