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1. Introduction

Azam et al. [1] pioneered the idea of complex-valued metric spaces in 2011. Rouzkard et al. [2]
studied and extended the conclusions of [1] by investigating numerous common fixed point theorems
in this space. Many standard fixed point solutions in such space for mappings satisfying rational
expressions on a closed ball were examined by Ahmad et al. [3]. Common fixed point theorem in
complex-valued b-metric established by Rao et al. [4]. Following the development of this concept,
Mukheimer [5] discovered common fixed point outcomes of a pair of self-mappings meeting a
rational inequality in complex-valued b-metric space. Zadeh [6] established the basis for fuzzy
mathematics in 1965. Kramosil and Michalek [7] initially brought up the concept of fuzzy metric-like
space and then modified it by George and Veeramani [8]. Atanassov [9] stirred things up by adding
the idea of a non-membership grade of fuzzy set theory. Fuzzy metric space has been widened to
Intuitionistic fuzzy metric space by Park [10]. Park used continuous triangular norm as well as
continuous triangular conorm to describe this idea. Smarandache [11] described the concept of
neutrosophic logic and neutrosophic sets in 1998.

This study aims to present the concept of Complex Valued Neutrosophic b-metric Space. In
addition, this research expands on previous fixed-point findings over contractions. To strengthen, we
finish our work with an application to integral equations and an example illustrating the applicability
of our main results.

2. Preliminaries

This study will require the following definitions and results.
C denotes the set of complex numbers.
Weset $={(p,4):0< p <,0<g < x}cC
A partial ordering < on C is defined by 1; < 7,(equivalently, 7, S 7;) © Re(t;) < Re(r,) and
Im(ty) < Im(z,). The closed unit complex interval is defined as F={(p,4):0< p <1,0<g <1}
and the open unit complex interval by §; = {(,4):0 < p <10< g <1}
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The set {(#,4):0 < p < 0,0 < g < 0} denoted by ;. The elements (1, 1),(0,0) € $ are indicated
by £ and b, respectively.
Remark 2.1[12]. Let {r,} be a sequence in $. Then,

(1) If {zr,} is monotonicin $ and there exists p, o € $ such that p S 17, S 0, forevery t €N,

then there exists a T € $ such that limt, =1.

L—00

(ii) 0 c C is that there exists p,0 € C with p S C =< o forall 6 € 0, theninf ® and sup ©
both exist.
Remark 2.2 [12]. Let 7,7',n € $ forevery t €N . Then,

(i) If 7, 37, 3¢ forevery t €N and limt, =¢, then lim 7', =+4.
(— 00 (— 00
(ii) If 7, S n forevery t €N and limt, =7 € §, then 1 I 7.
(—00

(iii) If n S 1, forevery t€N and limt, =7 € §, then n I ¢
1—00

Definition 2.3 [12]. Let {r,} be a sequence in $. If for all T € § there exists an t, € N such that

7371, forall ¢ > 1. Then {r,} is named to be diverged to o as t = o, and we write lim 7, = co.
=00

Definition 2.4 [12]. A binary operation *: & X & — & is named a complex-valued t-norm, if for all

T, T, T3, Ty € cl}

@) Ty * Ty =Ty * Ty

(ii) T*D0=0, T*x¥ =71,

(iii) Ty % (T2 % T3) = (Tg ¥ T2) * T35

(iv) Ty * T, S T3 * T, whenever 7; S 73, T, S T,

Example 2.5 [12].
(i) Ty % Ty = (P1#2,3192), forall Ty = (p1,441), T2 = (P2,42) €,
(ii) 71 ¥ T, = (min{py, p,}, min{g,, 4,}), forall 7, = (p1,41), 72 = (P2, 42) €,
(iii) T; * T, = (max{p;+p, — 1,0}, max{g, + g, — 1,0}),
forall 7, = (p1,91), 72 = (P2,92) €F.
These are examples of complex-valued t-norm.

Example 2.6 [12]. The following are examples of complex-valued t-conorm:

(i) Ty % T, = (max{py, p,}, max{g,, q,}), forall 7, = (p1,41), T2 = ($2,42) €T,

(if) 71 * T, = (min{p,+p,, 1}, min{g, + g,,1}), for all t; = (p1,441), T, = (P2, 4,) € .
Definition 2.7. Let £ be a nonvoid set, *, * are complex-valued continuous t-norm and t-conorm,
P, € and Qare complex fuzzy sets on £2 x $; fulfilling the following assertions:

1) B,o,7) + 8, v,7) + Q(w,0,7) 3 3;
2) B<PQo,1);
3 (u,0,7) = forevery 7t € ; < if u=u;

