
        Neutrosophic Systems with Applications, Vol. 17, 2024  

        https://doi.org/10.61356/j.nswa.2024.17244 

 

M. Pandiselvi, and M. Jeyaraman, Fixed Point Results in Complex Valued Neutrosophic b-Metric Spaces with Application 

 
Fixed Point Results in Complex Valued Neutrosophic b-Metric 

Spaces with Application 
 

M. Pandiselvi 1 , and M. Jeyaraman 2,*  

1 Raja Doraisingam Govt. Arts College, Sivagangai, Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India; 
mpandiselvi2612@gmail.com. 

2 PG and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, Affiliated to Alagappa 

University, Karaikudi, Tamil Nadu, India; jeya.math@gmail.com. 

 
* Correspondence: jeya.math@gmail.com. 
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1. Introduction 

Azam et al. [1] pioneered the idea of complex-valued metric spaces in 2011. Rouzkard et al. [2] 

studied and extended the conclusions of [1] by investigating numerous common fixed point theorems 

in this space. Many standard fixed point solutions in such space for mappings satisfying rational 

expressions on a closed ball were examined by Ahmad et al. [3]. Common fixed point theorem in 

complex-valued b-metric established by Rao et al. [4]. Following the development of this concept, 

Mukheimer [5] discovered common fixed point outcomes of a pair of self-mappings meeting a 

rational inequality in complex-valued b-metric space. Zadeh [6] established the basis for fuzzy 

mathematics in 1965. Kramosil and Michalek [7] initially brought up the concept of fuzzy metric-like 

space and then modified it by George and Veeramani [8]. Atanassov [9] stirred things up by adding 

the idea of a non-membership grade of fuzzy set theory. Fuzzy metric space has been widened to 

Intuitionistic fuzzy metric space by Park [10]. Park used continuous triangular norm as well as 

continuous triangular conorm to describe this idea. Smarandache [11] described the concept of 

neutrosophic logic and neutrosophic sets in 1998. 

This study aims to present the concept of Complex Valued Neutrosophic b-metric Space. In 

addition, this research expands on previous fixed-point findings over contractions. To strengthen, we 

finish our work with an application to integral equations and an example illustrating the applicability 

of our main results. 

 

2. Preliminaries 

This study will require the following definitions and results. 

ℂ denotes the set of complex numbers.  

We set ℌ = {(𝓅, 𝓆): 0 ≤ 𝓅 < ∞, 0 ≤ 𝓆 < ∞} ⊂ ℂ.  

A partial ordering ≾  on ℂ  is defined by 𝜏1 ≾ 𝜏2 (equivalently, 𝜏2 ≾ 𝜏1 ) ⇔  Re(𝜏1) ≤ 𝑅𝑒(𝜏2)  and 

𝐼𝑚(𝜏1) ≤ 𝐼𝑚(𝜏2). The closed unit complex interval is defined as 𝔉 = {(𝓅, 𝓆): 0 ≤ 𝓅 < 1,0 ≤ 𝓆 < 1} 

and the open unit complex interval by 𝔉𝔬̈ = {(𝓅, 𝓆): 0 < 𝓅 < 1,0 < 𝓆 < 1 }.  
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The set {(𝓅, 𝓆): 0 < 𝓅 < ∞, 0 < 𝓆 < ∞} denoted by ℌ𝔬̈. The elements (1, 1), (0,0)  ∈ ℌ are indicated 

by ℓ and 𝔬̈, respectively. 

Remark 2.1[12].  Let {𝜏𝜄} be a sequence in ℌ. Then, 

(i) If {𝜏𝜄} is monotonic in ℌ and there exists 𝜌, 𝜎 ∈ ℌ such that 𝜌 ≾ 𝜏𝜄 ≾ 𝜎, for every 𝜄 ∈ Ν, 

then there exists a 𝜏 ∈ ℌ such that lim
𝜄→∞

𝜏𝜄 = 𝜏. 

(ii) Θ ⊂ ℂ is that there exists 𝜌, 𝜎 ∈ ℂ with 𝜌 ≾ ℂ ≾ 𝜎 for all 𝜃 ∈ Θ, then inf Θ and sup Θ 

both exist. 

Remark 2.2 [12].  Let 𝜏𝜄, 𝜏′𝜄 , 𝜂 ∈ ℌ for every  𝜄 ∈ Ν . Then, 

(i) If 𝜏𝜄 ≾ 𝜏′𝜄 ≾ ℓ for every 𝜄 ∈ Ν and lim
𝜄→∞

𝜏𝜄 = ℓ, then lim
𝜄→∞

𝜏′𝜄 = ℓ. 

(ii) If 𝜏𝜄 ≾ 𝜂 for every 𝜄 ∈ Ν and lim
𝜄→∞

𝜏𝜄 = 𝜏 ∈ ℌ, then 𝜄 ≾ 𝜂. 

(iii) If 𝜂 ≾ 𝜏𝜄 for every 𝜄 ∈ Ν and lim
𝜄→∞

𝜏𝜄 = 𝜏 ∈ ℌ, then 𝜂 ≾ 𝜄. 

Definition 2.3 [12]. Let {𝜏𝜄} be a sequence in ℌ. If for all 𝜏 ∈ ℌ there exists an 𝜄0 ∈ Ν such that 

𝜏 ≾ 𝜏𝜄 for all 𝜄 > 𝜄0. Then {𝜏𝜄} is named to be diverged to ∞ as 𝜄 → ∞, and we write lim
𝜄→∞

𝜏𝜄 = ∞. 

Definition 2.4 [12]. A binary operation ∗ ∶  𝔉 × 𝔉 → 𝔉 is named a complex-valued t-norm, if for all 

𝜏1, 𝜏2, 𝜏3, 𝜏4 ∈ 𝔉 

(i) 𝜏1 ∗ 𝜏2 = 𝜏2 ∗ 𝜏1; 

(ii) 𝜏 ∗ 𝔬̈=𝔬̈, 𝜏 ∗ ℓ = 𝜏; 

(iii) 𝜏1 ∗  (𝜏2 ∗ 𝜏3) = (𝜏1 ∗ 𝜏2) ∗ 𝜏3; 

(iv) 𝜏1 ∗  𝜏2 ≾ 𝜏3 ∗  𝜏4 whenever 𝜏1 ≾ 𝜏3, 𝜏2 ≾ 𝜏4. 

Example 2.5 [12].      

(i) 𝜏1 ∗ 𝜏2 =  (𝓅1𝓅2, 𝓆1𝓆2), for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉, 

(ii) 𝜏1 ∗ 𝜏2 =  (min {𝓅1, 𝓅2}, min {𝓆1, 𝓆2}), for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉, 

(iii) 𝜏1 ∗ 𝜏2 =  (max {𝓅1+𝓅2 − 1,0}, max {𝓆1 + 𝓆2 − 1,0}),   

for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉.  

These are examples of complex-valued t-norm. 

Example 2.6 [12]. The following are examples of complex-valued t-conorm: 

(i) 𝜏1 ⋆ 𝜏2 =  (max{𝓅1, 𝓅2}, max{𝓆1, 𝓆2}), for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉, 

(ii) 𝜏1 ⋆ 𝜏2 =  (min {𝓅1+𝓅2, 1}, min {𝓆1 + 𝓆2, 1}), for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉. 

Definition 2.7. Let Ξ be a nonvoid set, ∗, ⋆ are complex-valued continuous t-norm and t-conorm, 

𝔓̃ , 𝔏̃ and 𝔔̃ are complex fuzzy sets on Ξ2 × ℌ𝔬̈ fulfilling the following assertions: 

(1) 𝔓̃(𝔲, 𝔳, 𝜏) + 𝔏̃(𝔲, 𝔳, 𝜏) + 𝔔̃(𝔲, 𝔳, 𝜏) ≾ 3; 

(2)  𝔬̈ ≺ 𝔓̃(𝔲, 𝔳, 𝜏); 

(3)  𝔓̃(𝔲, 𝔳, 𝜏) = ℓ for every 𝜏 ∈ ℌ𝔬̈ ⇔ if 𝔲 = 𝔳; 

(4) 𝔓̃(𝔲, 𝔳, 𝜏) = 𝔓̃(𝔳, 𝔲, 𝜏); 
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(5) 𝔓̃(𝔲, 𝔳, 𝜏) ∗ 𝔓̃(𝔳, 𝔴, 𝜏′) ≾ 𝔓̃(𝔲, 𝔴 , 𝜏 + 𝜏′); 

(6) 𝔓̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous; 

(7) 𝔏̃(𝔲, 𝔳, 𝜏) ≺ ℓ; 

(8) 𝔏̃(𝔲, 𝔳, 𝜏) = 𝔬̈, for all 𝜏 ∈ (0, ∞) ⇔ 𝔲 = 𝔳; 

(9) 𝔏̃(𝔲, 𝔳, 𝜏) = 𝔏̃(𝔳, 𝔲, 𝜏); 

(10) 𝔏̃(𝔲, 𝔳, 𝜏) ⋆ 𝔏̃(𝔳, 𝔴, 𝜏′) ≿ 𝔏̃(𝔲, 𝔴 , 𝜏 + 𝜏′); 

(11) 𝔏̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous; 

(12) 𝔔̃ (𝔲, 𝔳, 𝜏) ≺ ℓ; 

(13) 𝔔̃ (𝔲, 𝔳, 𝜏) = 𝔬̈, for all 𝜏 ∈ (0, ∞) ⇔ 𝔲 = 𝔳; 

(14) 𝔔̃ (𝔲, 𝔳, 𝜏) = 𝔔̃(𝔳, 𝔲, 𝜏); 

(15) 𝔔̃ (𝔲, 𝔳, 𝜏) ⋆ 𝔔̃(𝔳, 𝔴, 𝜏′) ≿ 𝔔̃(𝔲, 𝔴 , 𝜏 + 𝜏′); 

(16) 𝔔̃ (𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous. 