4 (1,0,7) = B(o,u, 7);

2N

(
)
©)
(4)

2N
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)
) B(u,v,.): H; > F is continuous;
7) Lu,0,7) < 4
) Q(u,0,7) =6, forall 7 € (0,00) & u = ;
) €(u,0,7) = £(0,1, 7);
10)€(u,v,7) * €(v,w,7") = C(u, w, 7 + 7');

l

(

(

(

(

(

(10)

(11)2w,v,.) : 5 » & is continuous;
(12)Q (u,0,7) < ¥;

(13)Q (u,0,7) = 6, forall 7 € (0,0) & u=y;
(14)Q (u,v,7) = Q(o,u, 7);

(15)Q (1,0,7) * Ao, w,7") = Qu, w, 7 + 7');

(16)Q (1,v,.) : $; » § is continuous.

The Triplet (B, & Q) is called a Complex Valued Neutrosophic Metric Space (CVNMS).

Definition 2.8. Let = be a nonvoid set, # > 1 be a given real number, *, * are complex-valued
continuous t-norm and t- conorm , B, € and Q are complex fuzzy sets on £2 x §; fulfilling the
following assertions. Then (&, B,8 9%, x,0) is called a Complex Valued Neutrosophic b-Metric
Space (CVNbMS). For all u,»,w € £ and 7,7’ € ;.

(1) P, v,7) + L, 0,7) + Qu,v,7) 3 3;

) 5 <Pu,o,1);

(3) B(u,0,7) =4 foreveryT € H; © u=ro;
4) P,o,7) = Bo,u,7);

(5) B(,0,7) * Po, w,7) I P, w,0(r +1));
6) P,v,.): H; » § is continuous;

7) Lu,0,7) <&

(8) Q(u,0,7) =6, forall T € (0,00) & u = p;
9) L(u,v,7) = (v, 1, 7);

(10) €(u,v,7) * €(v, w,7") = L(u, w,0(7 + 7'));
(11D 8(,v,.) : $; = § is continuous;
(12)Q(w,v,7) < #;

(13)Q(u,v,7) = b, forall 7 € (0,00) & u = v;
(14)Q(u,v,7) = Q(o, 1, T);

(15)Q(u,v,7) * Q(o, w, ) = Qu, w,0(r + 7'));
(16)Q(u,v,.) : H; — § is continuous.

Example 2.9 Let (E,p,0) be a b-Metric Space (bMS). Let 7, * 7, = (min{p,, p,}, min{g,, ¢,}), 74 *
7, = (max{p,, p,} max{qy, g, Nforall t; = (p1,41), 72 = (P2, 42) € F. Let us consider the Complex
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$ a2 ) T —__ %4 It — _ P(uwo) & —
Fuzzy Sets[CFS] B, & : £% X $; — & such that PB(u,,7) P £,2(u,v,7) P £, Q(u,v,7)

p;l:) £, where 7 = (p,4) € $;. Then, (£,B,8,Q,%, *,0) is a CVNbMS.

Lemma 2.10 Let (E,‘ﬁ,f},f},*, *x,0) be a CVNDMS and 7t,,7, €C. If 7, < 7,, then B(u,0,7,) 3
B(u,v,07,), Eu,0,7;) = L, v,07,) and Q(w,v,7,) = Q(u,v,07,) for all u,v € E.
Proof. Let 7,7, € $; be such that 7, < T,.
Therefore, 7, — 71 € $; and so that for all u,0 € E, we get B, 0,7;) =L *P(u,0,7;) = B, u, 7, —
;) * B, v,71) 3 P, v, 07,)
L(u,v,07,) S 8(u,u,7, —7;) * 8(u,v,7,) S 0 * 8(u,v,7,) and
Qu,v,07,) S Q(u,u, 17, — ;) * A, v,77) S 0x Q(w,v,7,).
Definition 2.11 Let (5,5, €, Q,%, *,0) be a CVNbMS and {u,} bea sequence in E.
(1) {u,} converges to u € E if for every y € Fsand every T € §;, there exists ¢y, € N such

that, forevery t > 5, £ — y < Bu,u, 1), L, 1,7) <yand Q(u,u,7) <y. We denote

this by limu, =u.