The Triplet (𝔓̃, 𝔏,̃ 𝔔̃ ) is called a Complex Valued Neutrosophic Metric Space (CVNMS).  

Definition 2.8. Let Ξ be a nonvoid set, 𝜃 ≥ 1 be a given real number, ∗, ⋆ are complex-valued 

continuous t-norm and t- conorm , 𝔓̃, 𝔏̃ and 𝔔̃ are complex fuzzy sets on Ξ2 × ℌ𝔬̈  fulfilling the 

following assertions. Then (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃 ) is called a Complex Valued Neutrosophic b-Metric 

Space (CVNbMS). For all 𝔲, 𝔳, 𝔴 ∈ Ξ and 𝜏, 𝜏′ ∈ ℌ𝔬̈. 

(1) 𝔓̃(𝔲, 𝔳, 𝜏) + 𝔏̃(𝔲, 𝔳, 𝜏) + 𝔔̃(𝔲, 𝔳, 𝜏) ≾ 3; 

(2)  𝔬̈ ≺ 𝔓̃(𝔲, 𝔳, 𝜏); 

(3)  𝔓̃(𝔲, 𝔳, 𝜏) = ℓ for every 𝜏 ∈ ℌ𝔬̈ ⇔ 𝔲 = 𝔳; 

(4) 𝔓̃(𝔲, 𝔳, 𝜏) = 𝔓̃(𝔳, 𝔲, 𝜏); 

(5) 𝔓̃(𝔲, 𝔳, 𝜏) ∗ 𝔓̃(𝔳, 𝔴, 𝜏′) ≾ 𝔓̃(𝔲, 𝔴 , 𝜃(𝜏 + 𝜏′)); 

(6) 𝔓̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous; 

(7) 𝔏̃(𝔲, 𝔳, 𝜏) ≺ ℓ; 

(8) 𝔏̃(𝔲, 𝔳, 𝜏) = 𝔬̈, for all 𝜏 ∈ (0, ∞) ⇔ 𝔲 = 𝔳; 

(9) 𝔏̃(𝔲, 𝔳, 𝜏) = 𝔏̃(𝔳, 𝔲, 𝜏); 

(10) 𝔏̃(𝔲, 𝔳, 𝜏) ⋆ 𝔏̃(𝔳, 𝔴, 𝜏′) ≿ 𝔏̃(𝔲, 𝔴 , 𝜃(𝜏 + 𝜏′)); 

(11) 𝔏̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous; 

(12) 𝔔̃(𝔲, 𝔳, 𝜏) ≺ ℓ; 

(13) 𝔔̃(𝔲, 𝔳, 𝜏) = 𝔬̈, for all 𝜏 ∈ (0, ∞) ⇔ 𝔲 = 𝔳; 

(14) 𝔔̃(𝔲, 𝔳, 𝜏) = 𝔔̃(𝔳, 𝔲, 𝜏); 

(15) 𝔔̃(𝔲, 𝔳, 𝜏) ⋆ 𝔔̃(𝔳, 𝔴, 𝜏′) ≿ 𝔔̃(𝔲, 𝔴 , 𝜃(𝜏 + 𝜏′)); 

(16) 𝔔̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous. 

Example 2.9 Let (Ξ, ρ, 𝜃) be a b-Metric Space (bMS). Let 𝜏1 ∗ 𝜏2 =  (min {𝓅1, 𝓅2}, min {𝓆1, 𝓆2}),  𝜏1 ⋆

𝜏2 =  (max{𝓅1, 𝓅2}, max{𝓆1, 𝓆2})for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉. Let us consider the Complex 
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Fuzzy Sets[CFS] 𝔓̃, 𝔏̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 such that 𝔓̃(𝔲, 𝔳, 𝜏) =
𝓅𝓆

𝓅𝓆+ρ(𝔲,𝔳)
ℓ, 𝔏̃(𝔲, 𝔳, 𝜏) =

ρ(𝔲,𝔳)

𝓅𝓆+ρ(𝔲,𝔳)
ℓ, 𝔔̃(𝔲, 𝔳, 𝜏) =

ρ(𝔲,𝔳)

𝓅𝓆
ℓ, where 𝜏 = (𝓅, 𝓆) ∈ ℌ𝔬̈. Then, (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is a CVNbMS. 

Lemma 2.10 Let ( Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗ , ⋆, 𝜃)  be a CVNbMS and 𝜏1, 𝜏2 ∈ ℂ . If 𝜏1 ≺  𝜏2 , then 𝔓̃(𝔲, 𝔳, 𝜏1) ≾

𝔓̃(𝔲, 𝔳, 𝜃𝜏2), 𝔏̃(𝔲, 𝔳, 𝜏1) ≿ 𝔏̃(𝔲, 𝔳, 𝜃𝜏2) and 𝔔̃(𝔲, 𝔳, 𝜏1) ≿ 𝔔̃(𝔲, 𝔳, 𝜃𝜏2) for all 𝔲, 𝔳 ∈ Ξ. 

Proof. Let 𝜏1, 𝜏2 ∈ ℌ𝔬̈ be such that 𝜏1 ≺  𝜏2.  

Therefore, 𝜏2 − 𝜏1 ∈ ℌ𝔬̈ and so that for all 𝔲, 𝔳 ∈ Ξ,  we get 𝔓̃(𝔲, 𝔳, 𝜏1) = ℓ ∗ 𝔓̃(𝔲, 𝔳, 𝜏1) = 𝔓̃(𝔲, 𝔲, 𝜏2 −

𝜏1) ∗ 𝔓̃(𝔲, 𝔳, 𝜏1) ≾ 𝔓̃(𝔲, 𝔳, 𝜃𝜏2) 

𝔏̃(𝔲, 𝔳, 𝜃𝜏2) ≾ 𝔏̃(𝔲, 𝔲, 𝜏2 − 𝜏1) ⋆ 𝔏̃(𝔲, 𝔳, 𝜏1) ≾ 0 ⋆ 𝔏̃(𝔲, 𝔳, 𝜏1) and 

𝔔̃(𝔲, 𝔳, 𝜃𝜏2) ≾ 𝔔̃(𝔲, 𝔲, 𝜏2 − 𝜏1) ⋆ 𝔔̃(𝔲, 𝔳, 𝜏1) ≾ 0 ⋆ 𝔔̃(𝔲, 𝔳, 𝜏1). 

Definition 2.11 Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a CVNbMS and  {𝔲𝜄} be a sequence in Ξ. 

(i) {𝔲𝜄} converges to 𝔲 ∈ Ξ if for every 𝛾 ∈ 𝔉𝔬̈and every 𝜏 ∈ ℌ𝔬̈, there exists  𝜄0 ∈ ℕ such 

that, for every 𝜄 > 𝜄0, ℓ −  𝛾 ≺ 𝔓̃(𝔲𝜄, 𝔲, 𝜏), 𝔏̃(𝔲𝜄, 𝔲, 𝜏) ≺ 𝛾 and 𝔔̃(𝔲𝜄 , 𝔲, 𝜏) ≺ 𝛾.  We denote 

this by lim
𝜄→∞

𝔲𝜄 = 𝔲. 

(ii) {𝔲𝜄} in Ξ is named to be a Cauchy sequence in (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) if for every 𝜏 ∈ ℌ𝔬̈, 

lim
𝜄→∞

 𝑖𝑛𝑓𝑚>𝜄𝔓̃(𝔲𝑚, 𝔲𝜄 , 𝜏) = ℓ,  lim
𝜄→∞

 𝑠𝑢𝑝𝑚>𝜄𝔏̃(𝔲𝑚 , 𝔲𝜄, 𝜏) = 𝔬̈ and lim
𝜄→∞

 𝑠𝑢𝑝𝑚>𝜄𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) = 𝔬.̈  

(iii) (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is known to be a complete  CVNbMS if for every Cauchy sequence 

{𝔲𝜄} in (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃), there exists an 𝔲 ∈ Ξ such that lim
𝜄→∞

𝔲𝜄 = 𝔲. 

Lemma 2.12 Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a CVNbMS. A sequence {𝔲𝜄} in Ξ converge to 

𝔲 ∈ Ξ ⇔ lim
𝜄→∞

 𝔓̃(𝔲𝑚 , 𝔲𝜄, 𝜏) = ℓ , lim
𝜄→∞

 𝔏̃(𝔲𝑚 , 𝔲𝜄, 𝜏) = 𝔬̈ and lim
𝜄→∞

 𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) = 𝔬 ̈ holds for all 𝜏 ∈ ℌ𝔬̈.  

3. Main Results 

Theorem 3.1  Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a CVNbMS such that, for every sequence {𝜏𝜄} in ℌ𝔬̈ with 

lim
𝜄→∞

𝜏𝜄 = ∞ , we have lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ 𝔓̃(𝔲, 𝔳, 𝜏𝜄) =  ℓ ,  lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔏̃(𝔲, 𝔳, 𝜏𝜄) = 𝔬̈    and  lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔔̃(𝔲, 𝔳, 𝜏𝜄) = 𝔬̈    

for all 𝔲 ∈ Ξ. Let 𝔨 ∶  Ξ → Ξ be a mapping satisfying  

𝔓̃ (𝔨𝔲, 𝔨𝔳,
𝛿𝜏

𝜃
) ≿ 𝔓̃(𝔲, 𝔳, 𝜏), 𝔏̃ (𝔨𝔲, 𝔨𝔳,

𝛿𝜏

𝜃
) ≾ 𝔏̃(𝔲, 𝔳, 𝜏) and 𝔔̃ (𝔨𝔲, 𝔨𝔳,

𝛿𝜏

𝜃
) ≾ 𝔔̃(𝔲, 𝔳, 𝜏)        (3.1.1) 

For all 𝔲, 𝔳 ∈ Ξ and 𝜏 ∈ ℌ𝔬̈ where 𝛿 ∈ (0, 1). Then 𝔨 has a unique fixed point in Ξ. 

Proof: 

Let  𝔲0 be a random element of Ξ and define the sequence {𝔲𝜄} in Ξ  by the iterative method 𝔲𝜄 =

𝔨𝔲𝜄−1 for every 𝜄 ∈ Ν. If 𝔲𝜄 = 𝔲𝜄−1 for some 𝜄 ∈ Ν, then 𝔲𝜄 is a fixed point of 𝔨.  

So 𝔲𝜄 ≠ 𝔲𝜄−1 for every 𝜄 ∈ Ν. We claim that {𝔲𝜄} is a Cauchy sequence in Ξ.      

Define 𝔚𝜄 = { 𝔓̃(𝔲𝑚, 𝔲𝜄 , 𝜏): 𝑚 > 𝜄}, 𝔑𝜄 = { 𝔏̃(𝔲𝑚 , 𝔲𝜄 , 𝜏): 𝑚 > 𝜄} and 𝔒𝜄 = { 𝔔̃(𝔲𝑚 , 𝔲𝜄, 𝜏): 𝑚 > 𝜄} for all 𝜄 ∈

Ν  and 𝜏 ∈ ℌ𝔬̈.  

Since 𝜃 ≺ 𝔓̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ ℓ, 𝜃 ≺ 𝔏̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ ℓ and 𝜃 ≺ 𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ ℓ for every 𝑚 ∈ Ν with 𝑚 >

𝜄 and from Remark (2.1)(ii), inf 𝔚𝜄 = 𝛼𝜄, sup𝔑𝜄 = 𝛽𝜄 and sup𝔒𝜄 = 𝜚𝜄  exists for all 𝜄 ∈ Ν.  
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Using Lemma (2.10) and (3.1.1), we get  

𝔓̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ 𝔓̃ (𝔲𝑚, 𝔲𝜄 ,
𝛿𝜏

𝜃
) ≾ 𝔓̃(𝔨𝔲, 𝔨𝔳, 𝜏) = 𝔓̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏)                  (3.1.2) 

𝔏̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≿ 𝔏̃ (𝔲𝑚, 𝔲𝜄 ,
𝛿𝜏

𝜃
) ≿ 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) = 𝔏̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏)                            (3.1.3)  

and   𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≿ 𝔔̃ (𝔲𝑚 , 𝔲𝜄 ,
𝛿𝜏

𝜃
) ≿ 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏) = 𝔔̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏)                   (3.1.4) 

for 𝜏 ∈ ℌ𝔬̈ and 𝑚, 𝜄 ∈ Ν  with 𝑚 > 𝜄 .  

Since 𝔬̈ ≾ 𝛼𝜄 ≾ 𝛼𝜄+1 ≾ ℓ , ℓ ≿ 𝛽𝜄  ≿ 𝛽𝜄+1  ≿ 𝔬̈  and   ℓ ≿ 𝜚𝜄 ≿ 𝜚𝜄+1 ≿ 𝔬̈  for all 𝜄 ∈ Ν  it follows that 

{𝛼𝜄},{𝛽𝜄} and {𝜚𝜄} are monotonic sequences in ℌ.  

Utilizing Remark (2.1)(i), there exists ℓ0, ℓ′and ℓ̅ ∈ ℌ such that   

lim
𝜄→∞

𝛼𝜄 = ℓ0, lim
𝜄→∞

𝛽𝜄 = ℓ′    and  lim
𝜄→∞

𝜚𝜄 = ℓ̅.                                        (3.1.5) 

Now, by repeatedly using the contractive condition (3.1.1), we get 

𝔓̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≿ 𝔓̃ (𝔲𝑚 , 𝔲𝜄 ,
𝛿𝜏

𝜃
) = 𝔓̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,

𝛿𝜏

𝜃
) ≿ 𝔓̃ (𝔲𝑚−1, 𝔲𝜄−1,

𝛿2𝜏

𝜃2
) 

                               = 𝔓̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝛿2𝜏

𝜃2 ) ≿ 𝔓̃ (𝔲𝑚−2, 𝔲𝜄−2,
𝛿3𝜏

𝜃3 ) ≿ ⋯ ≿ 𝔓̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ). 

𝔏̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≾ 𝔏̃ (𝔲𝑚 , 𝔲𝜄,
𝛿𝜏

𝜃
) = 𝔏̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,

𝛿𝜏

𝜃
) ≾ 𝔏̃ (𝔲𝑚−1, 𝔲𝜄−1,

𝛿2𝜏

𝜃2 ) 

     = 𝔏̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝛿2𝜏

𝜃2 ) ≾ 𝔏̃ (𝔲𝑚−2, 𝔲𝜄−2,
𝛿3𝜏

𝜃3 ) ≾ ⋯ ≾ 𝔏̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) and 

𝔔̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≾ 𝔔̃ (𝔲𝑚, 𝔲𝜄 ,
𝛿𝜏

𝜃
) = 𝔔̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,

𝛿𝜏

𝜃
) ≾ 𝔔̃ (𝔲𝑚−1, 𝔲𝜄−1,

𝛿2𝜏

𝜃2 ) 

      = 𝔔̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝛿2𝜏

𝜃2 ) ≾ 𝔔̃ (𝔲𝑚−2, 𝔲𝜄−2,
𝛿3𝜏

𝜃3 ) ≾ ⋯ ≾ 𝔔̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ). 

for 𝜏 ∈ ℌ𝔬̈ and 𝑚, 𝜄 ∈ Ν  with 𝑚 > 𝜄.  

Thus, 𝛼𝜄+1 = 𝑖𝑛𝑓𝑚>𝜄𝔓̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≿ 𝑖𝑛𝑓𝑚>𝜄𝔓̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) ≿ 𝑖𝑛𝑓𝔳∈Ξ.𝔓̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ), 

𝛽𝜄+1 = 𝑠𝑢𝑝𝑚>𝜄𝔏̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≾ 𝑠𝑢𝑝𝑚>𝜄𝔏̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) and 

 𝜚𝜄+1 = 𝑠𝑢𝑝𝑚>𝜄𝔔̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≾ 𝑠𝑢𝑝𝑚>𝜄𝔔̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ).  

Since lim
𝜄→∞

𝛿𝜄+1𝜏

𝜃𝜄+1, = ∞, by using the hypothesis along with (3.1.5), we obtain  

ℓ0 ≿ lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) = ℓ, ℓ′ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) = 𝔬̈ and 

ℓ̅ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) = 𝔬̈. 

This indicates that ℓ0 =  ℓ, ℓ′ = 𝔬̈ and  ℓ̅ = 𝔬̈. Thus, {𝔲𝜄} is a Cauchy sequence in Ξ.  

Since (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is a CVNbMS, by Lemma (2.12), there exists a 𝔡 ∈ Ξ such that for all 𝜏 ∈ ℌ𝔬̈, 
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 lim
𝜄→∞

𝔓̃(𝔲𝑚, 𝔡, 𝜏) = ℓ, lim
𝜄→∞

𝔏̃(𝔲𝑚 , 𝔡, 𝜏) = 𝔬̈  and   lim
𝜄→∞

𝔔̃(𝔲𝑚, 𝔡, 𝜏) = 𝔬̈.              (3.1.6) 

We will demonstrate that 𝔡 is the fixed point of 𝔨. As a result of (5), (10) and (15) of definition (2.8), 

the contractive condition (3.1.1) we get, 

 𝔓̃(𝔡, 𝔨𝔡, 𝜏) ≿ 𝔓̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ∗ 𝔓̃ (𝔲𝑚+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔓̃ (𝔡, 𝔲𝜄+1,

𝜏

2𝜃
) ∗ 𝔓̃ (𝔨𝔲𝑚, 𝔨𝔡,

𝜏

2𝜃
) 

≿ 𝔓̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ∗ 𝔓̃ (𝔲𝑚, 𝔡,

𝜏

2𝛿
). 