(— 00
(ii) {u,} in E is named to be a Cauchy sequence in (E, ‘ﬁ, 2,8,%, * 0) if for every 1 € §;,

lim infy,s, By, u,7) =€, lim sup,-, L, u,7) =5 and lim sup,,s,Q(u,,, 1, 7) = 6.
>0 -0 -

(iii) (8, €I~3, 2,89,%, * 0) is known to be a complete CVNDMS if for every Cauchy sequence

{u} in (E, B, 8, Q,%, *,0), there exists an u € E such that limu, =u.
(— 00

Lemma 2.12 Let (5, ‘:f?, 2,9, *, 0) be a CVNbDMS. A sequence {u,} in E converge to
u€E & lim P(u,y,,u,7) =2, lim 8(u,,, 1, 7) = 6 and lim Q(u,,, 1, 7) = 6 holds for all T € $;.
1—00 >0 =00

3. Main Results

Theorem 3.1 Let (,%,8 9%, *0) be a CVNbMS such that, for every sequence {r,} in $;with
limz, =00, we have liminf,ez By, 0,7,)= £, limsup,ez L, 0,7)=06 and limsup,ez Q(u,v,7,)=0
L—00 L—00 [—00

>0

forall u € E. Let f: E » E be a mapping satisfying

B (fu, fo, %) z P(u,v,7), € (fu, fv, %) < 2,v,7) and Q (fu, fo, %) < Qu,v,1) (3.1.1)

Forall u,v € £ and 7 € $; where 6 € (0,1). Then f has a unique fixed pointin E.

Proof:

Let u, be arandom element of £ and define the sequence {1} in E by the iterative method u, =
fu,_, forevery ¢t € N.If u, =u,_; for some (¢ € N, then u, is a fixed point of f.

So u, # u,_, forevery ¢ € N. We claim that {1} is a Cauchy sequence in E.

Define W, = { By, 11, 7):m > 1}, N, = { Ly, 1, 7):m > 1} and O, = { Quyy,, 1, 7):m > 1) for all 1 €
N and 7 € 9;.

Since 6 < P(u,,,u,7) S, 0 < Lu,y,u,7) S € and 6 < Q(u,,,u,7) S £ for every m € N with m >

t and from Remark (2.1)(ii), inf W, = a,, supMN, = B, and supO, = g, exists for all ¢ € N.
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Using Lemma (2.10) and (3.1.1), we get

S/B(um'uu 7) 3 iB (um'uu ) S iB(fu fo,7) = iﬁ(urrﬁl: U1, T) (3.1.2)
S, u,7) = 8 (um,ul, 9) = T(fu, 0, 7) = Ty, 1 Uy, T) (3.1.3)
and Q(u,u,7) =8 (um,ul, ) = Q(tw t0,7) = Dy, Uy, T) (3.1.4)

for t€ Hy; and m,t €N with m > .
Since 63 a, S a4, 3¢, tzZB, ZB41 0 and £z, Z 0,4, =0 for all t€N it follows that
{a,},{B.} and {g,} are monotonic sequences in $.

Utilizing Remark (2.1)(i), there exists #,,¢'and £ € $ such that

lim @, =£,, lim , = ¢ and limg, =7. (3.1.5)
(— 00

L—00

Now, by repeatedly using the contractive condition (3.1.1), we get

~ ~ 5T\ 5T\ | ~ 5%t
g‘]3(um+1ﬁut+1' T) z P (um' U, 7) =P (fum—lrfuz—l' F) z P Um-1, uL—l'?
t 8%t - & 53t . > stir
( W2, T, ) z P (um—ZJuL—ZIF) zZP (uOJum—uW)-

~ ~ 5%t
ﬁ(um+1'ul+1'T) (um'uu ) (fum—lrfut—lig) L um—l:ul—ltﬁ)

01
w
\/ ~

~ 6L+1_[
< 3 8 (g, Uy 5y ) and

(fum 2'ful 2 )52(111,1 2'uL 2) 3 93 gL+,

3 St = 8%t
D(um+1'ut+1' T) ~ (um'u ) 9) Q(fum 1lfut 1r 6) D(um 1 U—1, 92)

= 8%t = 83t = sttt
= 9 (Btmoz 11,5, 5) 3 8 (tmoz 2, 55) 3 3 8 (110, o o).

for 1 € H; and m,t €N with m > .

i ~ i ~ 5L+1T 6l+1.[
Thusr aL+1 = lnfm>t$(um+1:ut+1:‘[) Z lnfm>L§’B (uorum—u 91+1,) lnan~. (uo'v 9L+1,)/

—~ —~ 6l+1‘[ —~ 5L+1T
ﬂt+1 = Supm>t‘8(um+1'ut+1: T) 3 Supm>t£ (uorum—u 9L+1,) 3 SuanE'Q (uOJD' 9L+1,) and

—~ —~ 5L+1T —_~ 5L+1T
Ql+1 = Supm>LD(um+1'ut+1: T) 5 Supm>LQ (uorum—u 9L+1,) 5 SuanED (uOJD' 91+1_)-

L+1T

Since lim ZLT = o, by using the hypothesis along with (3.1.5), we obtain
=00

sttiz stt1

gL+l

) ¢, 03 lim SUP,ezl (uo, T) =5 and

fy 2 11m inf,e=B (uo,n 0, 5T

- . = sty .
£ 2 lim sup,ezQ (uo, D, —) =D.

-0 oty

This indicates that ¢, = ¢, ' =5 and ¢ = 5. Thus, {1} is a Cauchy sequence in E.
Since (Z,%, 8, Qx, * 0) isa CVNbMS, by Lemma (2.12), there exists a b € E such that for all 7 € §;,
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lim B(u,y,, ,7) = £, lim €(u,,,b,7) =6 and  lim Q(u,,, d,7) = b. (3.1.6)
1—00 >0 [

We will demonstrate that b is the fixed point of f. As a result of (5), (10) and (15) of definition (2.8),

the contractive condition (3.1.1) we get,
To1,1) 2 B (0.11,55) * B (tner, B 55) = B (102,55) * B (B, 1. 55)
- $or ) B ).
To,m,0 38 (b, ul+1,%) %8 (g, T, %) =3(» um,%) * 2 (T B, %}
S 8 (0,11, —) * & (1,0, =) and

80, 1,7 3 8 (0,140, Te) * 8 (s, T, 9) =a(», ul+1,%) * 8 (tuy, B, %)

A
N

(b, U, %) * Q (um, d, %)

for any T € $;. Taking the limit as ¢ — oo, by (3.1.6) and Remark (2.2)(ii), we obtain F(d,,7) = 2,
L(b,T,7) = 5 and Q(d,fd,7) = 6 and for all T € $;;, which gives b = fb.

To show that the fixed point d isunique. Let 3 be another fixed pointof f,i.e,thereisa 7 € §; with
B(d,3,7) = £, 8d,31) # 6 and Q(d,3,7) # 6 from (3.1.1), we obtain that

B4 =500 2 5(02) =3 (002) (0% . 23(0%5)
Z inf,e=B (b 3,— )

F(0,3,7) = S(to, T )<§<b HT)—E(fbf 6T)<5§ 0,5 07 <§(b 917>
,3,1’ - 1] S;T ~ !3; 6 - ) 31 6 ~ 131 62 e ~S 131 6"

< Sup,esL (b, 3 i—lf) and
Q,3,1) = Q(fy,,7) 3 Q (b, 3, %) = f,)(fb, B3 %) <Q (b, 3, 1—221) S ﬁ(b, 3, 96—?)
= supDE=D (b 350 ) forall t € N.

Hence, since llm? = oo, the above inequality becomes B(d,3,7) = ¢, 2(0,3,7) 36 and Q(b,3,7) 3

—00

6 which leads to a contradiction. Thus, we determine that the fixed point of f is unique.
Example 3.2. Let £ = [0,1] and let B, €, Q: E2 x $; - § such that
(u=0)?

pg+(u—10)2

¢, 8(u,0,7) =

& = (u—10)?
B(u,v,7) = £ and Q(u,v,7) = P {,

%+(u 0)?
where 7 = (p,q) € $;. Then, we can readily verify that (5,8, €, Q,%, *60) is a CVNbMS with 6 = 2.

We conclude that for any sequence {u} in $; with limt,=c , we have

L— 00
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&)
l
&)

lim inf,cz B, 0, 7)= 2, lim sup,cz L, 0,7)=0 and lim sup,ez Q(u,v,7)=6 for all u € E. Let f:
>0 [Aads] =00
be a mapping defined by fu = ¢ u? where 0 < ¢ < i. By a routine calculation, we see that

‘B(fufn )>‘B(unr) B(fufn )<£!(unr) and D(fufn )<D(unf)forevery u,v € £ and

T € 93, where § = 4¢and 0 < 6§ < 1. All the requirements of Theorem (3.1) are fulfilled and 0 is the
unique fixed point of f.
Theorem 3.3. Let (£,%B,8,Q,%, *,0) be a CVNbMS such that, for every sequence {7,} in $;with

lim 7, = o0, we have 11m inf,ez B, v,7,)="2, 11m SUpyez L1, 0,7,)=6 and  lim sup,cz Q(u, v, 7,)=5, for
(— 00

L—00

-

all ue E. Let ,h : E — E be a mapping satisfying the following requirements:
(i) H(E) € 1(E),
(ii) fand ) commute on E,