𝔏̃(𝔡, 𝔨𝔡, 𝜏) ≾ 𝔏̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ⋆ 𝔏̃ (𝔲𝑚+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔏̃ (𝔡, 𝔲𝜄+1,

𝜏

2𝜃
) ⋆ 𝔏̃ (𝔨𝔲𝑚 , 𝔨𝔡,

𝜏

2𝜃
) 

≾ 𝔏̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ⋆ 𝔏̃ (𝔲𝑚 , 𝔡,

𝜏

2𝛿
) and 

𝔔̃(𝔡, 𝔨𝔡, 𝜏) ≾ 𝔔̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ⋆ 𝔔̃ (𝔲𝑚+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔔̃ (𝔡, 𝔲𝜄+1,

𝜏

2𝜃
) ⋆ 𝔔̃ (𝔨𝔲𝑚, 𝔨𝔡,

𝜏

2𝜃
)  

 ≾ 𝔔̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ⋆ 𝔔̃ (𝔲𝑚 , 𝔡,

𝜏

2𝛿
) 

for any 𝜏 ∈ ℌ𝔬̈. Taking  the limit as 𝜄 → ∞, by (3.1.6) and Remark (2.2)(ii), we obtain 𝔓̃(𝔡, 𝔨𝔡, 𝜏) = ℓ, 

𝔏̃(𝔡, 𝔨𝔡, 𝜏) = 𝔬̈ and 𝔔̃(𝔡, 𝔨𝔡, 𝜏) = 𝔬̈ and for all 𝜏 ∈ ℌ𝔬̈, which gives 𝔡 = 𝔨𝔡.  

To show that the fixed point 𝔡  is unique. Let 𝔷 be another fixed point of  𝔨, i.e., there is a 𝜏 ∈ ℌ𝔬̈ with 

𝔓̃(𝔡, 𝔷, 𝜏) ≠ ℓ, 𝔏̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈ and 𝔔̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈ from (3.1.1), we obtain that 

𝔓̃(𝔡, 𝔷, 𝜏) = 𝔓̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≿ 𝔓̃ (𝔡, 𝔷,
𝜃𝜏

𝛿
) = 𝔓̃ (𝔨𝔡, 𝔨𝔶,

𝜃𝜏

𝛿
) ≿ 𝔓̃ (𝔡, 𝔷,

𝜃2𝜏

𝛿2 ) … ≿ 𝔓̃ (𝔡, 𝔷,
𝜃`𝜄𝜏

𝛿𝜄 ) 

                  ≿ 𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔡, 𝔷,
𝜃𝜄𝜏

𝛿𝜄 ). 

𝔏̃(𝔡, 𝔷, 𝜏) = 𝔏̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝔏̃ (𝔡, 𝔷,
𝜃𝜏

𝛿
) = 𝔏̃ (𝔨𝔡, 𝔨𝔷,

𝜃𝜏

𝛿
) ≾ 𝔏̃ (𝔡, 𝔷,

𝜃2𝜏

𝛿2
) … ≾ 𝔏̃ (𝔡, 𝔷,

𝜃𝜄𝜏

𝛿𝜄
) 

                ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔡, 𝔷,
𝜃𝜄𝜏

𝛿𝜄 ) and 

𝔔̃(𝔡, 𝔷, 𝜏) = 𝔔̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝔔̃ (𝔡, 𝔷,
𝜃𝜏

𝛿
) = 𝔔̃ (𝔨𝔡, 𝔨𝔷,

𝜃𝜏

𝛿
) ≾ 𝔔̃ (𝔡, 𝔷,

𝜃2𝜏

𝛿2 ) … ≾ 𝔔̃ (𝔡, 𝔷,
𝜃𝜄𝜏

𝛿𝜄 ) 

                 ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔡, 𝔷,
𝜃𝜄𝜏

𝛿𝜄 ),  for all 𝜄 ∈ ℕ.  

Hence, since lim
𝜄→∞

𝛿𝜄𝜏

𝜃𝜄, = ∞, the above inequality becomes 𝔓̃(𝔡, 𝔷, 𝜏) ≿ ℓ, 𝔏̃(𝔡, 𝔷, 𝜏) ≾ 𝔬̈ and 𝔔̃(𝔡, 𝔷, 𝜏) ≾

𝔬̈ which leads to a contradiction. Thus, we determine that the fixed point of 𝔨 is unique. 

Example 3.2. Let Ξ = [0,1] and let 𝔓̃, 𝔏̃, 𝔔̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 such that  

𝔓̃(𝔲, 𝔳, 𝜏) =
𝓅𝓆

𝓅𝓆+(𝔲− 𝔳)2 ℓ,  𝔏̃(𝔲, 𝔳, 𝜏) =
(𝔲− 𝔳)2

𝓅𝓆+(𝔲− 𝔳)2 ℓ and 𝔔̃(𝔲, 𝔳, 𝜏) =
(𝔲− 𝔳)2

𝓅𝓆
ℓ , 

where 𝜏 = (𝓅, 𝓆) ∈ ℌ𝔬̈. Then, we can readily verify that (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is a CVNbMS with 𝜃 = 2. 

We conclude that for any sequence {𝔲𝜄}  in ℌ𝔬̈  with lim
𝜄→∞

𝜏𝜄 = ∞ , we have 
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lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ 𝔓̃(𝔲, 𝔳, 𝜏)= ℓ, lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔏̃(𝔲, 𝔳, 𝜏)=𝔬̈  and  lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔔̃(𝔲, 𝔳, 𝜏)=𝔬̈ for all 𝔲 ∈ Ξ. Let 𝔨 ∶  Ξ → Ξ 

be a mapping defined by 𝔨𝔲 = 𝜍 𝔲2 where 0 < 𝜍 <
1

4
. By a routine calculation, we see that  

 𝔓̃ (𝔨𝔲, 𝔨𝔳,
𝛿𝜏

𝜃
) ≿ 𝔓̃(𝔲, 𝔳, 𝜏), 𝔏̃ (𝔨𝔲, 𝔨𝔳,

𝛿𝜏

𝜃
) ≾ 𝔏̃(𝔲, 𝔳, 𝜏) and 𝔔̃ (𝔨𝔲, 𝔨𝔳,

𝛿𝜏

𝜃
) ≾ 𝔔̃(𝔲, 𝔳, 𝜏)for every  𝔲, 𝔳 ∈ Ξ and 

𝜏 ∈ ℌ𝔬̈, where 𝛿 = 4𝜍 and 0 < 𝛿 < 1. All the requirements of Theorem (3.1) are fulfilled and 0 is the 

unique fixed point of 𝔨. 

Theorem 3.3. Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗ , ⋆, 𝜃)  be a CVNbMS such that, for every sequence {𝜏𝜄}  in ℌ𝔬̈ with 

lim
𝜄→∞

𝜏𝜄 = ∞, we have lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ 𝔓̃(𝔲, 𝔳, 𝜏𝜄)= ℓ, lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔏̃(𝔲, 𝔳, 𝜏𝜄)=𝔬̈ and   lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔔̃(𝔲, 𝔳, 𝜏𝜄)=𝔬̈, for 

all 𝔲 ∈ Ξ. Let 𝔨, 𝔥 ∶  Ξ → Ξ be a mapping satisfying the following requirements: 

(i) 𝔥(Ξ) ⊆ 𝔨(Ξ), 

(ii) 𝔨 and 𝔥 commute on Ξ, 

(iii) 𝔨 is continuous on Ξ, 

(iv) 𝔓̃ (𝔥𝔲, 𝔥 𝔳,
𝛿𝜏

𝜃
) ≿ 𝔓̃(𝔨𝔲, 𝔨𝔳, 𝜏), 𝔏̃ (𝔥𝔲, 𝔥 𝔳,

𝛿𝜏

𝜃
) ≾ 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) and 𝔔̃ (𝔥𝔲, 𝔥 𝔳,

𝛿𝜏

𝜃
) ≾ 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏)for 

all 𝔲, 𝔳 ∈ Ξ and 𝜏 ∈ ℌ𝔬̈ where 0 < 𝛿 < 1. Then 𝔨 and 𝔥 have a unique common fixed 

point in Ξ. 

Proof. Let 𝔲0 ∈ Ξ. Since 𝔥(Ξ) ⊆ 𝔨(Ξ), we can choose an 𝔲1 ∈ Ξ such that 𝔥𝔲0 = 𝔨𝔲1. Repeating this 

procedure, we can choose  𝔲𝜄 ∈ Ξ such that 𝔨𝔲𝜄 =  𝔥𝔲𝜄−1.  

We claim that the sequence {𝔨𝔲𝜄} is a Cauchy sequence. For every 𝜄 ∈ Ν and 𝜏 ∈ ℌ𝔬̈, define   

𝔚𝜄 = {𝔓̃(𝔨𝔲𝑚 , 𝔨𝔲𝜄 , 𝜏): 𝑚 > 𝜄}, 𝔑𝜄 = {𝔏̃(𝔨𝔲𝑚 , 𝔨𝔲𝜄 , 𝜏): 𝑚 > 𝜄} and 𝔒𝜄 = { 𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏): 𝑚 > 𝜄}  

for every 𝜄 ∈ Ν  and 𝜏 ∈ ℌ𝔬̈.  

Since 𝔬̈ ≺ 𝔓̃(𝔨𝔲𝑚 , 𝔨𝔲𝜄 , 𝜏) ≾ ℓ , 𝔬̈ ≺ 𝔏̃(𝔲𝑚 , 𝔲𝜄, 𝜏) ≾ ℓ  and 𝔬̈ ≺ 𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ ℓ,  for every 𝑚 ∈ Ν  with 

𝑚 > 𝜄 and from Remark (2.1)(ii), inf 𝔨𝔚𝜄 = 𝛼𝜄, sup 𝔨𝔑𝜄 = 𝛽𝜄 and sup𝔨𝔒𝜄 = 𝜚𝜄 exists for every 𝜄 ∈ Ν. 