(iii) f is continuous on Z,
(iv) B (I)u ho,— ) z B(fu, v, 1), € (I)u ho, ) < Q(fu, fo,7) and Q (I)u ho,— ) < Q(fu, fv, 7)for

all ,p € E and 7 € $; where 0 < § < 1. Then f and h have a unique common fixed
pointin E.
Proof. Let u, € E. Since h(E) € #(E), we can choose an u; € £ such that hu, = fu;. Repeating this
procedure, we can choose u, € £ such that fu, = bu,_;.
We claim that the sequence {fu,} is a Cauchy sequence. For every t € N and 7 € $;, define
W, = {B(fu,y,, fu, 7):m > 1), N, = {E(fu,, fu, 7):m > and O, = { Quy,, 1, 7):m > 1)
forevery t€ N and 7 € $;.
Since 5 < P(fu,,, fu,7) S €, 5< Ly, u,7) I and 6 < Q(u,,,u,7) S £, for every m € N with
m > and from Remark (2.1)(ii), inf ¥8, = a,, sup N, = B, and suptO, = g, exists for every ¢ € N.
Using Lemma(2.10) and (iv), we get

Pt b, ) S B (i, B, 5) 3 PO, By, 1) = BBty ity 7),
L(fu,,, fu,7) = € (fum,fut, ) z €(bu,bo, 7) = L(fuyy, i, 7) and

Q(fu,,, fu, 1) = Q (fum,ful, ) z Qb ho, 7) = Q(fuyeq, fitpq, 7),

for T € 9y and m,t €N with m > .
Since S a, S a1 34,42 P, 2Py 20 and £ 20, 20,41 £ 0, for all t €N it follows that {a,},
{6} and {g,} are monotonic sequences in.

So, utilizing Remark (2.1) (i), there exists an ¢, #'and ¢ € § satisfying

lima, =£,, limpB, =¢' and limo, =7 (3.3.1)

By applying the condition (iv), we have
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ot ~ ot
S/B(fum+1' fut+1' T) - sB(bum: buu T) > EB <fum' fuu > EB <bum—1' bul—ll ?)

_ 0%t ~ 6%t
z P fum_l.ful_p? = bum—Z'buL—Z’F

037 . gi+ig
0 O 2 2) 2 2 B i ).

— — — ot _ 0t
Tttrn, B2, 7) = DO, 1, 7) S T (Bt ) S 2 (Bt B, 5 )

1)
_ 92'[ - 92'[
<g fum_l,ful_l,? =8 bum—ZJDuL—Z’?

93 9L+1T

2 8 (g B, 5

) <= E(uo,um_“ ) and

FYEE
~ ~ = ~ ot
Q(fup4q, Ty g, ©) = QU hu, 1) S Q (fum' fu, ) Q (bum—li bu,_q, F)
- 021
<Q fum_1,ful,—11 bum 27 bul. 2 62

_ 9l+1
<Q (fum_z,ful 2753 ) -3 <u0'um—u F)

for T € §; and m,t € N with m > . Thus,
. - . ~ i+l gitiy
A1 = lnfm>L;‘B(fum+1'fuz+1'T) Z lnfm>zg‘]3 (fuo; fum—u 6”1) lnanm (quJ D, —iT S+ )

~ ~ 9L+1.[ —~ 9L+1_[
Bt = SUPms (Mg, a1, T) S 5UPps, 8 (Btg, Bty ) X supyez® (g, 0,5 ) and

l+1T

_ _ _ 9L+1
041 = Supm>L‘D(fum+1' ful+1!T) 3 SUPm> A (quJ fum—u W) S SUPyez (quJ D, W)

l+1
Since 11m 95 = oo, by using the hypothesis along with (3.3.1), we obtain
+1 t+1
€0 Z lim infyezP (fuo, iH'l ) e, 0= lim SUPyezl (fuo, ,%) =5,

+1

T . - . = (2 4 .
) =0 and ¢ < lim sup,zQ (fuo,v, —5t+1,) =5
(=00

’ St+1,

+1

2" 3 lim sup,es 8 (fuo, v
1—00

Which implies that £, = ¢ and ¢’ = 6. Thus, {fu,} is a Cauchy sequence in Z.

Using Lemma (2.12) and completeness of E, there exists a b € £ such that limfu, = bd.

(—00

Using (iv), we can check that the continuity of ¥ implies continuity of . So, limhfu, = bhb.

(>0

Since f and h commute on E, we have lim fhu, = hd.

>0

Moreover, we know that limbu,_; = b so we get limfhu,_; = d.

L—00 L—00

Based on the uniqueness of limit, we get b = hd and therefore Hhhd = fhd.