Using Lemma(2.10) and (iv), we get  

𝔓̃(𝔨𝔲𝑚, 𝔨𝔲𝜄 , 𝜏) ≾ 𝔓̃ (𝔨𝔲𝑚, 𝔨𝔲𝜄 ,
𝛿𝜏

𝜃
) ≾ 𝔓̃(𝔥𝔲𝑚, 𝔥𝔲𝜄 , 𝜏) = 𝔓̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏),                                   

𝔏̃(𝔨𝔲𝑚, 𝔨𝔲𝜄 , 𝜏) ≿ 𝔏̃ (𝔨𝔲𝑚, 𝔨𝔲𝜄 ,
𝛿𝜏

𝜃
) ≿ 𝔏̃(𝔥𝔲, 𝔥𝔳, 𝜏) = 𝔏̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) and  

𝔔̃(𝔨𝔲𝑚 , 𝔨𝔲𝜄 , 𝜏) ≿ 𝔔̃ (𝔨𝔲𝑚, 𝔨𝔲𝜄 ,
𝛿𝜏

𝜃
) ≿ 𝔔̃(𝔥𝔲, 𝔥𝔳, 𝜏) = 𝔔̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏),  

for 𝜏 ∈ ℌ𝔬̈ and 𝑚, 𝜄 ∈ Ν  with 𝑚 > 𝜄 .  

Since 𝔬̈ ≾ 𝛼𝜄 ≾ 𝛼𝜄+1 ≾ ℓ, ℓ ≿ 𝛽𝜄  ≿ 𝛽𝜄+1  ≿ 𝔬̈ and ℓ ≿ 𝜚𝜄  ≿ 𝜚𝜄+1  ≿ 𝔬̈, for all 𝜄 ∈ Ν it follows that {𝛼𝜄}, 

{𝛽𝜄} and {𝜚𝜄}  are monotonic sequences inℌ.  

So, utilizing Remark (2.1) (i), there exists an ℓ0, ℓ′and ℓ̃ ∈ ℌ satisfying  

lim
𝜄→∞

𝛼𝜄 = ℓ0, lim
𝜄→∞

𝛽𝜄 = ℓ′ and lim
𝜄→∞

𝜚𝜄 = ℓ̃                              (3.3.1) 

By applying the condition (iv), we have 
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𝔓̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) = 𝔓̃(𝔥𝔲𝑚, 𝔥𝔲𝜄 , 𝜏) ≿ 𝔓̃ (𝔨𝔲𝑚 , 𝔨𝔲𝜄 ,
𝜃𝜏

𝛿
) ≿ 𝔓̃ (𝔥𝔲𝑚−1, 𝔥𝔲𝜄−1,

𝜃𝜏

𝛿
) 

      ≿ 𝔓̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,
𝜃2𝜏

𝛿2
) = 𝔓̃ (𝔥𝔲𝑚−2, 𝔥𝔲𝜄−2,

𝜃2𝜏

𝛿2
) 

                              ≿ 𝔓̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝜃3𝜏

𝛿3 ) ≿ ⋯ ≿ 𝔓̃ (𝔲0, 𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1, ). 

𝔏̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) = 𝔏̃(𝔥𝔲𝑚, 𝔥𝔲𝜄 , 𝜏) ≾ 𝔏̃ (𝔨𝔲𝑚 , 𝔨𝔲𝜄 ,
𝜃𝜏

𝛿
) ≾ 𝔏̃ (𝔥𝔲𝑚−1, 𝔥𝔲𝜄−1,

𝜃𝜏

𝛿
) 

                                 ≾ 𝔏̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,
𝜃2𝜏

𝛿2
) = 𝔏̃ (𝔥𝔲𝑚−2, 𝔥𝔲𝜄−2,

𝜃2𝜏

𝛿2
) 

                                 ≾ 𝔏̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝜃3𝜏

𝛿3 ) ≾ ⋯ ≾ 𝔏̃ (𝔲0, 𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1 ) and 

𝔔̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) = 𝔔̃(𝔥𝔲𝑚, 𝔥𝔲𝜄 , 𝜏) ≾ 𝔔̃̃ (𝔨𝔲𝑚 , 𝔨𝔲𝜄,
𝜃𝜏

𝛿
) ≾ 𝔔̃ (𝔥𝔲𝑚−1, 𝔥𝔲𝜄−1,

𝜃𝜏

𝛿
) 

      ≾ 𝔔̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,
𝜃2𝜏

𝛿2
) = 𝔔̃ (𝔥𝔲𝑚−2, 𝔥𝔲𝜄−2,

𝜃2𝜏

𝛿2
) 

                                   ≾ 𝔔̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝜃3𝜏

𝛿3
) ≾ ⋯ ≾ 𝔔̃ (𝔲0, 𝔲𝑚−𝜄,

𝜃𝜄+1𝜏

𝛿𝜄+1
), 

for 𝜏 ∈ ℌ𝔬̈ and 𝑚, 𝜄 ∈ Ν  with 𝑚 > 𝜄. Thus, 

 𝛼𝜄+1 = 𝑖𝑛𝑓𝑚>𝜄𝔓̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) ≿ 𝑖𝑛𝑓𝑚>𝜄𝔓̃ (𝔨𝔲0, 𝔨𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1 ) ≿ 𝑖𝑛𝑓𝔳∈Ξ.𝔓̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1 ). 

 𝛽𝜄+1 = 𝑠𝑢𝑝𝑚>𝜄𝔏̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) ≾ 𝑠𝑢𝑝𝑚>𝜄𝔏̃ (𝔨𝔲0, 𝔨𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1 ) and 

 𝜚𝜄+1 = 𝑠𝑢𝑝𝑚>𝜄𝔔̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) ≾ 𝑠𝑢𝑝𝑚>𝜄𝔔̃ (𝔨𝔲0, 𝔨𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1
) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔨𝔲0, 𝔳,

𝜃𝜄+1𝜏

𝛿𝜄+1
). 

Since lim
𝜄→∞

𝜃𝜄+1𝜏

𝛿𝜄+1, = ∞, by using the hypothesis along with (3.3.1), we obtain  

ℓ0 ≿ lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1, ) = ℓ, ℓ′ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1, ) = 𝔬̈,  

ℓ′ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1, ) = 𝔬̈ and ℓ̅ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1, ) = 𝔬̈ 

Which implies that ℓ0 =  ℓ and ℓ′ = 𝔬̈. Thus, {𝔨𝔲𝜄} is a Cauchy sequence in Ξ.  

Using Lemma (2.12) and completeness of Ξ, there exists a 𝔡 ∈ Ξ such that lim 𝔨𝔲𝜄 =
𝜄→∞

𝔡. 

Using (iv), we can check that the continuity of 𝔨 implies continuity of 𝔥. So, lim 𝔥𝔨𝔲𝜄 =
𝜄→∞

𝔥𝔡.  

Since 𝔨 and 𝔥 commute on Ξ, we have lim 𝔨𝔥𝔲𝜄 =
𝜄→∞

𝔥𝔡.  

Moreover, we know that lim 𝔥𝔲𝜄−1 =
𝜄→∞

𝔡  so we get lim 𝔨𝔥𝔲𝜄−1 =
𝜄→∞

𝔨𝔡.  

Based on the uniqueness of limit, we get 𝔨𝔡 = 𝔥𝔡 and therefore 𝔥𝔥𝔡 = 𝔨𝔥𝔡.   
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Repeated use of the condition (iv) yields 

 𝔓̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) ≿ 𝔓̃ (𝔨𝔡, 𝔨𝔥𝔡,
𝜃𝜏

𝛿
) = 𝔓̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜏

𝛿
) ≿ ⋯ ≿ 𝔓̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜄𝜏

𝛿𝜄
) 

                          = 𝔓̃ (𝔥𝔡, 𝔨𝔥𝔡,
𝜃𝜄𝜏

𝛿𝜄 ) ≿ 𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄, )       

𝔏̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) ≾ 𝔏̃ (𝔨𝔡, 𝔨𝔥𝔡,
𝜃𝜏

𝛿
) = 𝔏̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜏

𝛿
) ≾ ⋯ ≾ 𝔏̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜄𝜏

𝛿𝜄
) 

                        = 𝔏̃ (𝔥𝔡, 𝔨𝔥𝔡,
𝜃𝜄𝜏

𝛿𝜄 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄, ) and  

𝔔̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) ≾ 𝔔̃ (𝔨𝔡, 𝔨𝔥𝔡,
𝜃𝜏

𝛿
) = 𝔔̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜏

𝛿
) ≾ ⋯ ≾ 𝔔̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜄𝜏

𝛿𝜄
) 

                         = 𝔔̃ (𝔥𝔡, 𝔨𝔥𝔡,
𝜃𝜄𝜏

𝛿𝜄 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄, ).   

Letting the limit as 𝜄 → ∞, and applying the hypothesis we get,  

𝔓̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) = ℓ , 𝔏̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) = 𝔬̈ and 𝔔̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) = 𝔬̈ which implies that  𝔥𝔥𝔡 = 𝔨𝔥𝔡 = 𝔥𝔡.  

i.e., 𝔥𝔡 is a common fixed point of 𝔨 and 𝔥. 

We shall establish the uniqueness of the common fixed point 𝔥𝔡.  

Assume that 𝔥𝔡 and 𝔷 are two distinct common fixed points of  𝔨 and 𝔥.  