M. Pandiselvi, and M. Jeyaraman, Fixed Point Results in Complex Valued Neutrosophic b-Metric Spaces with Application



Neutrosophic Systems with Applications, Vol. 17, 2024 29
An International Journal on Informatics, Decision Science, Intelligent Systems Applications

Repeated use of the condition (iv) yields

T(on, 050, ) = F (1,190, 77) = (oo, 92, %) % = % (5,550, ?)
= T (0,190, 57)  infies (b0,0,57)
2(hd, hhd, 7) (fb fhd, %) =g (bb, Hhd, %) -3 E(bb bhd, )
(I)b fhd, ) < Supyezl (bb D, )and
Q(d,Hhd,7) I Q (fb, thd, %) =Q (bb, Hhd, %) -3 Q (bb Hhd, )

= 2 (od, 1o, 95—) < sup,e8 (Hd,v, ‘;—)

Letting the limit as ¢ — o, and applying the hypothesis we get,

B(bd, bhd, T) = £, L(hd, bhd, 7) = 6 and Q(hd, hhd, 7) = 5 which implies that Hhd =Fhd = hb.
i.e.,, hdis a common fixed point of fand b.

We shall establish the uniqueness of the common fixed point bb.

Assume that hd and 3 are two distinct common fixed points of f and b.

Utilizing (iv) with u = bd and » = 3, we find that,

¢ x $(od,3 D=Pobo,bd, 0 x F (0, 5,%) = F (90.3.%) - = B (b0,3.57) % infeeeT (0,0,57)
5% 2(hb,3,1)=2(ohd, 50, 1) 3 T (150, 5,5) = T (0,3, %) .. 3 T (bd,3,%7) 3 sup,e=¥ (b,0,%7) and
55 8(hd,3, )=8(hd,bd,7) < 8 (150,5,5) = Q (0,32 .. 3 T (50,3, 57) 3 supoes® (0,0,%5).

Since llmd— = oo, we conclude that B(hd,3,7) = ¢, €(hd,3,7) = 5and Q(Hd,3,7) =5

>0

Thus, bd = 3, this concludes the proof.

(u=1)?

Example 3.4 Let £ = [0,1] and let B, T, Q: 22 x $; > § such that P(u,v,7) = e #%4 ¢,

(u=1)? (u=1)?

La,v,1)=(1—e #+* )¢ and Q(u,0,7) = (e #*¢ —1)¢ where 7= (p,g) € H;. Then, we can
readily verify that (2,5, €, Q,%, *,8) is a CVNbMS with 8 = 4. On the other hand, let llm 7, =00 for
any sequence {7} in $; where 7, = (p,,¢,). Since (u— p)? <1 forevery u,v € E it follows that

(u—1)2 _ Supnes(u—n)z

1
infocs B, 0, 7)=infoez e #raf =e " pa £ % e woralf.

= 1 1 1
Sup’oEEg(u' D, TI.) = SUPyez {f T T n)2]= ?— suplu—v)? ~ S4- 1 and
e Pita.L e #utau ePutaL

_ (u-v)? (u—1v)? 1
SUPez AU, 0, T,) = SUPyez j€ Ptu £ — £ b= Supyez je ptaf — £ S erctad,
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1
Therefore, we have lim inf,cz B(u,0,7,) = lime Guradp =4,
L— 00 >0

. = i ¢ i
lim sup,ez (1, 0,7,) = lim(# ——5—)=0 and
(—00 (—00

epita.

1
lim SWPsez Q(1,0,7,) 3 lim(estaf)=5. Let £ : £ > E be defined by fu=u and,hu = 2 .
L— 00

1—>00

One can readily verify that H(E) € #(E) and f is continuous on Z.Furthermore, f and § commute

on Z. Moreover, It is simple to demonstrate that condition (iv) true for every u,v € [0,1] with § = %.

Definition.3.5 Let (,%, €, Q,%, *,0) be a complete CVNbMS. The modified contraction condition for
the mapping f: Z - E as follows:

£ —P(fu, o, 1) 3 5[ — P(u,v,7)], L, fv,7) S 68, v,7) and Q(fu, T, 7) S 5Q(,v,7) (1)
Forall u,0p € £ and 7 € $; where 6 € [0,1).

Theorem 3.6 Let (£,0,8,9,%, x60) be a CVNbMS, and t: E— E be a mapping fulfilling the
contraction condition (I). Then, f has a unique common fixed point in Z.

Proof: Let u, be a random element of E. Using induction, we can generate a sequence {u,} in
such that u, = fu,_; forevery t € N. Continuing from the proof of Theorem (3.1) in [12], we examine
that the sequence {u,} is a Cauchy sequence in E and converges to some b € Z.