Utilizing (iv) with 𝔲 =  𝔥𝔡 and 𝔳 =  𝔷, we find that, 

ℓ ≿ 𝔓̃(𝔥𝔡, 𝔷, 𝜏)=𝔓̃(𝔥𝔥𝔡, 𝔥𝔡, 𝜏) ≿ 𝔓̃ (𝔨𝔥𝔡, 𝔨𝔷,
𝜃𝜏

𝛿
) = 𝔓̃ (𝔥𝔡, 𝔷,

𝜃𝜏

𝛿
) … ≿ 𝔓̃ (𝔥𝔡, 𝔷,

𝜃𝜄𝜏

𝛿𝜄 ) ≿ 𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄 ). 

𝔬̈ ≾ 𝔏̃(𝔥𝔡, 𝔷, 𝜏)=𝔏̃(𝔥𝔥𝔡, 𝔥𝔡, 𝜏) ≾ 𝔏̃ (𝔨𝔥𝔡, 𝔨𝔷,
𝜃𝜏

𝛿
) = 𝔏̃ (𝔥𝔡, 𝔷,

𝜃𝜏

𝛿
) … ≾ 𝔏̃ (𝔥𝔡, 𝔷,

𝜃𝜄𝜏

𝛿𝜄 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄 ) and 

𝔬̈ ≾ 𝔔̃(𝔥𝔡, 𝔷, 𝜏)=𝔔̃(𝔥𝔥𝔡, 𝔥𝔡, 𝜏) ≾ 𝔔̃ (𝔨𝔥𝔡, 𝔨𝔷,
𝜃𝜏

𝛿
) = 𝔔̃ (𝔥𝔡, 𝔷,

𝜃𝜏

𝛿
) … ≾ 𝔔̃ (𝔥𝔡, 𝔷,

𝜃𝜄𝜏

𝛿𝜄 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄 ). 

Since lim
𝜄→∞

𝜃𝜄𝜏

𝛿𝜄 = ∞, we conclude that 𝔓̃(𝔥𝔡, 𝔷, 𝜏) = ℓ, 𝔏̃(𝔥𝔡, 𝔷, 𝜏) = 𝔬̈ and  𝔔̃(𝔥𝔡, 𝔷, 𝜏) = 𝔬̈   

Thus, 𝔥𝔡 = 𝔷, this concludes the proof. 

Example 3.4 Let Ξ = [0,1] and let 𝔓̃, 𝔏̃, 𝔔̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 such that 𝔓̃(𝔲, 𝔳, 𝜏) = 𝑒
−

(𝔲− 𝔳)2

𝓅+𝓆 ℓ,  

𝔏̃(𝔲, 𝔳, 𝜏) = (1 − 𝑒
−

(𝔲− 𝔳)2

𝓅+𝓆 )ℓ   and 𝔔̃(𝔲, 𝔳, 𝜏) = (𝑒
(𝔲− 𝔳)2

𝓅+𝓆 − 1)ℓ   where 𝜏 = (𝓅, 𝓆) ∈ ℌ𝔬̈ . Then, we can 

readily verify that (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is a CVNbMS with 𝜃 = 4. On the other hand, let lim
𝜄→∞

𝜏𝜄 = ∞ for 

any sequence {𝜏𝜄} in ℌ𝔬̈, where 𝜏𝜄 = (𝓅𝜄 , 𝓆𝜄). Since  (𝔲 −  𝔳)2 ≤ 1 for every 𝔲, 𝔳 ∈ Ξ it follows that  

𝑖𝑛𝑓𝔳∈Ξ𝔓̃(𝔲, 𝔳, 𝜏𝜄)=𝑖𝑛𝑓𝔳∈Ξ 𝑒
−(

(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄
)
ℓ  =𝑒

−(
𝑠𝑢𝑝𝔳∈Ξ(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄
)
ℓ ≿ 𝑒

−(
1

𝓅𝜄+𝓆𝜄
)
ℓ. 

𝑠𝑢𝑝𝔳∈Ξ𝔏̃(𝔲, 𝔳, 𝜏𝜄) = 𝑠𝑢𝑝𝔳∈Ξ {ℓ −
ℓ

𝑒

(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄

}= ℓ −
ℓ

𝑒
𝑠𝑢𝑝(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄

≾ ℓ −
ℓ

𝑒
1

𝓅𝜄+𝓆𝜄

  and  

𝑠𝑢𝑝𝔳∈Ξ𝔔̃(𝔲, 𝔳, 𝜏𝜄) = 𝑠𝑢𝑝𝔳∈Ξ {𝑒
(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄 ℓ − ℓ}= 𝑠𝑢𝑝𝔳∈Ξ {𝑒
(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄 ℓ − ℓ} ≾ 𝑒
1

𝓅𝜄+𝓆𝜄ℓ. 
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Therefore, we have  lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ 𝔓̃(𝔲, 𝔳, 𝜏𝜄) ≿  lim
𝜄→∞

𝑒
−(

1

𝓅𝜄+𝓆𝜄
)
ℓ = ℓ, 

 lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔏̃(𝔲, 𝔳, 𝜏𝜄) ≾  lim
𝜄→∞

(ℓ −
ℓ

𝑒
1

𝓅𝜄+𝓆𝜄

)= 𝔬̈ and 

 
 

lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔔̃(𝔲, 𝔳, 𝜏𝜄) ≾  lim
𝜄→∞

(𝑒
1

𝓅𝜄+𝓆𝜄ℓ)= 𝔬̈. Let 𝔨, 𝔥 ∶  Ξ → Ξ be defined by 𝔨𝔲 = 𝔲  and, 𝔥𝔲 =
𝔲

4
 .  

One can readily verify that 𝔥(Ξ) ⊆ 𝔨(Ξ) and 𝔨 is continuous on Ξ. Furthermore, 𝔨 and 𝔥 commute 

on Ξ. Moreover, It is simple to demonstrate that condition (iv) true for every 𝔲, 𝔳 ∈ [0,1] with 𝛿 =
1

4
. 

Definition.3.5 Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a complete CVNbMS. The modified contraction condition for 

the mapping 𝔨 ∶  Ξ → Ξ as follows:  

ℓ − 𝔓̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿[ℓ − 𝔓̃(𝔲, 𝔳, 𝜏)], 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔏̃(𝔲, 𝔳, 𝜏) and 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔔̃(𝔲, 𝔳, 𝜏)    (1)  

For all 𝔲, 𝔳 ∈ Ξ  and 𝜏 ∈ ℌ𝔬̈ where 𝛿 ∈ [0,1). 

Theorem 3.6 Let ( Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗ , ⋆, 𝜃)  be a CVNbMS, and 𝔨 ∶  Ξ → Ξ  be a mapping fulfilling the 

contraction condition (I). Then, 𝔨  has a unique common fixed point in Ξ. 

Proof:  Let 𝔲0 be a random element of Ξ. Using induction, we can generate a sequence {𝔲𝜄} in Ξ 

such that 𝔲𝜄 =  𝔨𝔲𝜄−1 for every 𝜄 ∈ ℕ. Continuing from the proof of Theorem (3.1) in [12], we examine 

that the sequence {𝔲𝜄} is a Cauchy sequence in Ξ and converges to some 𝔡 ∈ Ξ.  

We will demonstrate that 𝔡 is a fixed point of 𝔨. By the contractive condition (I), we have 

ℓ − 𝔓̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿[ℓ − 𝔓̃(𝔲, 𝔳, 𝜏)], 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔏̃(𝔲, 𝔳, 𝜏) and 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔔̃(𝔲, 𝔳, 𝜏)  

for all 𝜄 ∈ ℕ and 𝜏 ∈ ℌ𝔬̈. The above inequality demonstrates that 

ℓ(1 − 𝛿) + 𝛿𝔓̃(𝔲𝜄, 𝔡, 𝜏) ≾ 𝔓̃(𝔨𝔲𝜄, 𝔨𝔡, 𝜏), 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔏̃(𝔲, 𝔳, 𝜏)and 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔔̃(𝔲, 𝔳, 𝜏).      (3.6.1) 

for all 𝜄 ∈ ℕ and 𝜏 ∈ ℌ𝔬̈.  

Therefore,  

𝔓̃(𝔡, 𝔨𝔡, 𝜏) ≿ 𝔓̃ (𝔡, 𝔲𝜄+1 ,
𝜏

2𝜃
) ∗ 𝔓̃ (𝔲𝜄+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔓̃ (𝔡, 𝔲𝜄+1 ,

𝜏

2𝜃
) ∗ 𝔓̃ (𝔨𝔲𝜄 , 𝔨𝔡,

𝜏

2𝜃
). 

𝔏̃(𝔡, 𝔨𝔡, 𝜏) ≾ 𝔏̃ (𝔡, 𝔲𝜄+1 ,
𝜏

2𝜃
) ⋆ 𝔏̃ (𝔲𝜄+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔏̃ (𝔡, 𝔲𝜄+1 ,

𝜏

2𝜃
) ⋆ 𝔏̃ (𝔨𝔲𝜄 , 𝔨𝔡,

𝜏

2𝜃
) and  

𝔔̃(𝔡, 𝔨𝔡, 𝜏) ≾ 𝔔̃ (𝔡, 𝔲𝜄+1 ,
𝜏

2𝜃
) ⋆ 𝔔̃ (𝔲𝜄+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔔̃ (𝔡, 𝔲𝜄+1 ,

𝜏

2𝜃
) ⋆ 𝔔̃ (𝔨𝔲𝜄, 𝔨𝔡,

𝜏

2𝜃
) for any 𝜏 ∈ ℌ𝔬̈.  