We will demonstrate that b is a fixed point of f. By the contractive condition (I), we have

£ —PB(fu, To,7) < 6[£ — B(u,0,7)], L(fu, fv,7) S 58(u,v,7) and Q(fu, o, 7) 3 5Q(u, v, 7)

forall : € N and 7 € $;. The above inequality demonstrates that

2(1 = 68) + 6By, d,7) S P(fu,, ¥, 1), €(fu, o, 7) < 68y, v, 7)and Q(fu, fv, 7) 3 6Q(u, v, 7). (3.6.1)
forall t€ N and 7 € $;.

Therefore,

Bo,t,7) x P (b' Uiiq 'é) * P (uz+1: i} é) =P (b, Uyq ,%) * P (ful, jis} i)

8o, 10,7) 3 T (D1 25) * & (e, B, =) =T (d1141, ) * & (1,1, and

80, 1,7) 3 8 (0,141 ,55) * B (w4, ) =8 (0,141 ,55) * B (1, ,5) forany 7 € $;.

Taking the limit as ¢ - o, from (3.6.1) and Remark (2.2) (ii), we determine that (b, ,7) = 2,
€(d,®,7) =6 and Q(b,B,7) =6 for all T € H;, which yields b = bd.

To prove that the fixed point of f is unique, assume that there exists another 3 € £ such that (3) =
3. Then, thereisa 7 € §; fulfilling B(d,3,7) =, &(b,37) #6 and Q(,3 1) # b.

As a result of (I), we have

¢ = P(v,37) = £ —P(d,13,7) I 5[¢ — P(b,3, 1], Lo, 13,7) < 68(d,3,7) and Q(ld, 1, 7) < 6Q(v,3, 7).
Since PB(b,3,7) # ¢, €(d,3,7) # 6 and Q(b,3,7) # 5, we obtain

Re(P(d,3,7)) # 1 or Im(B(d,3,7)) # 1, Re(€(d,3,7)) # 0 or Im(€(d,3,7)) # 0 and Re(Q(d,3,7)) # 0 or

Im(Q(b,3,7)) # 0. Let Re(B(d,3,7)) # 1, Re(€(d,3,7)) # 0 and Re (ﬁ(b, 3, ‘L')) # 0.

M. Pandiselvi, and M. Jeyaraman, Fixed Point Results in Complex Valued Neutrosophic b-Metric Spaces with Application



Neutrosophic Systems with Applications, Vol. 17, 2024 31
An International Journal on Informatics, Decision Science, Intelligent Systems Applications

Therefore, we get
1—Re (P(0,37)) 3 5[1 - Re(B(d,31)] 31— Re (P0,3,7)),

Re(8(fd, 13, 7) S SRe(€(1,v,7)) S Re(L(u,v,7)) = Re(8(fd, 13,7)) and

Re(Q(fd,13,7) S SRe(Q(1,v,7)) = Re(Q(u,v,7)) = Re(Q(d, 13,7)) which is a contradiction.
We can omit the details of the other since the other case is identical to this one.

Thus, B(d,3,7) = £, (d,3,7)=b and Q(b,3,7)=0 for all 7 € $; and the proof is completed.
Example: 3.7 Let = [0,1] and let B,2,9: 5% x H; » F such that

(u-1v)?

1+pg—(u—10)?2

(

‘E(unr)zf—(u_n)zfﬁ(unr)z w9 ) and Lu,v,7) = ¢ where 7= (p,q)€ H;
Yy 1+pq ’ Yy 1+pq g #7'4 [V

2
Define the mapping ::Z -2 by fu= u:. Therefore, we have

(fu— fv)?
1+pq

(fu— n)? < (u—1)?2
14+pg—(u—Tt)2 =~ 14+pg—(u—1)2

£34 (z;;z: £ and £ where § € [i, 1). Thus, we determine that
(I) holds, all the necessary hypotheses of Theorem (3.6) are fulfilled and thus we establish the
existence and uniqueness of the fixed point of ¥ and 0 is the unique fixed point of *.

Corollary 3.8  Let (£,%,€ Q% *6) bea CVNbMS and f: E > E be a mapping satisfying

£ — Py, o,7) 3 6[{’ — B, v, ‘r)], Qfu, f'o,7) 88, v,7) and Q(fu, fo,7) 3 6Q(u, v, 7) for every
u,v€E and 7 € H; where 0 <6 < 1.Then, f has a unique common fixed point in E.