Taking the limit as 𝜄 → ∞ , from (3.6.1) and Remark (2.2) (ii), we determine that 𝔓̃(𝔡, 𝔨𝔡, 𝜏) =  ℓ , 

𝔏̃(𝔡, 𝔨𝔡, 𝜏) = 𝔬̈ and 𝔔̃(𝔡, 𝔨𝔡, 𝜏) = 𝔬̈ for all 𝜏 ∈ ℌ𝔬̈, which yields 𝔨𝔡 =  𝔡. 

To prove that the fixed point of  𝔨 is unique, assume that there exists another 𝔷 ∈ Ξ such that 𝔨(𝔷) =

𝔷. Then, there is a 𝜏 ∈ ℌ𝔬̈ fulfilling 𝔓̃(𝔡, 𝔷, 𝜏) ≠ ℓ, 𝔏̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈ and  𝔔̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈.  

As a result of (I), we have  

ℓ − 𝔓̃(𝔡, 𝔷, 𝜏) = ℓ − 𝔓̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿[ℓ − 𝔓̃(𝔡, 𝔷, 𝜏)], 𝔏̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿𝔏̃(𝔡, 𝔷, 𝜏) and 𝔔̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿𝔔̃(𝔡, 𝔷, 𝜏).  

Since 𝔓̃(𝔡, 𝔷, 𝜏) ≠ ℓ, 𝔏̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈ and 𝔔̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈,  we obtain 

Re(𝔓̃(𝔡, 𝔷, 𝜏)) ≠ 1 or Im(𝔓̃(𝔡, 𝔷, 𝜏)) ≠ 1, Re(𝔏̃(𝔡, 𝔷, 𝜏)) ≠ 0 or Im(𝔏̃(𝔡, 𝔷, 𝜏)) ≠ 0 and Re(𝔔̃(𝔡, 𝔷, 𝜏)) ≠ 0 or 

Im(𝔔̃(𝔡, 𝔷, 𝜏)) ≠ 0. Let Re(𝔓̃(𝔡, 𝔷, 𝜏)) ≠ 1, Re(𝔏̃(𝔡, 𝔷, 𝜏)) ≠ 0 and 𝑅𝑒 (𝔔̃(𝔡, 𝔷, 𝜏)) ≠ 0.  
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Therefore, we get  

1 − 𝑅𝑒 (𝔓̃(𝔡, 𝔷, 𝜏)) ≾ 𝛿[1 − 𝑅𝑒(𝔓̃(𝔡, 𝔷, 𝜏))] ≾ 1 − 𝑅𝑒 (𝔓̃(𝔡, 𝔷, 𝜏)),  

Re(𝔏̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿𝑅𝑒(𝔏̃(𝔲, 𝔳, 𝜏)) ≾ 𝑅𝑒(𝔏̃(𝔲, 𝔳, 𝜏)) = 𝑅𝑒(𝔏̃(𝔨𝔡, 𝔨𝔷, 𝜏)) and 

Re(𝔔̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿𝑅𝑒(𝔔̃(𝔲, 𝔳, 𝜏)) ≾ 𝑅𝑒(𝔔̃(𝔲, 𝔳, 𝜏)) = 𝑅𝑒(𝔔̃(𝔨𝔡, 𝔨𝔷, 𝜏)) which is a contradiction.   

We can omit the details of the other since the other case is identical to this one.  

Thus, 𝔓̃(𝔡, 𝔷, 𝜏) =  ℓ, 𝔏̃(𝔡, 𝔷, 𝜏)=𝔬̈ and 𝔔̃(𝔡, 𝔷, 𝜏)=𝔬̈ for all 𝜏 ∈ ℌ𝔬̈ and the proof is completed.  

Example: 3.7  Let Ξ = [0,1] and let 𝔓̃, 𝔏̃, 𝔔̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 such that  

𝔓̃(𝔲, 𝔳, 𝜏) = ℓ −
(𝔲− 𝔳)2

1+𝓅𝓆
ℓ, 𝔏̃(𝔲, 𝔳, 𝜏) =

(𝔲− 𝔳)2

1+𝓅𝓆
ℓ  and 𝔏̃(𝔲, 𝔳, 𝜏) =

(𝔲− 𝔳)2

1+𝓅𝓆−(𝔲− 𝔳)2 ℓ  where 𝜏 = (𝓅, 𝓆) ∈ ℌ𝔬̈ . 

Define the mapping  𝔨: Ξ → Ξ  by 𝔨𝔲 =
𝔲2

4
. Therefore, we have  

(𝔨𝔲− 𝔨𝔳)2

1+𝓅𝓆
ℓ ≾ 𝛿

(𝔲− 𝔳)2

1+𝓅𝓆
ℓ and 

(𝔨𝔲− 𝔨𝔳)2

1+𝓅𝓆−(𝔨𝔲− 𝔨𝔳)2 ℓ ≾ 𝛿
(𝔲− 𝔳)2

1+𝓅𝓆−(𝔲− 𝔳)2 ℓ  where 𝛿 ∈ [
1

4
, 1). Thus, we determine that 

(I) holds, all the necessary hypotheses of Theorem (3.6) are fulfilled and thus we establish the 

existence and uniqueness of the fixed point of 𝔨 and 0 is the unique fixed point of  𝔨. 

Corollary 3.8   Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a CVNbMS and 𝔨 ∶  Ξ → Ξ be a mapping satisfying  

ℓ − 𝔓̃(𝔨𝜄𝔲, 𝔨𝜄𝔳, 𝜏) ≾ 𝛿[ℓ − 𝔓̃(𝔲, 𝔳, 𝜏)], 𝔏̃(𝔨𝜄𝔲, 𝔨𝜄𝔳, 𝜏) ≾ 𝛿𝔏̃(𝔲, 𝔳, 𝜏)  and 𝔔̃(𝔨𝜄𝔲, 𝔨𝜄𝔳, 𝜏) ≾ 𝛿𝔔̃(𝔲, 𝔳, 𝜏) for every 

𝔲, 𝔳 ∈ Ξ and 𝜏 ∈ ℌ𝔬̈, where 0 ≤ 𝛿 < 1. Then, 𝔨  has a unique common fixed point in Ξ. 

Proof: By Theorem (3.6), we get a unique 𝔲 ∈ Ξ such that 𝔨𝜄𝔲 = 𝔲. Since 𝔨𝜄𝔨𝔲 = 𝔨𝔨𝜄𝔲 = 𝔨𝔲 and from 

uniqueness, we get 𝔨𝔲 = 𝔲. This demonstrates that 𝔨 has a unique fixed point in Ξ.  

4. Application 

Applying our main results from the previous part, we analyze the existence theorem for a 

solution to the following integral equation in this section: 

𝔲(𝔰̃)= κ(𝔰̃) + σ ∫ ℶ(𝔰̃,
1

0
 θ̿)ψ (θ̿, 𝔲(θ̿)) dθ̿, 𝔰̃ ∈ [0,1],                (2) 

where 

(i) κ is a continuous real-valued function on[0,1]; ψ ∶ [0,1] × ℝ → ℝ is continuous, 

ψ(𝔰̃, 𝔲) ≥ 0 and there exists a δ ∈ [0,1) such that |ψ(𝔰̃, 𝔲) − ψ(𝔰̃, 𝔳)| ≤ δ|𝔲 − 𝔳|, for 

every  𝔲, 𝔳 ∈ ℝ; 

(ii) ℶ ∶ [0,1] × [0,1] ] → ℝ is a continuous at 𝔰̃ ∈ [0,1] for every θ̿ ∈ [0,1] and measurable 

at θ̿ ∈ [0,1] for every  𝔰̃ ∈ [0,1]. Moreover, ℶ(𝔰̃, θ̿) ≥ 0 and ∫ ℶ(𝔰̃,
1

0
 θ̿)dθ̿ ≤ ℒ; 

(iii) δ2ℒ2σ2 ≤
1

2
. 

Theorem 4.1. If the condition (i)-(iv) fulfilled. Then, the integral Eq. (2) has unique solution in 

(C[0,1], ℝ), where (C[0,1], ℝ) is the set of all continuous real valued functions on [0,1]. 

Proof: Let Ξ =(C[0,1], ℝ) and define a mapping 𝔨 ∶  Ξ → Ξ by  

𝔨𝔲(𝔰̃)= κ(𝔰̃) + σ ∫ ℶ(𝔰̃,
1

0
 θ̿)ψ (θ̿, 𝔲(θ̿)) dθ̿, 𝔰̃ ∈ [0,1],  for all 𝔲 ∈ Ξ and for every 𝔰̃ ∈ [0,1].  

We need to prove that the mapping 𝔨 fulfils all requirements of Theorem (3.6).  
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Define  𝔓̃, 𝔏̃, 𝔔̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 by 𝔓̃(𝔲, 𝔳, τ) = ℓ − sup𝔰̃∈[0,1]
(𝔲(𝔰̃)− 𝔳(𝔰̃))2

e𝓅𝓆 ℓ, 

𝔏̃(𝔲, 𝔳, τ) = sup𝔰̃∈[0,1]
(𝔲(𝔰̃)− 𝔳(𝔰̃))2

e𝓅𝓆  ℓ and 𝔏̃(𝔲, 𝔳, τ) = (
sup𝔰̃∈[0,1]

(𝔲(𝔰̃)− 𝔳(𝔰̃))2

e𝓅𝓆  

1−sup𝔱̅∈[0,1]
(𝔲(𝔰̃)− 𝔳(𝔰̃))2

e𝓅𝓆

)  ℓ 

where τ = (𝓅, 𝓆) ∈ ℌ𝔬̈. Clearly, (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, θ) be a complete CVNbMS. 