Proof: By Theorem (3.6), we get a unique u € E such that fu = u. Since ¥fu = ff'u = fu and from

uniqueness, we get fu = u. This demonstrates that f has a unique fixed point in Z.

4. Application

Applying our main results from the previous part, we analyze the existence theorem for a
solution to the following integral equation in this section:

u@=xG) + o [} 3G, )y (8,u(8)) b5 € [0.1], 2)
where
(1) k is a continuous real-valued function on[0,1]; § : [0,1] X R = R is continuous,

P(8,11) = 0 and there exists a § € [0,1) such that |{(5,u) — Y5, v)| < 8|lu— 1|, for
every 1,0 €ER;

(ii) 2:[0,1] x [0,1]] = R is a continuous at § € [0,1] for every 8 € [0,1] and measurable
at 0 € [0,1] for every § € [0,1]. Moreover, 3(%, (3) >0 and fol a5, §)d§ <L

(i) 82£%% <.

Theorem 4.1. If the condition (i)-(iv) fulfilled. Then, the integral Eq. (2) has unique solution in
(C[0,1], R), where (C[0,1], R) is the set of all continuous real valued functions on [0,1].
Proof: Let = =(C[0,1], R) and define a mapping f: E - E by

u@=x@) +0 [ 3G, OV (E,u(é)) d8,5 € [0,1], forall u € Z and for every 5 € [0,1].

We need to prove that the mapping f fulfils all requirements of Theorem (3.6).
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~ o~ o~ ~ D — n(2))2
Define B,€,Q:E2 X $; - & by B(u,0,7) = £ — supze(o 1] M{’,

e?9

5= o(3))2
Supge[o,l]% )

2 -
7%(9)) £ and 8(u,0,7T) = <

u@®)
SUPze[o0,1] o7

L(u,0,1)

@@®-1(3)?
1-SUpPse(o,1] = se;vels

where 1 = (p,q) € 9;. Clearly, (5, B,8,9,% x,0) bea complete CVNbMS.

Moreover, for every u,v € £ and § € [0,1], we get

[fu(3) — @) = o fln(g, )W (8,u(8)) - 3G 8)w (8,0(9)) d§|

<of 369 0 (8.u0)) - v (3.(8)[ 0 <0 [ 3 8)5[u(8) - o(5)|d8

< oL 8supzepgq)1u(8) — v(3)|
Since, supze(o1]/Tu(8) — ()| < 0L Ssupzeo,1)|u(8) — v(3)|

[fu(®)—1o(3)|*
e?9

[fu(@)- to(3)[? [u@-0@)I? [u@-0()[?
SuP§€[0,1]4U(S)ept:(S) < 621262 supge[o,ﬂ_u(s—)ep;(s) 1 supge[o,ﬂiu(s)ep‘;(s)
e [u@E)-@E)I% | — P m@-o@1% | — 2., [u@- 0@’
1-SUPe[o,1] 74 1=SUPse(o,1]— o727 1-SUPie[o1]— 74

[u®)-0(3)[* <1 [u®)-0()|? and

We get, supze(o 1 < 0252825“%5[0,1] s =3 5UPsel01] T g

This establishes that the mapping f fulfilling the contractive condition (1) in Theorem (3.6), and f
has a unique solution in (C [0,1], R), i.e., the integral Eq. (2) has a unique solution in (C [0,1], R).
Example 4.2 Take the integral equation

82 |cosu(®)|
5242 ) 5(-3g

u@=—+2J; d8,5 € [0,1], 4.2.1)
It can observed that the above equation is of the form (II), for o =2, «x(§) = % ,E(%, §) = ~e_2'
1+8§ 5+2

__|cosg|

lp(g’u) - 5ed

Clearly, ¢ is continuouson [0,1] X R and we get

|L|J(§, u) - L|J(§, n)| = %Hcosul - |c05n|| < % |[cosu — cosp| < § |cosu — cosn| < élu — |

for every u,» € R. Thus, Y fulfills the condition (ii) of the integral equation (II) with =§ .Itis easy
82 = 1

242 3242
mapping & meets the condition (iii). We get 02£262 < % Thus, the hypotheses (i), (ii),

to verify that the mapping k is continuous and foll(g, 6)de = fol %S%= L, the

iii), and (iv)

—~~

are true. Using the Theorem (3. 6) leads us to the conclusion that the integral equation (II) has a unique
solution in (C [0, 1], R).

5. Conclusion

In this paper, we have defined complex valued neutrosophic metric like space and we have
proved fixed point theorems for mappings on complex valued neutrosophic metric like space. We
hope that the results proved in this paper will form new connections for those who are working in
complex valued neutrosophic metric-like spaces.
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