Moreover, for every 𝔲, 𝔳 ∈ Ξ and 𝔰̃ ∈ [0,1], we get  

|𝔨𝔲(𝔰̃) − 𝔨𝔳(𝔰̃)| = σ |∫ ℶ(𝔰̃, θ̿)ψ (θ̿, 𝔲(θ̿)) − ℶ(𝔰̃, θ̿)ψ (θ̿, 𝔳(θ̿)) dθ̿
1

0

| 

    ≤  σ ∫ ℶ(𝔰̃, θ̿) |ψ (θ̿, 𝔲(θ̿)) − ψ (θ̿, 𝔳(θ̿))| dθ
1

0

≤ σ ∫ ℶ(𝔰̃, θ̿)δ|𝔲(θ̿) − 𝔳(θ̿)|dθ̿
1

0

 

                            ≤  σℒ δsup𝔰̃∈[0,1]|𝔲(𝔰̃) − 𝔳(𝔰̃)| 

Since,  sup𝔰̃∈[0,1]|𝔨𝔲(𝔰̃) − 𝔨𝔳(𝔰̃)| ≤  σℒ δsup𝔰̃∈[0,1]|𝔲(𝔰̃) − 𝔳(𝔰̃)| 

We get, sup𝔰̃∈[0,1]
|𝔨𝔲(𝔰̃)−𝔨𝔳(𝔰̃)|2

e𝓅𝓆 ≤ σ2ℒ2δ2sup𝔰̃∈[0,1]
|𝔲(𝔰̃)−𝔳(𝔰̃)|2

e𝓅𝓆 ≤
1

2
sup𝔰̃∈[0,1]

|𝔲(𝔰̃)−𝔳(𝔰̃)|2

e𝓅𝓆  and  

(
sup𝔰̃∈[0,1]

|𝔨𝔲(𝔰̃)− 𝔨𝔳(𝔰̃)|2

e𝓅𝓆  

1−sup𝔱̅∈[0,1]
|𝔨𝔲(𝔰̃)− 𝔨𝔳(𝔰̃)|2

e𝓅𝓆

) ≤ σ2ℒ2δ2 (
sup𝔰̃∈[0,1]

|𝔲(𝔰̃)− 𝔳(𝔰̃)|2

e𝓅𝓆  

1−sup𝔱∈̅[0,1]
|𝔲(𝔰̃)− 𝔳(𝔰̃)|2

e𝓅𝓆

) ≤
1

2

sup𝔰̃∈[0,1]
|𝔲(𝔰̃)− 𝔳(𝔰̃)|2

e𝓅𝓆

1−sup𝔱∈̅[0,1]
|𝔲(𝔰̃)− 𝔳(𝔰̃)|2

e𝓅𝓆

. 

This establishes that the mapping 𝔨 fulfilling the contractive condition (1) in Theorem (3.6), and  𝔨 

has a unique solution in (C [0,1], ℝ), i.e., the integral Eq. (2) has a unique solution in (C [0,1], ℝ). 

Example 4.2 Take the integral equation 

𝔲(𝔰̃)= 
1

1+𝔰̅̃
+ 2 ∫

θ̿2

𝔰̃2+2
.

|cos𝔲(𝔰̃)|

5eθ̿

1

0
dθ̿, 𝔰̃ ∈ [0,1],                 (4.2.1) 

It can observed that the above equation is of the form (II), for σ = 2,  κ(𝔰̃) =
1

1+𝔰̃
 , ξ(𝔰̃, θ̿) =

θ2

𝔰̃+2
, 

ψ(𝔰̃, 𝔲) =
|cos𝔰̃|

5e𝔰̃ .  

Clearly,  ψ is continuous on [0,1] × ℝ and we get  

|ψ(θ̿, 𝔲) − ψ(θ̿, 𝔳)| =
1

5e𝔰̃ ||cos𝔲| − |cos𝔳|| ≤
1

5e𝔰̃
|cos𝔲 − cos𝔳| ≤

1

5
|cos𝔲 − cos𝔳| ≤

1

5
|𝔲 − 𝔳|  

for every 𝔲, 𝔳 ∈  ℝ. Thus, ψ fulfills the condition (ii) of the integral equation (II) with =
1

5
 . It is easy 

to verify that the mapping κ  is continuous and  ∫ ℶ(𝔰̃, θ̿)dθ̿ =
1

0
∫

θ̿2

𝔰̃2+2

1

0
 dθ̿ =

1

𝔰̃2+2

1

3
≤

1

6
= ℒ,  the 

mapping ξ meets the condition (iii). We get σ2ℒ2δ2 ≤
1

2
.. Thus, the hypotheses (i), (ii), (iii), and (iv) 

are true. Using the Theorem (3. 6) leads us to the conclusion that the integral equation (II) has a unique 

solution in (C [0, 1], ℝ). 

5. Conclusion 

In this paper, we have defined complex valued neutrosophic metric like space and we have 

proved fixed point theorems for mappings on complex valued neutrosophic metric like space. We 

hope that the results proved in this paper will form new connections for those who are working in 

complex valued neutrosophic metric-like spaces. 

Acknowledgments 

The author is grateful to the editorial and reviewers, as well as the correspondent author, who offered 

assistance in the form of advice, assessment, and checking during the study period. 

Author Contributions 

All authors contributed equally to this research. 

Data availability 



Neutrosophic Systems with Applications, Vol. 17, 2024                                                 33 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

M. Pandiselvi, and M. Jeyaraman, Fixed Point Results in Complex Valued Neutrosophic b-Metric Spaces with Application 

The datasets generated during and/or analyzed during the current study are not publicly available 

due to the privacy-preserving nature of the data but are available from the corresponding author 

upon reasonable request. 

Funding 

This research was not supported by any funding agency or institute. 

Conflict of interest 

The authors declare that there is no conflict of interest in the research.  

 

References 

1. Azam, A., Fisher, B., & Khan, M. (2011). Common fixed point theorems in complex valued metric spaces. 

Numer. Funct. Anal. Optim.,.32(3), 243–253. http://doi.org/10.1080/01630563.2011.533046. 

2. Rouzkard, F., & Imdad, M. (2012). Some common fixed point theorems on complex valued metric spaces. 

Comput. Math. Appl., 64(6), 1866–1874. http://doi.org/10.1016/j.camwa.2012.02.063. 

3. Ahmad, J. A., Azam, A., & Saejung, S. (2014). Common fixed point results for contractive mappings in 

complex valued metric spaces. Fixed Point Theory Appl., 67(1). http://doi.org/10.1186/1687-1812-2014-67. 

4. Rao, K. P., Swamy, R., & Prasad, J. R. (2013). A common fixed point theorem in complex valued b-metric 

spaces. Bull. Math. Statist. Res., 1(1), 1–8, 2013. URL: http://www.bomsr.com/4.1.16.html. 

5. Mukheimer,IA.iA.(2014).Someicommonifixedipointitheoremsiinicomplexivalued-metricispaces. 

iSci.iWorldiJ., Vol. 2014. http://doi.org/10.1155/2014/587825. 

6. Zadeh, L. A. (1965). Fuzzy sets. Inf. Control, 8(3), 338–353. http://doi.org/10.1016/S0019-9958 (65)90241-X. 

7. Kramosil, I., & Michalek, J. (1975). Fuzzy metrics and statistical metric spaces. Kybernetika, 11(5), 336–344. 

URL: https://www.kybernetika.cz. 

8. George, A. & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst., 

90(3), 365–368. http://doi.org/10.1016/S0165-0114(96)00207-2. 

9. Atanassov, K. (1986). on Intuitionistic Fuzzy Sets. Fuzzy sets and systems. 20, 87-96, 

http://doi.org/10.1016/S0165-0114(86)80034-3. 

10. Park, J.H. (2004). Intuitionistic fuzzy metric spaces. ChaosSolitons Fractals, Vol.22. 

https://doi.org/10.1016/j.chaos.2004.02.051. 

11. Smarandache, F. (1998). Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American 

Research Press. http://doi: org/10.5281/zenodo.57726. 

12. Shukla, S., Rodriguez-Lopez, R., & Abbas, M. (2018). Fixed point results for contractive mappings in 

complex valued fuzzy metric spaces. Fixed Point Theory, 19(2), 751–774. http://doi.org/ 10.24193/fpt-

ro.2018.2.56. 

 

Received: 23 Dec 2023, Revised: 25 Mar 2024,  

Accepted: 27 Apr 2024, Available online: 02 May 2024. 

 
© 2024 by the authors. Submitted for possible open access publication under the terms and conditions 

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 

Disclaimer/Publisher’s Note: The perspectives, opinions, and data shared in all publications are the 

sole responsibility of the individual authors and contributors, and do not necessarily reflect the views 

of Sciences Force or the editorial team. Sciences Force and the editorial team disclaim any liability for 

potential harm to individuals or property resulting from the ideas, methods, instructions, or products 

referenced in the content. 


